JP3884796B2 - Method for producing Ni-Co composite hydroxide - Google Patents

Method for producing Ni-Co composite hydroxide Download PDF

Info

Publication number
JP3884796B2
JP3884796B2 JP20328996A JP20328996A JP3884796B2 JP 3884796 B2 JP3884796 B2 JP 3884796B2 JP 20328996 A JP20328996 A JP 20328996A JP 20328996 A JP20328996 A JP 20328996A JP 3884796 B2 JP3884796 B2 JP 3884796B2
Authority
JP
Japan
Prior art keywords
cobalt
nickel
hydroxide
salt
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20328996A
Other languages
Japanese (ja)
Other versions
JPH1029820A (en
Inventor
重保 木村
健 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP20328996A priority Critical patent/JP3884796B2/en
Publication of JPH1029820A publication Critical patent/JPH1029820A/en
Application granted granted Critical
Publication of JP3884796B2 publication Critical patent/JP3884796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Ni−Co系複合水酸化物とその製造方法及びリチウム二次電池用正極活物質原料に関するものである。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化、コードレス化が急速に進むに従い、小型電子機器の電源としてリチウム二次電池が実用され始めている。このリチウム二次電池については、1980年に水島等によりコバルト酸リチウムがリチウム二次電池の正極活性物質として有用であるとの報告〔“マテリアル リサーチブレイン”vo1.115 、783-789 頁(1980 年) 〕がなされて以来、リチウム系複合酸化物に関する研究開発が活発に進められており、これまでに多くの提案がなされている。
【0003】
例えば、Li1-a NiO2 (但し、0≦a≦1)(米国特許第4302518 号明細書) 、Lib Ni2-b 2 及びLiNi1-d Cod 2 (但し、0.84≦b≦0.5 )(特開平2-40861 号公報)、Lin Nim Co1-m 2 (特開昭63-299056 号公報、特開平1-120765号公報、特開平1-142056号公報)などのリチウムと遷移金属を主体とする複合酸化物が提案されている。
【0004】
上記の化合物において、コバルト酸リチウムは結晶安定性が大なため、最も早くから検討されてきたが、原料のコバルトが希産で高価なうえ、0.7電子以上充電すると結晶性の低下や電解液の分解が生じるために大容量化には適さないといった欠点がある。一方、LiNiO2 は、コバルト酸リチウムに比べて安価であるという有利な点はあるが、結晶中に欠陥を生じやすいことから、活物質としての安定性が悪く、また電池に組込んだときの放電容量特性はコバルト系に劣ることから実用性にかなりの問題をかかえている。
【0005】
【発明が解決しようとする課題】
このようなことから、ニッケルの一部をコバルトで置換した複合金属酸リチウム塩が経済的かつ機能的観点から検討されている。しかしながら、通常コバルト含有ニッケル酸リチウムの製造方法としては、単にコバルト及びニッケルの酸化物や水酸化物と水酸化リチウムのそれぞれの原料を乾式で混合して焼成する方法が知られているが、この方法では結晶に欠陥が生成し易く、このために好ましい放電容量特性を有するものは得られていない。
【0006】
発明者らは、上記の事実に鑑み、電池用原料としてのNi−Co系化合物について鋭意検討した結果、リチウム複合酸化物の原料として優れたNi−Co系複合水酸化物粒子とその製造方法を見出すことに成功し本発明を完成した。従って、本発明の目的とするところは、リチウム二次電池などの正極材として有効に使用されるLi−Ni−Co系複合酸化物の原料として有用で新規なNi−Co系複合水酸化物およびその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
即ち、本発明によるNi−Co系複合水酸化物の製造方法は、ニッケル塩及びコバルト塩の混合塩水溶液のアルカリ加水分解に基づく水酸化ニッケル及び水酸化コバルトの沈殿生成において、ニッケル塩及びコバルト塩の混合塩水溶液に対し、ニッケルやコバルトの金属イオンに対して錯化力を有するキレート剤の存在下においてアルカリ加水分解による沈殿生成反応を連続的に行わせ、次いで沈殿生成物を、少なくとも3時間熟成させることを構成上の特徴とする。
【0008】
また、上記の連続沈殿生成反応を多段式に行うこと、およびキレート剤は、アミノカルボン酸、オキシカルボン酸又はアンモニアから選ばれた少なくとも1種又は2種以上であることを、それぞれ第2および第3の特徴とする。
【0011】
本発明のNi−Co系複合水酸化物は、ニッケルとコバルトとの固溶および/または共沈状態で生成したNi−Co系複合水酸化物である。ここで、ニッケルとコバルトとの固溶および/または共沈状態で生成したものは、例えばニッケルとコバルトが単に混合しているものではなく、ニッケルの結晶相の格子点にある原子がコバルトと一部置換しているものや、ニッケル塩とコバルト塩が均一に共沈しているものである。固溶または共沈していないニッケル又はコバルトが単独で存在している場合は、粉末X線回折により、これらのニッケル又はコバルトの存在に起因して、生成した不純物としてのニッケル又はコバルトの水酸化物のピークが観察される。本発明のNi−Co系複合水酸化物には、かかる不純物が極めて少なく、粉末X線回折において、それらのピークは殆ど存在しない。
【0012】
本発明に係るNi−Co系複合水酸化物の粒子特性において、粒子の形状や表面状態は、電子顕微鏡により大部分確認することができるが、その一次粒子は板状、柱状若しくは針状の粒子形状、またはこれらが混合した粒子形状を有しており、これらの一次粒子が互いに積層し合い、それが凝集して実質的に球状の二次粒子を構成してなる特異な粒子構造を形成している。ここで、実質的に球状の二次粒子とは、真球状または卵のように楕円状のものや球状粒子が幾つか結合した繭状や団子状の形状のものをいう。
【0013】
ニッケルとコバルトとは、原子比Ni:Coが0:10〜10:0の範囲のものが好ましいが、生成した結晶粒子において、板状、柱状若しくは針状の一次粒子の大きさや積層した層の厚みは、上記のニッケルとコバルトの原子比により異なり、例えばコバルトの原子比が高くなるにしたがって、一次粒子の板、柱あるいは針のサイズが大きくなり、積層の厚さも増す傾向にある。
【0014】
球状の二次粒子は、レーザー法による測定法で求めた粒度分布が〔(V95−V5)/V50〕=3以下の範囲のものが好ましい。粒度分布がこの範囲を外れた場合には粒径の範囲が広くなり、リチウム二次電池用の原料としては、好ましくない。また、球状の二次粒子の平均粒子径は1〜50μmの範囲が好ましく、5〜20μmの範囲がさらに好ましい。
【0015】
本発明に係るNi−Co系複合水酸化物は、上記のような粒子特性を有しているものであり、該複合水酸化物にリチウム塩を混合し焼成したものは、リチウム二次電池用正極活物質として使用した場合、従来に無い優れた放電特性と放電保持率を有することから、この活物質用原料として特に有用である。
【0016】
【発明の実施の形態】
次に、本発明に係る製造方法について説明すると、ニッケル塩及びコバルト塩混合のアルカリ加水分解反応において、ニッケル塩及びコバルト塩の混合塩水溶液に対し、ニッケル及びコバルトの金属イオンに対して錯化力を有するキレート剤の存在下において、アルカリ加水分解による沈殿生成反応を連続的に行わせ、次いで沈殿生成物を必要かつ十分な滞留時間熟成させることを特徴とするものである。
【0017】
本発明に使用されるニッケル塩は、水に溶解するものであれば特に制限されないが、通常、硫酸ニッケル、硝酸ニッケル、塩化ニッケル等の水易溶性の鉱酸塩類が挙げられる。また、コバルト塩もニッケルと同様に水に溶解するものであれば特に制限されないが、通常、硫酸コバルト、硝酸コバルト、塩化コバルト等の水易溶性の鉱酸塩類が挙げられる。ニッケル塩及びコバルト塩は、0.5〜3.5モル/L程度の水溶液濃度が実用的範囲で反応に好ましく使用される。
【0018】
また、これらの金属イオンに対して錯化力を有するキレート剤としては、例えばアミノカルボン酸、オキシカルボン酸又はアンモニアから選ばれた少なくとも1種又は2種以上が好ましい。アミノカルボン酸としては、例えばヒドラジン、トリエタノールアミン、グリシン、アラニン、アスパラギン、イミノジ酢酸、グルタミン酸、エチレンジアミン、エチレンジアミン四酢酸及びそれらの塩等が挙げられる。オキシカルボン酸としては、例えば酢酸、乳酸、シュウ酸、マロン酸、リンゴ酸、酒石酸、クエン酸、サリチル酸、チオグリコール酸及びそれらの塩等が挙げられる。
【0019】
また、アンモニアは、アンモニウムイオンを供給できるものであれば、特に制限されないが、例えば硝酸アンモニウム、硫酸アンモニウム、塩化アンモニウムなどのアンモニウム塩の水溶液、アンモニア水、アンモニアガス等が挙げられ、好ましくはアンモニア水である。
【0020】
上記のキレート剤は、ニッケル塩及びコバルト塩の1モル当たり0.2〜4.0モルの範囲で供給されるのが好ましい。なおキレート剤は、単独で供給してもよいが、ニッケル塩水溶液及びコバルト塩水溶液の何れかに所定割合混合して添加してもよい。0.2モル未満では、粒子成長が十分でなく、また4.0モルを越えた場合は、それ以上の顕著な効果が期待できないとともに経済的な問題が生じ好ましくない。
【0021】
アルカリ加水分解に使用するアルカリは、水酸化ナトリウム、水酸化カリウム等の苛性アルカリ水溶液が好ましいが、水酸化ナトリウムが最も好ましい。アルカリの添加量は、ニッケル塩及びコバルト塩1モルに対して、1.1〜3.0モルが好ましく、1.1モル未満の場合には、未反応のニッケル塩及びコバルト塩が生成し易くなり、3.0モルを越えて添加した場合は、粒子成長が十分でなく未成長粒子が多く生成し易い。
【0022】
上記の原料を用いて、金属水酸化物の沈殿反応を行う場合、反応操作として幾つかの態様が考えられる。その態様を以下に例示する。
(1)アルカリ加水分解に基づく金属水酸化物の生成反応において、反応系内のpHを9〜12の範囲に終始一定に保持しつつ連続的に金属塩水溶液、キレート剤及びアルカリ剤を定量的に添加させる方法である。この操作により、終始安定した条件で、金属塩の加水分解に伴うニッケル及びコバルトの水酸化物が均質な共沈体として連続的に生成することになる。次いで、生成した該共沈体を同じ反応器又は別の受器で必要かつ十分な熟成処理を施すことが必要である。
(2)第2の方法としては、キレート剤を含有する金属塩水溶液へアルカリ剤を添加してアルカリ加水分解による共沈体生成を行い、次いで熟成を同様に行う場合がある。
(3)他の方法として、反応液を連続的に添加して共沈生成物を含む反応系のスラリーをオーバーフローさせることなく、反応媒体液のみを除いて、系の反応液量を一定に制御しながら反応及び熟成させる方法である。
【0023】
いずれの場合も、この熟成は沈殿生成後、少なくとも3時間撹拌で行うことが望ましい。また、反応系のスラリー濃度は、少なくとも70g/L以上になるように反応条件を設定することが望ましい。これよりも濃度が薄いと粒子成長が極端に遅くなったり、処理容量が増大して好ましくない。本反応操作はバッチ式でもよいが、連続法が好ましく、また、連続法において何度かに分けて行う多段方式でもよい。反応温度は通常10〜100℃が好ましく、さらに好ましくは20〜80℃である。反応時間は1〜72時間程度である。
【0024】
上記の製造方法により得られるNi−Co系複合水酸化物は、実質的に球状の粒子形態を有しており、リチウム二次電池の正極活物質用原料として有用であり、また当該Ni−Co系複合水酸化物を有効成分とした正極活物質を使用したリチウム二次電池は放電容量および放電保持率などに優れた特性をそなえたものとなる。
【0025】
【実施例】
実施例1
1L容量のビーカーに、予め200mLの水を張り、1.6mol/LのNiSO4 ・6H2 Oと0.4mol/LのCoSO4 ・7H2 Oの混合塩水溶液1200mL、6mol/LのNaOH溶液800mL、及び錯化剤として1.5mol/Lのアンモニア溶液400mLを滴下するとともに、pHを11に調整しながら50℃に保温して水酸化物を生成させ、次いで9時間撹拌熟成した。この間オーバー方式で系内の液量を制御し、3時間毎にオーバーフローした液の交換を行った。
【0026】
濾過後に沈殿生成した水酸化物をリパルプ洗浄した。電導度計によって洗浄効果を判断しながら十分に洗浄を行い、乾燥後、沈殿生成物のX線回折を行った結果、沈殿生成物は非晶質ではなく、NiとCoとが相互に固溶したNiとCoとの共晶体で、組成はNi/Coがほぼ8/2であることが確認された。沈殿生成した結晶のSEM写真を図1に示す。図1から、この結晶は、一次粒子が柱状の粒子形状を有し、これらの一次粒が集合して実質的に球状の二次粒子を構成する粒子形態を形成していることが認められる。
【0027】
実施例2
1L容量のビーカーに、予め200mLの水を張り、1.8mol/LのNiSO4 ・6H2 Oと0.2mol/LのCoSO4 ・7H2 Oの混合塩水溶液1200mL、6mol/LのNaOH溶液800mL、及び錯化剤として1mol/Lのグリシン溶液400mLを滴下方式で加え,pHを10に調整しながら70℃に保温して水酸化物を沈殿生成させ、次いで9時間撹拌熟成した。この間オーバーフロー方式で系内の液量を制御し、3時間毎にオーバーフローした液を交換した。
【0028】
濾過後に得られた沈殿生成物をリパルプ洗浄した。電導度計によって洗浄効果を確認しながら十分に洗浄を行い、乾燥後、沈殿生成物のX線回折を行った結果、沈殿生成物はNiとCoの共晶体からなる結晶粒子であり、組成はNi/Coが約9/1であることが確認された。また、この結晶粒子は、実施例1で得られた結晶粒子と同様、柱状の一次粒子が集合した実質的に球状の二次粒子を構成した粒子形態を有していた。
【0029】
実施例3
容量が500mLビーカーに、予め250mLの水を張り、1.4mol/LのNiSO4 ・6H2 Oと0.6mol/LのCoSO4 ・7H2 Oの混合塩水溶液2L、6mol/LのNaOH溶液1300ml、及び錯化剤として1mol/Lのリンゴ酸溶液670mLを滴下方式で加え、pHを10に調整しながら70℃に保温して水酸化物を沈殿生成させ、15時間撹拌熟成した。この間、系内の液量を制御するために、反応媒体液のみを減圧濾去方式で除きながらスラリー濃度を上げていった。
【0030】
濾過後に沈殿生成物をリパルプ洗浄した。電導度計に洗浄効果を判断しながら十分に洗浄を行い、乾燥後の沈殿生成物についてX線回折を行った結果、沈殿生成物はNiとCoの共晶体からなる結晶であり、Ni/Coが約8/2の組成を有するものであることが確認された。また、結晶粒子は、実施例1で得られた結晶粒子と同様、板状の粒子形状を有する一次粒子が積層、凝集して、実質的に球状の二次粒子を構成した粒子形態を有していた。
【0031】
【発明の効果】
本発明によれば、とくにリチウム二次電池の正極材として用いられるLi−Ni−Co系複合酸化物の原料として有用なNi−Co系複合水酸化物およびその製造方法が提供される。当該Ni−Co系複合水酸化物を正極活物質の有効成分として使用した場合には、放電容量特性のきわめて優れたリチウム電池が得られる。
【図面の簡単な説明】
【図1】本発明のNi−Co系複合水酸化物の結晶粒子の粒子構造を示すSEM写真である。
【図2】図1の結晶粒子の粒子構造をさらに倍率を上げて観察した場合のSEM写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Ni—Co composite hydroxide, a method for producing the same, and a positive electrode active material for a lithium secondary battery.
[0002]
[Prior art]
In recent years, lithium secondary batteries have begun to be put into practical use as power sources for small electronic devices as consumer electronic devices have become increasingly portable and cordless. Regarding this lithium secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium secondary batteries [“Material Research Brain” vo1.115, pages 783-789 (1980 )] Has been made, research and development on lithium-based composite oxides has been actively promoted, and many proposals have been made so far.
[0003]
For example, Li 1-a NiO 2 (where 0 ≦ a ≦ 1) (US Pat. No. 4,302,518), Li b Ni 2-b O 2 and LiNi 1-d Co d 0 2 (where 0.84 ≦ b ≦ 0.5) (JP-A-2-40861), Li n Ni m Co 1-m O 2 ( JP 63-299056 and JP Hei 1-120765, JP Patent Laid-Open No. 1-142056 Publication), etc. A composite oxide mainly composed of lithium and a transition metal has been proposed.
[0004]
In the above-mentioned compounds, lithium cobaltate has been studied from the earliest because of its large crystal stability, but the raw material cobalt is rare and expensive, and when it charges more than 0.7 electrons, the crystallinity decreases and the electrolyte solution Has the disadvantage that it is not suitable for increasing the capacity. On the other hand, LiNiO 2 has an advantage that it is cheaper than lithium cobaltate, but since it tends to cause defects in the crystal, it is not stable as an active material, and when incorporated into a battery. Since the discharge capacity characteristics are inferior to those of cobalt, it has a considerable problem in practicality.
[0005]
[Problems to be solved by the invention]
For these reasons, lithium composite metal acid salts in which a part of nickel is substituted with cobalt have been studied from an economical and functional viewpoint. However, as a method for producing a cobalt-containing lithium nickelate, a method is generally known in which cobalt and nickel oxides or hydroxides and lithium hydroxide raw materials are mixed and fired in a dry process. In the method, defects are easily generated in the crystal, and for this reason, those having preferable discharge capacity characteristics have not been obtained.
[0006]
In view of the above-mentioned facts, the inventors have intensively studied Ni-Co compounds as battery materials, and as a result, obtained Ni-Co composite hydroxide particles that are excellent as raw materials for lithium composite oxides and their production methods. The present invention was completed successfully. Therefore, an object of the present invention is to provide a novel Ni—Co composite hydroxide useful as a raw material for a Li—Ni—Co composite oxide that is effectively used as a positive electrode material for lithium secondary batteries and the like. It is in providing the manufacturing method.
[0007]
[Means for Solving the Problems]
That is, the method for producing a Ni—Co based composite hydroxide according to the present invention provides a nickel salt and a cobalt salt in precipitation of nickel hydroxide and cobalt hydroxide based on alkaline hydrolysis of a mixed salt aqueous solution of nickel salt and cobalt salt. In the presence of a chelating agent having a complexing power to nickel or cobalt metal ions, a mixed salt aqueous solution is continuously subjected to a precipitation reaction by alkaline hydrolysis, and then the precipitated product is allowed to react for at least 3 hours. Aging is characterized by aging.
[0008]
In addition, the above-mentioned continuous precipitation formation reaction is performed in a multistage manner, and the chelating agent is at least one selected from aminocarboxylic acid, oxycarboxylic acid or ammonia, and second and second respectively . Three features.
[0011]
The Ni—Co based composite hydroxide of the present invention is a Ni—Co based composite hydroxide produced in a solid solution and / or coprecipitation state of nickel and cobalt. Here, what is produced in a solid solution and / or coprecipitation state of nickel and cobalt is not a mixture of nickel and cobalt, for example, and the atoms at the lattice points of the crystal phase of nickel are identical to cobalt. Some are partially substituted, and nickel and cobalt salts are co-precipitated uniformly. When nickel or cobalt that is not solid solution or co-precipitated is present alone, it is determined by powder X-ray diffraction that nickel or cobalt is hydroxylated as an impurity generated due to the presence of these nickel or cobalt. An object peak is observed. The Ni—Co composite hydroxide of the present invention has very few such impurities, and there are almost no peaks in powder X-ray diffraction.
[0012]
In the particle characteristics of the Ni—Co composite hydroxide according to the present invention, the shape and surface state of the particles can be confirmed mostly by an electron microscope, but the primary particles are plate-like, columnar or needle-like particles. The particles have a shape or a mixed particle shape, and these primary particles are laminated together to form a unique particle structure that aggregates to form substantially spherical secondary particles. ing. Here, the substantially spherical secondary particle means a true spherical shape or an oval shape such as an egg, or a bowl-like or dumpling-like shape in which several spherical particles are combined.
[0013]
Nickel and cobalt are preferably those having an atomic ratio Ni: Co in the range of 0:10 to 10: 0. However, in the produced crystal particles, the size of the plate-like, columnar or needle-like primary particles, The thickness varies depending on the atomic ratio of nickel and cobalt. For example, as the atomic ratio of cobalt increases, the size of the primary particle plate, column, or needle increases, and the thickness of the stack also tends to increase.
[0014]
The spherical secondary particles preferably have a particle size distribution determined by a measurement method using a laser method in the range of [(V95−V5) / V50] = 3 or less. When the particle size distribution is out of this range, the particle size range is widened, which is not preferable as a raw material for a lithium secondary battery. The average particle diameter of the spherical secondary particles is preferably in the range of 1 to 50 μm, and more preferably in the range of 5 to 20 μm.
[0015]
The Ni-Co based composite hydroxide according to the present invention has the above particle characteristics, and the composite hydroxide mixed with a lithium salt and fired is used for a lithium secondary battery. When used as a positive electrode active material, it is particularly useful as a raw material for this active material because it has excellent discharge characteristics and discharge retention ratio that have not been obtained in the past.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, the production method according to the present invention will be described. In the alkaline hydrolysis reaction of the nickel salt and cobalt salt mixture, the complexing power of nickel and cobalt metal ions with respect to the mixed salt aqueous solution of nickel salt and cobalt salt. In the presence of a chelating agent having the above, a precipitation formation reaction by alkaline hydrolysis is continuously performed, and then the precipitation product is aged for a necessary and sufficient residence time.
[0017]
The nickel salt used in the present invention is not particularly limited as long as it is soluble in water, but usually, readily water-soluble mineral salts such as nickel sulfate, nickel nitrate, nickel chloride and the like can be mentioned. Further, the cobalt salt is not particularly limited as long as it is soluble in water like nickel, and usually includes readily water-soluble mineral salts such as cobalt sulfate, cobalt nitrate, and cobalt chloride. Nickel salts and cobalt salts are preferably used for the reaction within a practical range of aqueous solution concentrations of about 0.5 to 3.5 mol / L.
[0018]
Moreover, as a chelating agent which has complexing power with respect to these metal ions, at least 1 sort (s) or 2 or more types chosen, for example from aminocarboxylic acid, oxycarboxylic acid, or ammonia is preferable. Examples of aminocarboxylic acids include hydrazine, triethanolamine, glycine, alanine, asparagine, iminodiacetic acid, glutamic acid, ethylenediamine, ethylenediaminetetraacetic acid, and salts thereof. Examples of the oxycarboxylic acid include acetic acid, lactic acid, oxalic acid, malonic acid, malic acid, tartaric acid, citric acid, salicylic acid, thioglycolic acid, and salts thereof.
[0019]
Ammonia is not particularly limited as long as it can supply ammonium ions, and examples thereof include aqueous solutions of ammonium salts such as ammonium nitrate, ammonium sulfate, and ammonium chloride, ammonia water, ammonia gas, and the like, preferably ammonia water. .
[0020]
The chelating agent is preferably supplied in the range of 0.2 to 4.0 moles per mole of nickel salt and cobalt salt. In addition, although a chelating agent may be supplied independently, you may mix and add a predetermined ratio to either nickel salt aqueous solution and cobalt salt aqueous solution. If the amount is less than 0.2 mol, the grain growth is not sufficient. If the amount exceeds 4.0 mol, no more remarkable effect can be expected, and an economical problem is caused.
[0021]
The alkali used for the alkali hydrolysis is preferably a caustic aqueous solution such as sodium hydroxide or potassium hydroxide, but sodium hydroxide is most preferred. The amount of alkali added is preferably 1.1 to 3.0 moles per mole of nickel salt and cobalt salt. When the amount is less than 1.1 moles, unreacted nickel salt and cobalt salt are easily formed. When the amount exceeds 3.0 mol, the particle growth is not sufficient and many ungrown particles are likely to be generated.
[0022]
When performing precipitation reaction of a metal hydroxide using said raw material, several aspects can be considered as reaction operation. The aspect is illustrated below.
(1) In a metal hydroxide production reaction based on alkali hydrolysis, a metal salt aqueous solution, a chelating agent, and an alkali agent are quantitatively continuously maintained while keeping the pH in the reaction system in the range of 9 to 12 from beginning to end. It is the method of adding to. By this operation, under stable conditions, nickel and cobalt hydroxides accompanying the hydrolysis of the metal salt are continuously produced as a homogeneous coprecipitate. Next, it is necessary to subject the produced coprecipitate to a necessary and sufficient aging treatment in the same reactor or another receiver.
(2) As a 2nd method, an alkali agent is added to the metal salt aqueous solution containing a chelating agent, coprecipitate production | generation is carried out by alkali hydrolysis, and aging may be performed similarly.
(3) As another method, without adding the reaction liquid continuously by adding the reaction liquid continuously and overflowing the reaction system slurry containing the coprecipitation product, the reaction liquid volume of the system is controlled to be constant. While aging and reacting.
[0023]
In any case, this aging is preferably carried out with stirring for at least 3 hours after the precipitation. Further, it is desirable to set the reaction conditions so that the slurry concentration in the reaction system is at least 70 g / L or more. If the concentration is lower than this, it is not preferable because the particle growth becomes extremely slow or the processing capacity increases. Although this reaction operation may be a batch system, a continuous process is preferred, and a multistage system in which the continuous process is performed in several steps may be used. The reaction temperature is usually preferably 10 to 100 ° C, more preferably 20 to 80 ° C. The reaction time is about 1 to 72 hours.
[0024]
The Ni—Co based composite hydroxide obtained by the above production method has a substantially spherical particle form, is useful as a raw material for a positive electrode active material of a lithium secondary battery, and the Ni—Co A lithium secondary battery using a positive electrode active material containing an active composite hydroxide as an active ingredient has excellent characteristics such as discharge capacity and discharge retention.
[0025]
【Example】
Example 1
200 mL of water is put in a 1 L capacity beaker in advance, and a mixed salt aqueous solution of 1.6 mol / L NiSO 4 .6H 2 O and 0.4 mol / L CoSO 4 .7H 2 O 1200 mL, 6 mol / L NaOH solution 800 mL of a 1.5 mol / L ammonia solution as a complexing agent and 400 mL of a complexing agent were added dropwise, and the mixture was kept at 50 ° C. while adjusting the pH to 11 to generate a hydroxide, and then stirred and aged for 9 hours. During this time, the amount of liquid in the system was controlled by the over method, and the overflowed liquid was replaced every 3 hours.
[0026]
The hydroxide produced by precipitation after filtration was repulped and washed. As a result of sufficient washing while judging the washing effect with an electric conductivity meter, and drying, the precipitated product was X-ray diffracted. As a result, the precipitated product was not amorphous and Ni and Co were dissolved in each other. It was confirmed that the composition of Ni / Co was approximately 8/2 in the eutectic of Ni and Co. A SEM photograph of the precipitated crystals is shown in FIG. From FIG. 1, it can be seen that in this crystal, the primary particles have a columnar particle shape, and these primary particles are aggregated to form a particle form constituting a substantially spherical secondary particle.
[0027]
Example 2
200 mL of water is put in a 1 L capacity beaker in advance, and a mixed salt aqueous solution of 1.8 mol / L NiSO 4 .6H 2 O and 0.2 mol / L CoSO 4 .7H 2 O 1200 mL, 6 mol / L NaOH solution 800 mL and 400 mL of a 1 mol / L glycine solution as a complexing agent were added dropwise, and the mixture was kept at 70 ° C. while adjusting the pH to 10 to precipitate a hydroxide, and then stirred and aged for 9 hours. During this time, the amount of liquid in the system was controlled by the overflow method, and the overflowed liquid was replaced every 3 hours.
[0028]
The precipitated product obtained after filtration was repulped. As a result of carrying out sufficient washing while confirming the washing effect with an electric conductivity meter, and performing drying and X-ray diffraction of the precipitation product, the precipitation product is a crystal particle composed of a eutectic of Ni and Co, and the composition is It was confirmed that Ni / Co was about 9/1. Further, like the crystal particles obtained in Example 1, the crystal particles had a particle form constituting substantially spherical secondary particles in which columnar primary particles were aggregated.
[0029]
Example 3
250 mL of water is put in a 500 mL beaker in advance, and 2 L of a mixed salt solution of 1.4 mol / L NiSO 4 .6H 2 O and 0.6 mol / L CoSO 4 .7H 2 O, 6 mol / L NaOH solution 1300 ml and 670 mL of a 1 mol / L malic acid solution as a complexing agent were added dropwise, and the mixture was kept at 70 ° C. while adjusting the pH to 10 to precipitate a hydroxide, and aged for 15 hours with stirring. During this time, in order to control the amount of liquid in the system, the slurry concentration was increased while removing only the reaction medium liquid by a vacuum filtration method.
[0030]
The precipitated product was repulped after filtration. The electric conductivity meter was sufficiently washed while judging the washing effect, and X-ray diffraction was performed on the dried precipitated product. As a result, the precipitated product was a crystal composed of an eutectic of Ni and Co, and Ni / Co Was confirmed to have a composition of about 8/2. The crystal particles have a particle form in which primary particles having a plate-like particle shape are laminated and aggregated to form substantially spherical secondary particles, similar to the crystal particles obtained in Example 1. It was.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the Ni-Co type complex hydroxide useful as a raw material of the Li-Ni-Co type complex oxide especially used as a positive electrode material of a lithium secondary battery, and its manufacturing method are provided. When the Ni-Co based composite hydroxide is used as an active ingredient of the positive electrode active material, a lithium battery with extremely excellent discharge capacity characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is an SEM photograph showing the particle structure of crystal particles of a Ni—Co composite hydroxide of the present invention.
FIG. 2 is an SEM photograph in the case where the grain structure of the crystal grain of FIG. 1 is observed at a higher magnification.

Claims (3)

ニッケル塩及びコバルト塩の混合塩水溶液のアルカリ加水分解に基づく水酸化ニッケル及び水酸化コバルトの沈殿生成において、ニッケル塩及びコバルト塩の混合塩水溶液に対し、ニッケルやコバルトの金属イオンに対して錯化力を有するキレート剤の存在下においてアルカリ加水分解による沈殿生成反応を連続的に行わせ、次いで沈殿生成物を、少なくとも3時間熟成させることを特徴とするNi−Co系複合水酸化物の製造方法。In precipitation of nickel hydroxide and cobalt hydroxide based on alkaline hydrolysis of mixed salt aqueous solution of nickel salt and cobalt salt, nickel and cobalt metal ions are complexed to nickel salt and cobalt salt mixed salt aqueous solution A method for producing a Ni-Co based composite hydroxide, characterized in that a precipitation reaction by alkaline hydrolysis is continuously carried out in the presence of a chelating agent having strength, and then the precipitation product is aged for at least 3 hours. . 連続沈殿生成反応を多段式に行う請求項1記載のNi−Co系複合水酸化物の製造方法。  The manufacturing method of the Ni-Co type complex hydroxide of Claim 1 which performs a continuous precipitation production | generation reaction in a multistage type. キレート剤は、アミノカルボン酸、オキシカルボン酸又はアンモニアから選ばれた少なくとも1種又は2種以上である請求項1又は2記載のNi−Co系複合水酸化物の製造方法。  The method for producing a Ni-Co composite hydroxide according to claim 1 or 2, wherein the chelating agent is at least one selected from aminocarboxylic acid, oxycarboxylic acid or ammonia.
JP20328996A 1996-07-12 1996-07-12 Method for producing Ni-Co composite hydroxide Expired - Fee Related JP3884796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20328996A JP3884796B2 (en) 1996-07-12 1996-07-12 Method for producing Ni-Co composite hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20328996A JP3884796B2 (en) 1996-07-12 1996-07-12 Method for producing Ni-Co composite hydroxide

Publications (2)

Publication Number Publication Date
JPH1029820A JPH1029820A (en) 1998-02-03
JP3884796B2 true JP3884796B2 (en) 2007-02-21

Family

ID=16471583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20328996A Expired - Fee Related JP3884796B2 (en) 1996-07-12 1996-07-12 Method for producing Ni-Co composite hydroxide

Country Status (1)

Country Link
JP (1) JP3884796B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064355A1 (en) * 1998-06-10 1999-12-16 Sakai Chemical Industries, Ltd. Nickel hydroxide particles and production and use thereof
KR100307163B1 (en) * 1999-06-12 2001-11-01 김순택 Method of preparing positive active material of lithium secondary battery
JP2002203549A (en) * 2000-12-28 2002-07-19 Shin Kobe Electric Mach Co Ltd Lithium secondary battery and treatment method of the positive electrode active substance
AUPR295301A0 (en) * 2001-02-08 2001-03-08 QNI Limited Process for the preparation of battery chemicals
AU2002227801B2 (en) * 2001-02-08 2005-12-01 Qni Technology Pty Ltd Cobalt (III) encapsulated nickel hydroxides and basic carbonates for battery electrodes
US8137844B2 (en) 2006-11-17 2012-03-20 Nippon Chemical Industrial Co., Ltd. Cathode active material for lithium rechargeable battery, manufacturing method thereof and lithium rechargeable battery
JP5172231B2 (en) 2007-07-20 2013-03-27 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5341325B2 (en) 2007-07-25 2013-11-13 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5323410B2 (en) * 2007-07-27 2013-10-23 日本化学工業株式会社 Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
US9859557B2 (en) * 2009-12-02 2018-01-02 Sumitomo Metal Mining Co., Ltd. Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
JP5638232B2 (en) 2009-12-02 2014-12-10 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery positive electrode active material nickel cobalt manganese composite hydroxide particles and production method thereof, non-aqueous electrolyte secondary battery positive electrode active material and production method thereof, and non-aqueous electrolyte secondary battery
JP5464348B2 (en) * 2010-02-26 2014-04-09 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
JP5614334B2 (en) * 2010-03-02 2014-10-29 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide, method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery obtained using the composite hydroxide
JP5971109B2 (en) * 2011-12-20 2016-08-17 住友金属鉱山株式会社 Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5961004B2 (en) * 2012-02-21 2016-08-02 日本化学工業株式会社 Method for producing cobalt hydroxide, method for producing cobalt oxide, and method for producing lithium cobaltate
JP5505565B2 (en) 2012-02-23 2014-05-28 住友金属鉱山株式会社 Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
KR101665270B1 (en) 2012-06-06 2016-10-11 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
KR101937896B1 (en) 2016-03-04 2019-01-14 주식회사 엘지화학 Precursor of positive electrode active material for secondary battery and positive electrode active material prepared by the same
CN109428076B (en) 2017-09-04 2023-04-11 三星电子株式会社 Positive active material precursor, positive active material, method for producing positive active material, positive electrode, and lithium battery
EP3496185A1 (en) * 2017-12-08 2019-06-12 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Low-temperature preparation of cathode active material
WO2021010321A1 (en) * 2019-07-18 2021-01-21 株式会社豊田自動織機 Positive electrode active material in which aluminum is dispersed uniformly
CN116646633B (en) * 2023-05-31 2023-12-12 科立鑫(珠海)新能源有限公司 Method for recycling active substances in lithium ion positive electrode material

Also Published As

Publication number Publication date
JPH1029820A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
JP3884796B2 (en) Method for producing Ni-Co composite hydroxide
JP3842348B2 (en) Method for producing Ni-Mn composite hydroxide
JP3830586B2 (en) Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery
WO2018015210A1 (en) A method for upscalable precipitation synthesis of battery materials with tunable particle size distribution
KR20110073630A (en) Method of producing ni- composite metal hydroxide, ni-composite metal hydroxide obtained thereby
US11952287B2 (en) Method for the precipitation of particles of a metal carbonate material without use of a chelating agent
CN114084914A (en) Ternary precursor and preparation method and application thereof
CN112687870B (en) Positive electrode material precursor and preparation method thereof, and positive electrode material and application thereof
CN113488620A (en) Ternary positive electrode precursor and preparation method thereof, ternary positive electrode material and preparation method thereof, and lithium ion battery
JP4224143B2 (en) Method for producing lithium cobalt composite oxide
JP4096367B2 (en) Method for producing particulate composition
JP3425006B2 (en) Ni-Mn composite hydroxide powder for positive electrode active material of lithium secondary battery and method for producing the same
US5840269A (en) Method of preparing a double layered nickel hydroxide active material
KR100261509B1 (en) Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
JPH1081520A (en) Manganese-cobalt-based double hydroxide, its production and raw material for anode active material for lithium secondary cell
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JPH09306487A (en) Manufacture of positive electrode active material for alkaline storage battery
CN115504528A (en) Multi-element precursor, synthesis method thereof, positive electrode material and lithium ion battery
JP3579545B2 (en) Nickel hydroxide for alkaline storage batteries and method for producing the same
KR20190021070A (en) Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal using sol-gel synthesizing process of the heterogeneous metal
US6015538A (en) Methods for doping and coating nickel hydroxide
JP3609196B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
CN112687871B (en) Cathode material and preparation method thereof, lithium battery cathode and application thereof
JP2911758B2 (en) High density nickel hydroxide co-precipitated with boron and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees