JP5323410B2 - Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus - Google Patents

Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus Download PDF

Info

Publication number
JP5323410B2
JP5323410B2 JP2008183436A JP2008183436A JP5323410B2 JP 5323410 B2 JP5323410 B2 JP 5323410B2 JP 2008183436 A JP2008183436 A JP 2008183436A JP 2008183436 A JP2008183436 A JP 2008183436A JP 5323410 B2 JP5323410 B2 JP 5323410B2
Authority
JP
Japan
Prior art keywords
lithium
liquid
solution
phosphorus
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008183436A
Other languages
Japanese (ja)
Other versions
JP2009054576A (en
Inventor
泰裕 仲岡
淳良 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2008183436A priority Critical patent/JP5323410B2/en
Priority to US12/180,089 priority patent/US20090028772A1/en
Priority to CN2008101442140A priority patent/CN101355162B/en
Priority to KR1020080073481A priority patent/KR20090012187A/en
Publication of JP2009054576A publication Critical patent/JP2009054576A/en
Application granted granted Critical
Publication of JP5323410B2 publication Critical patent/JP5323410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池正極活物質として有用なリチウム鉄リン系複合酸化物炭素複合体の製造方法に関するものである。   The present invention relates to a method for producing a lithium iron phosphorus composite oxide carbon composite useful as a positive electrode active material for a lithium secondary battery.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアル リサーチブレティン」vol15,P783-789(1980))がなされて以来、コバルト酸リチウムに関する研究開発が活発に進められており、これまで多くの提案がなされている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries ("Material Research Bulletin" vol15, P783-789 (1980)). Since then, research and development on lithium cobaltate has been actively promoted, and many proposals have been made so far.

しかしながら、Coは地球上に偏在し、希少な資源であるため、コバルト酸リチウムに代わる新たな正極活物質として、例えば、LiNiO、LiMn、LiFeO、LiFePO等の開発が進められている。 However, since Co is unevenly distributed on the earth and is a rare resource, development of, for example, LiNiO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4, etc., is being promoted as new positive electrode active materials replacing lithium cobalt oxide. ing.

LiFePOは、体積密度が3.6g/cmと大きく、3.4Vの高電位を発生し、理論容量も170mAh/gと大きく、また、LiFePOは、初期状態で、電気化学的に脱ドープ可能なLiを、Fe原子1個当たりに1個含んでいるので、コバルト酸リチウムに代わる新たなリチウム二次電池の正極活物質としての期待は大きい。 LiFePO 4 has a large volume density of 3.6 g / cm 3 , generates a high potential of 3.4 V, has a large theoretical capacity of 170 mAh / g, and LiFePO 4 is electrochemically detached in the initial state. Since one Li atom that can be doped is contained per Fe atom, there is a great expectation as a positive electrode active material of a new lithium secondary battery that replaces lithium cobalt oxide.

このLiFePOの製造方法としては、固相法で得る方法が提案されているが、X線回析分析において単相のLiFePOを得るには、各原料が精密に混合された均一混合物を得る必要があり、安定した品質のものを工業的に得ることが難しい。 As a method for producing this LiFePO 4, a method obtained by a solid phase method has been proposed, but in order to obtain single-phase LiFePO 4 in X-ray diffraction analysis, a uniform mixture in which each raw material is precisely mixed is obtained. It is necessary, and it is difficult to obtain a stable quality industrially.

また、各原料の均一混合物を容易に得る方法として、共沈法を用いることが種々提案されている。例えば、下記特許文献1には、リン酸二水素リチウム、硫酸鉄を含む溶液に、水酸化リチウムを含む溶液を添加して得られる共沈体を用いる方法が提案されている。また、下記特許文献2には、溶液中でリン酸イオンを遊離する化合物、金属鉄を含む溶液に、炭酸リチウムや水酸化リチウムを添加して得られる共沈体を用いる方法が提案されている。また、下記特許文献3には、リチウム塩、鉄塩及び水溶性還元剤とを含有するリン酸水溶液に、アルカリ溶液を混合して得られるリチウムと鉄との複合リン酸化物の共沈体を用いる方法が提案されている。   Various methods of using a coprecipitation method have been proposed as a method for easily obtaining a uniform mixture of raw materials. For example, Patent Document 1 below proposes a method using a coprecipitate obtained by adding a solution containing lithium hydroxide to a solution containing lithium dihydrogen phosphate and iron sulfate. Patent Document 2 below proposes a method of using a coprecipitate obtained by adding lithium carbonate or lithium hydroxide to a solution containing a compound that releases phosphate ions in a solution and metallic iron. . Patent Document 3 below discloses a coprecipitate of a composite phosphorous oxide of lithium and iron obtained by mixing an alkaline solution with an aqueous phosphoric acid solution containing a lithium salt, an iron salt and a water-soluble reducing agent. A method of using it has been proposed.

特表2004−525059号公報、第5頁Special Table 2004-525059, page 5 国際公開WO2004/036671号パンフレット、第1頁International Publication WO 2004/036671 Pamphlet, page 1 特開2002−117831号公報、第1頁JP 2002-117831 A, page 1

しかしながら、これら共沈法を用いる方法ではLi、Fe及びPの組成調整が難しく、また、X線回折分析において単相のLiFePOが得られ難いという問題があった。 However, these coprecipitation methods have problems that it is difficult to adjust the composition of Li, Fe, and P, and that it is difficult to obtain single-phase LiFePO 4 in X-ray diffraction analysis.

従って、本発明の目的は、リチウム鉄リン系複合酸化物炭素複合体中のリチウム鉄リン系複合酸化物のLi、Fe及びPの組成調整が容易であり、X線回折分析において単相のLiFePOが得られ、リチウム二次電池に優れた電池性能を付与することができるリチウム鉄リン系複合酸化物炭素複合体の製造方法を提供することにある。 Therefore, an object of the present invention is to easily adjust the composition of Li, Fe and P of the lithium iron phosphorus composite oxide in the lithium iron phosphorus composite oxide carbon composite, and to obtain single-phase LiFePO in X-ray diffraction analysis. 4 is obtained, and it is providing the manufacturing method of the lithium iron phosphorus type complex oxide carbon composite which can provide the battery performance which was excellent in the lithium secondary battery.

本発明者らは、上記実情において鋭意研究を重ねた結果、リチウムイオン、2価の鉄イオン及びリン酸イオンを含む溶液(A液)と、アルカリを含む溶液(B液)と、を特定範囲のpHに制御しながら接触させて反応を行うことにより、リチウム鉄リンを含む共沈体中のLi、Fe及びPの組成調整が容易となり、Li、Fe及びPの組成比を1:1:1に近くできるので、リチウム鉄リン系複合酸化物炭素複合体中のLi、Fe及びPの組成調整が容易になり、且つ共沈体が高収率で得られること。また、このようにして得られる共沈体と導電性炭素材料との混合物を、不活性ガス雰囲気中で焼成することにより、X線回折分析からみてLiFePO単相のリチウム鉄リン系複合酸化物粒子と、導電性炭素材料が均一に分散された、リチウム鉄リン系複合酸化物炭素複合体が得られること。更には、このようにして得られるリチウム鉄リン系複合酸化物炭素複合体を正極活物質とするリチウム二次電池は、優れた電池性能を有することを見出し、本発明を完成するに到った。 As a result of intensive studies in the above circumstances, the present inventors have determined that a solution containing lithium ion, divalent iron ion and phosphate ion (liquid A) and a solution containing alkali (liquid B) are in a specific range. The reaction is carried out while controlling the pH of the composition to facilitate the composition adjustment of Li, Fe and P in the coprecipitate containing lithium iron phosphorus, and the composition ratio of Li, Fe and P is 1: 1: 1. Since it can be close, the composition adjustment of Li, Fe, and P in the lithium iron phosphorus composite oxide-carbon composite becomes easy, and a coprecipitate can be obtained in high yield. Further, by firing the mixture of the coprecipitate obtained in this way and the conductive carbon material in an inert gas atmosphere, it is possible to obtain a LiFePO 4 single-phase lithium iron phosphorus-based composite oxide from the viewpoint of X-ray diffraction analysis. Lithium iron phosphorus composite oxide carbon composite in which particles and conductive carbon material are uniformly dispersed is obtained. Furthermore, the lithium secondary battery using the lithium iron phosphorus-based composite oxide-carbon composite thus obtained as a positive electrode active material has been found to have excellent battery performance, and the present invention has been completed. .

すなわち、本発明(1)は、pHを5.5〜9.5に制御しつつ、リチウムイオン、2価の鉄イオン及びリン酸イオンを含む溶液(A液)と、水酸化リチウムを含む溶液(B液)と、を接触させて、リチウム、鉄及びリンを含む共沈体を得る第1工程と、該共沈体と導電性炭素材料とを混合し、焼成原料混合物を得る第2工程と、該焼成原料混合物を不活性ガス雰囲気中で焼成し、リチウム鉄リン系複合酸化物炭素複合体を得る第3工程と、を有することを特徴とするリチウム鉄リン系複合酸化物炭素複合体の製造方法を提供するものである。 That is, the present invention (1) is a solution containing lithium ion, divalent iron ion and phosphate ion (solution A) and a solution containing lithium hydroxide while controlling the pH to 5.5 to 9.5. (Liquid B) is contacted to obtain a first step of obtaining a coprecipitate containing lithium, iron and phosphorus, and a second step of mixing the coprecipitate and a conductive carbon material to obtain a calcined raw material mixture. And a third step of firing the firing raw material mixture in an inert gas atmosphere to obtain a lithium iron phosphorus composite oxide carbon composite, and a lithium iron phosphorus composite oxide carbon composite The manufacturing method of this is provided.

本発明によれば、リチウム鉄リン系複合酸化物炭素複合体中のリチウム鉄リン系複合酸化物のLi、Fe及びPの組成調整が容易であり、Li、Fe及びPの組成比を1:1:1に近くでき、X線回折分析において単相のLiFePOが得られ、リチウム二次電池に優れた電池性能を付与することができるリチウム鉄リン系複合酸化物炭素複合体の製造方法を提供することができる。 According to the present invention, the composition adjustment of Li, Fe and P of the lithium iron phosphorus composite oxide in the lithium iron phosphorus composite oxide carbon composite is easy, and the composition ratio of Li, Fe and P is 1: A method for producing a lithium iron-phosphorus-based composite oxide carbon composite that can be close to 1: 1, can obtain single-phase LiFePO 4 in X-ray diffraction analysis, and can impart excellent battery performance to a lithium secondary battery. Can be provided.

本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法は、pHを5.5〜9.5に制御しつつ、リチウムイオン、2価の鉄イオン及びリン酸イオンを含む溶液(A液)と、アルカリを含む溶液(B液)と、を接触させて、リチウム、鉄及びリンを含む共沈体を得る第1工程と、該共沈体と導電性炭素材料とを混合し、焼成原料混合物を得る第2工程と、該焼成原料混合物を不活性ガス雰囲気中で焼成し、リチウム鉄リン系複合酸化物炭素複合体を得る第3工程と、を有するリチウム鉄リン系複合酸化物炭素複合体の製造方法である。   The method for producing a lithium iron phosphorus-based composite oxide carbon composite of the present invention is a solution (Liquid A) containing lithium ions, divalent iron ions and phosphate ions while controlling the pH to 5.5 to 9.5. ) And an alkali-containing solution (Liquid B) to obtain a coprecipitate containing lithium, iron and phosphorus, and the coprecipitate and a conductive carbon material are mixed and fired. Lithium iron phosphorus composite oxide carbon having a second step of obtaining a raw material mixture and a third step of firing the firing raw material mixture in an inert gas atmosphere to obtain a lithium iron phosphorus composite oxide carbon composite It is a manufacturing method of a composite_body | complex.

本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法に係る第1工程は、pHを5.5〜9.5に制御しつつ、リチウムイオン、2価の鉄イオン及びリン酸イオンを含む溶液(A液)と、アルカリを含む溶液(B液)とを接触させて、反応を行うことにより、リチウム、鉄及びリンを含む共沈体(以下、「共沈体」と略記する。)を得る工程である。   In the first step according to the method for producing a lithium iron phosphorus-based composite oxide carbon composite of the present invention, while controlling the pH to 5.5 to 9.5, lithium ions, divalent iron ions and phosphate ions are added. A coprecipitate containing lithium, iron, and phosphorus (hereinafter, “coprecipitate”) is abbreviated by reacting the solution containing the solution (A solution) with the solution containing the alkali (solution B). ).

第1工程に係るA液は、リチウムイオン、2価の鉄イオン及びリン酸イオンを含有する水溶液である。   The liquid A according to the first step is an aqueous solution containing lithium ions, divalent iron ions, and phosphate ions.

A液のリチウム源としては、リチウムイオンを有し水に溶解する化合物であれば、特に制限されず、例えば、硫酸リチウム、硝酸リチウム、塩化リチウム、酢酸リチウム、炭酸リチウム、水酸化リチウム、シュウ酸リチウム等が挙げられ、これらのうち、硫酸リチウムが低価格である点で好ましい。これらのA液のリチウム源は、1種であっても又は2種以上の併用であってもよい。   The lithium source of the liquid A is not particularly limited as long as it is a compound having lithium ions and soluble in water. For example, lithium sulfate, lithium nitrate, lithium chloride, lithium acetate, lithium carbonate, lithium hydroxide, oxalic acid Lithium etc. are mentioned, Among these, lithium sulfate is preferable at a low price. The lithium source of these A liquids may be 1 type, or may use 2 or more types together.

A液の2価の鉄源としては、2価の鉄イオンを有し水に溶解する化合物であれば、特に制限されず、例えば、硫酸第一鉄(II)、酢酸鉄(II)、蓚酸鉄(II)、塩化第一鉄(II)、硝酸第一鉄(II)等が挙げられ、これらのうち、硫酸第一鉄が低価格である点で好ましい。これらのA液の2価の鉄源は、1種であっても又は2種以上の併用であってもよい。   The divalent iron source of the liquid A is not particularly limited as long as it is a compound having a divalent iron ion and dissolved in water. For example, ferrous sulfate (II), iron (II) acetate, oxalic acid Examples thereof include iron (II), ferrous chloride (II), ferrous nitrate (II), etc. Of these, ferrous sulfate is preferable because of its low cost. These divalent iron sources of the liquid A may be one kind or a combination of two or more kinds.

A液のリン酸源としては、リン酸イオンを有し水に溶解する化合物であれば、特に制限されず、例えば、リン酸、リン酸二水素アンモニウム、リン酸水素ナトリウム、メタリン酸等が挙げられ、これらのうち、リン酸が低価格である点で好ましい。これらのA液のリン酸源は、1種であっても又は2種以上の併用であってもよい。なお、本発明において、A液に係るリン酸イオンとは、オルトリン酸イオン、メタリン酸イオン、ピロリン酸イオン、三リン酸イオン、四リン酸イオン等のリン酸イオンの総称である。   The phosphoric acid source of the liquid A is not particularly limited as long as it is a compound that has phosphate ions and dissolves in water, and examples thereof include phosphoric acid, ammonium dihydrogen phosphate, sodium hydrogen phosphate, and metaphosphoric acid. Of these, phosphoric acid is preferred because of its low cost. The phosphoric acid source of these A liquids may be 1 type, or may use 2 or more types together. In addition, in this invention, the phosphate ion which concerns on A liquid is a general term for phosphate ions, such as an orthophosphate ion, a metaphosphate ion, a pyrophosphate ion, a triphosphate ion, a tetraphosphate ion.

A液中のリチウムイオン、2価の鉄イオン及びリン酸イオンの比は、共沈体の各元素のモル比がLi:Fe:PO=1:1:1に近くなる点で、リチウム原子、2価の鉄原子及びリン原子に換算したときのモル比(Li:Fe:P)が、好ましくは0.8〜1.2:0.8〜1.2:1、特に好ましくは0.95〜1.05:0.95〜1.05:1である。また、A液中のリチウムイオンの含有量は、Li原子換算で、0.1〜1.0モル/L、好ましくは0.5〜1.0モル/Lであり、2価の鉄イオンの含有量は、2価の鉄原子換算で、0.1〜1.0モル/L、好ましくは0.5〜1.0モル/Lであり、リン酸イオンの含有量は、リン原子換算で、0.1〜1.0モル/L、好ましくは0.5〜1.0モル/Lである。A液中のリチウムイオン、2価の鉄イオン及びリン酸イオンの比、並びにリチウムイオンの含有量、2価の鉄イオンの含有量及びリン酸イオンの含有量が、上記範囲内にあることにより、A液を調製する際に、リチウム源、2価の鉄源及びリン酸源の溶液への溶解速度が遅くなり過ぎないので工業的に効率が良く、また、廃液を少なくできる点で好ましい。 The ratio of lithium ions, divalent iron ions and phosphate ions in the liquid A is such that the molar ratio of each element in the coprecipitate is close to Li: Fe: PO 4 = 1: 1: 1. The molar ratio (Li: Fe: P) when converted to a divalent iron atom and phosphorus atom is preferably 0.8 to 1.2: 0.8 to 1.2: 1, particularly preferably 0.8. 95 to 1.05: 0.95 to 1.05: 1. Moreover, content of the lithium ion in A liquid is 0.1-1.0 mol / L in conversion of Li atom, Preferably it is 0.5-1.0 mol / L, The content is 0.1 to 1.0 mol / L, preferably 0.5 to 1.0 mol / L, in terms of divalent iron atoms, and the phosphate ion content is in terms of phosphorus atoms. 0.1 to 1.0 mol / L, preferably 0.5 to 1.0 mol / L. The ratio of lithium ions, divalent iron ions and phosphate ions in the liquid A, and the content of lithium ions, the content of divalent iron ions and the content of phosphate ions are within the above ranges. In preparing the liquid A, the dissolution rate of the lithium source, divalent iron source and phosphoric acid source in the solution does not become too slow, which is industrially efficient, and is preferable in that the waste liquid can be reduced.

A液は、A液のリチウム源、A液の2価の鉄源及びA液のリン酸源を、水に溶解させることにより調製される。   Liquid A is prepared by dissolving a lithium source of liquid A, a divalent iron source of liquid A, and a phosphoric acid source of liquid A in water.

A液のpHは、好ましくは2.5以下、特に好ましくは0.1〜1.5である。A液のpHが上記範囲内にあることにより、共沈体中のLi、Fe及びPの組成調整が容易になる。一方、A液のpHが上記範囲より高いと、共沈体中のLi、Fe及びPの組成調整をし難くなり易い。   The pH of the liquid A is preferably 2.5 or less, particularly preferably 0.1 to 1.5. When the pH of the liquid A is within the above range, the composition adjustment of Li, Fe and P in the coprecipitate becomes easy. On the other hand, when pH of A liquid is higher than the said range, it will become difficult to adjust the composition of Li, Fe, and P in a coprecipitate.

第1工程に係るB液は、アルカリを含有する水溶液であり、アルカリ源を水に溶解させることにより調整される。B液のアルカリ源としては、水酸化リチウム、アンモニア、水酸化ナトリウム、水酸化カリウム、重炭酸ナトリウム、重炭酸カリウム、炭酸ナトリウム、炭酸カリウム等が挙げられ、これらのうち、水酸化ナトリウム又は水酸化リチウムが好ましく、リチウム鉄リン系複合酸化物炭素複合体の構成元素と同じ元素であるリチウムで構成されているので、金属不純物が少なくなる点で水酸化リチウムが特に好ましい。これらのB液のアルカリ源は、1種であっても又は2種以上の併用であってもよい。   The B liquid which concerns on a 1st process is an aqueous solution containing an alkali, and is adjusted by dissolving an alkali source in water. Examples of the alkali source of the liquid B include lithium hydroxide, ammonia, sodium hydroxide, potassium hydroxide, sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, etc. Among these, sodium hydroxide or hydroxide Lithium is preferable, and lithium hydroxide is particularly preferable because it is composed of lithium which is the same element as the constituent element of the lithium iron phosphorus composite oxide-carbon composite. The alkali source of these B liquids may be 1 type, or may use 2 or more types together.

B液中のアルカリの含有量は、0.1〜10当量/L、好ましくは1〜10当量/Lである。B液中のアルカリの含有量が、上記範囲内にあることにより、廃液を低減できる。   Content of the alkali in B liquid is 0.1-10 equivalent / L, Preferably it is 1-10 equivalent / L. When the alkali content in the B liquid is within the above range, the waste liquid can be reduced.

第1工程では、A液とB液との接触を、pHを5.5〜9.5に、好ましくは5.5〜8.5に制御しつつ行う。A液とB液との接触を上記範囲内に制御しつつ行うことにより、共沈体中のLi、Fe及びPの組成調整が容易となり、また、共沈体の収率が高くなる。一方、A液とB液との接触の際のpHが、上記範囲より低いと、リチウム成分が析出し難いために、共沈体中のリチウム元素の組成比が小さくなったり、あるいは、反応溶液中にリチウム、鉄又はリン元素が残留して収率が低くなり、また、上記範囲よりを高いと、生じた共沈体中の鉄元素が酸化され易くなる。   In the first step, the contact between the liquid A and the liquid B is performed while controlling the pH to 5.5 to 9.5, preferably 5.5 to 8.5. By controlling the contact between the liquid A and the liquid B within the above range, the composition adjustment of Li, Fe and P in the coprecipitate is facilitated, and the yield of the coprecipitate is increased. On the other hand, if the pH at the time of contact between the liquid A and the liquid B is lower than the above range, the lithium component is difficult to precipitate, so the composition ratio of the lithium element in the coprecipitate becomes small, or the reaction solution contains Lithium, iron, or phosphorus elements remain, resulting in a low yield. If the content is higher than the above range, the iron elements in the resulting coprecipitate are easily oxidized.

A液とB液とを接触させる際のA液の量とB液の量との比であるが、A液中のリン原子のモル数に対するB液中のアルカリの当量数(アルカリの当量数/リン原子のモル数)が、2.6〜3.5となる量が好ましく、2.8〜3.2となる量が特に好ましい。A液中のリン原子のモル数に対するB液中のアルカリの当量数が上記範囲内にあることにより、共沈体中のLi、Fe及びPの組成比が1:1:1に近くなり易い。   The ratio of the amount of liquid A to the amount of liquid B when the liquid A and the liquid B are brought into contact with each other. The number of alkali equivalents in the liquid B relative to the number of moles of phosphorus atoms in the liquid A / Number of moles of phosphorus atoms) is preferably 2.6 to 3.5, and particularly preferably 2.8 to 3.2. When the number of equivalents of alkali in the liquid B with respect to the number of moles of phosphorus atoms in the liquid A is within the above range, the composition ratio of Li, Fe and P in the coprecipitate tends to be close to 1: 1: 1.

第1工程において、A液とB液とを接触させる際の接触温度は、10〜100℃、好ましくは30〜100℃である。A液とB液との接触温度が、上記範囲内にあることにより、反応溶液中のリチウム成分が析出し易くなる。一方、A液とB液との接触温度が、上記範囲未満だと、溶液中のリチウム成分が析出し難くなる傾向があり、また、上記範囲を超えると、常圧では溶液が沸騰するため、液相反応が困難になり易い。   In the first step, the contact temperature when the liquid A and the liquid B are brought into contact is 10 to 100 ° C., preferably 30 to 100 ° C. When the contact temperature between the liquid A and the liquid B is within the above range, the lithium component in the reaction solution is likely to precipitate. On the other hand, if the contact temperature between the liquid A and the liquid B is less than the above range, the lithium component in the solution tends to be difficult to precipitate, and if it exceeds the above range, the solution boils at normal pressure. Liquid phase reaction tends to be difficult.

なお、A液及びB液の調製に使用するリチウム源、2価の鉄源、リン酸源及びアルカリ源は、含水物であっても無水物であってもよく、また、高純度のリチウム鉄リン系複合酸化物炭素複合体を得る上で、不純物含有量が少ないものが好ましい。   The lithium source, divalent iron source, phosphoric acid source, and alkali source used for preparing the liquid A and the liquid B may be hydrated or anhydrous, and high purity lithium iron In order to obtain a phosphorus-based composite oxide carbon composite, those having a small impurity content are preferable.

第1工程において、pHを5.5〜9.5に制御しつつ、水(C液)にA液を添加しながら、C液にB液を添加することにより、A液とB液とを接触させて反応させ、リチウム、鉄及びリンを含む共沈体を得る方法(以下、接触方法Aとも記載する。)が、A液とB液との接触の際のpHの制御が容易であり且つ共沈体の収率が高くなる点で好ましい。なお、本発明において、「C液にA液を添加しながら、C液にB液を添加する。」とは、C液へのA液の添加時間とC液へのB液の添加時間とが、完全に又は一部重なっていることを指す。そして、C液へのA液の添加時間とC液へのB液の添加時間とが、完全に重なっていること、すなわち、A液の添加開始とB液の添加開始とが同時であり且つA液の添加終了とB液の添加終了が同時であることが、共沈体中のLi、Fe及びPの組成調整が容易になる点で好ましいが、本発明の効果を損なわない程度であれば、完全に重なっていなくてもよく、少なくともA液が添加されている間は、B液が添加されていればよい。   In the first step, the liquid A and the liquid B are added by adding the liquid B to the liquid C while adding the liquid A to the water (liquid C) while controlling the pH to 5.5 to 9.5. The method of contacting and reacting to obtain a coprecipitate containing lithium, iron and phosphorus (hereinafter also referred to as contact method A) makes it easy to control the pH when the liquid A and liquid B are contacted. And it is preferable at the point from which the yield of a coprecipitate becomes high. In the present invention, “adding B liquid to C liquid while adding A liquid to C liquid” means adding time of A liquid to C liquid and adding time of B liquid to C liquid. Indicates a complete or partial overlap. And the addition time of the A liquid to the C liquid and the addition time of the B liquid to the C liquid are completely overlapped, that is, the addition start of the A liquid and the addition start of the B liquid are simultaneous and The end of addition of liquid A and the end of addition of liquid B are preferable in terms of easy composition adjustment of Li, Fe and P in the coprecipitate, but as long as the effects of the present invention are not impaired, It does not need to be completely overlapped, and it is sufficient that the liquid B is added at least while the liquid A is added.

接触方法Aに係るC液は、水であり、アスコルビン酸、フェノール、ピロガノール等の水溶性の還元剤を含有していてもよい。   The C liquid which concerns on the contact method A is water, and may contain water-soluble reducing agents, such as ascorbic acid, phenol, and pyroganol.

接触方法Aにおいて、C液の量は、反応容器中でC液が十分撹拌される量であればよい。   In the contact method A, the amount of the liquid C may be an amount that allows the liquid C to be sufficiently stirred in the reaction vessel.

接触方法Aにおいて、A液の添加量とB液の添加量との比であるが、A液中のリン原子のモル数に対するB液中のアルカリの当量数(アルカリの当量数/リン原子のモル数)が、2.6〜3.5となる量が好ましく、2.8〜3.2となる量が特に好ましい。A液中のリン原子のモル数に対するB液中のアルカリの当量数が上記範囲内にあることにより、共沈体中のLi、Fe及びPの組成比が1:1:1に近くなり易い。   In the contact method A, the ratio of the addition amount of the A solution and the addition amount of the B solution is the ratio of the number of equivalents of alkali in the B solution to the number of moles of phosphorus atoms in the A solution (number of equivalents of alkali / phosphorus atom The number of moles) is preferably 2.6 to 3.5, and particularly preferably 2.8 to 3.2. When the number of equivalents of alkali in the liquid B with respect to the number of moles of phosphorus atoms in the liquid A is within the above range, the composition ratio of Li, Fe and P in the coprecipitate tends to be close to 1: 1: 1.

接触方法Aにおいて、A液とB液とを反応溶液(C液)に添加する際の反応溶液(C液)の温度は、10〜100℃、好ましくは30〜100℃である。A液とB液とを添加する際の反応溶液(C液)の温度が、上記範囲内にあることにより、反応溶液中のリチウム成分が析出し易くなる。一方、A液とB液とを反応溶液(C液)に添加する際の反応溶液(C液)の温度が、上記範囲未満だと、反応溶液中のリチウム成分が析出し難くなる傾向があり、また、上記範囲を超えると、常圧では溶液が沸騰するため、液相反応が困難になり易い。   In the contact method A, the temperature of the reaction solution (C solution) when adding the A solution and the B solution to the reaction solution (C solution) is 10 to 100 ° C, preferably 30 to 100 ° C. When the temperature of the reaction solution (C solution) at the time of adding A liquid and B liquid exists in the said range, it will become easy to precipitate the lithium component in a reaction solution. On the other hand, when the temperature of the reaction solution (C solution) when adding the A solution and the B solution to the reaction solution (C solution) is less than the above range, the lithium component in the reaction solution tends to be difficult to precipitate. Moreover, if the above range is exceeded, the solution will boil at normal pressure, so that the liquid phase reaction tends to be difficult.

接触方法Aにおいて、反応溶液(C液)へのA液の添加方法及び添加速度は、特に制限されるものではないが、反応溶液(C液)を撹拌しながらA液を一定速度で滴下することが、Li、Fe及びPの組成比が1:1:1に近く且つロット間のバラツキが少ない、すなわち、安定した品質のものが得られる点で好ましい。また、反応溶液(C液)へのB液の添加方法及び添加速度であるが、反応溶液(C液)のpHが所定の値に保たれるように、pH制御装置などを用いて滴下速度を制御しながら、反応溶液(C液)へのB液の滴下を行うことが好ましい。   In the contact method A, the addition method and addition speed of the liquid A to the reaction solution (liquid C) are not particularly limited, but the liquid A is dropped at a constant speed while stirring the reaction solution (liquid C). It is preferable in that the composition ratio of Li, Fe and P is close to 1: 1: 1 and there is little variation between lots, that is, a stable quality can be obtained. Moreover, although it is the addition method and addition speed of B liquid to a reaction solution (C liquid), dripping speed | velocity | rate using a pH control apparatus etc. so that pH of reaction solution (C liquid) may be maintained at a predetermined value. It is preferable to drop the solution B into the reaction solution (solution C) while controlling the pressure.

接触方法Aおいて、A液及びB液の添加終了後、反応溶液(C液)の温度を保ったまま撹拌を続ける熟成を、引き続き行ってもよい。この熟成を行うことにより、反応溶液相中の未反応元素成分を低減することができる。熟成を行う際の反応溶液(C液)のpHは、5.5〜9.5が好ましく、5.5〜8.5が特に好ましい。熟成を行う際の反応溶液(C液)のpHが上記範囲内にあることにより、析出したリチウム成分が再溶出し難く且つ析出した鉄成分が酸化され難くなる。一方、熟成を行う際の反応溶液(C液)のpHが、上記範囲未満だと、析出したリチウム成分が再溶出し易くなり、また、上記範囲を超えると、析出した鉄成分が酸化し易くなる。熟成を行う際の熟成温度は、10〜100℃、好ましくは30〜100℃である。熟成温度が上記範囲内にあることにより、反応溶液相中の未反応成分を低減するという効果を得易い。一方、熟成温度が、上記範囲未満だと、反応溶液相中の未反応成分を低減するという効果が低くなる傾向があり、また、上記範囲を超えると、常圧では溶液が沸騰するため、液相反応が困難になり易い。   In the contact method A, after completion of the addition of the liquid A and the liquid B, aging may be performed continuously with stirring while maintaining the temperature of the reaction solution (liquid C). By performing this aging, the unreacted element component in the reaction solution phase can be reduced. The pH of the reaction solution (solution C) during aging is preferably 5.5 to 9.5, particularly preferably 5.5 to 8.5. When the pH of the reaction solution (solution C) during aging is within the above range, the precipitated lithium component is difficult to re-elute and the precipitated iron component is difficult to be oxidized. On the other hand, if the pH of the reaction solution (solution C) during aging is less than the above range, the precipitated lithium component is likely to be eluted again, and if it exceeds the above range, the precipitated iron component is likely to be oxidized. Become. The aging temperature at the time of aging is 10 to 100 ° C, preferably 30 to 100 ° C. When the aging temperature is within the above range, an effect of reducing unreacted components in the reaction solution phase is easily obtained. On the other hand, if the aging temperature is less than the above range, the effect of reducing unreacted components in the reaction solution phase tends to be low, and if it exceeds the above range, the solution boils at normal pressure. Phase reaction tends to be difficult.

接触方法Aにおいて、C液へのA液及びB液の添加の際に、反応溶液(C液)中に窒素ガス等の不活性ガスを注入しながら、A液及びB液の添加を行うことができる。また、接触方法Aにおいて、A液(2価の鉄イオン及びリン酸イオンを含む溶液)中にアスコルビン酸、フェノール、ピロガノールなどの還元剤、好ましくはアスコルビン酸を共存させて、A液及びB液の添加を行うことができる。A液及びB液の添加の際に、反応溶液(C液)中に不活性ガス注入すること、又はA液(2価の鉄イオン及びリン酸イオンを含む溶液)中に還元剤を共存させることにより、あるいは、これらの両方により、反応溶液(C液)中のFeの酸化を防止することができる。A液への還元剤の添加量は、効率よく反応を行うことができる点で、A液に対して、好ましくは0.1〜2.0質量%、特に好ましくは0.5〜1.5質量%である。   In contact method A, liquid A and liquid B are added while injecting an inert gas such as nitrogen gas into the reaction solution (liquid C) when liquid A and liquid B are added to liquid C. Can do. In contact method A, liquids A and B are prepared by coexisting a reducing agent such as ascorbic acid, phenol and pyroganol, preferably ascorbic acid, in liquid A (a solution containing divalent iron ions and phosphate ions). Can be added. At the time of addition of liquid A and liquid B, an inert gas is injected into the reaction solution (liquid C), or a reducing agent is allowed to coexist in liquid A (a solution containing divalent iron ions and phosphate ions). By these, or both of these, the oxidation of Fe in the reaction solution (C solution) can be prevented. The amount of the reducing agent added to the liquid A is preferably 0.1 to 2.0% by mass, particularly preferably 0.5 to 1.5% with respect to the liquid A in that the reaction can be efficiently performed. % By mass.

第1工程において、A液とB液との接触終了後、常法より固液分離して、得られる固形物を回収し、必要により水洗、乾燥を行って共沈体を得る。なお、アルカリ源としてナトリウムやカリウムを含むものを用いた場合には、アルカリ金属が不純物となって残存すると、X線回析分析においてLiFePO単相のリチウム鉄リン系複合酸化物炭素複合体が得られなくなるので、共沈体中のナトリウム及びカリウムの含有量のいずれもが、0.5質量%以下、好ましくは0.1質量%以下となるまで、十分に水洗することが好ましい。また、共沈体の乾燥をする際の乾燥温度は、35〜60℃であることが、乾燥効率が良く且つ2価の鉄成分が酸化され難い点で好ましい。一方、共沈体の乾燥温度が、35℃未満だと、乾燥に時間がかかり過ぎ、また、60℃を超えると、2価の鉄が酸化され易くなる。 In the first step, after completion of the contact between the liquid A and the liquid B, solid-liquid separation is performed by a conventional method, and the resulting solid is recovered, and if necessary, washed with water and dried to obtain a coprecipitate. When an alkali source containing sodium or potassium is used, if an alkali metal remains as an impurity, a LiFePO 4 single-phase lithium iron phosphorus-based composite oxide carbon composite is obtained in X-ray diffraction analysis. Since it will no longer be obtained, it is preferable to sufficiently wash with water until the contents of both sodium and potassium in the coprecipitate are 0.5 mass% or less, preferably 0.1 mass% or less. Moreover, it is preferable that the drying temperature at the time of drying a coprecipitate is 35 to 60 ° C. because the drying efficiency is good and the divalent iron component is hardly oxidized. On the other hand, if the drying temperature of the coprecipitate is less than 35 ° C., it takes too much time to dry, and if it exceeds 60 ° C., divalent iron tends to be oxidized.

本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法に係る第2工程は、第1工程で得られた共沈体と導電性炭素材料とを混合し、焼成原料混合物を得る工程である。   The 2nd process which concerns on the manufacturing method of the lithium iron phosphorus complex oxide carbon composite of this invention is a process which mixes the coprecipitate obtained by the 1st process, and an electroconductive carbon material, and obtains a baking raw material mixture. is there.

第2工程に係る導電性炭素材料としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等の天然黒鉛や、人工黒鉛のような黒鉛;カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類;炭素繊維等が挙げられる。また、第2工程に係る導電性炭素材料としては、第3工程での焼成により、炭素が析出するような有機炭素化合物も挙げられる。また、導電性炭素材料は、1種であっても又は2種以上の併用であってもよい。これらのうち、カーボンブラック、ケッチェンブラックが、微粒なものを工業的に容易に入手できる点で好ましい。   Examples of the conductive carbon material in the second step include natural graphite such as scaly graphite, scaly graphite, and earth graphite, and graphite such as artificial graphite; carbon black, acetylene black, ketjen black, channel black, Carbon blacks such as furnace black, lamp black and thermal black; carbon fibers and the like. In addition, examples of the conductive carbon material according to the second step include organic carbon compounds in which carbon is deposited by firing in the third step. Further, the conductive carbon material may be one kind or a combination of two or more kinds. Of these, carbon black and ketjen black are preferable because fine particles can be easily obtained industrially.

導電性炭素材料の平均粒径は、1μm以下、好ましくは0.1μm以下、特に好ましくは0.01〜0.1μmである。また、導電性炭素材料が繊維状である場合、該導電性炭素材料の平均繊維径は、1μm以下、好ましくは0.1μm以下、特に好ましくは0.01〜0.1μmである。導電性炭素材料の平均粒径又は平均繊維径が上記範囲内にあることにより、リチウム鉄リン系複合酸化物の粒子に、導電性炭素材料を高分散させ易くなる。なお、本発明において、導電性炭素材料の平均粒径又は平均繊維径は、走査型電子顕微鏡写真(SEM)から求められる平均粒径又は平均繊維径であり、走査型電子顕微鏡写真中から、任意に抽出した20個の粒子の粒径又は繊維の繊維径の平均値である。   The average particle size of the conductive carbon material is 1 μm or less, preferably 0.1 μm or less, particularly preferably 0.01 to 0.1 μm. When the conductive carbon material is fibrous, the average fiber diameter of the conductive carbon material is 1 μm or less, preferably 0.1 μm or less, particularly preferably 0.01 to 0.1 μm. When the average particle diameter or the average fiber diameter of the conductive carbon material is within the above range, the conductive carbon material can be easily highly dispersed in the lithium iron phosphorus composite oxide particles. In the present invention, the average particle diameter or the average fiber diameter of the conductive carbon material is an average particle diameter or an average fiber diameter obtained from a scanning electron micrograph (SEM). The average value of the particle diameters of the 20 particles extracted or the fiber diameters of the fibers.

焼成前に比べて焼成後では導電性炭素材料に含まれるC原子の量が若干ながら減少する傾向がある。そのため、第2工程において、共沈体100質量部に対する導電性炭素材料の配合量が、2〜15質量部、好ましくは5〜10質量部であると、リチウム鉄リン系複合酸化物炭素複合体中のリチウム鉄リン系複合酸化物100質量部に対する導電性炭素材料の配合量が、C原子換算で1〜12質量部、好ましくは3〜8質量部となり易い。共沈体100質量部に対する導電性炭素材料の配合量が、上記範囲内にあることにより、リチウム鉄リン系複合酸化物炭素複合体をリチウム二次電池の正極活物質として用いた場合に、十分な導電性を付与することができるため、リチウム二次電池の内部抵抗を低くすることができ、且つ、質量或いは体積当たりの放電容量が高くなる。一方、共沈体100質量部に対する導電性炭素材料の配合量が、上記範囲未満だと、リチウム鉄リン系複合酸化物炭素複合体をリチウム二次電池の正極活物質として用いた場合に、十分に導電性を付与することができなくなるため、リチウム二次電池の内部抵抗が高くなり易く、また、上記範囲を超えると、質量或いは体積当たりの放電容量が低くなり易い。   There is a tendency that the amount of C atoms contained in the conductive carbon material slightly decreases after firing as compared with before firing. Therefore, in the second step, when the blending amount of the conductive carbon material with respect to 100 parts by mass of the coprecipitate is 2 to 15 parts by mass, preferably 5 to 10 parts by mass, the lithium iron phosphorus composite oxide carbon composite The compounding amount of the conductive carbon material with respect to 100 parts by mass of the lithium iron-phosphorus composite oxide is 1 to 12 parts by mass, preferably 3 to 8 parts by mass in terms of C atoms. When the compounding amount of the conductive carbon material with respect to 100 parts by mass of the coprecipitate is within the above range, it is sufficient when the lithium iron phosphorus-based composite oxide carbon composite is used as the positive electrode active material of the lithium secondary battery. Therefore, the internal resistance of the lithium secondary battery can be lowered, and the discharge capacity per mass or volume is increased. On the other hand, when the blending amount of the conductive carbon material with respect to 100 parts by mass of the coprecipitate is less than the above range, it is sufficient when the lithium iron phosphorus composite oxide carbon composite is used as the positive electrode active material of the lithium secondary battery. Thus, the internal resistance of the lithium secondary battery tends to be high, and if it exceeds the above range, the discharge capacity per mass or volume tends to be low.

第2工程では、共沈体と導電性炭素材料とが均一に混合するように、乾式で十分に混合しておくことが好ましい。第2工程において、共沈体と導電性炭素材料との混合に使用する装置等は、均一な焼成原料混合物が得られるようなものであれば、特に制限はないが、例えば、ハイスピードミキサー、スーパーミキサー、ターボスフェアミキサー、ヘンシェルミキサー、ナウターミキサー及びリボンブレンダー等の装置が挙げられる。なお、これら共沈体と導電性炭素材料との均一混合操作は、例示した機械的手段に限定されるものではない。   In the second step, it is preferable that the coprecipitate and the conductive carbon material are sufficiently mixed in a dry manner so that they are uniformly mixed. In the second step, the apparatus used for mixing the coprecipitate and the conductive carbon material is not particularly limited as long as a uniform firing raw material mixture can be obtained. For example, a high-speed mixer, Examples include a super mixer, a turbo sphere mixer, a Henschel mixer, a nauter mixer, and a ribbon blender. The uniform mixing operation of the coprecipitate and the conductive carbon material is not limited to the exemplified mechanical means.

第3工程は、第2工程で得られた焼成原料混合物を、不活性ガス雰囲気中で焼成して、リチウム鉄リン系複合酸化物炭素複合体を得る工程である。   The third step is a step in which the firing raw material mixture obtained in the second step is fired in an inert gas atmosphere to obtain a lithium iron phosphorus composite oxide carbon composite.

第3工程では、Fe元素の酸化を防止するため、窒素、アルゴン等の不活性ガス雰囲気中で、焼成原料混合物の焼成を行う。   In the third step, the firing raw material mixture is fired in an inert gas atmosphere such as nitrogen or argon in order to prevent oxidation of the Fe element.

第3工程において、焼成原料混合物を焼成する際の焼成温度は、500〜800℃、好ましくは550〜750℃である。焼成原料混合物の焼成温度が上記範囲内にあることにより、LiFePOの結晶性が高くなるので放電容量が高くなり、且つ粒径成長が進行し難いので放電容量が高くなる。一方、焼成原料混合物の焼成温度が、上記範囲未満だと、LiFePOの結晶性が低く放電容量が低くなり易く、また、上記範囲を超えると、粒径成長が進行し、放電容量が低くなる傾向がある。また、焼成原料混合物の焼成時間は、1時間以上、好ましくは2〜10時間である。また、第3工程において、所望により、焼成を2回以上行ってもよく、また、粉体特性を均一にする目的で、一度焼成したものを粉砕し、次いで再焼成を行ってもよい。 In the third step, the firing temperature when firing the firing raw material mixture is 500 to 800 ° C, preferably 550 to 750 ° C. When the firing temperature of the firing raw material mixture is within the above range, the LiFePO 4 crystallinity is increased, so that the discharge capacity is increased, and the particle size growth is difficult to proceed, and the discharge capacity is increased. On the other hand, if the firing temperature of the firing raw material mixture is less than the above range, the LiFePO 4 crystallinity is low and the discharge capacity tends to be low, and if it exceeds the above range, the particle size growth proceeds and the discharge capacity becomes low. Tend. Moreover, the baking time of a baking raw material mixture is 1 hour or more, Preferably it is 2 to 10 hours. In the third step, if desired, the firing may be performed twice or more, and the fired once may be pulverized and then refired for the purpose of making the powder characteristics uniform.

第3工程において、焼成原料混合物の焼成を行った後、焼成物を適宜冷却し、必要に応じて粉砕又は分級して、リチウム鉄リン系複合酸化物炭素複合体を得る。なお、Fe元素の酸化を防止するため、焼成物の冷却を、不活性ガス雰囲気中で行うことが好ましい。また、必要に応じて行われる焼成物の粉砕であるが、焼成して得られるリチウム鉄リン系複合酸化物炭素複合体が、もろくブロック状のものである場合等に、焼成物の粉砕を適宜行う。   In the third step, after the firing raw material mixture is fired, the fired product is appropriately cooled, and pulverized or classified as necessary to obtain a lithium iron phosphorus composite oxide-carbon composite. In order to prevent oxidation of the Fe element, it is preferable to cool the fired product in an inert gas atmosphere. In addition, although the pulverization of the fired product is performed as necessary, the calcination of the fired product is appropriately performed when the lithium iron phosphorus composite oxide-carbon composite obtained by firing is crumbly block-like. Do.

本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法を行い得られるリチウム鉄リン系複合酸化物炭素複合体は、LiFePOの粒子と微細な導電性炭素材料が均一に分散している。また、本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法を行い得られるリチウム鉄リン系複合酸化物炭素複合体中のリチウム鉄リン系複合酸化物は、X線回析分析において単相のLiFePOである。また、本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法を行い得られるリチウム鉄リン系複合酸化物炭素複合体は、リチウム鉄リン系複合酸化物粒子と微細な導電性炭素材料との均一混合物であるが、走査型電子顕微鏡観察(SEM)により、視覚的にリチウム鉄リン系複合酸化物粒子と導電性炭素材料とを区別することができ、SEM写真から求められるリチウム鉄リン系複合酸化物粒子自体の平均粒径は、0.05〜1μm、好ましくは0.1〜0.5μmである。なお、本発明において、リチウム鉄リン系複合酸化物炭素複合体中のリチウム鉄リン系複合酸化物の平均粒径は、走査型電子顕微鏡写真(SEM)から求められる平均粒径であり、走査型電子顕微鏡写真中から、任意に抽出した20個の粒子の粒径の平均値である。 In the lithium iron phosphorus composite oxide carbon composite obtained by performing the method for producing a lithium iron phosphorus composite oxide carbon composite of the present invention, LiFePO 4 particles and fine conductive carbon materials are uniformly dispersed. . Moreover, the lithium iron phosphorus composite oxide in the lithium iron phosphorus composite oxide carbon composite obtained by carrying out the method for producing the lithium iron phosphorus composite oxide carbon composite of the present invention is a single element in X-ray diffraction analysis. The phase is LiFePO 4 . Further, the lithium iron phosphorus composite oxide carbon composite obtained by performing the method for producing the lithium iron phosphorus composite oxide carbon composite of the present invention comprises lithium iron phosphorus composite oxide particles, fine conductive carbon material, Although it is a homogeneous mixture of the lithium iron phosphorus composite oxide particles and the conductive carbon material can be visually distinguished by scanning electron microscope observation (SEM), the lithium iron phosphorus system required from the SEM photograph The average particle diameter of the composite oxide particles itself is 0.05 to 1 μm, preferably 0.1 to 0.5 μm. In the present invention, the average particle size of the lithium iron phosphorus composite oxide in the lithium iron phosphorus composite oxide carbon composite is an average particle size determined from a scanning electron micrograph (SEM). It is the average value of the particle diameters of 20 particles arbitrarily extracted from the electron micrograph.

そして、本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法では、リチウム鉄リン系複合酸化物炭素複合体中のリチウム鉄リン系複合酸化物の組成調整が容易である。   And in the manufacturing method of the lithium iron phosphorus complex oxide carbon composite of the present invention, composition adjustment of the lithium iron phosphorus complex oxide in the lithium iron phosphorus complex oxide carbon complex is easy.

本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法を行い得られるリチウム鉄リン系複合酸化物炭素複合体は、正極、負極、セパレータ及びリチウム塩を含有する非水電解質からなるリチウム二次電池の正極活物質として好適に用いられる。なお、リチウム鉄リン系複合酸化物炭素複合体は吸湿性を有しているため、水分含有量が2000ppm以上の場合には、リチウム鉄リン系複合酸化物を正極活物質として用いる前に、真空乾燥等の操作を施して、リチウム鉄リン系複合酸化物の水分含有量を2000ppm以下、好ましくは1500ppm以下とすることが好ましい。   The lithium iron phosphorus composite oxide carbon composite obtained by carrying out the method for producing a lithium iron phosphorus composite oxide carbon composite of the present invention comprises a positive electrode, a negative electrode, a separator and a nonaqueous electrolyte comprising a lithium salt. It is suitably used as a positive electrode active material for secondary batteries. In addition, since the lithium iron phosphorus composite oxide carbon composite has hygroscopicity, when the water content is 2000 ppm or more, before using the lithium iron phosphorus composite oxide as the positive electrode active material, vacuum It is preferable to perform operations such as drying so that the water content of the lithium iron phosphorus composite oxide is 2000 ppm or less, preferably 1500 ppm or less.

また、本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法を行い得られるリチウム鉄リン系複合酸化物を、公知の他のリチウム遷移金属複合酸化物と併用して用いることで、従来のリチウム遷移金属複合酸化物を用いたリチウム二次電池の安全性を更に向上させることができる。本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法を行い得られるリチウム鉄リン系複合酸化物と併用することができるリチウム遷移金属酸化物としては、下記一般式(1);
Li1−b(1)
(式中、MはCo、Niから選ばれる少なくとも1種以上の遷移金属元素、AはMg、Al、Mn、Ti、Zr、Fe、Cu、Zn、Sn、Inから選ばれる少なくとも1種以上の金属元素を示し、aは0.9≦a≦1.1、bは0≦b≦0.5、cは1.8≦c≦2.2を示す。)で表わされるリチウム遷移金属複合酸化物が挙げられる。前記一般式(1)で表わされるリチウム遷移金属複合酸化物の種類の一例を示せば、LiCoO、LiNiO、LiNi0.8Co0.2、LiNi0.8Co0.1Mn0.1、LiNi0.4Co0.3Mn0.3等が挙げられる。これらのリチウム遷移金属複合酸化物は1種であっても又は2種以上であってもよい。本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法を行い得られるリチウム鉄リン系複合酸化物と併用されるリチウム遷移金属複合酸化物の物性等は、特に制限されるものではないが、平均粒径が好ましくは1〜20μm、特に好ましくは1〜15μm、さらに好ましくは2〜10μmであり、BET比表面積が好ましくは0.1〜2.0m2/g、特に好ましくは0.2〜1.5m2/g、さらに好ましくは0.3〜1.0m2/gである。
Further, by using the lithium iron phosphorus composite oxide obtained by performing the method for producing the lithium iron phosphorus composite oxide carbon composite of the present invention in combination with other known lithium transition metal composite oxides, The safety of the lithium secondary battery using the lithium transition metal composite oxide can be further improved. The lithium transition metal oxide that can be used in combination with the lithium iron phosphorus composite oxide obtained by carrying out the method for producing the lithium iron phosphorus composite oxide carbon composite of the present invention includes the following general formula (1);
Li a M 1- b AbO c (1)
(Wherein M is at least one transition metal element selected from Co and Ni, A is at least one transition metal element selected from Mg, Al, Mn, Ti, Zr, Fe, Cu, Zn, Sn, In) A metal element, a is 0.9 ≦ a ≦ 1.1, b is 0 ≦ b ≦ 0.5, and c is 1.8 ≦ c ≦ 2.2.) Things. An example of the type of lithium transition metal composite oxide represented by the general formula (1) is LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0. .1 O 2 , LiNi 0.4 Co 0.3 Mn 0.3 O 2 and the like. These lithium transition metal composite oxides may be one kind or two or more kinds. The physical properties of the lithium transition metal composite oxide used in combination with the lithium iron phosphorus composite oxide obtained by carrying out the method for producing the lithium iron phosphorus composite oxide carbon composite of the present invention are not particularly limited. The average particle size is preferably 1 to 20 μm, particularly preferably 1 to 15 μm, more preferably 2 to 10 μm, and the BET specific surface area is preferably 0.1 to 2.0 m 2 / g, particularly preferably 0.2. It is -1.5m < 2 > / g, More preferably, it is 0.3-1.0m < 2 > / g.

本発明のリチウム、鉄及びリンを含む共沈体の製造方法は、pHを5.5〜9.5に制御しつつ、リチウムイオン、2価の鉄イオン及びリン酸イオンを含む溶液(A液)と、アルカリを含む溶液(B液)と、を接触させて、リチウム、鉄及びリンを含む共沈体を得る工程を有するリチウム、鉄及びリンを含む共沈体の製造方法である。   The method for producing a coprecipitate containing lithium, iron and phosphorus according to the present invention comprises a solution containing lithium ion, divalent iron ion and phosphate ion (solution A) while controlling the pH to 5.5 to 9.5. ) And an alkali-containing solution (solution B) to obtain a coprecipitate containing lithium, iron and phosphorus, and a method for producing a coprecipitate containing lithium, iron and phosphorus.

つまり、本発明のリチウム、鉄及びリンを含む共沈体の製造方法は、前記本発明のリチウム鉄リン系複合酸化物炭素複合体の製造方法に係る第1工程と同様である。そして、本発明のリチウム、鉄及びリンを含む共沈体の製造方法は、リチウムイオン、2価の鉄イオン及びリン酸イオンを含む溶液(A液)と、アルカリを含む溶液(B液)と、を、pH5.5〜9.5に制御しつつ接触させて反応を行うことにより、リチウム、鉄及びリンを含む共沈体中のLi、Fe及びPの組成調整を容易にすることができ、Li、Fe及びPの組成比を1:1:1に近くでき、且つ共沈体を高収率で得ることができる。   That is, the method for producing a coprecipitate containing lithium, iron and phosphorus according to the present invention is the same as the first step according to the method for producing a lithium iron phosphorous composite oxide-carbon composite according to the present invention. And the manufacturing method of the coprecipitate containing lithium, iron, and phosphorus of this invention is the solution (A liquid) containing a lithium ion, a bivalent iron ion, and a phosphate ion, The solution (B liquid) containing an alkali, Can be made to contact while controlling at pH 5.5 to 9.5 to facilitate the composition adjustment of Li, Fe and P in the coprecipitate containing lithium, iron and phosphorus. The composition ratio of Fe and P can be close to 1: 1: 1, and the coprecipitate can be obtained in high yield.

以下、本発明を実施例により詳細に説明するが本発明はこれらに限定されるものではない。
(実施例1)
(第1工程)
<A液の調製>
硫酸リチウム9.7g(0.075モル、Li原子換算0.15モル)、硫酸第一鉄7水和物39.7g(0.15モル、2価のFe原子換算0.15モル)、及び75重量%リン酸19.6g(0.15モル、P原子換算0.15モル)を純水231mlに溶解し、A1液を調製した。
<B液の調製>
水酸化リチウム1水塩19.1g(0.45モル、0.45当量)を純水131mlに溶解し、B1液を調製した。
<A液とB液との接触>
反応容器に、純水(C液)250mlを仕込み70℃に加熱した。反応溶液(C液)のpHを7に、温度を70℃に制御し、反応溶液を撹拌しながら、A液とB液とを同時に反応容器に41分かけて全量滴下した。その後、常法により固液分離し、固形物を50℃で10時間乾燥して沈殿物28gを得た。
得られた沈殿物に対し、XRD測定及びICP測定を行ったところ、得られた沈殿物は、リチウムと鉄とリンをモル比で0.8:1:1の割合で含むリン酸第1鉄8水和物とリン酸リチウムとの共沈体であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
Example 1
(First step)
<Preparation of liquid A>
9.7 g of lithium sulfate (0.075 mol, 0.15 mol in terms of Li atom), 39.7 g of ferrous sulfate heptahydrate (0.15 mol, 0.15 mol in terms of divalent Fe atom), and 19.6 g of 75% by weight phosphoric acid (0.15 mol, 0.15 mol in terms of P atom) was dissolved in 231 ml of pure water to prepare A1 solution.
<Preparation of liquid B>
Lithium hydroxide monohydrate 19.1 g (0.45 mol, 0.45 equivalent) was dissolved in 131 ml of pure water to prepare solution B1.
<Contact between liquid A and liquid B>
A reaction vessel was charged with 250 ml of pure water (solution C) and heated to 70 ° C. The pH of the reaction solution (C solution) was controlled at 7 and the temperature was controlled at 70 ° C. While stirring the reaction solution, all of A solution and B solution were added dropwise to the reaction vessel simultaneously over 41 minutes. Thereafter, solid-liquid separation was performed by a conventional method, and the solid was dried at 50 ° C. for 10 hours to obtain 28 g of a precipitate.
When XRD measurement and ICP measurement were performed on the obtained precipitate, the obtained precipitate contained ferrous phosphate containing lithium, iron, and phosphorus in a molar ratio of 0.8: 1: 1. It was a coprecipitate of octahydrate and lithium phosphate.

(第2工程)
次に得られた共沈体10gとカーボンブラック(平均粒径0.05μm)0.8gとを乾式で十分混合し、均一混合物を得た。
(Second step)
Next, 10 g of the obtained coprecipitate and 0.8 g of carbon black (average particle size 0.05 μm) were sufficiently mixed by a dry method to obtain a uniform mixture.

(第3工程)
次に得られた均一混合物を600℃で5時間、窒素雰囲気中で焼成した。次に窒素雰囲気中でそのまま冷却してリチウム鉄リン系複合酸化物炭素複合体を得た。
(Third step)
Next, the obtained uniform mixture was baked in a nitrogen atmosphere at 600 ° C. for 5 hours. Next, it was cooled as it was in a nitrogen atmosphere to obtain a lithium iron phosphorus composite oxide carbon composite.

(実施例2)
(第1工程)
<A液の調製>
実施例1と同様にしてA1液を調製した。
<B液の調製>
水酸化リチウム1水塩19.1g(0.45モル、0.45当量)を純水131mlに溶解し、B1液を調製した。
<A液とB液との接触>
反応溶液のpHを7に、温度を70℃に制御することに代えて、反応溶液のpHを5.5に、温度を98℃に制御すること以外は、実施例1と同様に行い、沈殿物27gを得た。
得られた沈殿物に対し、XRD測定及びICP測定を行ったところ、得られた沈殿物は、リチウムと鉄とリンをモル比で0.9:1:1の割合で含むリン酸第1鉄8水和物とリン酸リチウムとの共沈体であった。
(Example 2)
(First step)
<Preparation of liquid A>
A1 solution was prepared in the same manner as in Example 1.
<Preparation of liquid B>
Lithium hydroxide monohydrate 19.1 g (0.45 mol, 0.45 equivalent) was dissolved in 131 ml of pure water to prepare solution B1.
<Contact between liquid A and liquid B>
Precipitation was carried out in the same manner as in Example 1 except that the pH of the reaction solution was controlled to 7 and the temperature was controlled to 70 ° C., except that the pH of the reaction solution was controlled to 5.5 and the temperature was controlled to 98 ° C. 27 g of product was obtained.
When XRD measurement and ICP measurement were performed on the obtained precipitate, the obtained precipitate contained ferrous phosphate containing lithium, iron, and phosphorus in a molar ratio of 0.9: 1: 1. It was a coprecipitate of octahydrate and lithium phosphate.

(第2工程及び第3工程)
実施例1と同様にして行い、リチウム鉄リン系複合酸化物炭素複合体を得た。
(Second step and third step)
It carried out like Example 1 and obtained lithium iron phosphorus system complex oxide carbon composite.

(実施例3)
(第1工程)
<A液の調製>
実施例1と同様にしてA1液を調製した。
<B液の調製>
水酸化リチウム1水塩19.7g(0.47モル、0.47当量)を純水136mlに溶解し、B3液を調製した。
<A液とB液との接触>
B1液に代えて、B3液とすること、及び反応溶液のpHを7に、温度を70℃に制御することに代えて、反応溶液のpHを8.5に、温度を50℃に制御すること以外は、実施例1と同様に行い、沈殿物29gを得た。
得られた沈殿物に対し、XRD測定及びICP測定を行ったところ、得られた沈殿物は、リチウムと鉄とリンをモル比で1.1:1:1の割合で含むリン酸第1鉄8水和物とリン酸リチウムとの共沈体であった。
(Example 3)
(First step)
<Preparation of liquid A>
A1 solution was prepared in the same manner as in Example 1.
<Preparation of liquid B>
Lithium hydroxide monohydrate 19.7 g (0.47 mol, 0.47 equivalent) was dissolved in 136 ml of pure water to prepare B3 solution.
<Contact between liquid A and liquid B>
Instead of B1 solution, B3 solution is used, and instead of controlling the pH of the reaction solution to 7 and the temperature to 70 ° C, the pH of the reaction solution is controlled to 8.5 and the temperature is controlled to 50 ° C. Except for this, the same procedure as in Example 1 was carried out to obtain 29 g of a precipitate.
When XRD measurement and ICP measurement were performed on the obtained precipitate, the obtained precipitate contained ferrous phosphate containing lithium, iron, and phosphorus in a molar ratio of 1.1: 1: 1. It was a coprecipitate of octahydrate and lithium phosphate.

(第2工程及び第3工程)
実施例1と同様にして行い、リチウム鉄リン系複合酸化物炭素複合体を得た。
(Second step and third step)
It carried out like Example 1 and obtained lithium iron phosphorus system complex oxide carbon composite.

(実施例4)
<A液の調製>
硫酸リチウム9.7g、硫酸第一鉄7水和物39.7g、及び75重量%リン酸19.6gを純水231mlに溶解し、更に、還元剤としてL−アスコルビン酸3gを添加して、A2液を調製した。
<B液の調製>
実施例1と同様にしてB1液を調製した。
<A液とB液との接触>
反応容器に、純水(C液)250mlを仕込み70℃に加熱した。反応溶液(C液)のpHを7に、温度を70℃に制御し、反応系に窒素ガスを吹き込みながら、反応溶液を撹拌しながら、A液とB液とを同時に反応容器に41分かけて全量滴下した。その後、常法により固液分離し、固形物を50℃で10時間乾燥して沈殿物28gを得た。
得られた沈殿物に対し、XRD測定及びICP測定を行ったところ、得られた沈殿物は、リチウムと鉄とリンをモル比で0.9:1:1の割合で含むリン酸第1鉄8水和物とリン酸リチウムとの共沈体であった。
Example 4
<Preparation of liquid A>
9.7 g of lithium sulfate, 39.7 g of ferrous sulfate heptahydrate, and 19.6 g of 75% by weight phosphoric acid were dissolved in 231 ml of pure water, and 3 g of L-ascorbic acid was added as a reducing agent. A2 liquid was prepared.
<Preparation of liquid B>
B1 solution was prepared in the same manner as in Example 1.
<Contact between liquid A and liquid B>
A reaction vessel was charged with 250 ml of pure water (solution C) and heated to 70 ° C. The pH of the reaction solution (liquid C) was controlled at 7 and the temperature was controlled at 70 ° C. While blowing the nitrogen gas into the reaction system and stirring the reaction solution, liquid A and liquid B were simultaneously applied to the reaction vessel for 41 minutes. The whole amount was dropped. Thereafter, solid-liquid separation was performed by a conventional method, and the solid was dried at 50 ° C. for 10 hours to obtain 28 g of a precipitate.
When XRD measurement and ICP measurement were performed on the obtained precipitate, the obtained precipitate contained ferrous phosphate containing lithium, iron, and phosphorus in a molar ratio of 0.9: 1: 1. It was a coprecipitate of octahydrate and lithium phosphate.

(第2工程及び第3工程)
実施例1と同様にして行い、リチウム鉄リン系複合酸化物炭素複合体を得た。
(Second step and third step)
It carried out like Example 1 and obtained lithium iron phosphorus system complex oxide carbon composite.

(比較例1)
(第1工程)
<A液の調製及びB液の調製>
実施例1と同様にしてA1液及びB1液を調製した。
<A液とB液との接触>
反応容器にA1液を仕込み、70℃で攪拌しながら、B1液を一定速度で反応容器に37分かけて全量滴下した。このとき、B1液を滴下する前のA1液のpHは1であり、B1液を滴下終了後の反応溶液のpHは7であった。B1液の滴下終了後、常法により固液分離し、固形物を50℃で10時間乾燥して沈殿物27gを得た。
得られた沈殿物に対しICP測定及びXRD測定を行ったところ、リチウムと鉄とリンをモル比で0.7:1:1の割合で含むリン酸第1鉄8水和物とリン酸リチウムとの共沈体であった。
(Comparative Example 1)
(First step)
<Preparation of liquid A and preparation of liquid B>
In the same manner as in Example 1, A1 solution and B1 solution were prepared.
<Contact between liquid A and liquid B>
The A1 solution was charged into the reaction vessel, and the entire amount of the B1 solution was added dropwise to the reaction vessel at a constant rate over 37 minutes while stirring at 70 ° C. At this time, the pH of the A1 solution before dropping the B1 solution was 1, and the pH of the reaction solution after the dropping of the B1 solution was 7. After completion of the dropwise addition of the B1 liquid, solid-liquid separation was performed by a conventional method, and the solid was dried at 50 ° C. for 10 hours to obtain 27 g of a precipitate.
When ICP measurement and XRD measurement were performed on the obtained precipitate, ferrous phosphate octahydrate and lithium phosphate containing lithium, iron, and phosphorus in a molar ratio of 0.7: 1: 1. And co-precipitate.

(第2工程及び第3工程)
実施例1と同様にして行い、リチウム鉄リン系複合酸化物炭素複合体を得た。
(Second step and third step)
It carried out like Example 1 and obtained lithium iron phosphorus system complex oxide carbon composite.

(比較例2)
(第1工程)
<A液の調製>
実施例1と同様にしてA1液を調製した。
<B液の調製>
水酸化リチウム1水塩16.9g(0.4モル、0.4当量)を純水117mlに溶解し、B4液を調製した。
<A液とB液との接触>
B1液に代えて、B4液とすること、及び反応溶液のpHを7に、温度を70℃に制御することに代えて、反応溶液のpHを5に、温度を98℃に制御すること以外は、実施例1と同様に行い、沈殿物24gを得た。
得られた沈殿物に対し、XRD測定及びICP測定を行ったところ、得られた沈殿物は、リチウムと鉄とリンをモル比で0.4:1.1:1の割合で含むリン酸第1鉄8水和物とリン酸リチウムとの共沈体であった。
(Comparative Example 2)
(First step)
<Preparation of liquid A>
A1 solution was prepared in the same manner as in Example 1.
<Preparation of liquid B>
Lithium hydroxide monohydrate 16.9 g (0.4 mol, 0.4 equivalent) was dissolved in 117 ml of pure water to prepare a B4 solution.
<Contact between liquid A and liquid B>
Instead of controlling the pH of the reaction solution to 7 and the temperature to 70 ° C. instead of controlling the B1 solution to the B4 solution, and controlling the pH of the reaction solution to 5 and the temperature to 98 ° C. Was performed in the same manner as in Example 1 to obtain 24 g of a precipitate.
When the XRD measurement and the ICP measurement were performed on the obtained precipitate, the obtained precipitate contained phosphoric acid salt containing lithium, iron, and phosphorus in a molar ratio of 0.4: 1.1: 1. It was a coprecipitate of monoiron octahydrate and lithium phosphate.

(第2工程及び第3工程)
実施例1と同様にして行い、リチウム鉄リン系複合酸化物炭素複合体を得た。
(Second step and third step)
It carried out like Example 1 and obtained lithium iron phosphorus system complex oxide carbon composite.

(比較例3)
(第1工程)
<A液の調製>
実施例1と同様にしてA1液を調製した。
<B液の調製>
水酸化リチウム1水塩30.6g(0.73モル、0.73当量)を純水212mlに溶解し、B5液を調製した。
<A液とB液との接触>
B1液に代えて、B5液とすること、及び反応溶液のpHを7に、温度を70℃に制御することに代えて、反応溶液のpHを10に、温度を70℃に制御すること以外は、実施例1と同様に行い、沈殿物33gを得た。
得られた沈殿物に対しICP測定を行ったところ、リチウムと鉄とリンをモル比で2.8:1:1の割合で含んでいた。XRD測定からは、リン酸リチウムのピークしか観測されなかった。
(Comparative Example 3)
(First step)
<Preparation of liquid A>
A1 solution was prepared in the same manner as in Example 1.
<Preparation of liquid B>
Lithium hydroxide monohydrate 30.6 g (0.73 mol, 0.73 equivalent) was dissolved in 212 ml of pure water to prepare B5 solution.
<Contact between liquid A and liquid B>
Instead of controlling the pH of the reaction solution to 7 and the temperature to 70 ° C. instead of controlling the B1 solution to the B5 solution, and controlling the pH of the reaction solution to 10 and the temperature to 70 ° C. Was performed in the same manner as in Example 1 to obtain 33 g of a precipitate.
When the ICP measurement was performed on the obtained precipitate, it contained lithium, iron and phosphorus in a molar ratio of 2.8: 1: 1. From the XRD measurement, only the lithium phosphate peak was observed.

(第2工程及び第3工程)
実施例1と同様にして行い、リチウム鉄リン系複合酸化物炭素複合体を得た。
(Second step and third step)
It carried out like Example 1 and obtained lithium iron phosphorus system complex oxide carbon composite.

(比較例4)
(第1工程)
<A液の調製>
実施例1と同様にしてA1液を調製した。
<B液の調製>
25質量%水酸化ナトリウム65.2g(0.41モル、0.41当量)を純水37mlに溶解し、B6液を調製した。
<A液とB液との接触>
反応容器にA1液を仕込み、70℃で攪拌しながら、B6液を一定速度で反応容器に27分かけて全量滴下した。このとき、B6液を滴下する前のA1液のpHは1であり、B6液を滴下終了後の反応溶液のpHは7であった。B6液の滴下終了後、常法により固液分離し、固形物を50℃で10時間乾燥して沈殿物25gを得た。
得られた沈殿物に対しICP測定及びXRD測定を行ったところ、リチウムと鉄とリンをモル比で0.4:1.2:1の割合で含むリン酸第1鉄8水和物とリン酸リチウムとの共沈体であった。
(Comparative Example 4)
(First step)
<Preparation of liquid A>
A1 solution was prepared in the same manner as in Example 1.
<Preparation of liquid B>
25% by mass sodium hydroxide 65.2 g (0.41 mol, 0.41 equivalent) was dissolved in 37 ml of pure water to prepare B6 solution.
<Contact between liquid A and liquid B>
The A1 solution was charged into the reaction vessel, and the entire amount of the B6 solution was dropped into the reaction vessel at a constant rate over 27 minutes while stirring at 70 ° C. At this time, the pH of the A1 solution before dropping the B6 solution was 1, and the pH of the reaction solution after the dropping of the B6 solution was 7. After completion of the dropwise addition of the B6 liquid, solid-liquid separation was performed by a conventional method, and the solid was dried at 50 ° C. for 10 hours to obtain 25 g of a precipitate.
When the ICP measurement and the XRD measurement were performed on the obtained precipitate, ferrous phosphate octahydrate and phosphorus containing lithium, iron, and phosphorus at a molar ratio of 0.4: 1.2: 1. It was a coprecipitate with lithium acid.

(第2工程及び第3工程)
実施例1と同様にして行い、リチウム鉄リン系複合酸化物炭素複合体を得た。
(Second step and third step)
It carried out like Example 1 and obtained lithium iron phosphorus system complex oxide carbon composite.

Figure 0005323410
1)表1中の収率はA液中の成分量から計算される共沈体の質量に対する実際に得られた沈殿物の質量の百分率として求めた。
2)添加前pH1から添加終了後pH7に変化
Figure 0005323410
1) The yield in Table 1 was determined as a percentage of the mass of the precipitate actually obtained with respect to the mass of the coprecipitate calculated from the amount of components in the liquid A.
2) Change from pH 1 before addition to pH 7 after completion of addition

<リチウム鉄リン系複合酸化物炭素複合体の物性評価>
実施例1〜4及び比較例1〜4で得られたリチウム鉄リン系複合酸化物炭素複合体について、リチウム鉄リン系複合酸化物炭素複合体中のリチウム鉄リン系複合酸化物の平均粒径及び導電性炭素材料の含有量を測定し、また、X線回折分析を行った。得られた結果を表2に示す。また、実施例1及び比較例1で得られたリチウム鉄リン系複合酸化物炭素複合体のX線回折図を図1(実施例1)及び図2(比較例1)に示す。なお、平均粒径は、走査型電子顕微鏡(SEM)により、リチウム鉄リン系複合酸化物炭素複合体中の、任意に抽出した20個のリチウム鉄リン系複合酸化物自体の粒径の平均値である。導電性炭素材料の含有量はC原子の含有量である。
<Evaluation of physical properties of lithium iron phosphorus composite oxide carbon composite>
About the lithium iron phosphorus complex oxide carbon composite obtained in Examples 1-4 and Comparative Examples 1-4, the average particle diameter of the lithium iron phosphorus complex oxide in the lithium iron phosphorus complex oxide carbon complex And the content of the conductive carbon material was measured, and X-ray diffraction analysis was performed. The obtained results are shown in Table 2. Moreover, the X-ray-diffraction figure of the lithium iron phosphorus type complex oxide carbon composite obtained in Example 1 and Comparative Example 1 is shown in FIG. 1 (Example 1) and FIG. 2 (Comparative Example 1). The average particle diameter is the average value of the particle diameters of 20 arbitrarily extracted lithium iron phosphorus composite oxides in the lithium iron phosphorus composite oxide carbon composite by a scanning electron microscope (SEM). It is. The content of the conductive carbon material is the content of C atoms.

Figure 0005323410
Figure 0005323410

<電池性能の評価>
<電池性能試験>
(I)リチウム二次電池の作製;
上記のように製造した実施例1〜4及び比較例1〜4のリチウム鉄リン系複合酸化物炭素複合体91質量%、黒鉛粉末6質量%、ポリフッ化ビニリデン3質量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。得られた混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF6 1モルを溶解したものを使用した。
(II)電池の性能評価
作製したリチウム二次電池を室温で作動させ、放電容量を測定した。また、LiFePO4の理論放電容量(170mAH/g)に対する比を下記式(2)により算出した。その結果を表3に示す。
理論放電容量に対する比={放電容量/LiFePOの理論放電容量(170mAH/g)}×100 (2)
<Evaluation of battery performance>
<Battery performance test>
(I) Production of lithium secondary battery;
A positive electrode agent prepared by mixing 91% by mass of the lithium iron phosphorus composite oxide carbon composites of Examples 1 to 4 and Comparative Examples 1 to 4 manufactured as described above, 6% by mass of graphite powder, and 3% by mass of polyvinylidene fluoride. And this was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The obtained kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 was dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate as the electrolyte.
(II) Battery performance evaluation The fabricated lithium secondary battery was operated at room temperature, and the discharge capacity was measured. Further, the ratio of LiFePO 4 to the theoretical discharge capacity (170 mAH / g) was calculated by the following formula (2). The results are shown in Table 3.
Ratio to theoretical discharge capacity = {discharge capacity / theoretical discharge capacity of LiFePO 4 (170 mAH / g)} × 100 (2)

Figure 0005323410
Figure 0005323410

実施例1で得られたリチウム鉄リン系複合酸化物炭素複合体のX線回折図である。1 is an X-ray diffraction pattern of a lithium iron phosphorus composite oxide carbon composite obtained in Example 1. FIG. 比較例1で得られたリチウム鉄リン系複合酸化物炭素複合体のX線回折図である。2 is an X-ray diffraction diagram of a lithium iron phosphorus composite oxide carbon composite obtained in Comparative Example 1. FIG.

Claims (4)

pHを5.5〜9.5に制御しつつ、リチウムイオン、2価の鉄イオン及びリン酸イオンを含む溶液(A液)と、水酸化リチウムを含む溶液(B液)と、を接触させて、リチウム、鉄及びリンを含む共沈体を得る第1工程と、該共沈体と導電性炭素材料とを混合し、焼成原料混合物を得る第2工程と、該焼成原料混合物を不活性ガス雰囲気中で焼成し、リチウム鉄リン系複合酸化物炭素複合体を得る第3工程と、を有することを特徴とするリチウム鉄リン系複合酸化物炭素複合体の製造方法。 While controlling the pH to 5.5 to 9.5, a solution (Liquid A) containing lithium ions, divalent iron ions and phosphate ions is brought into contact with a solution containing Lithium hydroxide (Liquid B). A first step of obtaining a coprecipitate containing lithium, iron and phosphorus, a second step of mixing the coprecipitate and a conductive carbon material to obtain a calcined raw material mixture, and inerting the calcined raw material mixture And a third step of firing in a gas atmosphere to obtain a lithium iron phosphorus composite oxide carbon composite, and a method for producing a lithium iron phosphorus composite oxide carbon composite. pHを5.5〜9.5に制御しつつ、水(C液)に前記A液を添加しながら、該C液に前記B液を添加することにより接触させて、前記第1工程を行うことを特徴とする請求項1記載のリチウム鉄リン系複合酸化物炭素複合体の製造方法。 While the pH is controlled to 5.5 to 9.5, the first step is performed by adding the B solution to the C solution while adding the A solution to water (C solution). the process according to claim 1 Symbol placement lithium-iron-phosphorus compound oxide carbon composite material, characterized in that. 前記第3工程において、前記焼成原料混合物の焼成温度が、500〜800℃であることを特徴とする請求項1又は2いずれか1項記載のリチウム鉄リン系複合酸化物炭素複合体の製造方法。 In the third step, the firing temperature of the firing material mixture The process according to claim 1 or 2 any one lithium-iron-phosphorus compound oxide carbon composite material wherein it is 500 to 800 ° C. . pHを5.5〜9.5に制御しつつ、リチウムイオン、2価の鉄イオン及びリン酸イオンを含む溶液(A液)と、水酸化リチウムを含む溶液(B液)と、を接触させて、リチウム、鉄及びリンを含む共沈体を得る工程を有することを特徴とするリチウム、鉄及びリンを含む共沈体の製造方法。 While controlling the pH to 5.5 to 9.5, a solution (Liquid A) containing lithium ions, divalent iron ions and phosphate ions is brought into contact with a solution containing Lithium hydroxide (Liquid B). And a method for producing a coprecipitate comprising lithium, iron and phosphorus, comprising the step of obtaining a coprecipitate comprising lithium, iron and phosphorus.
JP2008183436A 2007-07-27 2008-07-15 Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus Active JP5323410B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008183436A JP5323410B2 (en) 2007-07-27 2008-07-15 Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
US12/180,089 US20090028772A1 (en) 2007-07-27 2008-07-25 Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
CN2008101442140A CN101355162B (en) 2007-07-27 2008-07-25 Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
KR1020080073481A KR20090012187A (en) 2007-07-27 2008-07-28 A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosphorus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007195761 2007-07-27
JP2007195761 2007-07-27
JP2008183436A JP5323410B2 (en) 2007-07-27 2008-07-15 Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus

Publications (2)

Publication Number Publication Date
JP2009054576A JP2009054576A (en) 2009-03-12
JP5323410B2 true JP5323410B2 (en) 2013-10-23

Family

ID=40307839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183436A Active JP5323410B2 (en) 2007-07-27 2008-07-15 Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus

Country Status (3)

Country Link
JP (1) JP5323410B2 (en)
KR (1) KR20090012187A (en)
CN (1) CN101355162B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281765B2 (en) * 2007-07-27 2013-09-04 日本化学工業株式会社 Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP2010020987A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
BRPI0919654B1 (en) 2008-10-22 2019-07-30 Lg Chem, Ltd. OLIVINE TYPE IRONYL PHOSPHATE, CATHOD MIXTURE AND SECONDARY BATTERY
JP5446017B2 (en) * 2009-10-06 2014-03-19 国立大学法人長岡技術科学大学 Positive electrode material for lithium ion secondary battery and method for producing the same
CN101777649A (en) * 2010-03-15 2010-07-14 彩虹集团公司 Preparation method of lithium iron phosphate of positive electrode material of lithium ion battery
JP5678685B2 (en) * 2011-01-25 2015-03-04 住友金属鉱山株式会社 Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
US8945498B2 (en) * 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
JP5709136B2 (en) * 2011-09-05 2015-04-30 太平洋セメント株式会社 Method for producing lithium iron phosphate and method for producing lithium iron phosphate-based positive electrode active material
CN103086343B (en) * 2011-11-07 2015-03-25 湖北明申锂电科技有限公司 Method for synthesizing lithium iron phosphate by liquid solid reduction
JP5776573B2 (en) * 2012-02-06 2015-09-09 住友金属鉱山株式会社 Positive electrode active material for lithium secondary battery and method for producing the same, precursor of the positive electrode active material and method for producing the same, and lithium secondary battery using the positive electrode active material
EP2698346A1 (en) * 2012-08-14 2014-02-19 Clariant International Ltd. Mixed sulphate containing lithium-manganese-metal phosphate
JP6151386B2 (en) * 2015-06-09 2017-06-21 太平洋セメント株式会社 Manufacturing method of olivine type lithium phosphate positive electrode material
KR20230060503A (en) * 2020-09-04 2023-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of cathode active material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3884796B2 (en) * 1996-07-12 2007-02-21 日本化学工業株式会社 Method for producing Ni-Co composite hydroxide
JP3890671B2 (en) * 1997-04-22 2007-03-07 宇部興産株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery, and negative electrode and battery using the same
JP4724912B2 (en) * 2000-10-05 2011-07-13 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
DE10117904B4 (en) * 2001-04-10 2012-11-15 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Binary, ternary and quaternary lithium iron phosphates, process for their preparation and their use
JP4475882B2 (en) * 2003-03-31 2010-06-09 国立大学法人九州大学 Method for producing positive electrode material for secondary battery, and secondary battery
DE102005012640B4 (en) * 2005-03-18 2015-02-05 Süd-Chemie Ip Gmbh & Co. Kg Circular process for the wet-chemical production of lithium metal phosphates
KR101264459B1 (en) * 2005-06-29 2013-05-14 썽뜨르 나쇼날르 드 라 르쉐르쉐 씨엉띠삐끄 Crystalline nanometric lifepo4
CN100376475C (en) * 2005-10-14 2008-03-26 江苏大学 Spherical porous high-density LiFePO4 powder and process for preparing same
CN100448772C (en) * 2006-08-11 2009-01-07 广州市鹏辉电池有限公司 High density ultrafine composite ferric lithium phosphate anode material and preparation method

Also Published As

Publication number Publication date
JP2009054576A (en) 2009-03-12
CN101355162A (en) 2009-01-28
CN101355162B (en) 2012-11-07
KR20090012187A (en) 2009-02-02

Similar Documents

Publication Publication Date Title
JP5323410B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
CA2894545C (en) Lmfp cathode materials with improved electrochemical performance
WO2010047334A1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5245084B2 (en) Olivine-type compound ultrafine particles and method for producing the same
JP2008052970A (en) Manufacturing method of electrode material, positive electrode material, and battery
US20090028772A1 (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
JP2006056754A (en) Method for manufacturing ammonium iron phosphate and positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2013038517A1 (en) Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2009046383A (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex, and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
JP4683509B2 (en) Lithium manganese composite oxide composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2014082219A (en) Positive electrode active material for lithium secondary batteries and manufacturing method thereof, and lithium secondary battery arranged by use of such positive electrode active material
US20090028771A1 (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP5565579B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
AU2009100663A4 (en) Method for manufacturing lithium iron phosphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5323410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250