JP2004010375A - Processes for preparing tricobalt tetraoxide and lithium cobaltate - Google Patents
Processes for preparing tricobalt tetraoxide and lithium cobaltate Download PDFInfo
- Publication number
- JP2004010375A JP2004010375A JP2002162726A JP2002162726A JP2004010375A JP 2004010375 A JP2004010375 A JP 2004010375A JP 2002162726 A JP2002162726 A JP 2002162726A JP 2002162726 A JP2002162726 A JP 2002162726A JP 2004010375 A JP2004010375 A JP 2004010375A
- Authority
- JP
- Japan
- Prior art keywords
- tricobalt tetroxide
- precipitate
- lithium
- particle size
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、特にリチウム二次電池の正極活物質として用いるコバルト酸リチウムの製造原料として有用な平均粒径が5〜30μmの四酸化三コバルトの製造方法およびこれを製造原料として用いたコバルト酸リチウムの製造方法に関するものである。
【0002】
【従来の技術】
近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアルリサーチブレティン」vol15,P783−789(1980)〕がなされて以来、コバルト酸リチウムに関する研究開発が活発に進められており、これまで多くの提案がなされている。
【0003】
従来、四酸化三コバルトは、主にこのコバルト酸リチウムの製造原料として用いられている。
こうしたリチウム二次電池用の四酸化三コバルトの製造方法としては、例えば、水酸化コバルトを焼成して四酸化三コバルトを得る方法、或いは炭酸コバルトを焼成して四酸化三コバルトを得る方法等が提案されている。
【0004】
水酸化コバルトを焼成して四酸化三コバルトを得る方法としては、例えば、コバルト塩の水溶液と、か性アルカリ溶液とを同一槽内に連続的に供給、攪拌し、供給塩濃度、供給塩流量、槽内温度を一定にして槽内のpH値を11.0〜13.5の範囲に制御した後、得られるコバルト水酸化物を空気中で熱処理して四酸化三コバルトを得る方法(特開平9−22692号公報)、硝酸コバルト水溶液に、水酸化ナトリウム水溶液を滴下して得られる水酸化コバルトを100〜900℃で加熱処理して四酸化三コバルト又は四酸化三コバルトと水酸化物との混合物からなる球状もしくは長円球状で平均粒径が1μm以下の一次粒子が、複数個連結した凝集塊からなるコバルト酸化物を得る方法(特開平5−54888号公報)等が提案されている。
【0005】
一方、炭酸コバルトを焼成して四酸化三コバルトを得る方法としては、例えば、硫酸コバルト水溶液と、その水溶液に含まれるコバルトイオンに対して当量以上の炭酸水素イオンを含む水溶液を反応させ、反応後さらにアンモニアを添加し、pHを7.0〜8.5に調製して、1時間以上攪拌後、得られた沈殿を固液分離、洗浄、乾燥させて、空気中等の酸素共存下で600〜700℃の温度で焼成して四酸化三コバルトを得る方法(特開平8−96809号公報)等が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、通常、水酸化コバルトを焼成して得られる四酸化三コバルトは、タップ密度が小さいため、例えば、工業的なコバルト酸リチウムの製造方法において、炭酸リチウムとの混合の際に炉での充填密度が小さくなり、コバルト酸リチウムの大量生産用には向かない。また、特開平5−54888号公報で得られる四酸化三コバルトは、タップ密度が大きいものが得られるが、四酸化三コバルト粒子中には、多量のNaとSO4が残存しやすく、特にNaを高濃度で含有する四酸化三コバルトをコバルト源として製造したコバルト酸リチウムは、Liサイトに置換されるNaが多くなるため層状構造が歪みLiの脱挿入が困難になり、このコバルト酸リチウムを正極活物質とするリチウム二次電池は、特にサイクル特性が悪くなる傾向にある。
【0007】
一方、特開平8−96809号公報の四酸化三コバルトの製造方法によれば、炭酸水素ナトリウム水溶液に、硫酸コバルト水溶液を添加し、さらにアンモニアを添加して得られる塩基性炭酸コバルトを600〜700℃で焼成して四酸化三コバルトを得ている。この製造方法で得られる四酸化三コバルトは、平均粒径が0.1〜0.5μmと小さく、また、製造過程で結晶中に取り込まれたNaやSO4は洗浄等を行っても、それらを十分に除去することができず、結果的にNa含有量が0.3重量%以上のものとなる。このうち、SO4の存在は、返って電池性能を向上させることができると言う報告(特開2000−21402号公報)があるように、ある意味では電池性能に好ましい効果を付与するが、一方、Naを0.3重量%以上も含有する四酸化三コバルトをコバルト源として製造されたコバルト酸リチウムを正極活物質として用いたリチウム二次電池は、上記したようにサイクル特性に問題がある。
【0008】
また、特開平4−321523号公報には、1リットル当たり200g以下の濃度でコバルトイオンを含むコバルト塩水溶液中に、その水溶液中に含まれるコバルトイオンに対して当量以上の炭酸水素イオンを含む水溶液を添加して70℃以下に維持しながら反応させ、得られた沈澱を洗浄乾燥したのち、空気中等の酸素共存下で350〜550℃の温度で焼成して四酸化三コバルトを得る方法が開示されている。しかしながら、特開平4−321523号公報の四酸化三コバルトの製造方法は、実際には、炭酸水素イオンを含む水溶液に、コバルトイオンを含むコバルト塩水溶液を添加しており、また、得られる四酸化三コバルトは平均粒径が0.2μm以下の微細なものである。
【0009】
通常、リチウム二次電池の正極活物質として用いるコバルト酸リチウムは、平均粒径が1〜20μmで、粒度分布がシャープなものが用いられている。この中、平均粒径が10〜20μmのコバルト酸リチウムを正極活物質として用いたリチウム二次電池は、特に安全性が優れたものとなることが知られている。
この平均粒径が10〜20μmのコバルト酸リチウムは、通常平均粒径が2μm以下の微細な四酸化三コバルトをコバルト源として、これと炭酸リチウムとをLi/Coのモル比で1.03以上で混合し、1000℃以上で焼成を行って粒子の成長を行わせて製造されているが、この際、過剰分の炭酸リチウムが残存し、その結果、電池性能を劣化させる傾向がある。
【0010】
従って、本発明の第1の目的は、特にリチウム二次電池の正極活物質として用いるコバルト酸リチウム、特に平均粒径が10μm以上のコバルト酸リチウムの製造原料として有用なNa含有量が0.1重量%以下で、且つタップ密度が大きく、粒度分布のシャープな平均粒径が5〜30μmの四酸化三コバルトの製造方法を提供することにある。
また、本発明の第2の目的は、リチウム二次電池の正極活物質として有用な平均粒径が10μm以上で、特に不純物としての炭酸リチウムの含有量が0.01重量%以下のコバルト酸リチウムの製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上記実情において鋭意研究を重ねた結果、硫酸コバルト水溶液に、炭酸水素ナトリウム水溶液を特定温度以上で添加し特定の条件下で熟成して生成される沈澱物を更に特定温度で焼成を行って得られる平均粒径が5〜30μmの四酸化三コバルトは、Na含有量が0.1重量%以下で、タップ密度が大きく、粒度分布がシャープなものとなること、及びこれと炭酸リチウムとを混合し焼成を行って得られる平均粒径が10μm以上のコバルト酸リチウムは、特に残存する炭酸リチウムが低減されたものとなり、また、これを正極活物質とするリチウム二次電池は、電池性能に優れたものとなることを見出し本発明を完成するに至った。
【0012】
即ち、本発明の第1の発明は、下記の(A1)〜(A2)工程を含むことを特徴とする平均粒径が5〜30μmの四酸化三コバルトの製造方法を提供する。
(A1)工程;硫酸コバルト水溶液に、炭酸水素ナトリウム水溶液を温度50℃以上で添加し、次いで反応液にアルカリを添加して反応系内のpHを8〜12に調製し沈澱物を生成させる工程。
(A2)工程;(A1)工程で生成した沈澱物を温度600〜1000℃で焼成を行って四酸化三コバルトを得る工程。
また、本発明の第2の発明は、前記で得られる四酸化三コバルトと炭酸リチウムとを混合し、焼成を行うことを特徴とするコバルト酸リチウムの製造方法を提供する。
【0013】
【発明の実施の形態】
(四酸化三コバルト)
(A1)工程は硫酸コバルト水溶液に、炭酸水素ナトリウム水溶液を温度50℃以上で添加し、次いで反応液にアルカリを添加して反応系内のpHを8〜12に調製し沈澱物を生成させる工程である。
【0014】
前記(A1)工程で用いる原料の硫酸コバルト水溶液は、硫酸コバルトを水に溶解した水溶液である。用いることができる硫酸コバルトは、工業的に入手できるものであれば特に制限はなく、含水物であっても無水物であってもよい。この中、工業的に入手が容易で安価であることから硫酸コバルト7水塩(CoSO4・7H2O)が特に好ましい。
水溶液中の硫酸コバルトの濃度は、特に制限はないが、硫酸コバルトの溶解度は溶解させる温度に強く依存することから、例えば、60℃の温度で溶解させるには硫酸コバルト(CoSO4)として8〜37重量%、好ましくは21〜31重量%とすることが好ましい。
【0015】
もう一方の原料の炭酸水素ナトリウム水溶液は、炭酸水素ナトリウムを水に溶解させた水溶液であり、用いることができる炭酸水素ナトリウムとしては、工業的に入手できるものであれば特に制限はなく用いることができる。
炭酸水素ナトリウム水溶液の濃度は、炭酸水素ナトリウムが溶解できる濃度であれば特に制限はないが通常5重量%以上、好ましくは8〜9重量%とすることが好ましい。
【0016】
具体的な(A1)工程の反応操作は、前記硫酸コバルト水溶液を温度50℃以上、好ましくは60〜90℃に加温する。次にこの硫酸コバルト水溶液に、前記炭酸水素ナトリウム水溶液を添加する。
【0017】
この(A1)工程において、炭酸水素ナトリウム水溶液を上記温度範囲で添加することにより粒度分布のシャープなものを得ることができ、一方、50℃未満では得られる沈澱物及び四酸化三コバルトの粒子径のバラツキが大きくなり、これを原料として製造されるコバルト酸リチウムは、粒子径のバラツキが大きいためリチウム二次電池の正極材に均一な厚さの塗膜を形成させることができなくなる。
炭酸水素ナトリウム水溶液の添加量は、硫酸コバルト水溶液中の硫酸コバルト(CoSO4)に対する炭酸水素ナトリウム水溶液中の炭酸水素ナトリウム(NaHCO3)とのモル比(NaHCO3/CoSO4)で1.0以上であれば、未反応の硫酸コバルトが残存しにくくなることから好ましいが、余りに多くなると実用的でないため1.0〜1.2とすることが好ましい。
【0018】
本発明の平均粒径が5〜30μmの四酸化三コバルトを得るには、この(A1)工程において、生成する沈澱物の平均粒径を10μm以上、好ましくは10〜40μmとする必要があり、生成する沈澱物の粒径は、添加する炭酸水素ナトリウム水溶液の添加時間に強く影響を受ける。この添加時間を長くすることにより得られる沈澱物の平均粒径は大きくなり、一方、この添加時間を短くすることにより小さいものが得られる。この(A1)工程において上記範囲の平均粒径の沈澱物を生成させるには、前記炭酸水素ナトリウム水溶液を、通常0.5時間以上、好ましくは0.5〜6時間で添加すればよく、また、安定した品質のものを得るため一定速度で添加することが好ましい。
【0019】
通常、炭酸水素ナトリウム水溶液を上記割合で添加すると反応系内のpHは6〜7となるが、本発明では、更に反応系内にアルカリを添加して、反応系内のpHを8〜12に調製し熟成反応を行う。
【0020】
本発明において、この熟成反応により未反応分の硫酸コバルトと、炭酸水素ナトリウム又は/及び新たに添加するアルカリとの反応を行わせて目的物の回収率を高めると、共に、沈澱物中に取り込まれたNaとSO4等の不純物を低減させることができる。
【0021】
用いることができるアルカリとしては、特に制限はなく、例えば、アンモニアガス、アンモニア水、苛性ソーダ、苛性カリ、Na2CO3、K2CO3等の無機アルカリ、またはエタノールアミン等の有機アルカリ等が挙げられ、これらのアルカリは1種又は2種以上で用いることができる。この中、水酸化ナトリウムが安価で工業的に入手が容易で、また、少ない添加量で容易にpH調製が行えることから特に好ましい。
【0022】
この熟成反応においてpHを上記範囲とする理由は、pHが8未満では、未反応分の硫酸コバルトが残存しやすくなるため目的物の回収率が悪くなり、一方、pHが12を超えるとNaを除去できなくなるため好ましくない。
【0023】
更に、この熟成反応は上記pH範囲で行うと共に、50℃以上、好ましくは60〜90℃で熟成を行うことにより効果的に、未反応の硫酸コバルトと、炭酸水素ナトリウム又は/及び新たに添加したアルカリとの反応を行わせることができると共に沈澱物中に取り込まれたNaとSO4等の不純物を効果的に低減させることができる。
【0024】
熟成反応の時間は特に制限されるものではないが、通常1時間以上、好ましくは3〜24時間とすることが好ましい。
【0025】
次に、常法により固液分離し、洗浄、乾燥して沈澱物を回収するが、本発明において、この洗浄は、得られた沈澱物の10%スラリーとした時の電気伝導度が100μs/cm以下、好ましくは40μs/cm以下となるまで水で十分に洗浄することが高純度の四酸化三コバルトを得る上で特に好ましい。
【0026】
かくして得られる沈澱物の物性としては、レーザー回折法から求められる平均粒径が10μm以上、好ましくは10〜40μmで、粒度分布がシャープなものである。また、かかる沈澱物の組成は、コバルト金属として40〜50重量%、好ましくは45〜49重量%の範囲で含有され、不純物としてのNa含有量が0.1重量%以下、好ましくは0.05重量%以下で、SO4含有量が5重量%以下、好ましくは1重量%以下である。
【0027】
次に、上記で得られた沈澱物を(A2)工程において、600〜1000℃、好ましくは800〜950℃で焼成を行って四酸化三コバルトを得る。
本発明において、焼成温度を上記範囲とする理由は、600℃未満では、本発明の目的の一つとするタップ密度が1g/cm3以上のものが得られなくなり、一方、1000℃を超えると四酸化三コバルトの粒子が溶融し粒成長するため、粗大で硬い粒子となるため好ましくない。
【0028】
焼成時間は、1〜10時間とすることが好ましい。焼成の雰囲気は、例えば、大気中又は酸素雰囲気中又は不活性雰囲気中のいずれで行ってもよく、特に制限されるものではなく、また、これらの焼成は必要により何度でも行ってもよい。
【0029】
焼成終了後、所望により粉砕し四酸化三コバルトを得る。かくして得られる四酸化三コバルトは凝集体であり、ここで凝集体とは、一次粒子が集合した一次粒子集合体(以下、「二次粒子」と略記する)を意味する。
【0030】
なお、得られた四酸化三コバルトが脆くブロック状の場合には、適宜粉砕を行って製品とするが、本発明にかかる四酸化三コバルトは、下記物性を有する四酸化三コバルトである。
即ち、走査型電子顕微鏡(SEM)から求められる一次粒子の粒径が0.05〜3μmで、好ましくは0.5〜2μmで、二次粒子の平均粒径が5〜30μm、好ましくは8〜20μmで、粒度分布がシャープなものであり、また、タップ密度が1g/cm3以上、好ましくは1〜2.5g/cm3で、BET比表面積が0.3〜10m2/g、好ましくは0.1〜3m2/gで、不純物としてNa含有量が0.1重量%以下で、好ましくは0.05重量%以下、SO4含有量が5重量%以下、好ましくは1重量%以下の諸物性を有するものである。
なお、本発明におけるタップ密度とは、JIS−K−5101に記載された見掛け密度又は見掛け比容の方法に基づいて、タップ法により50mlのメスシリンダーにサンプル10gをいれ、500回タップし静置後、容積を読みとり、下記式により求めたものである。
【数1】
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(cm3)を示す。)
【0031】
このような諸物性を有する四酸化三コバルトは、リチウム二次電池の正極活物質のコバルト酸リチウム用の製造原料として有用であり、特に平均粒径が10μm以上のコバルト酸リチウムの製造原料として好的に用いることができる。
【0032】
(コバルト酸リチウム)
次に、本発明にかかるコバルト酸リチウムの製造方法について説明する。
本発明のコバルト酸リチウムの製造方法は、上記で得られた平均粒径が5〜30μmの四酸化三コバルトと炭酸リチウムとを混合し、焼成を行うことを特徴とするものである。
【0033】
用いることができる炭酸リチウムは、工業的に入手できるものであれば特に制限はないが、高純度のコバルト酸リチウムを製造するために、可及的に不純物含有量が少ないものであることが好ましい。
【0034】
具体的な反応操作は、まず、前記四酸化三コバルトと炭酸リチウムとを所定量混合する。混合は、乾式又は湿式のいずれの方法でもよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するようなブレンダーを用いることが好ましい。
【0035】
炭酸リチウムと四酸化三コバルトとの混合割合は、炭酸リチウムと四酸化三コバルト中のLi/Coのモル比で0.95〜1.05の間で適宜設定することができるが、残存する炭酸リチウムの含有量を少なくするためLi/Coのモル比で1〜1.01で反応を行うことが好ましい。
【0036】
次に、混合物を焼成する。焼成温度は600〜1100℃の間で行えばよいが、残存する炭酸リチウムの含有量を少なくするため800〜1000℃で、2〜24時間焼成を行うことが好ましい。
焼成の雰囲気は、例えば、大気中又は酸素雰囲気中又は不活性雰囲気中のいずれで行ってもよく、特に制限されるものではなく、また、これらの焼成は必要により何度でも行ってもよい。
【0037】
焼成後は、適宜冷却し、必要に応じ粉砕してコバルト酸リチウムを得る。なお、必要に応じて行われる粉砕は、焼成して得られるコバルト酸リチウムがもろく結合したブロック状のものである場合等に適宜行うが、コバルト酸リチウムの粒子自体は特定の平均粒径、BET比表面積を有するものである。即ち、得られるコバルト酸リチウムは、レーザー回折法から求められる平均粒径が10μm以上、好ましくは10〜20μmで、BET比表面積が0.1〜2.0m2/g、好ましくは0.2〜1.5m2/gであり、更に、好ましい物性としては、炭酸リチウム含有量が0.01重量%以下、好ましくは0.005重量%以下の諸物性を有するものである。
【0038】
このような諸物性を有するコバルト酸リチウムは、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなるリチウム二次電池の正極活物質として好適に用いることができる。
【0039】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
実施例1
(A1)工程
20L容量のステンレスタンクに、予め1.8mol/L(CoSO4として)の硫酸コバルト水溶液を4L張り、これを60℃に加温し、そこに1mol/Lの炭酸水素ナトリウム水溶液14.4Lを2時間かけて60℃に温度を維持しながら滴下した。なお、滴下終了後の反応系内のpHは6.7であった.
次いで滴下終了後、温度を60℃に維持したままpH8になるまで4mol/Lの水酸化ナトリウム溶液を加え、このpHと温度を維持しながら3時間の熟成を行った。
次いで、濾過に要する時間を確認しながら、固液分離後、回収した沈澱物を10%スラリーとした時の25℃における電気伝導度を電気伝導度計で確認しながら電気伝導度が100μs/cm以下となるまで十分に押水洗浄を行い、乾燥して沈澱物856.1gを得た(収率99.96%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO4、Co含有量を測定した。その結果を表1に示した。また、得られた沈澱物の粒度分布図を図1に、電子顕微鏡写真を図2に示した。
なお、Na、SO4含有量はICP発光分析法により、沈澱物中のCo含有量は電位差滴定法により求めた。また、沈澱物の平均粒径は走査型電子顕微鏡(SEM)により求め、粒度分布は、Microtrac粒度分析計9320−X100型(Leed&Northrup社製)を用いて測定した。
(A2)工程
次に、この沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が0.5〜2μmで、二次粒子の平均粒径が14.1μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO4、Co含有量を測定した。その結果を表2に示した。また、粒度分布図を図3に、電子顕微鏡写真を図4に示した。
なお、Na、SO4含有量はICP発光分析法により求め、四酸化三コバルト中のCo含有量は電位差滴定法により求めた。また、粒度分布は、Microtrac粒度分析計9320−X100型(Leed&Northrup社製)を用いて測定した。
また、タップ密度は、50mlのメスシリンダーにサンプル10gをいれ、ユアサアイオニクス株式会社製、DUALAUTOTAP装置にセットし、500回タップした後、容積を読みとり下記式によりタップ密度(g/cm3)を求めた。
【数2】
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(cm3)を示す。)
【0040】
実施例2
(A1)工程
20L容量のステンレスタンクに、予め1.8mol/L(CoSO4として)の硫酸コバルト水溶液を4L張り、これを60℃に加温し、そこに1mol/Lの炭酸水素ナトリウム溶液14.4Lを2時間かけて60℃に温度を維持しながら滴下した。なお、滴下終了後の反応系内のpHは6.8であった.次いで滴下終了後、温度を60℃に維持したままpH8になるまで4mol/Lの水酸化ナトリウム水溶液を加え、このpHと温度を維持しながら15時間の熟成を行った。
次いで、濾過に要する時間を確認しながら、固液分離後、回収した沈澱物を10%スラリーとした時の25℃における電気伝導度を電気伝導度計で確認しながら電気伝導度が100μs/cm以下となるまで十分に押水洗浄を行い、乾燥して沈澱物856.4gを得た(収率99.99%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表1に示した。
(A2)工程
次にこの沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が0.5〜2μmで、二次粒子の平均粒径が10.9μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表2に示した。
【0041】
比較例1
(A1)工程
実施例1の(A1)工程において、炭酸水素ナトリウム水溶液の添加温度を40℃とした以外は、実施例1と同じ操作で沈澱物855.3gを得た(収率99.87%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表1に示した。また、得られた沈澱物の粒度分布図を図5に、電子顕微鏡写真を図6に示した。
(A2)工程
次にこの沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が1〜3μmで二次粒子の平均粒径が13.8μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表2に示した。また、得られた四酸化三コバルトの粒度分布図を図7に、電子顕微鏡写真を図8に示した。
【0042】
比較例2
実施例1の(A1)工程において、炭酸水素ナトリウム水溶液添加後、アルカリを添加しないで、そのまま熟成反応を行った以外は、実施例1と同じ操作で沈澱物742.4gを得た(収率86.69%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表1に示した。また、得られた沈澱物の粒度分布図を図9に、電子顕微鏡写真を図10に示した。
(A2)工程
次にこの沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が0.5〜2μmで二次粒子の平均粒径が12.2μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表2に示した。また、得られた四酸化三コバルトの粒度分布図を図11に、電子顕微鏡写真を図12に示した。
【0043】
比較例3
(A1)工程
20L容量のステンレスタンクに、予め1mol/Lの炭酸水素ナトリウム水溶液を14.4L張り、これを60℃に加温し、そこに1.8mol/L(CoSO4として)の硫酸コバルト水溶液4Lを2時間かけて60℃に温度を維持しながら滴下した。なお、滴下終了後の反応系内のpHは6.4であった.次いで滴下終了後、温度を60℃に維持したままpH8になるまで4mol/Lの水酸化ナトリウム溶液を加え、このpHと温度を維持しながら3時間の熟成を行った。
次いで、濾過に要する時間を確認しながら、固液分離後、回収した沈澱物を10%スラリーとした時の25℃における電気伝導度を電気伝導度計で確認しながら電気伝導度が100μs/cmとなるまで十分な押水洗浄を行い、乾燥して沈澱物882.2gを得た(収率103.00%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表1に示した。また、得られた沈澱物の粒度分布図を図13に、電子顕微鏡写真を図14に示した。
(A2)工程
次にこの沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が0.2〜10μmで二次粒子の平均粒径が31.4μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表2に示した。また、得られた四酸化三コバルトの粒度分布図を図15に、電子顕微鏡写真を図16に示した。
【0044】
【表1】
表1の結果より、本発明の(A1)工程を行うことにより純度よく、高収率で目的とする沈澱物を回収することができ、また、図2によりこの沈澱物は粒度分布がシャープなものであることが分かる。これに対して、温度40℃で炭酸水素ナトリウム水溶液を添加したもの(比較例1)は、粒度分布がブロードであり(図6)、熟成反応でpH調製を行わないもの(比較例2)は収率が低下し、また炭酸水素ナトリウム水溶液に、硫酸コバルト水溶液を添加したもの(比較例3)は、残存するアルカリ分が多くなっていることが分かる。
【0045】
【表2】
表2の結果より、本発明の製造方法で得られる四酸化三コバルトは、高純度で、タップ密度が大きく、また、図2より得られた四酸化三コバルトは粒度分布がシャープなものであることが分かる。これに対して、比較例1の四酸化三コバルトは、粒度分布が不規則にブロードしており(図8)、また比較例3の四酸化三コバルトはNa含有量が0.5重量%以上と高いことが分かる。
【0046】
実施例3〜4及び比較例4〜5
実施例1〜2及び比較例1と3で得られた四酸化三コバルトと炭酸リチウム(平均粒径12μm)とをLi/Coのモル比で1となるように秤量し、次に乾式で十分混合した後、900℃で5時間焼成した。該焼成物を粉砕、分級してコバルト酸リチウムを得た。得られたコバルト酸リチウムの平均粒径をレーザー回折法により求めた。また、残存炭酸リチウム量は、試料を硫酸によって分解し、生成したCO2を塩化バリウムと水酸化ナトリウムを含有する溶液中に導入して吸収させ、この溶液を塩酸標準溶液で滴定することによってCO2濃度を定量し、この定量値から換算した。
【0047】
比較例6
市販の四酸化三コバルト(平均粒径2μm)と炭酸リチウム(平均粒径12μm)とをLi/Coのモル比で1.03となるように秤量し、次に乾式で十分に混合した後1000℃で5時間焼成した。該焼成物を粉砕、分級してコバルト酸リチウムを得た。
得られたコバルト酸リチウムの平均粒径と残存炭酸リチウム量を実施例3〜4と同様に測定し、その結果を表3に示した。
【0048】
【表3】
表3の結果より、市販の平均粒径が2μmの四酸化三コバルトから平均粒径が10μm以上のコバルト酸リチウムを合成した(比較例6)ものは炭酸リチウムを0.1重量%以上含有しているのに対して、本発明の四酸化三コバルトを製造原料として合成された平均粒径が10μm以上のコバルト酸リチウムには残存炭酸リチウムが0.001重量%で、残存炭酸リチウムが低減されていることが分かる。
【0049】
<電池性能試験>
(I)リチウム2電池の作製;
上記のように製造した実施例3〜4及び比較例3〜6のコバルト酸リチウム91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF61モルを溶解したものを使用した。
【0050】
(II)電池の性能評価
作製したリチウム二次電池を室温で作動させ、初期放電容量および容量維持率を測定して電池性能を評価した。
なお容量維持率は、下記の式により算出した。
【数3】
【表4】
【0051】
【発明の効果】
上記したとおり、本発明の製造方法で得られる四酸化三コバルトは、Na含有量が0.1重量%以下で、且つタップ密度が大きく、粒度分布のシャープな平均粒径が5〜30μmの四酸化三コバルトであり、特にリチウム二次電池の正極活物質用のコバルト酸リチウムの製造原料として有用である。
また、該四酸化三コバルトを用いて製造された平均粒径10μm以上のコバルト酸リチウムは、残存炭酸リチウムが低減され、該コバルト酸リチウムを正極活物質とするリチウム2次電池は、電池性能の優れたものとなる。
【図面の簡単な説明】
【図1】実施例1の(A1)工程で得られた沈澱物の電子顕微鏡写真(倍率3000)。
【図2】実施例1の(A1)工程で得られた沈澱物の粒度分布図。
【図3】実施例1で得られた四酸化三コバルトの電子顕微鏡写真(倍率1000)。
【図4】実施例1で得られた四酸化三コバルトの粒度分布図。
【図5】比較例1の(A1)工程で得られた沈澱物の電子顕微鏡写真(倍率3000)。
【図6】比較例1の(A1)工程で得られた沈澱物の粒度分布図。
【図7】比較例1で得られた四酸化三コバルトの電子顕微鏡写真(倍率1000)。
【図8】比較例1で得られた四酸化三コバルトの粒度分布図。
【図9】比較例2の(A1)工程で得られた沈澱物の電子顕微鏡写真(倍率3000)。
【図10】比較例2の(A1)工程で得られた沈澱物の粒度分布図。
【図11】比較例2で得られた四酸化三コバルトの電子顕微鏡写真(倍率1000)。
【図12】比較例2で得られた四酸化三コバルトの粒度分布図。
【図13】比較例3の(A1)工程で得られた沈澱物の電子顕微鏡写真(倍率3000)。
【図14】比較例3の(A1)工程で得られた沈澱物の粒度分布図。
【図15】比較例3で得られた四酸化三コバルトの電子顕微鏡写真(倍率1000)。
【図16】比較例3で得られた四酸化三コバルトの粒度分布図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention particularly relates to a method for producing tricobalt tetroxide having an average particle diameter of 5 to 30 μm, which is useful as a raw material for producing lithium cobaltate used as a positive electrode active material of a lithium secondary battery, and a lithium cobaltate using the same as a production raw material And a method for producing the same.
[0002]
[Prior art]
In recent years, as home appliances become more portable and cordless, lithium ion secondary batteries have been put into practical use as power supplies for small electronic devices such as laptop personal computers, mobile phones, and video cameras. Regarding this lithium-ion secondary battery, Mizushima et al. Reported in 1980 that lithium cobaltate was useful as a positive electrode active material for a lithium-ion secondary battery ("Material Research Bulletin" vol. 15, P783-789 (1980)). Since then, research and development on lithium cobaltate has been actively promoted, and many proposals have been made so far.
[0003]
Conventionally, tricobalt tetroxide is mainly used as a raw material for producing this lithium cobalt oxide.
Examples of a method of producing tricobalt tetroxide for such a lithium secondary battery include a method of sintering cobalt hydroxide to obtain tricobalt tetroxide or a method of sintering cobalt carbonate to obtain tricobalt tetroxide. Proposed.
[0004]
As a method of calcining cobalt hydroxide to obtain tricobalt tetroxide, for example, an aqueous solution of a cobalt salt and a caustic alkali solution are continuously supplied and stirred in the same tank, and a supplied salt concentration and a supplied salt flow rate are used. A method in which the temperature in the tank is kept constant and the pH value in the tank is controlled in the range of 11.0 to 13.5, and then the obtained cobalt hydroxide is heat-treated in the air to obtain tricobalt tetroxide. Japanese Unexamined Patent Publication No. 9-22692), cobalt hydroxide obtained by dropping an aqueous solution of sodium hydroxide into an aqueous solution of cobalt nitrate is subjected to a heat treatment at 100 to 900 ° C. to prepare tricobalt tetroxide or tricobalt tetroxide and hydroxide. (Japanese Patent Application Laid-Open No. 5-54888), for example, has been proposed a method for obtaining a cobalt oxide composed of agglomerates in which a plurality of primary particles having a mean particle diameter of 1 μm or less and having a spherical shape or an elliptical shape comprising a mixture of .
[0005]
On the other hand, as a method for obtaining tricobalt tetroxide by firing cobalt carbonate, for example, a cobalt sulfate aqueous solution is reacted with an aqueous solution containing hydrogen carbonate ions in an amount equal to or more than the cobalt ions contained in the aqueous solution, and after the reaction, Further, ammonia is added to adjust the pH to 7.0 to 8.5, and after stirring for 1 hour or more, the obtained precipitate is subjected to solid-liquid separation, washed, and dried. A method of obtaining tricobalt tetroxide by firing at a temperature of 700 ° C. (JP-A-8-96809) has been proposed.
[0006]
[Problems to be solved by the invention]
However, usually, tricobalt tetroxide obtained by calcining cobalt hydroxide has a small tap density. For example, in an industrial production method of lithium cobalt oxide, filling in a furnace when mixing with lithium carbonate is performed. The density is low and it is not suitable for mass production of lithium cobalt oxide. Further, tricobalt tetroxide obtained in JP-A-5-54888 can have a large tap density. However, tricobalt tetroxide particles contain a large amount of Na and SO. 4 Is easy to remain, especially in lithium cobaltate produced using tricobalt tetroxide containing a high concentration of Na as a cobalt source, the layered structure is distorted due to the large amount of Na substituted at the Li site, making it difficult to insert and remove Li. Thus, a lithium secondary battery using this lithium cobalt oxide as a positive electrode active material tends to have particularly poor cycle characteristics.
[0007]
On the other hand, according to the method for producing tricobalt tetroxide disclosed in JP-A-8-96809, a basic cobalt carbonate obtained by adding an aqueous solution of cobalt sulfate to an aqueous solution of sodium hydrogencarbonate and further adding ammonia is used in an amount of 600 to 700%. Calcination at ℃ to obtain tricobalt tetroxide. Tricobalt tetroxide obtained by this manufacturing method has a small average particle size of 0.1 to 0.5 μm, and contains Na or SO incorporated in the crystal during the manufacturing process. 4 Cannot be sufficiently removed even by washing or the like, resulting in a Na content of 0.3% by weight or more. Of these, SO 4 As described in Japanese Patent Application Laid-Open No. 2000-21402, it is reported that the presence of the compound can improve the battery performance in some senses, but on the other hand, Na is added in an amount of 0.1%. As described above, the lithium secondary battery using lithium cobaltate produced from tricobalt tetroxide containing at least 3% by weight as a cobalt source as a positive electrode active material has a problem in cycle characteristics.
[0008]
Japanese Patent Application Laid-Open No. Hei 4-321523 discloses an aqueous solution of a cobalt salt containing cobalt ions at a concentration of 200 g or less per liter, wherein the aqueous solution contains hydrogen carbonate ions in an amount equivalent to or more than the cobalt ions contained in the aqueous solution. The reaction is carried out while maintaining the temperature at 70 ° C. or lower, and the obtained precipitate is washed and dried, and then calcined at a temperature of 350 to 550 ° C. in the presence of oxygen such as in air to obtain tricobalt tetroxide. Have been. However, the process for producing tricobalt tetroxide disclosed in Japanese Patent Application Laid-Open No. Hei 4-321523 actually adds a cobalt salt aqueous solution containing cobalt ions to an aqueous solution containing hydrogencarbonate ions. Tricobalt is a fine particle having an average particle size of 0.2 μm or less.
[0009]
Usually, lithium cobalt oxide used as a positive electrode active material of a lithium secondary battery has an average particle size of 1 to 20 μm and a sharp particle size distribution. Among them, it is known that a lithium secondary battery using lithium cobalt oxide having an average particle size of 10 to 20 μm as a positive electrode active material is particularly excellent in safety.
Lithium cobalt oxide having an average particle size of 10 to 20 μm is usually formed by using a fine tricobalt tetroxide having an average particle size of 2 μm or less as a cobalt source, and mixing this with lithium carbonate in a Li / Co molar ratio of 1.03 or more. And firing at 1000 ° C. or more to grow the particles. At this time, an excessive amount of lithium carbonate remains, and as a result, the battery performance tends to deteriorate.
[0010]
Accordingly, a first object of the present invention is to provide a lithium cobalt oxide used as a positive electrode active material of a lithium secondary battery, particularly, an Na content of 0.1 μm or more, which is useful as a raw material for producing lithium cobalt oxide having an average particle size of 10 μm or more. It is an object of the present invention to provide a method for producing tricobalt tetroxide having a weight percentage of not more than 1, a large tap density and a sharp average particle diameter of 5 to 30 μm having a sharp particle size distribution.
Further, a second object of the present invention is to provide a lithium secondary battery having an average particle diameter of 10 μm or more, which is useful as a positive electrode active material of a lithium secondary battery, and particularly having a lithium carbonate content of 0.01% by weight or less as an impurity. It is to provide a manufacturing method of.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in the above circumstances, and as a result, a precipitate formed by adding an aqueous solution of sodium hydrogen carbonate to an aqueous solution of cobalt sulfate at a specific temperature or higher and aging under specific conditions is further added at a specific temperature. Tricobalt tetroxide having an average particle diameter of 5 to 30 μm obtained by baking has a Na content of 0.1% by weight or less, a large tap density, and a sharp particle size distribution. Lithium cobalt oxide having an average particle diameter of 10 μm or more obtained by mixing and baking with lithium carbonate is particularly one in which remaining lithium carbonate is reduced, and a lithium secondary battery using this as a positive electrode active material is It was found that the battery performance was excellent, and the present invention was completed.
[0012]
That is, the first invention of the present invention provides a method for producing tricobalt tetroxide having an average particle diameter of 5 to 30 μm, comprising the following steps (A1) to (A2).
Step (A1): a step of adding an aqueous solution of sodium hydrogencarbonate to an aqueous solution of cobalt sulfate at a temperature of 50 ° C. or higher, and then adding an alkali to the reaction solution to adjust the pH in the reaction system to 8 to 12 to generate a precipitate. .
Step (A2): a step of calcining the precipitate formed in step (A1) at a temperature of 600 to 1000 ° C. to obtain tricobalt tetroxide.
Further, a second invention of the present invention provides a method for producing lithium cobalt oxide, which comprises mixing the above-obtained tricobalt tetroxide and lithium carbonate, followed by firing.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(Tricobalt tetroxide)
Step (A1) is a step of adding an aqueous solution of sodium hydrogen carbonate to an aqueous solution of cobalt sulfate at a temperature of 50 ° C. or higher, and then adding an alkali to the reaction solution to adjust the pH in the reaction system to 8 to 12 to generate a precipitate. It is.
[0014]
The raw material cobalt sulfate aqueous solution used in the step (A1) is an aqueous solution obtained by dissolving cobalt sulfate in water. The cobalt sulfate that can be used is not particularly limited as long as it is industrially available, and may be a hydrate or an anhydride. Among these, cobalt sulfate heptahydrate (CoSO 4) is industrially easily available and inexpensive. 4 ・ 7H 2 O) is particularly preferred.
The concentration of cobalt sulfate in the aqueous solution is not particularly limited. However, since the solubility of cobalt sulfate strongly depends on the dissolving temperature, for example, cobalt sulfate (CoSO 4 ) Is 8 to 37% by weight, preferably 21 to 31% by weight.
[0015]
The sodium hydrogen carbonate aqueous solution of the other raw material is an aqueous solution obtained by dissolving sodium hydrogen carbonate in water, and sodium hydrogen carbonate that can be used is not particularly limited as long as it is industrially available. it can.
The concentration of the aqueous sodium hydrogen carbonate solution is not particularly limited as long as it can dissolve sodium hydrogen carbonate, but is usually 5% by weight or more, preferably 8 to 9% by weight.
[0016]
In a specific reaction operation in the step (A1), the aqueous cobalt sulfate solution is heated to a temperature of 50 ° C or higher, preferably 60 to 90 ° C. Next, the aqueous sodium hydrogen carbonate solution is added to the aqueous cobalt sulfate solution.
[0017]
In the step (A1), a sharp particle size distribution can be obtained by adding an aqueous solution of sodium hydrogencarbonate in the above temperature range. On the other hand, when the temperature is less than 50 ° C., the precipitate and the particle size of tricobalt tetroxide are obtained. The lithium cobalt oxide produced using this as a raw material has a large variation in particle diameter, so that it is not possible to form a coating film having a uniform thickness on a positive electrode material of a lithium secondary battery.
The amount of the aqueous sodium hydrogen carbonate solution added is determined by the amount of cobalt sulfate (CoSO 4 ) In aqueous sodium hydrogen carbonate solution (NaHCO 3 ) And the molar ratio (NaHCO 3 / CoSO 4 ) Is preferably 1.0 or more, since unreacted cobalt sulfate hardly remains. However, if it is too large, it is not practical, so it is preferably 1.0 to 1.2.
[0018]
In order to obtain tricobalt tetroxide having an average particle diameter of 5 to 30 μm according to the present invention, in the step (A1), it is necessary that the precipitate has an average particle diameter of 10 μm or more, preferably 10 to 40 μm. The particle size of the precipitate formed is strongly affected by the addition time of the aqueous sodium hydrogen carbonate solution to be added. Increasing the addition time increases the average particle size of the precipitate obtained, while reducing the addition time yields smaller ones. In order to form a precipitate having an average particle diameter in the above range in the step (A1), the aqueous sodium hydrogen carbonate solution is added usually for 0.5 hour or more, preferably for 0.5 to 6 hours. It is preferable to add at a constant rate in order to obtain stable quality.
[0019]
Usually, when the aqueous sodium hydrogen carbonate solution is added at the above ratio, the pH in the reaction system becomes 6 to 7. However, in the present invention, the alkali in the reaction system is further added to adjust the pH in the reaction system to 8 to 12. Prepare and ripen.
[0020]
In the present invention, when the unreacted portion of cobalt sulfate is reacted with sodium hydrogencarbonate and / or a newly added alkali by this aging reaction to increase the recovery rate of the target substance, both are incorporated into the precipitate. Na and SO 4 And other impurities can be reduced.
[0021]
The alkali that can be used is not particularly limited. For example, ammonia gas, aqueous ammonia, caustic soda, caustic potash, Na 2 CO 3 , K 2 CO 3 And the like, or an organic alkali such as ethanolamine. These alkalis can be used alone or in combination of two or more. Of these, sodium hydroxide is particularly preferable because it is inexpensive and easily available industrially, and pH can be easily adjusted with a small amount of addition.
[0022]
The reason for setting the pH in this aging reaction to the above range is that if the pH is less than 8, the unreacted portion of cobalt sulfate tends to remain, so that the recovery rate of the target product is deteriorated. It is not preferable because it cannot be removed.
[0023]
Further, the ripening reaction is carried out in the above pH range, and by ripening at 50 ° C. or more, preferably 60 to 90 ° C., unreacted cobalt sulfate and sodium hydrogen carbonate or / and newly added. The reaction with alkali can be carried out and Na and SO incorporated in the precipitate 4 And the like can be effectively reduced.
[0024]
The time of the aging reaction is not particularly limited, but is usually 1 hour or more, preferably 3 to 24 hours.
[0025]
Next, the precipitate is collected by solid-liquid separation, washing, and drying by a conventional method. In the present invention, the washing is performed by using a 10% slurry of the obtained precipitate with an electric conductivity of 100 μs / s. In order to obtain high-purity tricobalt tetroxide, it is particularly preferable to sufficiently wash with water until the concentration becomes not more than 40 cm / cm, preferably not more than 40 μs / cm.
[0026]
The physical properties of the precipitate thus obtained are such that the average particle size determined by a laser diffraction method is 10 μm or more, preferably 10 to 40 μm, and the particle size distribution is sharp. Further, the composition of the precipitate contains 40 to 50% by weight, preferably 45 to 49% by weight of cobalt metal, and the content of Na as an impurity is 0.1% by weight or less, preferably 0.05% by weight. Weight percent or less, SO 4 The content is 5% by weight or less, preferably 1% by weight or less.
[0027]
Next, in the step (A2), the obtained precipitate is calcined at 600 to 1000 ° C., preferably 800 to 950 ° C., to obtain tricobalt tetroxide.
In the present invention, the reason for setting the firing temperature in the above range is that, when the firing temperature is lower than 600 ° C., the tap density, which is one of the objects of the present invention, is 1 g / cm 2. 3 On the other hand, if the temperature is higher than 1000 ° C., the particles of tricobalt tetroxide melt and grow, which is not preferable because the particles become coarse and hard.
[0028]
The firing time is preferably from 1 to 10 hours. The firing may be performed, for example, in the air, in an oxygen atmosphere, or in an inert atmosphere, and is not particularly limited. The firing may be performed as many times as necessary.
[0029]
After the completion of the calcination, pulverization is performed as required to obtain tricobalt tetroxide. The thus obtained tricobalt tetroxide is an aggregate, and the aggregate here means a primary particle aggregate (hereinafter, abbreviated as “secondary particle”) in which primary particles are aggregated.
[0030]
In addition, when the obtained tricobalt tetroxide is brittle and in the form of a block, it is appropriately pulverized into a product, but tricobalt tetroxide according to the present invention is tricobalt tetroxide having the following physical properties.
That is, the particle size of the primary particles determined by a scanning electron microscope (SEM) is 0.05 to 3 μm, preferably 0.5 to 2 μm, and the average particle size of the secondary particles is 5 to 30 μm, preferably 8 to 20 μm, sharp particle size distribution, and tap density of 1 g / cm 3 Above, preferably 1 to 2.5 g / cm 3 With a BET specific surface area of 0.3 to 10 m 2 / G, preferably 0.1 to 3 m 2 / G, the content of Na as an impurity is 0.1% by weight or less, preferably 0.05% by weight or less, 4 It has various physical properties of not more than 5% by weight, preferably not more than 1% by weight.
In addition, the tap density in the present invention is based on the method of apparent density or apparent specific volume described in JIS-K-5101. Thereafter, the volume was read and determined by the following equation.
(Equation 1)
(Where F: mass (g) of the processed sample in the receiver, V: volume of the sample after tapping (cm) 3 ). )
[0031]
Tricobalt tetroxide having such various physical properties is useful as a raw material for producing lithium cobalt oxide as a positive electrode active material of a lithium secondary battery, and is particularly preferable as a raw material for producing lithium cobalt oxide having an average particle diameter of 10 μm or more. Can be used for
[0032]
(Lithium cobaltate)
Next, a method for producing lithium cobaltate according to the present invention will be described.
The method for producing lithium cobalt oxide according to the present invention is characterized in that tricobalt tetroxide having an average particle diameter of 5 to 30 μm obtained above is mixed with lithium carbonate, followed by firing.
[0033]
The lithium carbonate that can be used is not particularly limited as long as it is industrially available, but in order to produce high-purity lithium cobalt oxide, it is preferable that the content of impurities be as small as possible. .
[0034]
As a specific reaction operation, first, a predetermined amount of the above-mentioned tricobalt tetroxide and lithium carbonate are mixed. Mixing may be performed by either a dry method or a wet method, but a dry method is preferred because of easy production. In the case of dry mixing, it is preferable to use a blender in which the raw materials are uniformly mixed.
[0035]
The mixing ratio of lithium carbonate and tricobalt tetroxide can be appropriately set at a molar ratio of Li / Co in lithium carbonate and tricobalt tetroxide between 0.95 and 1.05. In order to reduce the content of lithium, it is preferable to carry out the reaction at a molar ratio of Li / Co of 1 to 1.01.
[0036]
Next, the mixture is fired. The firing temperature may be between 600 and 1100 ° C., but it is preferable to perform the firing at 800 to 1000 ° C. for 2 to 24 hours to reduce the content of the remaining lithium carbonate.
The firing may be performed, for example, in the air, in an oxygen atmosphere, or in an inert atmosphere, and is not particularly limited. The firing may be performed as many times as necessary.
[0037]
After calcination, the mixture is appropriately cooled and pulverized as necessary to obtain lithium cobalt oxide. The pulverization performed as necessary is appropriately performed, for example, when the lithium cobalt oxide obtained by firing is in the form of a brittlely bonded block, but the lithium cobalt oxide particles themselves have a specific average particle size, BET It has a specific surface area. That is, the obtained lithium cobaltate has an average particle diameter determined by a laser diffraction method of 10 μm or more, preferably 10 to 20 μm, and a BET specific surface area of 0.1 to 2.0 m. 2 / G, preferably 0.2-1.5 m 2 / G, and more preferable physical properties are those having a lithium carbonate content of 0.01% by weight or less, preferably 0.005% by weight or less.
[0038]
Lithium cobalt oxide having such physical properties can be suitably used as a positive electrode active material of a lithium secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.
[0039]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
Example 1
(A1) Step
1.8 mol / L (CoSO) was previously stored in a 20 L stainless steel tank. 4 ) Was heated to 60 ° C, and 14.4L of a 1 mol / L aqueous sodium hydrogen carbonate solution was added dropwise thereto over 2 hours while maintaining the temperature at 60 ° C. The pH in the reaction system after the completion of the dropwise addition was 6.7.
Then, after completion of the dropwise addition, a 4 mol / L sodium hydroxide solution was added until the pH reached 8 while maintaining the temperature at 60 ° C., and aging was performed for 3 hours while maintaining the pH and temperature.
Then, while confirming the time required for filtration, after solid-liquid separation, the electric conductivity at 25 ° C. when the recovered precipitate was made into a 10% slurry was checked with an electric conductivity meter at 25 ° C., and the electric conductivity was 100 μs / cm. Washing was carried out sufficiently until the water content became as follows, and dried to obtain 856.1 g of a precipitate (yield: 99.96%).
About the obtained precipitate, average particle size, BET specific surface area, Na, SO 4 , Co content was measured. The results are shown in Table 1. FIG. 1 shows a particle size distribution diagram of the obtained precipitate, and FIG. 2 shows an electron microscope photograph.
Na, SO 4 The content was determined by ICP emission spectrometry, and the Co content in the precipitate was determined by potentiometric titration. The average particle size of the precipitate was determined by a scanning electron microscope (SEM), and the particle size distribution was measured using a Microtrac particle size analyzer Model 9320-X100 (manufactured by Lead & Northrup).
(A2) Step
Next, this precipitate was baked in an electric furnace at 900 ° C. for 5 hours, cooled, and pulverized. The obtained product was confirmed by X-ray diffraction measurement to be tricobalt tetroxide. As a result of observation with a scanning electron microscope (SEM), the particle diameter of the primary particles was 0.5 to 2 μm, and the average particle diameter of the secondary particles was 14.1 μm.
The BET specific surface area, tap density, Na, SO 4 , Co content was measured. The results are shown in Table 2. FIG. 3 shows a particle size distribution diagram, and FIG. 4 shows an electron micrograph.
Na, SO 4 The content was determined by ICP emission spectrometry, and the Co content in tricobalt tetroxide was determined by potentiometric titration. The particle size distribution was measured using a Microtrac particle size analyzer 9320-X100 (manufactured by Leed & Northrup).
The tap density was determined by placing 10 g of a sample in a 50-ml measuring cylinder, setting it in a DUALAUTOTAP device manufactured by Yuasa Ionics Co., Ltd., tapping 500 times, reading the volume, and measuring the tap density (g / cm 3 ).
(Equation 2)
(Where F: mass (g) of the processed sample in the receiver, V: volume of the sample after tapping (cm) 3 ). )
[0040]
Example 2
(A1) Step
1.8 mol / L (CoSO) was previously stored in a 20 L stainless steel tank. 4 ) Was heated to 60 ° C, and 14.4L of a 1 mol / L sodium bicarbonate solution was added dropwise thereto over 2 hours while maintaining the temperature at 60 ° C. The pH in the reaction system after completion of the dropwise addition was 6.8. Then, after completion of the dropwise addition, a 4 mol / L aqueous sodium hydroxide solution was added until the pH reached 8 while maintaining the temperature at 60 ° C., and aging was performed for 15 hours while maintaining the pH and temperature.
Then, while confirming the time required for filtration, after solid-liquid separation, the electric conductivity at 25 ° C. when the recovered precipitate was made into a 10% slurry was checked with an electric conductivity meter at 25 ° C., and the electric conductivity was 100 μs / cm. The product was sufficiently washed by pressing with water until it became the following, and dried to obtain 856.4 g of a precipitate (yield 99.99%).
About the obtained precipitate, average particle size, BET specific surface area, Na, SO 4 And Co content were measured in the same manner as in Example 1. The results are shown in Table 1.
(A2) Step
Next, this precipitate was fired in an electric furnace at 900 ° C. for 5 hours, cooled, and pulverized. The obtained product was confirmed by X-ray diffraction measurement to be tricobalt tetroxide. As a result of observation with a scanning electron microscope (SEM), the particle diameter of the primary particles was 0.5 to 2 μm, and the average particle diameter of the secondary particles was 10.9 μm.
The BET specific surface area, tap density, Na, SO 4 And Co content were measured in the same manner as in Example 1. The results are shown in Table 2.
[0041]
Comparative Example 1
(A1) Step
In the step (A1) of Example 1, 855.3 g of a precipitate was obtained by the same operation as in Example 1 except that the addition temperature of the aqueous solution of sodium hydrogencarbonate was changed to 40 ° C (yield: 99.87%).
About the obtained precipitate, average particle size, BET specific surface area, Na, SO 4 And Co content were measured in the same manner as in Example 1. The results are shown in Table 1. FIG. 5 shows a particle size distribution diagram of the obtained precipitate, and FIG. 6 shows an electron micrograph thereof.
(A2) Step
Next, this precipitate was fired in an electric furnace at 900 ° C. for 5 hours, cooled, and pulverized. The obtained product was confirmed by X-ray diffraction measurement to be tricobalt tetroxide. As a result of observation with a scanning electron microscope (SEM), the particle diameter of the primary particles was 1 to 3 μm, and the average particle diameter of the secondary particles was 13.8 μm.
The BET specific surface area, tap density, Na, SO 4 And Co content were measured in the same manner as in Example 1. The results are shown in Table 2. FIG. 7 shows a particle size distribution diagram of the obtained tricobalt tetroxide, and FIG. 8 shows an electron micrograph.
[0042]
Comparative Example 2
In step (A1) of Example 1, 742.4 g of a precipitate was obtained in the same manner as in Example 1, except that the aging reaction was carried out without adding an alkali after the addition of the aqueous sodium hydrogen carbonate solution (yield). 86.69%).
About the obtained precipitate, average particle size, BET specific surface area, Na, SO 4 And Co content were measured in the same manner as in Example 1. The results are shown in Table 1. FIG. 9 shows a particle size distribution diagram of the obtained precipitate, and FIG. 10 shows an electron micrograph thereof.
(A2) Step
Next, this precipitate was fired in an electric furnace at 900 ° C. for 5 hours, cooled, and pulverized. The obtained product was confirmed by X-ray diffraction measurement to be tricobalt tetroxide. Further, as a result of observation with a scanning electron microscope (SEM), the particle size of the primary particles was 0.5 to 2 μm, and the average particle size of the secondary particles was 12.2 μm.
The BET specific surface area, tap density, Na, SO 4 And Co content were measured in the same manner as in Example 1. The results are shown in Table 2. FIG. 11 shows a particle size distribution diagram of the obtained tricobalt tetroxide, and FIG. 12 shows an electron micrograph.
[0043]
Comparative Example 3
(A1) Step
14.4 L of a 1 mol / L aqueous sodium hydrogen carbonate solution was previously placed in a 20 L stainless steel tank, and heated to 60 ° C., and 1.8 mol / L (CoSO 4 ) Was added dropwise over 2 hours while maintaining the temperature at 60 ° C. The pH in the reaction system after the completion of the dropwise addition was 6.4. Then, after completion of the dropwise addition, a 4 mol / L sodium hydroxide solution was added until the pH reached 8 while maintaining the temperature at 60 ° C., and aging was performed for 3 hours while maintaining the pH and temperature.
Then, while confirming the time required for filtration, after solid-liquid separation, the electric conductivity at 25 ° C. when the recovered precipitate was made into a 10% slurry was checked with an electric conductivity meter at 25 ° C., and the electric conductivity was 100 μs / cm. Washing was carried out sufficiently until the pressure became, and the residue was dried to obtain 882.2 g of a precipitate (yield: 103.00%).
About the obtained precipitate, average particle size, BET specific surface area, Na, SO 4 And Co content were measured in the same manner as in Example 1. The results are shown in Table 1. FIG. 13 shows a particle size distribution diagram of the obtained precipitate, and FIG. 14 shows an electron micrograph thereof.
(A2) Step
Next, this precipitate was fired in an electric furnace at 900 ° C. for 5 hours, cooled, and pulverized. The obtained product was confirmed by X-ray diffraction measurement to be tricobalt tetroxide. As a result of observation with a scanning electron microscope (SEM), the particle size of the primary particles was 0.2 to 10 μm, and the average particle size of the secondary particles was 31.4 μm.
The BET specific surface area, tap density, Na, SO 4 And Co content were measured in the same manner as in Example 1. The results are shown in Table 2. FIG. 15 shows a particle size distribution diagram of the obtained tricobalt tetroxide, and FIG. 16 shows an electron microscope photograph.
[0044]
[Table 1]
From the results shown in Table 1, the target precipitate can be recovered with high purity and high yield by performing the step (A1) of the present invention. In addition, FIG. 2 shows that the precipitate has a sharp particle size distribution. It turns out to be something. On the other hand, when the aqueous solution of sodium hydrogen carbonate was added at a temperature of 40 ° C. (Comparative Example 1), the particle size distribution was broad (FIG. 6), and when the pH was not adjusted by the aging reaction (Comparative Example 2), It can be seen that the yield decreased, and that in the case of adding an aqueous solution of cobalt sulfate to an aqueous solution of sodium hydrogen carbonate (Comparative Example 3), the remaining alkali content was increased.
[0045]
[Table 2]
From the results shown in Table 2, tricobalt tetroxide obtained by the production method of the present invention has high purity and a large tap density, and tricobalt tetroxide obtained from FIG. 2 has a sharp particle size distribution. You can see that. On the other hand, the tricobalt tetroxide of Comparative Example 1 had an irregularly broad particle size distribution (FIG. 8), and the tricobalt tetroxide of Comparative Example 3 had a Na content of 0.5% by weight or more. It turns out that it is high.
[0046]
Examples 3 and 4 and Comparative Examples 4 and 5
Tricobalt tetroxide and lithium carbonate (average particle size: 12 μm) obtained in Examples 1 and 2 and Comparative Examples 1 and 3 were weighed so that the molar ratio of Li / Co became 1, and then the dry method was sufficient. After mixing, the mixture was fired at 900 ° C. for 5 hours. The fired product was pulverized and classified to obtain lithium cobaltate. The average particle size of the obtained lithium cobaltate was determined by a laser diffraction method. Further, the amount of residual lithium carbonate was determined by decomposing a sample with sulfuric acid and generating CO2. 2 Is absorbed by introducing it into a solution containing barium chloride and sodium hydroxide, and titrating this solution with a hydrochloric acid standard solution. 2 The concentration was quantified and converted from this quantified value.
[0047]
Comparative Example 6
Commercially available tricobalt tetroxide (average particle size: 2 μm) and lithium carbonate (average particle size: 12 μm) are weighed so that the molar ratio of Li / Co becomes 1.03, and then thoroughly mixed in a dry system, and then mixed. Calcination was performed at 5 ° C. for 5 hours. The fired product was pulverized and classified to obtain lithium cobaltate.
The average particle size and the amount of residual lithium carbonate of the obtained lithium cobaltate were measured in the same manner as in Examples 3 and 4, and the results are shown in Table 3.
[0048]
[Table 3]
From the results shown in Table 3, the commercially available lithium cobalt oxide having an average particle size of 10 μm or more was synthesized from tricobalt tetroxide having an average particle size of 2 μm (Comparative Example 6), containing 0.1% by weight or more of lithium carbonate. On the other hand, the lithium cobalt oxide having an average particle diameter of 10 μm or more synthesized using the tricobalt tetroxide of the present invention as a production raw material has 0.001% by weight of residual lithium carbonate, and the residual lithium carbonate is reduced. You can see that.
[0049]
<Battery performance test>
(I) Preparation of lithium 2 battery;
91% by weight of lithium cobalt oxide, 6% by weight of graphite powder and 3% by weight of polyvinylidene fluoride prepared in Examples 3 to 4 and Comparative Examples 3 to 6 prepared as described above were mixed to form a positive electrode agent, and this was N-methyl. -2-Pyrrolidinone was dispersed to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector, a mounting bracket, an external terminal, and an electrolyte. Among these, the negative electrode used a metal lithium foil, and the electrolyte used was a 1: 1 mixture of ethylene carbonate and methyl ethyl carbonate in 1 liter of LiPF 6 A solution in which 1 mol was dissolved was used.
[0050]
(II) Battery performance evaluation
The produced lithium secondary battery was operated at room temperature, and the initial discharge capacity and the capacity retention were measured to evaluate the battery performance.
The capacity retention was calculated by the following equation.
[Equation 3]
[Table 4]
[0051]
【The invention's effect】
As described above, tricobalt tetroxide obtained by the production method of the present invention has a Na content of 0.1% by weight or less, a large tap density, and a sharp average particle size of 5 to 30 μm in particle size distribution. Tricobalt oxide is particularly useful as a raw material for producing lithium cobalt oxide for a positive electrode active material of a lithium secondary battery.
In addition, lithium cobalt oxide having an average particle size of 10 μm or more produced using the tricobalt tetroxide has reduced residual lithium carbonate, and a lithium secondary battery using the lithium cobalt oxide as a positive electrode active material has a low battery performance. It will be excellent.
[Brief description of the drawings]
FIG. 1 is an electron micrograph (magnification: 3000) of a precipitate obtained in the step (A1) of Example 1.
FIG. 2 is a particle size distribution diagram of a precipitate obtained in step (A1) of Example 1.
FIG. 3 is an electron micrograph (magnification: 1000) of tricobalt tetroxide obtained in Example 1.
FIG. 4 is a particle size distribution diagram of tricobalt tetroxide obtained in Example 1.
FIG. 5 is an electron micrograph (magnification: 3000) of the precipitate obtained in step (A1) of Comparative Example 1.
FIG. 6 is a particle size distribution diagram of a precipitate obtained in step (A1) of Comparative Example 1.
FIG. 7 is an electron micrograph (1,000 magnification) of tricobalt tetroxide obtained in Comparative Example 1.
FIG. 8 is a particle size distribution diagram of tricobalt tetroxide obtained in Comparative Example 1.
FIG. 9 is an electron micrograph (magnification: 3000) of the precipitate obtained in step (A1) of Comparative Example 2.
FIG. 10 is a particle size distribution diagram of the precipitate obtained in step (A1) of Comparative Example 2.
FIG. 11 is an electron micrograph (magnification: 1000) of tricobalt tetroxide obtained in Comparative Example 2.
FIG. 12 is a particle size distribution chart of tricobalt tetroxide obtained in Comparative Example 2.
FIG. 13 is an electron micrograph (magnification: 3000) of the precipitate obtained in step (A1) of Comparative Example 3.
FIG. 14 is a particle size distribution diagram of the precipitate obtained in step (A1) of Comparative Example 3.
FIG. 15 is an electron micrograph (magnification: 1000) of tricobalt tetroxide obtained in Comparative Example 3.
FIG. 16 is a particle size distribution diagram of tricobalt tetroxide obtained in Comparative Example 3.
Claims (5)
(A1)工程;硫酸コバルト水溶液に、炭酸水素ナトリウム水溶液を温度50℃以上で添加し、次いで反応液にアルカリを添加して反応系内のpHを8〜12に調製し沈澱物を生成させる工程。
(A2)工程;(A1)工程で生成した沈澱物を温度600〜1000℃で焼成を行って四酸化三コバルトを得る工程。A process for producing tricobalt tetroxide having an average particle size of 5 to 30 µm, comprising the following steps (A1) to (A2).
Step (A1): a step of adding an aqueous solution of sodium hydrogencarbonate to an aqueous solution of cobalt sulfate at a temperature of 50 ° C. or higher, and then adding an alkali to the reaction solution to adjust the pH in the reaction system to 8 to 12 to generate a precipitate. .
Step (A2): a step of calcining the precipitate formed in step (A1) at a temperature of 600 to 1000 ° C. to obtain tricobalt tetroxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002162726A JP4086551B2 (en) | 2002-06-04 | 2002-06-04 | Method for producing tricobalt tetroxide and method for producing lithium cobaltate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002162726A JP4086551B2 (en) | 2002-06-04 | 2002-06-04 | Method for producing tricobalt tetroxide and method for producing lithium cobaltate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004010375A true JP2004010375A (en) | 2004-01-15 |
JP4086551B2 JP4086551B2 (en) | 2008-05-14 |
Family
ID=30431392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002162726A Expired - Fee Related JP4086551B2 (en) | 2002-06-04 | 2002-06-04 | Method for producing tricobalt tetroxide and method for producing lithium cobaltate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4086551B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004339032A (en) * | 2003-05-19 | 2004-12-02 | Nippon Chem Ind Co Ltd | Lithium cobalt-based multiple oxide, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery |
JP2006024406A (en) * | 2004-07-07 | 2006-01-26 | Matsushita Electric Ind Co Ltd | Tricobalt tetroxide for activator of nonaqueous electrolyte solution battery and its manufacturing method |
CN112850801A (en) * | 2019-11-28 | 2021-05-28 | 荆门市格林美新材料有限公司 | Preparation method of large-particle cobaltosic oxide |
CN114249355A (en) * | 2021-12-20 | 2022-03-29 | 厦门厦钨新能源材料股份有限公司 | Layered cobaltosic oxide material and preparation method and application thereof |
CN114349066A (en) * | 2021-12-28 | 2022-04-15 | 荆门市格林美新材料有限公司 | Preparation method of magnesium-aluminum co-doped lithium cobaltate precursor |
CN115924985A (en) * | 2022-10-22 | 2023-04-07 | 哈尔滨理工大学 | Template-free preparation method and application of lamellar cobaltosic oxide |
WO2023207282A1 (en) * | 2022-04-25 | 2023-11-02 | 广东邦普循环科技有限公司 | Template growth method for preparing lithium cobaltate precursor and use thereof |
WO2024031792A1 (en) * | 2022-08-12 | 2024-02-15 | 广东邦普循环科技有限公司 | Manganese-doped cobalt carbonate, preparation method therefor, and use thereof |
WO2024066183A1 (en) * | 2022-09-28 | 2024-04-04 | 广东邦普循环科技有限公司 | Aluminum-fluorine co-doped cobaltosic oxide, and preparation method therefor and use thereof |
WO2024164407A1 (en) * | 2023-02-09 | 2024-08-15 | 广东邦普循环科技有限公司 | Preparation method for aluminum-doped lithium cobalt oxide precursor |
-
2002
- 2002-06-04 JP JP2002162726A patent/JP4086551B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004339032A (en) * | 2003-05-19 | 2004-12-02 | Nippon Chem Ind Co Ltd | Lithium cobalt-based multiple oxide, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery |
JP2006024406A (en) * | 2004-07-07 | 2006-01-26 | Matsushita Electric Ind Co Ltd | Tricobalt tetroxide for activator of nonaqueous electrolyte solution battery and its manufacturing method |
JP4694799B2 (en) * | 2004-07-07 | 2011-06-08 | パナソニック株式会社 | Method for producing tricobalt tetroxide for active material of non-aqueous electrolyte battery |
CN112850801A (en) * | 2019-11-28 | 2021-05-28 | 荆门市格林美新材料有限公司 | Preparation method of large-particle cobaltosic oxide |
CN112850801B (en) * | 2019-11-28 | 2023-10-31 | 荆门市格林美新材料有限公司 | Preparation method of large-particle cobaltosic oxide |
CN114249355A (en) * | 2021-12-20 | 2022-03-29 | 厦门厦钨新能源材料股份有限公司 | Layered cobaltosic oxide material and preparation method and application thereof |
CN114249355B (en) * | 2021-12-20 | 2023-09-22 | 厦门厦钨新能源材料股份有限公司 | Layered cobaltosic oxide material and preparation method and application thereof |
CN114349066A (en) * | 2021-12-28 | 2022-04-15 | 荆门市格林美新材料有限公司 | Preparation method of magnesium-aluminum co-doped lithium cobaltate precursor |
CN114349066B (en) * | 2021-12-28 | 2023-11-24 | 荆门市格林美新材料有限公司 | Preparation method of magnesium-aluminum co-doped lithium cobaltate precursor |
WO2023207282A1 (en) * | 2022-04-25 | 2023-11-02 | 广东邦普循环科技有限公司 | Template growth method for preparing lithium cobaltate precursor and use thereof |
GB2621290A (en) * | 2022-04-25 | 2024-02-07 | Guangdong Brunp Recycling Technology Co Ltd | Template growth method for preparing lithium cobaltate precursor and use thereof |
WO2024031792A1 (en) * | 2022-08-12 | 2024-02-15 | 广东邦普循环科技有限公司 | Manganese-doped cobalt carbonate, preparation method therefor, and use thereof |
WO2024066183A1 (en) * | 2022-09-28 | 2024-04-04 | 广东邦普循环科技有限公司 | Aluminum-fluorine co-doped cobaltosic oxide, and preparation method therefor and use thereof |
CN115924985A (en) * | 2022-10-22 | 2023-04-07 | 哈尔滨理工大学 | Template-free preparation method and application of lamellar cobaltosic oxide |
WO2024164407A1 (en) * | 2023-02-09 | 2024-08-15 | 广东邦普循环科技有限公司 | Preparation method for aluminum-doped lithium cobalt oxide precursor |
Also Published As
Publication number | Publication date |
---|---|
JP4086551B2 (en) | 2008-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3489685B2 (en) | Lithium manganate, method for producing the same, and lithium battery using the same | |
JP4894969B1 (en) | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery | |
JP6582824B2 (en) | Nickel-manganese-containing composite hydroxide and method for producing the same | |
JP4915488B1 (en) | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
JP6241349B2 (en) | Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP5971109B2 (en) | Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
JP6323117B2 (en) | Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP6344007B2 (en) | Method for producing precursor of positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JP3221352B2 (en) | Method for producing spinel-type lithium manganese composite oxide | |
JP4826147B2 (en) | Aluminum-containing nickel hydroxide particles and method for producing the same | |
JP5281765B2 (en) | Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus | |
WO2012020769A1 (en) | Method for producing nickel-containing complex compound | |
JP2002060225A (en) | Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate | |
JPWO2017119451A1 (en) | Cathode active material precursor for non-aqueous electrolyte secondary battery, cathode active material for non-aqueous electrolyte secondary battery, method for producing cathode active material precursor for non-aqueous electrolyte secondary battery, cathode active material for non-aqueous electrolyte secondary battery Manufacturing method | |
JP2009054576A (en) | Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus | |
JP2006219323A (en) | Lithium-manganese-nickel-aluminum complex oxide and its production method | |
JPH111324A (en) | Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material | |
JP4086551B2 (en) | Method for producing tricobalt tetroxide and method for producing lithium cobaltate | |
JP7273260B2 (en) | Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery | |
JP2001114521A (en) | Trimanganese tetraoxide and method for its production | |
JP6876600B2 (en) | Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method | |
JP3021229B2 (en) | Method for producing LiMn2O4 having crystalline spinel structure and positive electrode for secondary battery using the same as active material | |
JP2002313338A (en) | Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it | |
JP2006131484A (en) | Method for manufacturing lithium nickel cobalt oxide-based positive electrode material | |
JP2001240417A (en) | Method for manufacturing lithium manganate and lithium cell using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080219 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4086551 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |