JP4180363B2 - Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide - Google Patents

Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide Download PDF

Info

Publication number
JP4180363B2
JP4180363B2 JP2002379425A JP2002379425A JP4180363B2 JP 4180363 B2 JP4180363 B2 JP 4180363B2 JP 2002379425 A JP2002379425 A JP 2002379425A JP 2002379425 A JP2002379425 A JP 2002379425A JP 4180363 B2 JP4180363 B2 JP 4180363B2
Authority
JP
Japan
Prior art keywords
lithium
ferrous
composite oxide
ferrous phosphate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002379425A
Other languages
Japanese (ja)
Other versions
JP2003292307A (en
Inventor
真之 木下
泰裕 仲岡
信幸 山崎
克幸 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002379425A priority Critical patent/JP4180363B2/en
Priority to CNB031020941A priority patent/CN1299979C/en
Priority to KR1020030006177A priority patent/KR100898236B1/en
Publication of JP2003292307A publication Critical patent/JP2003292307A/en
Application granted granted Critical
Publication of JP4180363B2 publication Critical patent/JP4180363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、機能性無機材料の製造原料の用途、特に、リチウム二次電池の正極活物質で用いるLiFePO4又はLiFeMePO4(Meは、Mn、Co、Ni、Alから選ばれる少なくとも1種以上の金属元素を示す。)の製造原料として有用なリン酸第一鉄含水塩結晶、その製造方法及びこれを用いたリチウム鉄リン系複合酸化物の製造方法に関するものである。
【0002】
【従来の技術】
近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアル リサーチブレティン」vol15,P783-789(1980)〕がなされて以来、コバルト酸リチウムに関する研究開発が活発に進められており、これまで多くの提案がなされている。
しかしながら、Coは地球上に偏在し、希少な資源であるため、コバルト酸リチウムに代わる新たな正極活物質として、例えば、LiNiO2、LiMn24、LiFeO2、LiFePO4等の開発が進められている。
【0003】
中でもLiFePO4は、体積密度が3.6g/cm3と大きく、3.4Vの高電位を発生し、理論容量も170mAh/gと大きいという特徴を持つ。そして,Feは資源が豊富で安価であることに加え、LiFePO4は、初期状態で、電気化学的に脱ドープ可能なLiを、Fe原子1個当たりに1個含んでいるので、コバルト酸リチウムに代わる新たなリチウム二次電池の正極活物質としての期待は大きい。
【0004】
LiFePO4又はこのFeの一部を他の金属で置換したLiFePO4を正極活物質とするリチウム二次電池が提案されている(例えば、特許文献1〜6参照)。
【0005】
一般的なLiFePO4の製造方法としては、例えば、リン酸第一鉄含水塩を用いて、下記反応式(1)
【化1】

Figure 0004180363
に従って製造する方法、シュウ酸鉄を用いて、下記反応式(2)
【化2】
Figure 0004180363
に従って製造する方法、又は酢酸鉄を用いて、下記反応式(3)
【化3】
Figure 0004180363
に従って製造する方法等が提案されている。
この中、リン酸第一鉄含水塩を用いる方法は、副生物が水のみであるため工業的に特に有利である。
【0006】
このリン酸第一鉄含水塩は、2価の鉄イオンを含む水溶液にリン酸水素アンモニウム、或いはリン酸水素ナトリウムを添加して製造されている(非特許文献1参照。)。
しかしながら、この方法で得られるリン酸第一鉄含水塩は、平均粒径が7μm〜数十μmで、また、その粒子は結晶が発達し非常に硬いものである。
このため、反応性が悪く、また、粉砕等の加工がしにくいと言う欠点がある。この結果、リチウム二次電池の正極活物質で用いるLiFePO4を初めとする機能性無機材料の製造原料への用途の展開を困難なものとしている。
【0007】
【特許文献1】
特開平9−134724号公報
【特許文献2】
特開平9−134725号公報
【特許文献3】
特開平11−261394号公報
【特許文献4】
特開2001−110414号公報
【特許文献5】
特開2001−250555号公報
【特許文献6】
特開2000−294238号公報
【非特許文献1】
「化学大辞典 9」、共立出版、1993年、p.809〜810,リン酸鉄の欄参照。
【0008】
【発明が解決しようとする課題】
従って、本発明の目的は、機能性無機材料の製造原料の用途、特にリチウム二次電池の正極活物質で用いるLiFePO4及びLiFeMePO4(式中、MはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。)の製造原料に適した微細で加工性に優れたリン酸第一鉄含水塩結晶、該リン酸第一鉄含水塩結晶を高収率で製造する工業的に有利な方法及び該リン酸第一鉄含水塩結晶を用いたリチウム鉄リン系複合酸化物の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、かかる実情において鋭意研究を重ねた結果、2価の鉄塩とリン酸を含む水溶液に、アルカリを添加して反応を行って得られるリン酸第一鉄含水塩結晶は特定の粒径を有する微細な結晶粒子であり、従来になく加工性及び反応性に優れたものとなることを見出し本発明を完成するに至った。
【0010】
【課題を解決するための手段】
即ち、本発明の第1の発明は、一般式;Fe(PO・8HOで示されるリン酸第一鉄含水塩であって、平均粒径が5μm以下であり、X線回折分析から求められる格子面(020面)の回折ピークの半値幅が0.20°以上である物性を有することを特徴とするリン酸第一鉄含水塩結晶を提供するものである。
かかるリン酸第一鉄含水塩結晶は、不純物としてのNaの含有量が1重量%以下であることが特に好ましい。
【0011】
また、本発明の第2の発明は、2価の鉄塩とリン酸を含む水溶液に、アルカリを添加して反応を行うことを特徴とするリン酸第一鉄含水塩結晶の製造方法を提供するものである。
また、前記2価の鉄塩は、硫酸第一鉄7水和物(FeSO4・7H2O)であることが好ましい。
【0012】
また、本発明の第3の発明は、(A)前記第1の発明のリン酸第一鉄含水塩結晶、リン酸リチウム及び導電性炭素材料又は(B)前記第1の発明のリン酸第一鉄含水塩結晶、リン酸リチウム、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素材料とを混合し焼成を行うことを特徴とするリチウム鉄リン系複合酸化物の製造方法を提供するものである。
かかるリチウム鉄リン系複合酸化物の製造方法は、(A)前記第1の発明のリン酸第一鉄含水塩結晶、リン酸リチウム及び導電性炭素質材料又は(B)前記第1の発明のリン酸第一鉄含水塩結晶、リン酸リチウム、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素質材料とを混合する第一工程、次いで、得られる混合物を乾式で粉砕処理して反応前駆体を得る第二工程、次いで、該反応前駆体を焼成してリチウム鉄リン系複合酸化物を得る第三工程を含むことが好ましい。
また、前記第二工程後、得られる反応前駆体を加圧成形する工程を設けることが好ましい。
また、生成させるリチウム鉄リン系複合酸化物は平均粒径が0.5μm以下であることが好ましい。
【0013】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に係るリン酸第一鉄含水塩結晶は、一般式;Fe3(PO42・8H2Oで示されるものであり、レーザー回折法により求められる平均粒径が5μm以下、好ましくは1〜5μmであることに特徴づけられる。
【0014】
また、本発明のリン酸第一鉄含水塩結晶は、上記粒度特性に加え、線源としてCuKα線を用いて該結晶をX線回折分析したときに2θ=13.1近傍の回折ピーク(020面)の半値幅が0.20°以上、好ましくは0.2〜0.4°であることが好ましい。本発明のリン酸第一鉄含水塩結晶は、格子面(020面)の半値幅が0.20°以上という特性を有することにより従来のものと比べ、結晶性が低く、柔らかい結晶であり、更なる粉砕による微細化や、他の化合物との反応性に優れたものとなる。
【0015】
また、本発明に係るリン酸第一鉄含水塩結晶は、リチウム二次電池の正極活物質のLiFePO4やLiFeMePO4(Meは、Mn、Co、Ni、Alから選ばれる少なくとも1種以上の金属元素を示す。)の製造原料として用いる場合には、不純物としてNa含有量が少なければ少ないほど好ましいが、後述するリン酸第一鉄含水塩結晶の製造方法において、アルカリ源として水酸化ナトリウム等のNa分を含有する化合物を用いた場合には、例えば、該リン酸第一鉄含水結晶とリン酸リチウムとを焼成してLiFePO4を製造する際に、このNaは、リン酸ナトリウムとなって電池性能を低下させる一つ原因となることから、本発明のリン酸第一鉄含水塩結晶は、この不純物としてのNa含有量が1重量%以下、好ましくは0.8重量%以下であることが好ましい。
【0016】
更に、本発明に係るリン酸第一鉄含水塩結晶は、上記Na含有量に加えて、Ti、Mn、Zn、Cr、Ni、Cu、Coから選ばれる金属の含有量の総量が1重量%以下、好ましくは0.8重量%以下で、更にK、Ca、Mg、Al、Si、SO4、Cl、NO3等の不純物の含有量が1重量%以下、好ましくは0.8重量%以下であると、特に高純度が要求される機能性無機材料の製造原料として好適に用いることができることから特に好ましい。
【0017】
次に、本発明に係るリン酸第一鉄含水塩結晶の製造方法について説明する。
本発明にかかるリン酸第一鉄含水塩結晶の製造方法は、2価の鉄塩とリン酸を含む水溶液に、アルカリを添加して反応を行うことを特徴とするものである。
【0018】
用いることができる2価の鉄塩としては、例えば、硫酸第一鉄、塩化第一鉄、酢酸鉄、蓚酸鉄等が挙げられ、これらは1種又は2種以上で用いることができ、また、これらは含水物であっても無水物であってもよい。この中、硫酸第一鉄7水和物(FeSO4・7H2O)が工業的に容易に入手することができ安価であるため特に好ましい。
【0019】
用いることができるリン酸としては、工業的に入手できるものであれば特に制限はない。
【0020】
用いることができるアルカリとしては、特に制限はなく、例えば、アンモニアガス、アンモニア水、苛性ソーダ、苛性カリ、NaHCO3、Na2CO3、K2CO3、KHCO3、Ca(OH)2、LiOH等の無機アルカリ、またはエタノールアミン等の有機アルカリ等が挙げられ、これらのアルカリは1種又は2種以上で用いることができる。この中、水酸化ナトリウムが工業的に容易に入手することができ安価であるため特に好ましい。
【0021】
具体的な反応操作としては、まず、リン酸を2価の鉄塩中の鉄原子に対するモル比で0.60〜0.75、好ましくは0.65〜0.70となるように2価の鉄塩とリン酸を溶解した水溶液を調製する。この場合水溶液の濃度は、2価の鉄塩とリン酸を溶解できる濃度であれば特に制限はないが、通常2価の鉄塩として0.1モル/L以上、好ましくは0.5〜1.0モル/Lとすることが好ましい。
【0022】
次いで、この水溶液にアルカリを添加し、リン酸第一鉄含水塩結晶を析出させる。リン酸第一鉄含水塩結晶の析出反応は、このアルカリの添加により速やかに進行する。アルカリの添加量は、2価の鉄塩に対するモル比で1.8〜2.0、好ましくは1.95〜2.0とすることが好ましい。
このアルカリの添加温度は、特に制限はなく、通常5〜80℃、好ましくは15〜35℃であり、また、このアルカリの滴下速度等も特に制限されるものではないが、安定した品質のものを得るため、一定の滴下速度で除々に反応系内に導入することが好ましい。
【0023】
反応終了後、常法により固液分離して、析出物を回収し、洗浄、乾燥、必要により粉砕、分級して製品とする。なお必要に応じて行われる粉砕は、得られるリン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)がもろく結合したブロック状のものである場合等に適宜行うが、リン酸第一鉄含水塩結晶の粒子自体は上記特定の平均粒径を有するものである。即ち、得られるリン酸第一鉄含水塩結晶はレーザー回折法により求められる平均粒径が5μm以下、好ましくは1〜5μmである。
【0024】
なお、洗浄は、析出したリン酸第一鉄含水塩結晶のNa含有量が1重量%以下、好ましくは0.8重量%以下となるまで水で十分に洗浄することが好ましい。
【0025】
また、乾燥は、35℃未満では乾燥に時間がかかり、50℃を超えると2価の鉄の酸化や結晶水の脱離が起こるため35〜50℃、好ましくは40〜50℃で行うことが好ましい。
【0026】
かくして得られるリン酸第一鉄含水塩結晶は、レーザー回折法により求められる平均粒径が5μm以下、好ましくは1〜5μmであり、更に好ましい物性としては、X線回折分析から求められる格子面(020面)の回折ピークの半値幅が0.20°以上、好ましくは0.20〜0.40°である。更に前記物性に加えて不純物としてのNa含有量が1重量%以下、好ましくは0.8重量%以下で、更に好ましくは不純物としてのTi、Mn、Zn、Cr、Ni、Cu、Coから選ばれる金属の含有量が総量で1重量%以下、好ましくは0.8重量%以下、K、Ca、Mg、Al、Si、SO4、Cl、NO3等の不純物の含有量が1重量%以下、好ましくは0.8重量%以下であることが好ましい。
【0027】
本発明のリン酸第一鉄含水塩結晶の製造方法によれば、予めFe3(PO42・8H2Oの組成と同じ比率で鉄とリンが共存する反応系内にアルカリを添加することでpHの上昇と共に均一にリン酸の解離が起こり、これと周囲に所定比で共存する鉄イオンと反応して均一にFe3(PO42・8H2Oが生成するため結晶成長が起こりにくい状況となり,得られる結晶は粒径が小さく反応性のよいものとなると考えられる。
【0028】
本発明にかかるリン酸第一鉄含水塩結晶は、粒径が小さく反応性に優れるため、機能性無機材料の製造原料、特にリチウム二次電池の正極活物質で用いるLiFePO4やLiFeMePO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。)の製造原料として好適に用いることができる。
【0029】
以下、本発明のリチウム鉄リン系複合酸化物の製造方法について説明する。
本発明のリチウム鉄リン系複合酸化物の製造方法は、前記のリン酸第一鉄含水塩結晶、リン酸リチウム及び導電性炭素材料を混合し焼成を行うか(以下、「Aの製造方法」と呼ぶ。)又は前記のリン酸第一鉄含水塩結晶、リン酸リチウム、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素材料とを混合し焼成を行う(以下、「Bの製造方法」と呼ぶ。)ことを特徴とするものである。
【0030】
本発明の前記A及びBのリチウム鉄リン系複合酸化物の製造方法において、特に(A)前記のリン酸第一鉄含水塩結晶、リン酸リチウム及び導電性炭素質材料又は(B)前記のリン酸第一鉄含水塩結晶、リン酸リチウム、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素質材料とを混合する第一工程、次いで、得られる混合物を粉砕処理して反応前駆体を得る第二工程、次いで、該反応前駆体を焼成してリチウム鉄リン系複合酸化物を得る第三工程を含むことが特に得られるリチウム鉄リン系複合酸化物をリチウム二次電池の正極活物質として用いる場合において放電容量を向上させることができることから特に好ましい。
【0031】
前記Aの製造方法によれば、リチウム二次電池の正極活物質として好適なLiFePO4の粒子表面を導電性炭素材料で被覆したリチウム鉄リン系複合酸化物を得ることができ、また、前記Bの製造方法によればLiFeMePO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。)の粒子表面を導電性炭素材料で被覆したリチウム鉄リン系複合酸化物を得ることができる。
【0032】
前記第一工程において、前記A及びBの製造方法で用いることができるリン酸リチウム(Li3PO4)は、工業的に入手できるものであれば特に制限はないが、レーザー回折法により求められる平均粒径が10μm以下、好ましくは5μm以下であると、混合が十分に行われ反応性が良くなることから特に好ましい。
【0033】
前記A及びBの製造方法で用いることができる導電性炭素材料としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等の天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維等が挙げられ、これらは1種又は2種以上で用いることができる。この中、ケッチェンブラックが微粒なものを工業的に容易に入手できるため特に好ましい。
これらの導電性炭素材料は電子顕微鏡写真から求められる平均粒径が1μm以下、好ましくは0.1μm以下、特に好ましくは0.01〜0.1μmであるとLiFePO4又はLiFeMePO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。)の粒子表面に高分散状態で付着させることができることから好ましい。
【0034】
前記Bの製造方法で用いることができるMn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物としては、これらの金属元素を含む酸化物、水酸化物、硝酸塩、酢酸塩、炭酸塩、リン酸塩、有機酸塩等が挙げられ、これらの金属化合物の物性としてはレーザー回折法により求められる平均粒径が10μm以下、好ましくは5μm以下であると、混合が十分に行われ反応性が良くなることから特に好ましい。
【0035】
なお、本発明のリチウム鉄リン系複合酸化物の製造方法において前記の原料のリン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)、リン酸リチウム、導電性炭素材料及び金属化合物は高純度のものを用いることが特にリチウム二次電池の正極活物質として用いる場合に好ましい。
【0036】
第一工程の操作は、まず、(A)リン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)とリン酸リチウム(Li3PO4)および導電性炭素材料又は(B)リン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)、リン酸リチウム(Li3PO4)、導電性炭素材料及びMn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物を所定量混合する。
【0037】
前記Aの製造方法においてリン酸第一鉄含水塩結晶とリン酸リチウムとの配合割合は、リン酸第一鉄含水塩結晶中のFe原子とリン酸リチウム中のLi原子とのモル比(Li/Fe)で0.9〜1.1、好ましくは1.00〜1.05であるとLiFePO4の単相が得られる点で好ましく、このモル比が0.9未満及び1.1を越えると未反応原料が残存することから好ましくない。
また、前記Bの製造方法においてリン酸第一鉄含水塩結晶、リン酸リチウムおよびMn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物の配合割合は、リン酸第一鉄含水塩結晶中のFe原子、リン酸リチウム中のLi原子および金属化合物中の金属原子(Me)のモル比として、Li/(Fe+Me)で0.9〜1.1、好ましくは1.00〜1.05であると、LiFeMePO4の単相が得られる点で特に好ましい。
【0038】
また、導電性炭素材料は、焼成前に比べて焼成後では導電性炭素材料に含まれるC原子の量が若干ながら減少する傾向があることから、導電性炭素材料の配合量がリン酸第一鉄含水塩結晶とリン酸リチウム又はリン酸第一鉄含水塩結晶とリン酸リチウム及び金属化合物との総量に対して0.08〜15.5重量%、好ましくは3.8〜9.5重量%であると、導電性炭素材料の被覆量は、LiFePO4又はLiFeMePO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。)に対するC原子の含有量で0.1〜20重量%、好ましくは5〜12重量%となる。この導電性炭素材料の配合量が0.08重量%未満ではリチウム鉄リン系複合酸化物に十分な導電性を付与させることができなくなるため得られるリチウム鉄リン系複合酸化物を正極活物質とするリチウム二次電池において内部抵抗が上昇し、一方、15.5重量%を超えると逆に重量或いは体積当たりの放電容量が減少するため好ましくない。
【0039】
なお、第一工程において、後述する第二工程を実施するに当り予め各原料が均一に混合するようにブレンダー等を用いて乾式で十分に混合しておくことが好ましい。
【0040】
第二工程は、前記A及びBの製造方法において、これらの原料の混合物を、更に反応性をよくするするため粉砕機を用いて乾式で十分に混合及び粉砕処理して反応前駆体を得る工程である。
【0041】
ここで前記反応前駆体とは(A)リン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)とリン酸リチウム(Li3PO4)及び導電性炭素材料又は(B)リン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)、リン酸リチウム(Li3PO4)、導電性炭素材料及びMn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物を含有する混合物を後の焼成に先だって反応性をよくするために、各原料を高分散させると共に各原料間の粒子間距離を可能なかぎり近づけ、各原料の接触面積を高めたものである。
【0042】
本発明においてこの粉砕処理後の混合物は比容積が1.5ml/g以下、好ましくは1.0〜1.4ml/gであると500〜700℃の低温の焼成温度で焼結による粒成長もなく、X線回折分析においてLiFePO4又はLiFeMePO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。)の単相の粒子表面に導電性炭素材料を均一に被覆したリチウム鉄リン系複合酸化物が得られることから、当該範囲の比容積の混合物を反応前駆体とすることが好ましい。
【0043】
なお、本発明における比容積とはJIS−K−5101に記載された見掛け密度又は見掛け比容の方法に基づいて、タップ法により50mlのメスシリンダーにサンプル10gをいれ、500回タップし静置後、容積を読みとり、下記式により求めたものである。
【数1】
Figure 0004180363
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(ml)を示す。)
【0044】
更に、本発明のリチウム鉄リン系複合酸化物の製造方法において、前記反応前駆体は、比容積が当該範囲であることに加えて、該反応前駆体中に含まれる原料のリン酸鉄含水塩結晶がほぼ非晶質状態であると,粒子径の成長を抑制する目的で500〜700℃の低温で焼成した場合においても反応が完全に進行し、LiFePO4、もしくはLiFeMePO4(Meは、Mn、Co、Ni、Alから選ばれる少なくとも1種以上の金属元素を示す。)の単相が得られることから特に好ましい。
【0045】
用いることができる粉砕機としては、強力なせん断力を有する粉砕機が好ましく、このような強力なせん断力を有する粉砕機としては、転動ボールミル、振動ミル、遊星ミル、媒体攪拌ミル等を用いることが好ましい。この種の粉砕機は、容器中にボール、ビーズ等の粉砕媒体が入っており、主として媒体の剪断・摩擦作用によって粉砕を行う粉砕機である。このような装置としては市販されているものを利用することができる。
【0046】
粉砕媒体の粒径は1〜25mmであると粉砕が十分に行えるため好ましい。この粉砕媒体の材質は、ジルコニア、アルミナのセラミックビーズが、硬度が高く磨耗に強いこと及び材料の金属汚染を防止することができることから特に好ましい。
【0047】
また、前記粉砕媒体は、空間容積50〜90%で容器内に粉砕媒体を収納し、流動媒体による剪断力と摩擦力を適切に管理するため、粉砕機の運転条件を適宜調整して粉砕処理することが好ましい。
【0048】
また、本発明のリチウム鉄リン系複合酸化物の製造方法において、必要に応じて、上記粉砕処理に加えて該反応前駆体を加圧成形処理して、更に各原料の接触面積を高めると、放電容量とサイクル特性を更に向上させることができる。成形圧は、プレス機、仕込み量等により異なり、特に限定されるものではないが、通常5〜200MPaである。プレス成形機は、ハンドプレス、打錠機、ブリケットマシン、ローラコンパクター等好適に使用できるがプレスできるものであればよく、特に制限はない。
【0049】
次いで、第三工程において、第二工程で得られた反応前駆体を焼成する。
焼成温度は500〜700℃、好ましくは550〜650℃である。本発明において、この焼成温度を当該範囲とすることにより得られるリチウム鉄リン系複合酸化物を正極活物質とするリチウム二次電池は、放電容量及び充電サイクル特性を向上させることができる。焼成温度が500℃未満では、反応が十分に進行しないため未反応原料が残存し、一方、700℃を越えると上記したとおり焼結が進行して粒子成長が起こるため好ましくない。
焼成時間は、2〜20時間、好ましくは5〜10時間とすることが好ましい。焼成は、窒素、アルゴン等の不活性ガス雰囲気中又は水素や一酸化炭素等の還元雰囲気中のいずれで行ってもよく、特に制限されるものではないが、操作時の安全性の面で窒素、アルゴンガス等の不活性ガス雰囲気中で行うことが好ましい。また、これらの焼成は必要により何度でも行うことができる。
【0050】
焼成後は、適宜冷却し、必要に応じ粉砕又は分級してLiFePO4又はLiFeMePO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。)の粒子表面を導電性炭素材料で均一に被覆したリチウム鉄リン系複合酸化物を得る。なお、FeおよびMe元素の酸化を防止するため、冷却中は反応系内を窒素、アルゴン等の不活性ガス雰囲気又は水素や一酸化炭素等の還元雰囲気として行うことが好ましい。また、必要に応じて行われる粉砕は、焼成して得られるリチウム鉄リン系複合酸化物がもろく結合したブロック状のものである場合等に適宜行うが、本発明のリチウム鉄リン系複合酸化物の好ましい実施形態の製造方法によれば、リチウム鉄リン系複合酸化物の粒子自体は下記の特定の平均粒径、BET比表面積を有するものである。即ち、得られるリチウム鉄リン系複合酸化物は、走査型電子顕微鏡写真(SEM)から求められる平均粒径が0.5μm以下、好ましくは0.05〜0.5μmであり、BET比表面積が10〜100m2/g、好ましくは30〜70m2/gである。
【0051】
このようにして得られる本発明のリチウム鉄リン系複合酸化物は、正極、負極、セパレータ及びリチウム塩を含有する非水電解質からなるリチウム二次電池の正極活物質として好適に用いることができる。
【0052】
なお、該リチウム鉄リン系複合酸化物を正極活物質とする場合は、その形態は、平均粒径0.05μm以上0.5μm以下の一次粒子が集合してなる平均粒径1μm以上75μmの一次粒子集合体であってもよい。更に、上記一次集合体において全体積の70%以上、好ましくは80%以上が粒径1μm以上20μm以下であることが好ましく、また、該リチウム鉄リン系複合酸化物は大気中で粉砕等を行うと得られるリチウム鉄リン系複合酸化物には、3000ppm以上の水分が含有されているため、正極活物質として用いる前に真空乾燥等の操作を施して該リチウム鉄リン系複合酸化物の水分含有量を2000ppm以下、好ましくは1500ppm以下として用いることが好ましい。
【0053】
また、本発明の製造方法で得られるリチウム鉄リン系複合酸化物は、公知の他のリチウムコバルト系複合酸化物、リチウムニッケル複合酸化物又はリチウムマンガン系複合酸化物と併用して用いることで,従来のリチウムコバルト系複合酸化物、リチウムニッケル複合酸化物又はリチウムマンガン系複合酸化物を用いたリチウム二次電池の安全性を更に向上させることができる。この場合、併用するリチウムコバルト系複合酸化物、リチウムニッケル複合酸化物又はリチウムマンガン系複合酸化物の物性等は特に制限されるものではないが、平均粒径が1.0〜20μm、好ましくは1.0〜15μm、さらに好ましくは2.0〜10μmで、BET比表面積が0.1〜2.0m2/g、好ましくは0.2〜1.5m2/g、さらに好ましくは0.3〜1.0m2/gであるものが好ましい。
【0054】
【実施例】
以下、本発明を実施例により詳細に説明するが本発明はこれらに限定されるものではない
<硫酸第一鉄7水和物(FeSO4・7H2O)>
実施例で用いた原料の硫酸第一鉄7水和物は市販の工業品を用い、その品位を表1に示す。
なお、Na、Ti、Mn、Zn、Cr、Ni、Cu、Coの含有量は、ICP分光法により求めた。
【表1】
Figure 0004180363
【0055】
<リン酸第一鉄含水塩結晶の合成>
実施例1
硫酸第一鉄7水和物(FeSO4・7H2O)907g(3モル)と75%リン酸(H3PO4)261g(2モル)を,水3Lに溶解させ,混合溶液を作成した(温度17℃、pH 1.6)。この混合溶液に,16%水酸化ナトリウム(NaOH)水溶液1500ml(6モル)を83ml/minの滴下速度で18分で滴下し、リン酸第一鉄を析出させた(温度31℃、pH 6.7)。
次に、ろ過してリン酸第一鉄を回収し、この回収したリン酸第一鉄を水4.5Lで入念に洗浄した。
次いで、洗浄後のリン酸第一鉄を温度50℃で23時間乾燥し、乾燥品490gを得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号30−662と回折パターンが一致していることから、この乾燥品はFe3(PO42・8H2Oであることを確認した(収率98%)。
得られたFe3(PO42・8H2Oの諸物性値を表2に示す。
また、得られたFe3(PO42・8H2Oを線源としてCuKα線を用いてX線回折分析を行い2θ=13.1°近傍の回折ピーク(020面)の半値幅を測定し、その結果を表2に示す。また、得られたFe3(PO42・8H2OのX線回折図を図1に示す。
なお、Na、Ti、Mn、Zn、Cr、Ni、Cu、Coの含有量は、ICP分光法により求めた。また、SO4含有量はICP分光法によるS原子濃度測定結果を換算して求め、該乾燥品のP含有量を吸光光度法により求めた。このP含有量の値が高い方が乾燥品の純度が高いことを示す。また、平均粒径は、レーザー回折法により求めた。
【0056】
実施例2
硫酸第一鉄7水和物(FeSO4・7H2O)816 g(2.7モル)と75%リン酸(H3PO4)261g(2モル)を,水3Lに溶解させ,混合溶液を作成した(温度8 ℃、pH 0.6).この混合溶液に,24 %水酸化ナトリウム(NaOH)水溶液1000 ml(6 モル)を166 ml/minの滴下速度で6分で滴下し、リン酸第一鉄を析出させた(温度21℃、pH7.4)。
次に、ろ過してリン酸第一鉄を回収し、この回収したリン酸第一鉄を水4.5Lで入念に洗浄した。
次いで、洗浄後のリン酸第一鉄を温度50℃で23時間乾燥し、乾燥品480gを得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号30−662と回折パターンが一致していることから、この乾燥品はFe3(PO42・8H2Oであることを確認した(収率94%)。
得られたFe3(PO42・8H2Oの諸物性値を表2に示す。
なお、Na、Ti、Mn、Zn、Cr、Ni、Cu、Co、SO4含有量、P含有量、平均粒径は実施例1と同じ手法で求めた。
【0057】
比較例1
硫酸第一鉄7水和物(FeSO4・7H2O)278g(1モル)を水1Lに溶解させ、硫酸第一鉄水溶液を作成した。別にリン酸水素ナトリウム12水和物(Na2HPO4・12H2O)240g(0.67モル)を水2Lに溶解し、リン酸水素ナトリウム水溶液を作成した。硫酸第一鉄水溶液にリン酸水素ナトリウム水溶液を56ml/minの滴下速度で36分で滴下し、リン酸第一鉄を析出させた。
次に、ろ過してリン酸第一鉄を回収し、この回収したリン酸第一鉄を水4.5Lで入念に洗浄した。
次いで、洗浄後のリン酸第一鉄を温度45℃で23時間乾燥し、乾燥品82gを得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号30−662と回折パターンが一致していることから、この乾燥品はFe3(PO42・8H2Oであることを確認した(収率49%)。
得られたFe3(PO42・8H2Oの諸物性値を表2に示す。
また、得られたFe3(PO42・8H2Oを線源としてCukα線を用いてX線回折分析を行い2θ=13.1近傍の回折ピーク(020面)の半値幅を測定し、図2にそのX線回折図を示す。
なお、Na、Ti、Mn、Zn、Cr、Ni、Cu、Co、SO4含有量、P含有量及び平均粒径は実施例1と同じ手法で求めた。
【0058】
比較例2
市販のリン酸鉄第一鉄(Fe3(PO42・8H2O)を実施例1と同様にX線回折分析し、2θ=13.1近傍の格子面(020面)の回折ピークの半値幅、Na、Ti、Mn、Zn、Cr、Ni、Cu、Co及びSO4含有量、P含有量、平均粒径を測定し、その結果を表2に示す。
【0059】
【表2】
Figure 0004180363
注)表中の「−」は、検出限界1ppm以下であることを示す。
【0060】
<リチウム鉄リン系複合酸化物の合成>
実施例3
実施例1で調製したリン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)10kgとリン酸リチウム(Li3PO4;平均粒径5.8μm、FMC社製)2.4kg及び粒径が0.05μmのケッチェンブラック(ケッチェンブラックインターナショナル社製、商品名ECP)1kgをヘンシェルミキサーにより十分混合した。次いで、この混合物を乾式ビーズミル装置を用いて粉砕処理し、反応前駆体を得た。得られた反応前駆体の主物性を表3に示した。
また、ビーズミル粉砕品の比容積は、50mlのメスシリンダーにサンプル10gを入れ、ユアサアイオニクス(株)製、DUAL AUTOTAP装置にセットし、500回タップした後、容積を読みとり下記式により求めた。
【数2】
Figure 0004180363
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(ml)を示す。)
なお、乾式ビーズミル装置の条件は以下のとおりである。
・流動媒体;アルミナビーズ(平均粒径5mm)
・空間容積;64%
・周速度;5.2 m/S
次に、得られた粉砕品を窒素雰囲気下に600℃で5時間焼成し、冷却後、粉砕、分級してケッチェンブラックを被覆したLiFePO4を得た。得られたケッチェンブラックを被覆したLiFePO4の主物性を表4に示す。
なお、Na、Ti、Mn、Zn、Cr、Ni、Cu、Coの含有量は、ICP分光法により求めた。また、SO4含有量はICP分光法によるS原子濃度測定結果を換算して求めた。平均粒径は、電子顕微鏡写真により求めた。また、ケッチェンブラックを被覆したLiFePO4中のC原子の含有量を全有機体炭素計(島津製作所社製、TOC−5000A)により測定した。
【0061】
実施例4
実施例1で調製したリン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)10kgとリン酸リチウム(Li3PO4;平均粒径5.8μm、FMC社製)2.4kg及び粒径が0.1μmのケッチェンブラック(ケッチェンブラックインターナショナル社製、商品名ECP)1kgをヘンシェルミキサーにより十分混合した。次いで、この混合物を乾式ビーズミル装置を用いて粉砕処理し、反応前駆体を得た。得られた反応前駆体の主物性を実施例3と同様に測定し、その結果を表3に示した。
なお、乾式ビーズミル装置の条件は以下のとおりである。
・流動媒体;アルミナビーズ(平均粒径5mm)
・空間容積;75%
・周速度;5.2 m/S
次に、反応前駆体10gをハンドプレスにより44MPaでプレス成形した。次いで、このプレス成形品を窒素雰囲気下に600℃で5時間焼成し、冷却後、粉砕、分級しケッチェンブラックを被覆したLiFePO4を得た。得られたリチウム鉄リン系複合体の平均粒径、BET比表面積、Na、Ti、Mn、Zn、Cr、Ni、Cu、Co、SO4、C原子の含有量を実施例3と同様な手法で求めその結果を表4に示す。また、得られたリチウム鉄リン系複合酸化物のX線回折図を図3に示した。
【0062】
実施例5
実施例1で調製したリン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)10kgとリン酸リチウム(Li3PO4;平均粒径5.8μm、FMC社製)2.4kg及び粒径が0.1μmのケッチェンブラック(ケッチェンブラックインターナショナル社製、商品名ECP)1kgをヘンシェルミキサーにより十分混合した。次いで、この混合物を乾式ビーズミル装置を用いて粉砕処理し、反応前駆体を得た。得られた反応前駆体の主物性を実施例3と同様に測定し、その結果を表3に示した。
なお、乾式ビーズミル装置の条件は以下のとおりである。
・流動媒体;アルミナビーズ(平均粒径8mm)
・空間容積;75%
・周速度;4.7 m/S
次に、反応前駆体10gをハンドプレスにより44MPaでプレス成形した。次いで、このプレス成形品を窒素雰囲気下に600℃で5時間焼成し、冷却後、粉砕、分級しケッチェンブラックを被覆したLiFePO4を得た。得られたリチウム鉄リン系複合体の平均粒径、BET比表面積、Na、Ti、Mn、Zn、Cr、Ni、Cu、Co、SO4、C原子の含有量を実施例3と同様な手法で求めその結果を表4に示す。
【0063】
実施例6
<リン酸マンガンの合成>
硫酸マンガン1水和物(MnSO4・H2O)1352 g(8モル)と75 %リン酸(H3PO4)697 g(5.3モル)を水25 Lに溶解させ,混合溶液を作成した.(pH 1.3)この混合溶液に,4 %水酸化ナトリウム(NaOH)水溶液16 L(16モル)を161 ml/minの滴下速度で約100分で滴下し,リン酸マンガンを析出させた(pH 6.5).
次に,濾過してリン酸マンガンを回収し,この回収したリン酸マンガンを水40Lで入念に洗浄した.
次いで,洗浄後のリン酸マンガンを温度50℃で23時間乾燥し,乾燥品1214 gを得た.得られた乾燥品をX線回折で分析したところ,文献(Russ. J. Inorg. Chem. 23, 341, 1978)記載のデータと面間隔および回折強度が一致していること,およびMn含有量が34.8重量%、PO4含有量が40.2重量%であることからこの乾燥品はMn3(PO4)2・6H2Oであることを確認した(収率98%).なお、得られたリン酸マンガンはレーザー回折法から求められる平均粒径が4.9μmであった。
<リン酸(鉄−マンガン)リン系複合酸化物の合成>
実施例1で合成したリン酸第一鉄含水塩結晶(Fe3(PO4)2・8H2O)23.7 gと上記で合成したリン酸マンガン含水塩結晶(Mn3(PO4)2・6H2O)25.1 gとリン酸リチウム(Li3PO4;平均粒径5.8μm、FMC社製)12.0 g及び粒径が0.1μmのケッチェンブラック(ケッチェンブラックインターナショナル社製、商品名ECP)4.9 gをミキサーにより充分混合した.次いで,この混合物を振動ミルを用いて粉砕処理し,反応前駆体を得た.得られた反応前駆体の諸物性を実施例3と同様に測定し,表3に示した.
なお,振動ミルの運転条件は以下の通りである.
・振動数;1000 Hz
・処理時間;3分
・原料の仕込量;12 g
次に、反応前駆体10gをハンドプレスにより44MPaでプレス成形した。次いで、このプレス成形品を窒素雰囲気下に600℃で5時間焼成し、冷却後、粉砕、分級しケッチェンブラックを被覆したリン酸(鉄−マンガン)リン系複合酸化物を得た。得られたリン酸(鉄−マンガン)リン系複合酸化物の平均粒径、BET比表面積、Na、Ti、Mn、Zn、Cr、Ni、Cu、Co、SO4の含有量を実施例3と同様な手法で求めその結果を表4に示す。
【0064】
【表3】
Figure 0004180363
【0065】
【表4】
Figure 0004180363
注)表4中のC原子の含有量は、LiFePO4又はLiFe0.5Mn0.5PO4 に対するC原子の量を示す。
【0066】
<参考例>
<電池性能試験>
(I)リチウム二次電池の作製;
上記のように製造した実施例3〜5のケッチェンブラックを被覆したLiFePO4を真空乾燥し、カールフィッシャー滴定法により250℃水分気化法で求められる該ケッチェンブラックを被覆したLiFePO4の水分含有量をそれぞれ1500ppm以下とし、このリチウム鉄リン系複合酸化物91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF6 1モルを溶解したものを使用した。
(II)電池の性能評価
作製したリチウム二次電池を室温で作動させ、初期放電容量および10サイクル後の放電容量を測定した。また、LiFePO4の理論放電容量(170mAh/g)に対する比を下記の式により算出した。
【数3】
Figure 0004180363
【0067】
【表5】
Figure 0004180363
【0068】
表5の結果より、本発明のリン酸第一鉄含水塩結晶を用いて、製造したLiFePO4を正極活物質として用いたリチウム二次電池は、LiFePO4の理論放電容量に近い値を示し、極めて高放電容量のリチウム二次電池が得られた。
【0069】
【発明の効果】
上記したとおり、本発明のリン酸第一鉄含水塩結晶は、機能性無機材料、特にリチウム二次電池の正極活物質で用いるLiFePO4又はLiFeMePO4(Meは、Mn、Co、Ni、Alから選ばれる少なくとも1種以上の金属元素を示す。)の製造原料の用途に適した微細で、結晶性が低いリン酸第一鉄含水塩結晶であり、また、本発明の製造方法によれば、高収率で該リン酸第一鉄含水塩結晶を工業的に有利に製造することができる。また、本発明のリン酸第一鉄含水塩結晶を製造原料として用いて得られるリチウム鉄リン系複合酸化物を正極活物質とするリチウム二次電池はLiFePO4の理論放電容量に近い値を示す。
【図面の簡単な説明】
【図1】 実施例1で得られたリン酸鉄含水塩結晶のX線回折図。
【図2】 比較例1で得られたリン酸鉄含水塩結晶のX線回折図。
【図3】 実施例4で得られたリチウム鉄リン系複合酸化物のX線回折図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the use of a raw material for producing a functional inorganic material, in particular, LiFePO used for a positive electrode active material of a lithium secondary battery Four Or LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni, and Al.) Ferrous phosphate hydrate crystals useful as a raw material for production, production method thereof, and lithium iron using the same The present invention relates to a method for producing a phosphorus-based composite oxide.
[0002]
[Prior art]
In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries (“Material Research Bulletin” vol15, P783-789 (1980)). Since then, research and development on lithium cobaltate has been actively promoted, and many proposals have been made so far.
However, since Co is unevenly distributed on the earth and is a scarce resource, as a new positive electrode active material that replaces lithium cobaltate, for example, LiNiO 2 , LiMn 2 O Four LiFeO 2 LiFePO Four Etc. are being developed.
[0003]
Among them, LiFePO Four Has a volume density of 3.6 g / cm Three It is characterized by a high potential of 3.4 V and a large theoretical capacity of 170 mAh / g. And Fe is rich in resources and inexpensive, and LiFePO Four In the initial state, it contains one electrochemically dedopeable Li per Fe atom, so there is a great expectation as a positive electrode active material for a new lithium secondary battery replacing lithium cobaltate. .
[0004]
LiFePO Four Alternatively, LiFePO in which part of this Fe is replaced with another metal Four Lithium secondary batteries using a positive electrode active material have been proposed (see, for example, Patent Documents 1 to 6).
[0005]
General LiFePO Four As a production method of, for example, using ferrous phosphate hydrate, the following reaction formula (1)
[Chemical 1]
Figure 0004180363
The following reaction formula (2) using the iron oxalate method
[Chemical formula 2]
Figure 0004180363
Or the following reaction formula (3) using iron acetate
[Chemical 3]
Figure 0004180363
A method of manufacturing according to the above has been proposed.
Among these, the method using ferrous phosphate hydrate is particularly advantageous industrially because the by-product is only water.
[0006]
This ferrous phosphate hydrate is produced by adding ammonium hydrogen phosphate or sodium hydrogen phosphate to an aqueous solution containing divalent iron ions (see Non-Patent Document 1).
However, the ferrous phosphate hydrate obtained by this method has an average particle size of 7 μm to several tens of μm, and the particles are very hard due to crystal growth.
For this reason, there are drawbacks that reactivity is poor and processing such as pulverization is difficult. As a result, LiFePO used in the positive electrode active material of the lithium secondary battery Four It is difficult to expand the use of functional inorganic materials such as those to manufacturing raw materials.
[0007]
[Patent Document 1]
JP-A-9-134724
[Patent Document 2]
JP-A-9-134725
[Patent Document 3]
JP-A-11-261394
[Patent Document 4]
JP 2001-110414 A
[Patent Document 5]
JP 2001-250555 A
[Patent Document 6]
JP 2000-294238 A
[Non-Patent Document 1]
“Chemical Dictionary 9”, Kyoritsu Shuppan, 1993, p. 809-810, see column of iron phosphate.
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to use LiFePO used for a positive electrode active material of a lithium secondary battery, particularly for use as a raw material for producing a functional inorganic material. Four And LiFeMePO Four (Wherein, M represents at least one metal element selected from Mn, Co, Ni, and Al) Fine and suitable ferrous phosphate hydrate crystals suitable for manufacturing raw materials, An object of the present invention is to provide an industrially advantageous method for producing ferrous phosphate hydrate crystals in high yield and a method for producing lithium iron phosphorus composite oxides using the ferrous phosphate hydrate crystals. .
[0009]
[Means for Solving the Problems]
In the present invention, as a result of intensive research in this situation, ferrous phosphate hydrate crystals obtained by adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid and reacting with the specific grains The present invention has been completed by finding that it is a fine crystal particle having a diameter and has excellent workability and reactivity compared to the conventional one.
[0010]
[Means for Solving the Problems]
That is, the first invention of the present invention has the general formula: Fe 3 (PO 4 ) 2 ・ 8H 2 A ferrous phosphate hydrate salt represented by O, having an average particle size of 5 μm or less In other words, the half-value width of the diffraction peak of the lattice plane (020 plane) obtained from X-ray diffraction analysis is 0.20 ° or more. The present invention provides a ferrous phosphate hydrate salt crystal characterized by having the following physical properties.
Such ferrous phosphate hydrate crystals are particularly preferably such that the content of Na as an impurity is 1% by weight or less.
[0011]
Further, the second invention of the present invention provides a method for producing ferrous phosphate hydrate salt crystals, characterized by adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid to carry out the reaction. To do.
The divalent iron salt is ferrous sulfate heptahydrate (FeSO Four ・ 7H 2 O) is preferred.
[0012]
The third invention of the present invention is the (A) ferrous phosphate hydrate salt crystal, lithium phosphate and conductive carbon material of the first invention or (B) the phosphoric acid compound of the first invention. Lithium characterized by mixing and firing at least one metal compound containing a metal element selected from a ferrous hydrate salt crystal, lithium phosphate, Mn, Co, Ni and Al and a conductive carbon material A method for producing an iron-phosphorus composite oxide is provided.
The method for producing the lithium iron phosphorus-based composite oxide includes (A) the ferrous phosphate hydrate salt crystal, lithium phosphate and conductive carbonaceous material of the first invention or (B) the first invention. First step of mixing ferrous phosphate hydrate salt crystal, lithium phosphate, Mn, Co, Ni and at least one metal compound containing a metal element selected from Al and conductive carbonaceous material, It is preferable to include a second step of obtaining a reaction precursor by pulverizing the resulting mixture by a dry process, and then a third step of firing the reaction precursor to obtain a lithium iron phosphorus composite oxide.
Moreover, it is preferable to provide the process of pressure-molding the reaction precursor obtained after said 2nd process.
Moreover, it is preferable that the average particle diameter of the lithium iron phosphorus complex oxide to be generated is 0.5 μm or less.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The ferrous phosphate hydrate crystal according to the present invention has the general formula: Fe Three (PO Four ) 2 ・ 8H 2 It is indicated by O and is characterized in that the average particle size determined by the laser diffraction method is 5 μm or less, preferably 1 to 5 μm.
[0014]
In addition to the above particle size characteristics, the ferrous phosphate hydrate salt crystal of the present invention has a diffraction peak in the vicinity of 2θ = 13.1 (020) when the crystal is subjected to X-ray diffraction analysis using CuKα ray as a radiation source. The half width of (surface) is 0.20 ° or more, preferably 0.2 to 0.4 °. The ferrous phosphate hydrate salt crystal of the present invention is a soft crystal having a low crystallinity compared to the conventional one due to the property that the half width of the lattice plane (020 plane) is 0.20 ° or more, Further refinement by further grinding and excellent reactivity with other compounds.
[0015]
Further, the ferrous phosphate hydrate crystal according to the present invention is a LiFePO as a positive electrode active material of a lithium secondary battery. Four And LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni, and Al.) When used as a production raw material, the smaller the Na content as an impurity, the better. In the method for producing ferrous acid hydrous crystal, when a compound containing Na, such as sodium hydroxide, is used as the alkali source, for example, the ferrous phosphate hydrous crystal and lithium phosphate are fired. LiFePO Four In this case, Na is one of the causes of sodium phosphate and lowering the battery performance. Therefore, the ferrous phosphate hydrate crystal of the present invention has a Na content as an impurity. It is preferably 1% by weight or less, preferably 0.8% by weight or less.
[0016]
Furthermore, in the ferrous phosphate hydrate crystal according to the present invention, the total content of metals selected from Ti, Mn, Zn, Cr, Ni, Cu, Co in addition to the Na content is 1% by weight. Or less, preferably 0.8% by weight or less, and further K, Ca, Mg, Al, Si, SO Four , Cl, NO Three It is particularly preferred that the content of impurities such as 1% by weight or less, preferably 0.8% by weight or less, can be suitably used as a raw material for producing a functional inorganic material that requires particularly high purity.
[0017]
Next, the manufacturing method of the ferrous phosphate hydrate salt crystal concerning this invention is demonstrated.
The method for producing a ferrous phosphate hydrate salt crystal according to the present invention is characterized by carrying out a reaction by adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid.
[0018]
Examples of the divalent iron salt that can be used include ferrous sulfate, ferrous chloride, iron acetate, iron oxalate, and the like, and these can be used alone or in combination of two or more. These may be hydrated or anhydrous. Among these, ferrous sulfate heptahydrate (FeSO Four ・ 7H 2 O) is particularly preferred because it is easily available industrially and is inexpensive.
[0019]
The phosphoric acid that can be used is not particularly limited as long as it is industrially available.
[0020]
The alkali that can be used is not particularly limited. For example, ammonia gas, aqueous ammonia, caustic soda, caustic potash, NaHCO 3 Three , Na 2 CO Three , K 2 CO Three , KHCO Three , Ca (OH) 2 Inorganic alkalis such as LiOH or organic alkalis such as ethanolamine can be used, and these alkalis can be used alone or in combination of two or more. Among these, sodium hydroxide is particularly preferable because it is easily available industrially and is inexpensive.
[0021]
As a specific reaction operation, first, phosphoric acid is divalent so that the molar ratio to the iron atom in the divalent iron salt is 0.60 to 0.75, preferably 0.65 to 0.70. An aqueous solution in which an iron salt and phosphoric acid are dissolved is prepared. In this case, the concentration of the aqueous solution is not particularly limited as long as it can dissolve the divalent iron salt and phosphoric acid, but usually 0.1 mol / L or more, preferably 0.5 to 1 as the divalent iron salt. It is preferable to set it to 0.0 mol / L.
[0022]
Next, an alkali is added to the aqueous solution to precipitate ferrous phosphate hydrate salt crystals. The precipitation reaction of ferrous phosphate hydrate crystals proceeds rapidly by the addition of this alkali. The addition amount of the alkali is 1.8 to 2.0, preferably 1.95 to 2.0, as a molar ratio to the divalent iron salt.
The alkali addition temperature is not particularly limited, and is usually 5 to 80 ° C., preferably 15 to 35 ° C. The dropping rate of the alkali is not particularly limited, but has a stable quality. Therefore, it is preferable to gradually introduce into the reaction system at a constant dropping rate.
[0023]
After completion of the reaction, solid-liquid separation is performed by a conventional method, and the precipitate is collected, washed, dried, and pulverized and classified as necessary to obtain a product. In addition, the grinding | pulverization performed as needed is the ferrous phosphate hydrate salt crystal (Fe Three (PO Four ) 2 ・ 8H 2 This is appropriately carried out, for example, when O) is in the form of a brittlely bonded block, but the ferrous phosphate hydrate crystal particles themselves have the specific average particle size described above. That is, the obtained ferrous phosphate hydrate salt crystal has an average particle size determined by a laser diffraction method of 5 μm or less, preferably 1 to 5 μm.
[0024]
In addition, it is preferable to wash | clean sufficiently with water until Na content of the precipitated ferrous phosphate hydrate salt crystal | crystallization becomes 1 weight% or less, Preferably it is 0.8 weight% or less.
[0025]
In addition, drying takes less time than 35 ° C., and drying exceeds 35 ° C., preferably 40 ° C. to 50 ° C. because oxidation of divalent iron and elimination of crystal water occur when the temperature exceeds 50 ° C. preferable.
[0026]
The ferrous phosphate hydrate crystal thus obtained has an average particle size of 5 μm or less, preferably 1 to 5 μm, determined by a laser diffraction method, and more preferable physical properties include a lattice plane determined from X-ray diffraction analysis ( The half-value width of the diffraction peak of (020 plane) is 0.20 ° or more, preferably 0.20 to 0.40 °. Further, in addition to the above physical properties, the content of Na as an impurity is 1% by weight or less, preferably 0.8% by weight or less, more preferably selected from Ti, Mn, Zn, Cr, Ni, Cu, Co as impurities. The total content of metal is 1% by weight or less, preferably 0.8% by weight or less, K, Ca, Mg, Al, Si, SO Four , Cl, NO Three It is preferable that the content of impurities such as 1% by weight or less, preferably 0.8% by weight or less.
[0027]
According to the method for producing a ferrous phosphate hydrate salt crystal of the present invention, Fe Three (PO Four ) 2 ・ 8H 2 By adding alkali to the reaction system in which iron and phosphorus coexist at the same ratio as the composition of O, phosphoric acid dissociates uniformly as the pH rises, and this reacts with iron ions coexisting at a predetermined ratio around it. And uniformly Fe Three (PO Four ) 2 ・ 8H 2 Since O is generated, crystal growth is unlikely to occur, and the resulting crystal is considered to have a small particle size and good reactivity.
[0028]
Since the ferrous phosphate hydrate crystal according to the present invention has a small particle size and excellent reactivity, LiFePO used as a raw material for producing a functional inorganic material, particularly a positive electrode active material of a lithium secondary battery Four And LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni and Al) can be suitably used as a raw material for production.
[0029]
Hereinafter, the manufacturing method of the lithium iron phosphorus complex oxide of the present invention will be described.
The method for producing the lithium iron phosphorus-based composite oxide of the present invention comprises mixing the above ferrous phosphate hydrate crystals, lithium phosphate and a conductive carbon material, followed by firing (hereinafter referred to as “Production Method A”). Or a mixture of at least one metal compound containing a metal element selected from the above-mentioned ferrous phosphate hydrate crystals, lithium phosphate, Mn, Co, Ni and Al and a conductive carbon material. And firing (hereinafter referred to as “method for producing B”).
[0030]
In the method for producing lithium iron phosphorus-based composite oxides A and B of the present invention, in particular, (A) the ferrous phosphate hydrate crystal, lithium phosphate and conductive carbonaceous material, or (B) the above First step of mixing ferrous phosphate hydrate salt crystal, lithium phosphate, Mn, Co, Ni and at least one metal compound containing a metal element selected from Al and conductive carbonaceous material, , A second step of obtaining a reaction precursor by pulverizing the resulting mixture, and then a third step of obtaining a lithium iron-phosphorus-based composite oxide by firing the reaction precursor. In the case where the composite oxide is used as a positive electrode active material of a lithium secondary battery, the discharge capacity can be improved, which is particularly preferable.
[0031]
According to the production method of A, LiFePO suitable as a positive electrode active material of a lithium secondary battery Four Lithium iron-phosphorus composite oxide having a particle surface coated with a conductive carbon material can be obtained, and according to the production method of B, LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni, and Al.) A lithium iron-phosphorus composite oxide in which the particle surface is coated with a conductive carbon material can be obtained.
[0032]
In said 1st process, lithium phosphate (Li which can be used with the manufacturing method of said A and B Three PO Four ) Is not particularly limited as long as it is industrially available, but if the average particle size determined by the laser diffraction method is 10 μm or less, preferably 5 μm or less, mixing is sufficiently performed and the reactivity is improved. This is particularly preferable.
[0033]
Examples of the conductive carbon material that can be used in the production methods of A and B include natural graphite such as scaly graphite, scaly graphite, and earth graphite, and graphite such as artificial graphite, carbon black, acetylene black, and ketjen. Examples thereof include carbon blacks such as black, channel black, furnace black, lamp black and thermal black, carbon fibers, and the like, and these can be used alone or in combination of two or more. Among these, those having fine ketjen black are particularly preferable because they can be easily obtained industrially.
These conductive carbon materials have an average particle size determined from an electron micrograph of 1 μm or less, preferably 0.1 μm or less, and particularly preferably 0.01 to 0.1 μm. Four Or LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni, and Al.) This is preferable because it can be adhered to the particle surface in a highly dispersed state.
[0034]
As the at least one metal compound containing a metal element selected from Mn, Co, Ni and Al that can be used in the production method of B, oxides, hydroxides, nitrates containing these metal elements, Examples thereof include acetates, carbonates, phosphates, organic acid salts, etc. The physical properties of these metal compounds are such that the average particle size determined by the laser diffraction method is 10 μm or less, preferably 5 μm or less, and mixing is sufficient. It is particularly preferable because the reactivity is improved.
[0035]
In the method for producing a lithium iron phosphorus-based composite oxide of the present invention, the ferrous phosphate hydrate salt crystal (Fe Three (PO Four ) 2 ・ 8H 2 O), lithium phosphate, conductive carbon material and metal compound are preferably used in high purity, particularly when used as a positive electrode active material of a lithium secondary battery.
[0036]
The operation in the first step is as follows: (A) Ferrous phosphate hydrate salt crystal (Fe Three (PO Four ) 2 ・ 8H 2 O) and lithium phosphate (Li Three PO Four ) And conductive carbon materials or (B) ferrous phosphate hydrate crystals (Fe Three (PO Four ) 2 ・ 8H 2 O), lithium phosphate (Li Three PO Four ), A conductive carbon material and at least one metal compound containing a metal element selected from Mn, Co, Ni and Al are mixed in a predetermined amount.
[0037]
In the production method of A, the blending ratio of the ferrous phosphate hydrate crystal and lithium phosphate is the molar ratio of the Fe atom in the ferrous phosphate hydrate crystal and the Li atom in the lithium phosphate (Li / Fe) 0.9 to 1.1, preferably 1.00 to 1.05, LiFePO Four This molar ratio is less than 0.9 and exceeds 1.1, which is not preferable because unreacted raw materials remain.
Further, in the production method of B, the blending ratio of at least one metal compound containing a ferrous phosphate hydrate crystal, lithium phosphate and a metal element selected from Mn, Co, Ni and Al is phosphoric acid. As molar ratio of Fe atom in ferrous hydrate salt crystal, Li atom in lithium phosphate and metal atom (Me) in metal compound, Li / (Fe + Me) is 0.9 to 1.1, preferably 1 LiFeMePO when it is .00 to 1.05 Four It is particularly preferable in that a single phase is obtained.
[0038]
In addition, the conductive carbon material has a tendency that the amount of C atoms contained in the conductive carbon material is slightly decreased after firing compared to before firing. 0.08 to 15.5% by weight, preferably 3.8 to 9.5% by weight based on the total amount of iron hydrate crystal and lithium phosphate or ferrous phosphate hydrate crystal and lithium phosphate and metal compound %, The coating amount of the conductive carbon material is LiFePO 4 Four Or LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni and Al.) The content of C atoms is 0.1 to 20% by weight, preferably 5 to 12% by weight. When the blending amount of the conductive carbon material is less than 0.08% by weight, it becomes impossible to impart sufficient conductivity to the lithium iron phosphorus composite oxide, so that the obtained lithium iron phosphorus composite oxide is used as the positive electrode active material. In the lithium secondary battery, the internal resistance increases. On the other hand, if it exceeds 15.5% by weight, the discharge capacity per unit weight or volume decreases.
[0039]
In the first step, it is preferable that the raw material is sufficiently mixed in a dry manner using a blender or the like so that the raw materials are uniformly mixed in advance in performing the second step described later.
[0040]
The second step is a step of obtaining a reaction precursor by sufficiently mixing and pulverizing a mixture of these raw materials in a dry method using a pulverizer in order to further improve the reactivity in the production methods of A and B. It is.
[0041]
Here, the reaction precursor is (A) ferrous phosphate hydrate salt crystal (Fe Three (PO Four ) 2 ・ 8H 2 O) and lithium phosphate (Li Three PO Four ) And conductive carbon materials or (B) ferrous phosphate hydrate crystals (Fe Three (PO Four ) 2 ・ 8H 2 O), lithium phosphate (Li Three PO Four In order to improve the reactivity of the mixture containing the conductive carbon material and at least one metal compound containing a metal element selected from Mn, Co, Ni and Al prior to the subsequent firing, In addition to being highly dispersed, the distance between the raw materials is made as close as possible to increase the contact area of the raw materials.
[0042]
In the present invention, the mixture after the pulverization treatment has a specific volume of 1.5 ml / g or less, preferably 1.0 to 1.4 ml / g. LiFePO in X-ray diffraction analysis Four Or LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni, and Al.) A lithium iron phosphorus-based composite oxide in which a single-phase particle surface is uniformly coated with a conductive carbon material is obtained. Therefore, it is preferable to use a mixture having a specific volume within the above range as a reaction precursor.
[0043]
The specific volume in the present invention is based on the method of apparent density or apparent specific volume described in JIS-K-5101, 10 g of a sample is put into a 50 ml measuring cylinder by the tap method, and after tapping 500 times, left standing. The volume is read and obtained by the following formula.
[Expression 1]
Figure 0004180363
(Wherein, F represents the mass (g) of the processed sample in the receiver, and V represents the volume (ml) of the sample after tapping.)
[0044]
Furthermore, in the method for producing a lithium iron phosphorus-based composite oxide of the present invention, the reaction precursor has a specific volume within the above range, and the raw material iron phosphate hydrate contained in the reaction precursor. When the crystals are in an almost amorphous state, the reaction proceeds completely even when baked at a low temperature of 500 to 700 ° C. for the purpose of suppressing the growth of the particle diameter, and LiFePO 4 Four Or LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni, and Al.) Is particularly preferable because a single phase is obtained.
[0045]
As the pulverizer that can be used, a pulverizer having a strong shearing force is preferable. As the pulverizer having such a strong shearing force, a rolling ball mill, a vibration mill, a planetary mill, a medium stirring mill, or the like is used. It is preferable. This type of pulverizer is a pulverizer in which a pulverization medium such as balls and beads is contained in a container and pulverization is performed mainly by the shearing and frictional action of the medium. A commercially available apparatus can be used as such an apparatus.
[0046]
The particle size of the grinding medium is preferably 1 to 25 mm because grinding can be performed sufficiently. As the material of the grinding medium, zirconia and alumina ceramic beads are particularly preferable because they have high hardness and resistance to wear and can prevent metal contamination of the material.
[0047]
Further, the pulverization medium contains a pulverization medium in a container with a space volume of 50 to 90%, and appropriately manages the shearing force and frictional force by the fluid medium. It is preferable to do.
[0048]
Further, in the method for producing a lithium iron phosphorus-based composite oxide of the present invention, if necessary, the reaction precursor is subjected to pressure molding treatment in addition to the pulverization treatment, and the contact area of each raw material is further increased. The discharge capacity and cycle characteristics can be further improved. The molding pressure varies depending on the press, the amount charged, etc., and is not particularly limited, but is usually 5 to 200 MPa. The press molding machine can be suitably used, such as a hand press, a tableting machine, a briquette machine, or a roller compactor.
[0049]
Next, in the third step, the reaction precursor obtained in the second step is baked.
The firing temperature is 500 to 700 ° C, preferably 550 to 650 ° C. In this invention, the lithium secondary battery which uses the lithium iron phosphorus type complex oxide obtained by making this calcination temperature into the said range as a positive electrode active material can improve discharge capacity and charge cycle characteristics. If the firing temperature is less than 500 ° C., the reaction does not proceed sufficiently, so that unreacted raw materials remain. On the other hand, if it exceeds 700 ° C., sintering proceeds and particle growth occurs as described above, which is not preferable.
The firing time is 2 to 20 hours, preferably 5 to 10 hours. Firing may be performed in an inert gas atmosphere such as nitrogen or argon, or in a reducing atmosphere such as hydrogen or carbon monoxide, and is not particularly limited, but is nitrogen in terms of safety during operation. It is preferable to carry out in an inert gas atmosphere such as argon gas. Moreover, these baking can be performed as many times as necessary.
[0050]
After firing, cool appropriately and pulverize or classify as necessary to obtain LiFePO Four Or LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni, and Al.) A lithium iron phosphorus composite oxide in which the particle surface is uniformly coated with a conductive carbon material is obtained. In order to prevent oxidation of Fe and Me elements, it is preferable to carry out the reaction system in an inert gas atmosphere such as nitrogen or argon or a reducing atmosphere such as hydrogen or carbon monoxide during cooling. In addition, the pulverization performed as necessary is appropriately performed when the lithium iron phosphorus-based composite oxide obtained by firing is in a brittlely bonded block shape or the like, but the lithium iron phosphorus-based composite oxide of the present invention According to the production method of the preferred embodiment, the lithium iron-phosphorus composite oxide particles themselves have the following specific average particle diameter and BET specific surface area. That is, the obtained lithium iron phosphorus composite oxide has an average particle size determined from a scanning electron micrograph (SEM) of 0.5 μm or less, preferably 0.05 to 0.5 μm, and a BET specific surface area of 10 ~ 100m 2 / G, preferably 30-70 m 2 / G.
[0051]
The lithium iron phosphorus composite oxide of the present invention thus obtained can be suitably used as a positive electrode active material for a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.
[0052]
When the lithium iron phosphorus-based composite oxide is used as the positive electrode active material, the form thereof is a primary particle having an average particle diameter of 1 μm to 75 μm formed by aggregating primary particles having an average particle diameter of 0.05 μm to 0.5 μm. It may be a particle aggregate. Further, 70% or more, preferably 80% or more of the total volume in the primary aggregate is preferably 1 μm or more and 20 μm or less, and the lithium iron phosphorus composite oxide is pulverized in the atmosphere. Since the lithium iron phosphorus composite oxide obtained contains 3000 ppm or more of moisture, the lithium iron phosphorus composite oxide is subjected to an operation such as vacuum drying before being used as the positive electrode active material. The amount is preferably 2000 ppm or less, preferably 1500 ppm or less.
[0053]
The lithium iron phosphorus composite oxide obtained by the production method of the present invention is used in combination with other known lithium cobalt composite oxide, lithium nickel composite oxide or lithium manganese composite oxide. The safety of a lithium secondary battery using a conventional lithium cobalt composite oxide, lithium nickel composite oxide, or lithium manganese composite oxide can be further improved. In this case, the physical properties of the lithium cobalt composite oxide, lithium nickel composite oxide, or lithium manganese composite oxide used in combination are not particularly limited, but the average particle size is 1.0 to 20 μm, preferably 1 0.0 to 15 μm, more preferably 2.0 to 10 μm, and the BET specific surface area is 0.1 to 2.0 m. 2 / G, preferably 0.2 to 1.5 m 2 / G, more preferably 0.3 to 1.0 m 2 / G is preferable.
[0054]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
<Ferrous sulfate heptahydrate (FeSO Four ・ 7H 2 O) >
As the raw material ferrous sulfate heptahydrate used in the examples, commercially available industrial products are used, and the quality is shown in Table 1.
The contents of Na, Ti, Mn, Zn, Cr, Ni, Cu, and Co were determined by ICP spectroscopy.
[Table 1]
Figure 0004180363
[0055]
<Synthesis of ferrous phosphate hydrate crystals>
Example 1
Ferrous sulfate heptahydrate (FeSO Four ・ 7H 2 O) 907 g (3 mol) and 75% phosphoric acid (H Three PO Four ) 261 g (2 mol) was dissolved in 3 L of water to prepare a mixed solution (temperature 17 ° C., pH 1.6). To this mixed solution, 1500 ml (6 mol) of 16% aqueous sodium hydroxide (NaOH) was added dropwise at a drop rate of 83 ml / min over 18 minutes to precipitate ferrous phosphate (temperature 31 ° C., pH 6. 7).
Next, the ferrous phosphate was recovered by filtration, and the recovered ferrous phosphate was carefully washed with 4.5 L of water.
Next, the washed ferrous phosphate was dried at a temperature of 50 ° C. for 23 hours to obtain 490 g of a dried product. When the obtained dried product was analyzed by X-ray diffraction, the diffraction pattern was consistent with JCPDS card number 30-662. Three (PO Four ) 2 ・ 8H 2 It was confirmed to be O (yield 98%).
Obtained Fe Three (PO Four ) 2 ・ 8H 2 Various physical properties of O are shown in Table 2.
Also, the obtained Fe Three (PO Four ) 2 ・ 8H 2 X-ray diffraction analysis was performed using CuKα rays with O as a radiation source, and the half-value width of a diffraction peak (020 plane) near 2θ = 13.1 ° was measured. Also, the obtained Fe Three (PO Four ) 2 ・ 8H 2 An X-ray diffraction diagram of O is shown in FIG.
The contents of Na, Ti, Mn, Zn, Cr, Ni, Cu, and Co were determined by ICP spectroscopy. Also, SO Four The content was obtained by converting the S atom concentration measurement result by ICP spectroscopy, and the P content of the dried product was obtained by absorptiometry. A higher P content value indicates a higher purity of the dried product. The average particle size was determined by a laser diffraction method.
[0056]
Example 2
Ferrous sulfate heptahydrate (FeSO Four ・ 7H 2 O) 816 g (2.7 mol) and 75% phosphoric acid (H Three PO Four ) 261 g (2 mol) was dissolved in 3 L of water to prepare a mixed solution (temperature 8 ° C., pH 0.6). To this mixed solution, 1000 ml (6 mol) of 24% sodium hydroxide (NaOH) aqueous solution was dropped at a dropping rate of 166 ml / min over 6 minutes to precipitate ferrous phosphate (temperature 21 ° C., pH 7 .Four).
Next, the ferrous phosphate was recovered by filtration, and the recovered ferrous phosphate was carefully washed with 4.5 L of water.
Next, the washed ferrous phosphate was dried at a temperature of 50 ° C. for 23 hours to obtain 480 g of a dried product. When the obtained dried product was analyzed by X-ray diffraction, the diffraction pattern was consistent with JCPDS card number 30-662. Three (PO Four ) 2 ・ 8H 2 It was confirmed that it was O (yield 94%).
Obtained Fe Three (PO Four ) 2 ・ 8H 2 Various physical properties of O are shown in Table 2.
Na, Ti, Mn, Zn, Cr, Ni, Cu, Co, SO Four The content, the P content, and the average particle diameter were determined by the same method as in Example 1.
[0057]
Comparative Example 1
Ferrous sulfate heptahydrate (FeSO Four ・ 7H 2 O) 278 g (1 mol) was dissolved in 1 L of water to prepare an aqueous ferrous sulfate solution. Separately, sodium hydrogen phosphate dodecahydrate (Na 2 HPO Four ・ 12H 2 O) 240 g (0.67 mol) was dissolved in 2 L of water to prepare a sodium hydrogenphosphate aqueous solution. A sodium hydrogenphosphate aqueous solution was dropped into the ferrous sulfate aqueous solution at a dropping rate of 56 ml / min in 36 minutes to precipitate ferrous phosphate.
Next, the ferrous phosphate was recovered by filtration, and the recovered ferrous phosphate was carefully washed with 4.5 L of water.
Next, the washed ferrous phosphate was dried at 45 ° C. for 23 hours to obtain 82 g of a dried product. When the obtained dried product was analyzed by X-ray diffraction, the diffraction pattern was consistent with JCPDS card number 30-662. Three (PO Four ) 2 ・ 8H 2 It was confirmed to be O (yield 49%).
Obtained Fe Three (PO Four ) 2 ・ 8H 2 Various physical properties of O are shown in Table 2.
Also, the obtained Fe Three (PO Four ) 2 ・ 8H 2 X-ray diffraction analysis is performed using Cukα rays with O as a radiation source, the half-value width of the diffraction peak (020 plane) near 2θ = 13.1 is measured, and FIG. 2 shows the X-ray diffraction pattern.
Na, Ti, Mn, Zn, Cr, Ni, Cu, Co, SO Four The content, the P content, and the average particle size were determined by the same method as in Example 1.
[0058]
Comparative Example 2
Commercial ferrous iron phosphate (Fe Three (PO Four ) 2 ・ 8H 2 O) was subjected to X-ray diffraction analysis in the same manner as in Example 1, and the half width of the diffraction peak on the lattice plane (020 plane) near 2θ = 13.1, Na, Ti, Mn, Zn, Cr, Ni, Cu, Co And SO Four The content, P content, and average particle diameter were measured, and the results are shown in Table 2.
[0059]
[Table 2]
Figure 0004180363
Note) "-" in the table indicates that the detection limit is 1 ppm or less.
[0060]
<Synthesis of lithium iron phosphorus complex oxide>
Example 3
Ferrous phosphate hydrate crystals prepared in Example 1 (Fe Three (PO Four ) 28H 2 10 kg of O and lithium phosphate (Li Three PO Four 2.4 kg of average particle size 5.8 μm, manufactured by FMC) and 1 kg of Ketjen black (product name ECP manufactured by Ketjen Black International Co., Ltd.) having a particle size of 0.05 μm were sufficiently mixed by a Henschel mixer. Subsequently, this mixture was pulverized using a dry bead mill apparatus to obtain a reaction precursor. Table 3 shows the main physical properties of the obtained reaction precursor.
The specific volume of the bead mill pulverized product was obtained by putting 10 g of a sample into a 50 ml measuring cylinder, setting it on a dual automatic tap device manufactured by Yuasa Ionics Co., Ltd., tapping 500 times, reading the volume, and obtaining the following formula.
[Expression 2]
Figure 0004180363
(Wherein, F represents the mass (g) of the processed sample in the receiver, and V represents the volume (ml) of the sample after tapping.)
The conditions of the dry bead mill apparatus are as follows.
・ Fluid medium: Alumina beads (average particle size 5 mm)
・ Space volume: 64%
・ Peripheral speed: 5.2 m / S
Next, the obtained pulverized product was calcined at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, pulverized, classified, and coated with Ketjen Black. Four Got. LiFePO coated with the obtained ketjen black Four Table 4 shows the main physical properties.
The contents of Na, Ti, Mn, Zn, Cr, Ni, Cu, and Co were determined by ICP spectroscopy. Also, SO Four The content was obtained by converting the S atom concentration measurement result by ICP spectroscopy. The average particle size was determined from an electron micrograph. Also, LiFePO coated with ketjen black Four The content of C atoms in it was measured by a total organic carbon meter (manufactured by Shimadzu Corporation, TOC-5000A).
[0061]
Example 4
Ferrous phosphate hydrate crystals prepared in Example 1 (Fe Three (PO Four ) 28H 2 10 kg of O and lithium phosphate (Li Three PO Four 2.4 kg of average particle size of 5.8 μm (manufactured by FMC) and 1 kg of Ketjen black (Ketjen Black International, trade name ECP) having a particle size of 0.1 μm were sufficiently mixed by a Henschel mixer. Subsequently, this mixture was pulverized using a dry bead mill apparatus to obtain a reaction precursor. The main physical properties of the obtained reaction precursor were measured in the same manner as in Example 3, and the results are shown in Table 3.
The conditions of the dry bead mill apparatus are as follows.
・ Fluid medium: Alumina beads (average particle size 5 mm)
・ Space volume: 75%
・ Peripheral speed: 5.2 m / S
Next, 10 g of the reaction precursor was press-molded at 44 MPa by hand press. Next, this press-molded product was fired at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, pulverized and classified, and LiFePOO coated with ketjen black Four Got. Average particle diameter, BET specific surface area, Na, Ti, Mn, Zn, Cr, Ni, Cu, Co, SO of the obtained lithium iron phosphorus composite Four The C atom content was determined in the same manner as in Example 3, and the results are shown in Table 4. The X-ray diffraction pattern of the obtained lithium iron phosphorus composite oxide is shown in FIG.
[0062]
Example 5
Ferrous phosphate hydrate crystals prepared in Example 1 (Fe Three (PO Four ) 28H 2 10 kg of O and lithium phosphate (Li Three PO Four 2.4 kg of average particle size of 5.8 μm (manufactured by FMC) and 1 kg of Ketjen black (Ketjen Black International, trade name ECP) having a particle size of 0.1 μm were sufficiently mixed by a Henschel mixer. Subsequently, this mixture was pulverized using a dry bead mill apparatus to obtain a reaction precursor. The main physical properties of the obtained reaction precursor were measured in the same manner as in Example 3, and the results are shown in Table 3.
The conditions of the dry bead mill apparatus are as follows.
-Fluid medium: Alumina beads (average particle size 8 mm)
・ Space volume: 75%
・ Peripheral speed: 4.7 m / S
Next, 10 g of the reaction precursor was press-molded at 44 MPa by hand press. Next, this press-molded product was fired at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, pulverized and classified, and LiFePOO coated with ketjen black Four Got. Average particle diameter, BET specific surface area, Na, Ti, Mn, Zn, Cr, Ni, Cu, Co, SO of the obtained lithium iron phosphorus composite Four The C atom content was determined in the same manner as in Example 3, and the results are shown in Table 4.
[0063]
Example 6
<Synthesis of manganese phosphate>
Manganese sulfate monohydrate (MnSO Four ・ H 2 O) 1352 g (8 mol) and 75% phosphoric acid (H Three PO Four ) 697 g (5.3 mol) was dissolved in 25 L of water to prepare a mixed solution. (PH 1.3) To this mixed solution, 16 L (16 mol) of 4% sodium hydroxide (NaOH) aqueous solution was added dropwise at a dropping rate of 161 ml / min in about 100 minutes to precipitate manganese phosphate (pH 6.5). ).
Next, the manganese phosphate was recovered by filtration, and the recovered manganese phosphate was carefully washed with 40 L of water.
Next, the washed manganese phosphate was dried at a temperature of 50 ° C. for 23 hours to obtain 1214 g of a dried product. The obtained dried product was analyzed by X-ray diffraction. The literature (Russ. J. Inorg. Chem. twenty three , 341, 1978), the distance between the planes and the diffraction intensity agree with each other, and the Mn content is 34.8% by weight, PO. Four Since the content is 40.2% by weight, this dry product is Mn Three (PO Four ) 2 ・ 6H 2 It was confirmed to be O (yield 98%). The obtained manganese phosphate had an average particle size of 4.9 μm determined from the laser diffraction method.
<Synthesis of phosphoric acid (iron-manganese) phosphorus complex oxide>
Ferrous phosphate hydrate crystals synthesized in Example 1 (Fe Three (PO Four ) 2 ・ 8H 2 O) 23.7 g of manganese phosphate hydrate crystals synthesized above (Mn) Three (PO Four ) 2 ・ 6H 2 O) 25.1 g and lithium phosphate (Li Three PO Four Average particle size 5.8 μm, manufactured by FMC) 12.0 g and ketjen black (product name ECP manufactured by Ketjen Black International Co., Ltd.) having a particle size of 0.1 μm were sufficiently mixed with a mixer. The mixture was then pulverized using a vibration mill to obtain a reaction precursor. Various physical properties of the obtained reaction precursor were measured in the same manner as in Example 3, and are shown in Table 3.
The operating conditions of the vibration mill are as follows.
・ Frequency: 1000 Hz
・ Processing time: 3 minutes
-Raw material charge: 12 g
Next, 10 g of the reaction precursor was press-molded at 44 MPa by hand press. Next, this press-molded product was fired at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, pulverized and classified to obtain a phosphoric acid (iron-manganese) phosphorus-based composite oxide coated with ketjen black. Average particle diameter, BET specific surface area, Na, Ti, Mn, Zn, Cr, Ni, Cu, Co, SO of the obtained phosphoric acid (iron-manganese) phosphorus-based composite oxide Four Is obtained by the same method as in Example 3, and the results are shown in Table 4.
[0064]
[Table 3]
Figure 0004180363
[0065]
[Table 4]
Figure 0004180363
Note) The C atom content in Table 4 is LiFePO Four Or LiFe 0.5 Mn 0.5 PO Four Shows the amount of C atoms relative to.
[0066]
<Reference example>
<Battery performance test>
(I) Production of lithium secondary battery;
LiFePO coated with ketjen black of Examples 3-5 produced as described above Four The LiFePO coated with the ketjen black obtained by the moisture vaporization method at 250 ° C. by the Karl Fischer titration method Four The water content of each was adjusted to 1500 ppm or less, and 91% by weight of the lithium iron phosphorus composite oxide, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride were mixed to form a positive electrode agent, A kneaded paste was prepared by dispersing in pyrrolidinone. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil is used for the negative electrode, and 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate is used as the electrolyte. 6 What melt | dissolved 1 mol was used.
(II) Battery performance evaluation
The manufactured lithium secondary battery was operated at room temperature, and the initial discharge capacity and the discharge capacity after 10 cycles were measured. LiFePO Four The ratio to the theoretical discharge capacity (170 mAh / g) was calculated by the following equation.
[Equation 3]
Figure 0004180363
[0067]
[Table 5]
Figure 0004180363
[0068]
From the results of Table 5, LiFePO produced using the ferrous phosphate hydrate crystal of the present invention. Four Lithium rechargeable batteries using as the positive electrode active material are LiFePO Four Thus, a lithium secondary battery having a very high discharge capacity was obtained.
[0069]
【The invention's effect】
As described above, the ferrous phosphate hydrate crystal of the present invention is a functional inorganic material, particularly LiFePO used in a positive electrode active material of a lithium secondary battery. Four Or LiFeMePO Four (Me represents at least one metal element selected from Mn, Co, Ni, and Al.) Fine and low crystallinity ferrous phosphate hydrate crystals suitable for use as a raw material for production In addition, according to the production method of the present invention, the ferrous phosphate hydrate crystals can be produced industrially advantageously in a high yield. In addition, a lithium secondary battery using a lithium iron phosphorus-based composite oxide obtained by using the ferrous phosphate hydrate crystal of the present invention as a production raw material is a LiFePO Four The value is close to the theoretical discharge capacity.
[Brief description of the drawings]
1 is an X-ray diffraction pattern of an iron phosphate hydrate salt crystal obtained in Example 1. FIG.
2 is an X-ray diffraction pattern of an iron phosphate hydrate salt crystal obtained in Comparative Example 1. FIG.
3 is an X-ray diffraction pattern of the lithium iron phosphorus composite oxide obtained in Example 4. FIG.

Claims (8)

一般式;Fe(PO/8HOで示されるリン酸第一鉄含水塩であって、平均粒径が5μm以下であり、X線回折分析から求められる格子面(020面)の回折ピークの半値幅が0.20°以上である物性を有することを特徴とするリン酸第一鉄含水塩結晶。 Formula; a Fe 3 (PO 4) phosphoric acid ferrous salt hydrate represented by 2 / 8H 2 O, an average particle diameter of Ri der less 5 [mu] m, lattice plane as determined by X-ray diffraction analysis (020 plane half width ferrous phosphate salt hydrate crystals characterized by having a der Ru properties 0.20 ° or more diffraction peaks of). 不純物としてのNaの含有量が1重量%以下である請求項1に記載のリン酸第一鉄含水塩結晶。The ferrous phosphate hydrate crystal according to claim 1, wherein the content of Na as an impurity is 1% by weight or less. 2価の鉄塩とリン酸を含む水溶液に、アルカリを添加して反応を行うことを特徴とするリン酸第一鉄含水塩結晶の製造方法。  A method for producing a ferrous phosphate hydrate salt crystal, comprising reacting an aqueous solution containing a divalent iron salt and phosphoric acid by adding an alkali. 前記2価の鉄塩は、硫酸第一鉄7水和物(FeSO・7HO)である請求項3に記載のリン酸第一鉄含水塩結晶の製造方法。The method for producing a ferrous phosphate hydrate salt crystal according to claim 3, wherein the divalent iron salt is ferrous sulfate heptahydrate (FeSO 4 .7H 2 O). (A)請求項1又は2の何れか1項に記載のリン酸第一鉄含水塩結晶、リン酸リチウム及び導電性炭素質材料又は(B)請求項1又は2の何れか1項に記載のリン酸第一鉄含水塩結晶、リン酸リチウム、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素質材料とを混合し焼成を行うことを特徴とするリチウム鉄リン系複合酸化物の製造方法。(A) described in ferrous phosphate hydrate crystal, lithium and conductive carbonaceous phosphate material or (B) any one of claims 1 or 2 according to any one of claims 1 or 2 Firing with mixing at least one metal compound containing an elemental metal selected from ferrous phosphate hydrate crystals, lithium phosphate, Mn, Co, Ni and Al and a conductive carbonaceous material A method for producing a lithium iron-phosphorus composite oxide. (A)請求項1又は2の何れか1項に記載のリン酸第一鉄含水塩結晶、リン酸リチウム及び導電性炭素質材料又は(B)請求項1又は2の何れか1項に記載のリン酸第一鉄含水塩結晶、リン酸リチウム、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素質材料とを混合する第一工程、次いで、得られる混合物を乾式で粉砕処理して反応前駆体を得る第二工程、次いで、該反応前駆体を焼成してリチウム鉄リン系複合酸化物を得る第三工程を含むことを特徴とする請求項5に記載のリチウム鉄リン系複合酸化物の製造方法。(A) described in ferrous phosphate hydrate crystal, lithium and conductive carbonaceous phosphate material or (B) any one of claims 1 or 2 according to any one of claims 1 or 2 A first step of mixing a ferrous phosphate hydrate salt crystal, lithium phosphate, Mn, Co, Ni and at least one metal compound containing a metal element selected from Al and Al and a conductive carbonaceous material, Next, the method comprises a second step of obtaining a reaction precursor by pulverizing the resulting mixture dry, and then a third step of firing the reaction precursor to obtain a lithium iron-phosphorus composite oxide. The manufacturing method of the lithium iron phosphorus type complex oxide of Claim 5 . 前記第二工程後、得られる反応前駆体を加圧成形する工程を設ける請求項6に記載のリチウム鉄リン系複合酸化物の製造方法。The method for producing a lithium iron-phosphorus composite oxide according to claim 6, wherein a step of pressure-molding the obtained reaction precursor is provided after the second step. 生成させるリチウム鉄リン系複合酸化物は平均粒径が0.5μm以下である請求項乃至7に記載のリチウム鉄リン系複合酸化物の製造方法。The method for producing a lithium iron-phosphorus composite oxide according to any one of claims 5 to 7, wherein the lithium iron-phosphorus composite oxide to be produced has an average particle size of 0.5 µm or less.
JP2002379425A 2002-01-31 2002-12-27 Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide Expired - Fee Related JP4180363B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002379425A JP4180363B2 (en) 2002-01-31 2002-12-27 Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide
CNB031020941A CN1299979C (en) 2002-01-31 2003-01-29 Ferrous phosphate hydrated salt crystal, producing method thereof and method for producing Li-Fe-P composite oxides
KR1020030006177A KR100898236B1 (en) 2002-01-31 2003-01-30 Ferrous Phosphate Hydrate Crystal, Process for Preparing the Same, and Process for Preparing Lithium-Iron-Phosphor Based Combination

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-23934 2002-01-31
JP2002023934 2002-01-31
JP2002379425A JP4180363B2 (en) 2002-01-31 2002-12-27 Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide

Publications (2)

Publication Number Publication Date
JP2003292307A JP2003292307A (en) 2003-10-15
JP4180363B2 true JP4180363B2 (en) 2008-11-12

Family

ID=27667467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379425A Expired - Fee Related JP4180363B2 (en) 2002-01-31 2002-12-27 Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide

Country Status (3)

Country Link
JP (1) JP4180363B2 (en)
KR (1) KR100898236B1 (en)
CN (1) CN1299979C (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641375B2 (en) * 2003-10-20 2011-03-02 日立マクセル株式会社 Method for producing composite of olivine type lithium phosphate and carbon material
CN1328808C (en) * 2004-04-23 2007-07-25 中国科学院物理研究所 Nitrogen phosphate anode material for secondary lithium battery and uses thereof
DE102005015613A1 (en) 2005-04-05 2006-10-12 Süd-Chemie AG Crystalline ion-conducting nanomaterial and process for its preparation
EP1722428A1 (en) * 2005-05-13 2006-11-15 Süd-Chemie Ag Lithium secondary battery and electrodes for use therein
JP4525474B2 (en) * 2005-06-06 2010-08-18 株式会社豊田中央研究所 Active material for lithium secondary battery and method for producing the same, lithium secondary battery
JP4737607B2 (en) * 2005-07-22 2011-08-03 テイカ株式会社 Method for producing carbon-olivine type lithium iron phosphate composite particles, and positive electrode material for lithium ion battery
CN100376475C (en) * 2005-10-14 2008-03-26 江苏大学 Spherical porous high-density LiFePO4 powder and process for preparing same
JP2007134274A (en) * 2005-11-14 2007-05-31 Sumitomo Osaka Cement Co Ltd Electrode material, electrode, and lithium ion battery
CA2566906A1 (en) * 2006-10-30 2008-04-30 Nathalie Ravet Carbon-coated lifepo4 storage and handling
JP5474563B2 (en) * 2007-01-18 2014-04-16 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
CN101327920B (en) * 2007-06-20 2010-08-11 中国科学院金属研究所 Sheet-like LiFePO4 nanocrystalline powder and method for preparing the same
JP5164260B2 (en) * 2008-06-12 2013-03-21 テイカ株式会社 Method for producing carbon-olivine type lithium iron phosphate composite, and positive electrode material for lithium ion battery
BRPI0919654B1 (en) 2008-10-22 2019-07-30 Lg Chem, Ltd. OLIVINE TYPE IRONYL PHOSPHATE, CATHOD MIXTURE AND SECONDARY BATTERY
CA2763748C (en) 2009-06-01 2019-04-02 Universite Du Quebec A Montreal Process to induce polymerization of an organic electronically conductive polymer
EP2476647B1 (en) 2009-09-09 2023-07-05 Toda Kogyo Corp. Process for production of olivine-type lithium iron phosphate particle powder
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
EP2478061B1 (en) * 2009-09-18 2024-03-06 A123 Systems LLC Ferric phosphate and methods of preparation thereof
US9269950B2 (en) 2010-01-28 2016-02-23 Johnson Matthey Public Limited Company Procedure to optimize materials for cathodes and cathode material having enhanced electrochemical properties
FR2955573B1 (en) * 2010-01-28 2012-05-18 Phostech Lithium Inc OPTIMIZED CATHODE MATERIAL FOR A LITHIUM METAL POLYMER TECHNOLOGY BATTERY
CA2691265A1 (en) * 2010-01-28 2011-07-28 Phostech Lithium Inc. Optimized cathode material for a lithium-metal-polymer battery
CN102765709B (en) * 2012-08-07 2014-04-02 北京科锐志投资管理中心(有限合伙) Preparation method of layered ferrous phosphate
CN105144440A (en) * 2013-04-24 2015-12-09 住友大阪水泥股份有限公司 Electrode material, electrode and lithium ion battery
TWI551549B (en) * 2014-03-17 2016-10-01 友達光電股份有限公司 Method for removing phosphorus from wastewater and method for preparing ferrous phosphate
JP6596826B2 (en) 2015-01-15 2019-10-30 株式会社デンソー Electrode and non-aqueous electrolyte secondary battery
JP6389773B2 (en) * 2015-02-09 2018-09-12 株式会社三井E&Sホールディングス Method for producing positive electrode material for lithium secondary battery
TWI645605B (en) * 2017-05-12 2018-12-21 創奕能源科技股份有限公司 Method for preparing cathode material of lithium ion battery
CN107394203A (en) * 2017-07-13 2017-11-24 扬州大学 A kind of preparation method of two-dimensional ultrathin sheet manganese phosphate
GB201719637D0 (en) * 2017-11-27 2018-01-10 Johnson Matthey Plc Cathode materials
CN109244461A (en) * 2018-10-29 2019-01-18 张美芳 The preparation method of LiFePO 4 material
CN109449403A (en) * 2018-10-29 2019-03-08 张美芳 The preparation method of carbon composite lithium iron phosphate material
CN112838289B (en) * 2021-02-24 2022-02-01 武汉工程大学 Method for recovering lithium and ferrous phosphate from lithium iron phosphate positive electrode material
CN113735091B (en) * 2021-09-07 2023-06-02 湖北云翔聚能新能源科技有限公司 Preparation method of nano spherical lithium iron phosphate and lithium iron phosphate material
CN114394610A (en) * 2021-12-20 2022-04-26 格林美股份有限公司 Recovery method of waste lithium iron phosphate battery
CN114560549B (en) * 2022-02-28 2023-06-16 中国科学技术大学 Application of synthetic wurtzite in advanced oxidation process water treatment
CN115477291B (en) * 2022-09-29 2024-03-26 四川龙蟒磷化工有限公司 Method for preparing battery-grade anhydrous ferrous phosphate from wet-process phosphoric acid and titanium white byproducts

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2035766B1 (en) * 1991-04-03 1994-03-01 Torrent Castellet Jose METHOD FOR CORRECTING FERRIC CHLOROSIS IN PLANTS.
JPH11166172A (en) * 1997-12-01 1999-06-22 Pola Chem Ind Inc Ultraviolet absorber and composition containing same
JPH11181093A (en) * 1997-12-24 1999-07-06 Toyobo Co Ltd Production of polybenzazole
KR20010025116A (en) * 1999-04-06 2001-03-26 이데이 노부유끼 Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
JP4769995B2 (en) * 2000-03-06 2011-09-07 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4491946B2 (en) * 2000-09-29 2010-06-30 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4742413B2 (en) * 2000-09-29 2011-08-10 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2003292307A (en) 2003-10-15
CN1435372A (en) 2003-08-13
KR100898236B1 (en) 2009-05-18
KR20030066396A (en) 2003-08-09
CN1299979C (en) 2007-02-14

Similar Documents

Publication Publication Date Title
JP4180363B2 (en) Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP4187523B2 (en) Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4260572B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
JP4225859B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
JP4187524B2 (en) Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5323410B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP5004413B2 (en) Method for producing positive electrode material for ammonium iron phosphate and lithium ion secondary battery, and lithium ion secondary battery
JP5758743B2 (en) Cobalt hydroxide and method for producing the same, and cobalt oxide and method for producing the same
US20110200878A1 (en) Lithium containing transition metal sulfide compounds
JP4620378B2 (en) Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
EP2492243A1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
US7879266B2 (en) Composite carbonate and method for producing the same
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5678685B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
US20090028772A1 (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
JP6901689B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP2004342554A (en) Manufacturing method of anode active material of lithium secondary battery
JP4276469B2 (en) Method for producing lithium cobalt oxide
JP2009046383A (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex, and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
US20090028771A1 (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
JP2009091193A (en) Lithium-cobalt oxide and its preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4180363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees