JPH09306487A - Manufacture of positive electrode active material for alkaline storage battery - Google Patents

Manufacture of positive electrode active material for alkaline storage battery

Info

Publication number
JPH09306487A
JPH09306487A JP9020182A JP2018297A JPH09306487A JP H09306487 A JPH09306487 A JP H09306487A JP 9020182 A JP9020182 A JP 9020182A JP 2018297 A JP2018297 A JP 2018297A JP H09306487 A JPH09306487 A JP H09306487A
Authority
JP
Japan
Prior art keywords
aqueous solution
mol
positive electrode
salt
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9020182A
Other languages
Japanese (ja)
Other versions
JP3656353B2 (en
Inventor
Hiroyuki Sakamoto
弘之 坂本
Hirokazu Kimiya
宏和 木宮
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02018297A priority Critical patent/JP3656353B2/en
Publication of JPH09306487A publication Critical patent/JPH09306487A/en
Priority to CN98106185A priority patent/CN1129198C/en
Priority to EP07022225A priority patent/EP1890350A3/en
Priority to US09/017,029 priority patent/US6129902A/en
Priority to EP98101747A priority patent/EP0856899B1/en
Priority to US09/560,296 priority patent/US6284215B1/en
Application granted granted Critical
Publication of JP3656353B2 publication Critical patent/JP3656353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a storage battery positive electrode material of high capacity and superior high-temperature charging efficiency from high density compound metal oxide, which is obtained by continuously reacting respective solutions of Ni salt, two kinds of dissimilar metal salts, ammonia and alkali with each other under prescribed conditions. SOLUTION: Nickel salt solution, dissimilar metal salt solution, anmonium ion solution whose adding rate is 2mol or more in relation to these metal salt 1mol, and alkali solution whose adding rate is 1.9-2.3mol in relation to these metal salt 1mol are independently and simultaneously introduced to a reaction tank. Its pH is controlled to 11-13, the temperature, 30-60 deg.C, and the mean residence time, 20-50 hours and the liquid containing compound metal oxide particles is continuously taken out as an overflow while stirring. There are two kinds in the dissimilar metal salts, one of Co, Zn, and Cd salts or more, and one of Mn, Al, V, Cr, Fe, Cu, Ge, Nb, Mo, Ag, W, Sn, Sb, Ca, Y, Ti, Sr, Bi, and rare earth metal salts or more, and the both can be independently fed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
正極活物質の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a positive electrode active material for an alkaline storage battery.

【0002】[0002]

【従来の技術】近年、ポータブル機器は小型化傾向を強
めており、必然的にその電源である小型二次電池の高エ
ネルギー密度化が望まれている。また、機器の用途が多
様化しつつあることから、広温度範囲、特に高温度で安
定した性能の電池が切望されている。
2. Description of the Related Art In recent years, portable devices have been increasingly miniaturized, and inevitably, it has been desired to increase the energy density of small secondary batteries which are the power source thereof. In addition, since the applications of the devices are diversifying, a battery having stable performance in a wide temperature range, especially at a high temperature, is desired.

【0003】従来より、アルカリ蓄電池用正極の主活物
質はニッケル酸化物が用いられている。ニッケル酸化物
粉末の製造方法としては、ニッケル塩水溶液に水酸化ナ
トリウムなどのアルカリ水溶液を作用させて沈殿させ、
次いで熟成して結晶成長させたのち機械的な方法で粉砕
する方法が採用されていたが、製法が煩雑であるととも
に粉末形状が不定形であることから高い充填密度が得ら
れにくい問題があった。
Conventionally, nickel oxide has been used as the main active material of the positive electrode for alkaline storage batteries. As a method for producing the nickel oxide powder, an aqueous nickel salt solution is caused to act on an alkaline aqueous solution such as sodium hydroxide to cause precipitation.
Then, a method of aging and crystal growth followed by crushing by a mechanical method was adopted, but there was a problem that it was difficult to obtain a high packing density because the manufacturing method was complicated and the powder shape was irregular. .

【0004】しかし、特公平4−80513号公報には
ニッケル塩水溶液にアンモニアを作用させてニッケルの
アンモニウム錯体を形成させ、アルカリ水溶液中で水酸
化ニッケルを成長させる方法が提案されている。この方
法によれば連続製法が可能となり低廉化が図れるととも
に、粒子形状が球状に近いことにより高密度充填が可能
となったが数十μmまで成長した高密度粒子を活物質と
して用いることにより充電効率が低下するという問題が
あった。
However, Japanese Patent Publication No. 4-80513 proposes a method of causing ammonia to act on a nickel salt aqueous solution to form an ammonium complex of nickel and growing nickel hydroxide in an alkaline aqueous solution. According to this method, a continuous production method is possible and the cost can be reduced, and high density packing is possible because the particle shape is close to spherical, but it is possible to charge by using high density particles grown to several tens of μm as an active material. There was a problem of reduced efficiency.

【0005】これに対して、Coやその二価酸化物粉末
を添加することで改善しようと試みられてきたが、正極
特性のより一層の向上、例えば、(a)高温雰囲気下で
の利用率の向上、(b)正極膨潤の抑制、および(c)
高エネルギー密度化等を目的として活物質自体の改良も
強く望まれている。
On the other hand, attempts have been made to improve it by adding Co and its divalent oxide powder, but further improvement of the positive electrode characteristics, for example, (a) utilization rate in a high temperature atmosphere. Improvement, (b) suppression of positive electrode swelling, and (c)
It is strongly desired to improve the active material itself for the purpose of increasing the energy density.

【0006】これら(a)、(b)の課題を解決するた
めに、特公平3−50384号公報には、従来より活物
質の結晶内部にCd、Coを添加する方法が採用されて
いるが、環境面からの電池成分に対する意識の高まりか
ら、カドミウム・フリーの電池が要望され、カドミウム
に代わる金属元素の一例としてZnなどを添加する方法
が提案されている。
In order to solve these problems (a) and (b), Japanese Patent Publication No. 3-50384 has conventionally adopted a method of adding Cd and Co into the crystal of the active material. In view of increasing environmental awareness of battery components, a cadmium-free battery has been demanded, and a method of adding Zn or the like as an example of a metal element replacing cadmium has been proposed.

【0007】一方、前記(c)の高エネルギー密度化の
ためには、高反応次数の活物質が要求されている。前記
したように、現在工業的に使用されるアルカリ蓄電池の
正極活物質はニッケル酸化物であり、その反応は一電子
反応域といわれているが、ニッケル酸化物の結晶内部に
他の金属元素を添加することで高反応次数の活物質が得
られることが報告されている(論文:C.Faure and C.De
lmas,J,Power Sources,36(1991)497-506など)。
On the other hand, in order to increase the energy density of (c), an active material having a high reaction order is required. As described above, the positive electrode active material of the alkaline storage battery currently industrially used is nickel oxide, and the reaction is said to be a one-electron reaction zone, but other metal elements are contained inside the crystal of nickel oxide. It has been reported that active materials with high reaction order can be obtained by addition (Paper: C. Faure and C. De
lmas, J, Power Sources, 36 (1991) 497-506 etc.).

【0008】以上のことから、ニッケル酸化物結晶内部
にNi以外の金属元素を添加した複合金属酸化物に対す
る関心が高まってきている。
From the above, interest in the composite metal oxide in which a metal element other than Ni is added inside the nickel oxide crystal is increasing.

【0009】[0009]

【発明が解決しようとする課題】Ni以外の金属として
Co、Zn、Cdを添加した複合金属酸化物の製造法
は、Ni塩とそれぞれの金属塩の所定量を混合し、それ
を水に溶解して得られた水溶液にアンモニアを作用させ
てアンモニウム錯体を形成させた後、アルカリ水溶液を
加えて中和反応を行う方法が提案されている。この場
合、異種金属の添加量が少量であるため試薬濃度、p
H、温度及び滞留時間等の条件はニッケル酸化物製造法
とほぼ同じ条件を採用していた。
A method for producing a composite metal oxide in which Co, Zn and Cd are added as a metal other than Ni is to mix a predetermined amount of Ni salt and each metal salt and dissolve it in water. A method has been proposed in which ammonia is allowed to act on the resulting aqueous solution to form an ammonium complex, and then an alkaline aqueous solution is added to carry out a neutralization reaction. In this case, the reagent concentration, p
Conditions such as H, temperature, and residence time were almost the same as those used in the nickel oxide production method.

【0010】しかしながら、金属酸化物のNi以外の金
属が多種または多量である場合、金属塩の種類によって
は他の金属塩水溶液と混合したときに溶解度の極めて低
い塩を形成したり、あるいは、アンモニウムイオンを作
用させたときのpH変化によって沈澱してしまうことな
どから、均一組成で高密度な粒子を得ることができなか
った。
However, when there are various kinds or a large amount of metals other than Ni as the metal oxide, depending on the kind of the metal salt, a salt having extremely low solubility is formed when mixed with another metal salt aqueous solution, or ammonium is formed. It was not possible to obtain high-density particles having a uniform composition, because the particles would precipitate due to pH changes when ions were made to act.

【0011】本発明は、上記課題を解決するものであ
り、高密度な金属酸化物を得ることができる製造法を提
供することを目的とする。
The present invention is intended to solve the above problems, and an object of the present invention is to provide a production method capable of obtaining a high-density metal oxide.

【0012】[0012]

【課題を解決するための手段】本発明は、上記目的を達
成するために、Ni塩水溶液、Co、Zn、Cdのうち
の少なくとも一種以上の金属塩を含む水溶液、Mn、A
l、V、Cr、Fe、Cu、Ge、Nb、Mo、Ag、
W、Sn、Sb、Ca、Y、Ti、Sr、希土類金属、
Biから選ばれた一種以上の金属塩を含む水溶液、アン
モニウムイオンを含む水溶液、アルカリ水溶液をpHお
よび温度が一定となるように制御された反応系に、一定
濃度でかつ一定の滞留時間となるように攪はんしながら
同時に供給して、複合金属酸化物を連続的に得る構成で
ある。
To achieve the above object, the present invention provides an aqueous solution of Ni salt, an aqueous solution containing at least one metal salt of Co, Zn and Cd, Mn and A.
l, V, Cr, Fe, Cu, Ge, Nb, Mo, Ag,
W, Sn, Sb, Ca, Y, Ti, Sr, rare earth metal,
An aqueous solution containing one or more metal salts selected from Bi, an aqueous solution containing ammonium ions, and an alkaline aqueous solution are added to a reaction system controlled to have a constant pH and temperature so that a constant concentration and a constant residence time are obtained. The mixed metal oxide is continuously stirred and simultaneously supplied to continuously obtain the composite metal oxide.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を図1を参照
しながら説明する。図1は本発明を実施する反応装置の
一例を示しており、反応槽1には、ニッケル塩水溶液供
給ライン2と、異種金属塩水溶液供給ライン3と、アン
モニウムイオン供給ライン4と、アルカリ水溶液供給ラ
イン5とがそれぞれ独立して導入されている。アルカリ
水溶液供給ライン5にはpHスタット6が備えられてお
り、アルカリ水溶液を調整している。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described with reference to FIG. FIG. 1 shows an example of a reaction apparatus for carrying out the present invention. In a reaction tank 1, a nickel salt aqueous solution supply line 2, a dissimilar metal salt aqueous solution supply line 3, an ammonium ion supply line 4, and an alkaline aqueous solution supply. Lines 5 and 5 are independently introduced. The alkaline aqueous solution supply line 5 is provided with a pH stat 6 to adjust the alkaline aqueous solution.

【0014】異種金属塩水溶液供給ライン3は、Co、
Zn、Cdの金属塩水溶液を供給するラインと、Mn、
Al、V、Cr、Fe、Cu、Ge、Nb、Mo、A
g、W、Sn、Sb、Ca、Y、Ti、Sr、Bi、希
土類金属の金属塩水溶液を供給するラインとが独立して
いてもよい。
The different metal salt aqueous solution supply line 3 is provided with Co,
A line for supplying an aqueous metal salt solution of Zn and Cd, Mn,
Al, V, Cr, Fe, Cu, Ge, Nb, Mo, A
A line for supplying an aqueous solution of a metal salt of g, W, Sn, Sb, Ca, Y, Ti, Sr, Bi, or a rare earth metal may be independent.

【0015】反応槽1は恒温槽7が備えられており、上
部には合成された複合酸化物粒子含有液を取出すライン
8が備えられており、オーバーフローさせて、連続的に
取り出せるようになっている。反応槽1の内部には攪拌
装置9に接続されている、攪拌翼10が備えられてお
り、反応槽1内の諸条件を一定に保っている。
The reaction vessel 1 is provided with a constant temperature vessel 7, and a line 8 for taking out the synthesized composite oxide particle-containing liquid is provided at the upper part so that it can be overflowed and continuously taken out. There is. A stirring blade 10 connected to a stirring device 9 is provided inside the reaction tank 1 to keep various conditions inside the reaction tank 1 constant.

【0016】[0016]

【実施例】【Example】

(実施例1)2mol/lの硫酸ニッケル水溶液、0.
25mol/lの硫酸マンガン水溶液、0.1mol/
lの硫酸亜鉛水溶液、0.05mol/lの硫酸コバル
ト水溶液、4.8mol/lのアンモニア水溶液を準備
した。そして、これらの溶液を50℃に保ちながら平均
0.5ml/minの速度で3lの反応槽1内に同時に
供給し、槽内温度を50℃で一定に保った状態で、素早
く均一になるように攪はんしながら、4.8mol/l
の水酸化ナトリウム水溶液を平均0.5ml/minで
反応槽内のpH値が12.5±0.2の範囲内で保持す
るように添加した。
(Example 1) 2 mol / l nickel sulfate aqueous solution, 0.
25 mol / l manganese sulfate aqueous solution, 0.1 mol / l
1 zinc sulfate aqueous solution, 0.05 mol / l cobalt sulfate aqueous solution, and 4.8 mol / l ammonia aqueous solution were prepared. Then, while maintaining these solutions at 50 ° C., they were simultaneously supplied into a 3 liter reaction tank 1 at an average rate of 0.5 ml / min, so that the temperature inside the tank was kept constant at 50 ° C. so that the solution became homogeneous quickly. 4.8 mol / l with stirring
Was added at an average of 0.5 ml / min so as to keep the pH value in the reaction tank within the range of 12.5 ± 0.2.

【0017】ここで、各種水溶液の添加比率は、Ni、
Mn、Co及びZn塩の総量を1モルとすると、水溶液
ナトリウム、アンモニアはそれぞれ2モルとなるように
した。これにより、Ni、Mn、Co及びZnからなる
複合金属酸化物が生成し、これを反応槽の上部よりオー
バーフローさせて連続的に取り出し、30時間連続作動
させた後に評価用サンプルを採取した。
Here, the addition ratio of various aqueous solutions is Ni,
When the total amount of Mn, Co and Zn salts was 1 mol, the amount of each of aqueous solution sodium and ammonia was 2 mol. As a result, a composite metal oxide composed of Ni, Mn, Co, and Zn was produced, and this was overflowed from the upper part of the reaction tank and continuously taken out, and after continuously operating for 30 hours, an evaluation sample was taken.

【0018】定量分析の結果から、得られた複合金属酸
化物粉末のNi、Mn、Co及びZnのモル比は出発原
料の混合比とほぼ一致することが分かった。また、X線
回折パターンに不純物の存在を示すピークが認められな
かったことから、均一組成の結晶であることが示唆され
た。また、SEM写真から高密度の粒径の揃った球状粒
子であることが確認できた。
From the result of the quantitative analysis, it was found that the molar ratio of Ni, Mn, Co and Zn in the obtained composite metal oxide powder was almost the same as the mixing ratio of the starting materials. Further, since no peak indicating the presence of impurities was observed in the X-ray diffraction pattern, it was suggested that the crystal had a uniform composition. Further, it was confirmed from the SEM photograph that the particles were spherical particles of high density and uniform in particle size.

【0019】(比較例1)アンモニア水溶液を添加せ
ず、その他は実施例1と同様の方法で評価用サンプルを
得た。その結果、得られた酸化物粉末は粒度分布の広い
不規則な形状の凝集体を形成していた。
Comparative Example 1 An evaluation sample was obtained in the same manner as in Example 1 except that the aqueous ammonia solution was not added. As a result, the obtained oxide powder formed an irregularly-shaped aggregate having a wide particle size distribution.

【0020】(比較例2)水酸化ナトリウム水溶液の濃
度を4.3mol/l(金属塩1モルに対して水酸化ナ
トリウム約1.8モル)、pH値を10.5とし、その
他は実施例1と同様の方法で評価用サンプルを得た。そ
の結果、得られた複合金属酸化物は粒度分布が広く、非
常に嵩高い粒子であった。
(Comparative Example 2) The concentration of the sodium hydroxide aqueous solution was 4.3 mol / l (about 1.8 mol of sodium hydroxide to 1 mol of metal salt), and the pH value was 10.5. A sample for evaluation was obtained in the same manner as in 1. As a result, the obtained composite metal oxide was a particle having a wide particle size distribution and being very bulky.

【0021】(比較例3)水酸化ナトリウム水溶液の濃
度を6.0mol/l(金属塩1モルに対して水酸化ナ
トリウム約2.5モル)、pH値を13.5とし、その
他は実施例1と同様の方法で評価用サンプルを得た。そ
の結果、得られた複合金属酸化物は微小粒子の凝集体を
形成していた。
Comparative Example 3 The concentration of the aqueous sodium hydroxide solution was 6.0 mol / l (about 2.5 mol of sodium hydroxide to 1 mol of metal salt), and the pH value was 13.5. A sample for evaluation was obtained in the same manner as in 1. As a result, the obtained composite metal oxide formed an aggregate of fine particles.

【0022】(比較例4)アンモニア水溶液の濃度を
4.3mol/l(金属塩1モルに対してアンモニウム
イオン約1.8モル)、その他は実施例1と同様の方法
で評価用サンプルを得た。その結果、得られた複合金属
酸化物粒子は不規則な形状のかさ高い粒子であった。
Comparative Example 4 A sample for evaluation was obtained in the same manner as in Example 1, except that the concentration of the aqueous ammonia solution was 4.3 mol / l (about 1.8 mol of ammonium ion to 1 mol of metal salt). It was As a result, the obtained composite metal oxide particles were bulky particles having an irregular shape.

【0023】(比較例5)槽内温度を20℃とし、その
他は実施例1と同様の方法で評価用サンプルを得た。そ
の結果、得られた複合金属酸化物粒子は粒径の揃った球
状粒子であったが、空隙が多く非常に嵩高かった。
Comparative Example 5 An evaluation sample was obtained in the same manner as in Example 1 except that the temperature inside the bath was 20 ° C. As a result, the obtained composite metal oxide particles were spherical particles having a uniform particle size, but were very bulky with many voids.

【0024】(比較例6)槽内温度を80℃とし、その
他は実施例1と同様の方法で評価用サンプルを得た。そ
の結果、得られた複合金属酸化物は微小粒子の凝集体と
なった。
(Comparative Example 6) An evaluation sample was obtained in the same manner as in Example 1 except that the temperature inside the bath was 80 ° C. As a result, the obtained composite metal oxide was an aggregate of fine particles.

【0025】(比較例7)実施例1において、滞留時間
が15時間となるように供給量を制御し、その他は同様
の操作で評価用サンプルを得た。その結果、得られた酸
化物粒子は全体的に粒径が小さく、表面が曲面主体で構
成されていて全体に丸みをもっているが球状ではなかっ
た。
Comparative Example 7 An evaluation sample was obtained in the same manner as in Example 1, except that the supply amount was controlled so that the residence time was 15 hours. As a result, the obtained oxide particles had a small particle size as a whole, and the surface was mainly composed of a curved surface and had a roundness as a whole, but was not spherical.

【0026】前記実施例1及び比較例1、2、3、4、
5、6及び7で得た複合酸化物粉末の特性を(表1)に
示す。この結果から明らかなように実施例のNi−Mn
−Zn−Co複合金属酸化物粉末は、比較例の複合金属
酸化物粉末よりタップ密度が高くなった。
Example 1 and Comparative Examples 1, 2, 3, 4,
The characteristics of the composite oxide powders obtained in Nos. 5, 6 and 7 are shown in (Table 1). As is clear from this result, Ni-Mn of the example
The -Zn-Co mixed metal oxide powder had a higher tap density than the mixed metal oxide powder of the comparative example.

【0027】[0027]

【表1】 [Table 1]

【0028】(実施例2)実施例1で示したNi−Mn
−Zn−Co複合金属酸化物製造方法と同様の方法を用
い、(a)Mnの代わりに(b)Al、(c)V、
(d)Cr、(e)Fe、(f)Cu、(g)Ge、
(h)Nb、(i)Mo、(j)Ag、(k)W、
(l)Sn、(m)Sb、(n)Ca、(o)Y、
(p)Ti、(q)Sr、(r)La及び(s)Biを
添加して複合金属酸化物を得た。その結果、得られた複
合金属酸化物は実施例1と同様に均一組成で高密度の粒
径の揃った球状粒子であることが確認できた。
(Example 2) Ni-Mn shown in Example 1
Using a method similar to that of the —Zn—Co mixed metal oxide production method, (a) Mn, (b) Al, (c) V,
(D) Cr, (e) Fe, (f) Cu, (g) Ge,
(H) Nb, (i) Mo, (j) Ag, (k) W,
(L) Sn, (m) Sb, (n) Ca, (o) Y,
(P) Ti, (q) Sr, (r) La and (s) Bi were added to obtain a composite metal oxide. As a result, it was confirmed that the obtained composite metal oxide was spherical particles having a uniform composition and a high density, as in Example 1.

【0029】得られた複合金属酸化物のタップ密度、平
均粒径を(表2)にまとめて示す。この結果より、いず
れも1.9g/cm3以上の高いタップ密度を示した。
The tap density and average particle diameter of the obtained composite metal oxide are summarized in (Table 2). From these results, all showed high tap density of 1.9 g / cm 3 or more.

【0030】[0030]

【表2】 [Table 2]

【0031】(実施例3)まず、4.8mol/lのア
ンモニア水溶液3lと、2mol/lの硫酸ニッケル水
溶液3lを混合し、次いで、この混合水溶液と0.25
mol/lの硫酸マンガン、0.1mol/lの硫酸亜
鉛水溶液、0.05mol/lの硫酸コバルト水溶液を
50℃に保ちながら平均0.5ml/minの速度で3
lの反応槽内にそれぞれ独立に同時に供給し、槽内温度
を50℃で一定に保った状態で、素早く均一になるよう
に攪はんしながら、4.8mol/lの水酸化ナトリウ
ム水溶液を平均0.5ml/minで反応槽内のpH値
が12.5±0.2の範囲内で保持するように添加し
た。ここで、各種水溶液の添加比率は、Ni、Mn、C
o及びZn塩の総量を1モルとすると、水酸化ナトリウ
ム、アンモニアはそれぞれ2モルとなるようにした。
Example 3 First, 3 l of a 4.8 mol / l ammonia aqueous solution and 3 l of a 2 mol / l nickel sulfate aqueous solution were mixed, and then this mixed aqueous solution and 0.25 were mixed.
3 mol / l manganese sulphate, 0.1 mol / l zinc sulphate aqueous solution, 0.05 mol / l cobalt sulphate aqueous solution at a rate of 0.5 ml / min on average while keeping at 50 ° C.
The reaction mixture was independently and simultaneously supplied to a reaction tank of 1 l, and while the temperature inside the tank was kept constant at 50 ° C, while stirring the solution so as to be rapidly uniform, a 4.8 mol / l sodium hydroxide aqueous solution was added. The average pH of 0.5 ml / min was added so that the pH value in the reaction vessel was kept within the range of 12.5 ± 0.2. Here, the addition ratio of various aqueous solutions is Ni, Mn, C
When the total amount of o and Zn salts was 1 mol, sodium hydroxide and ammonia were each adjusted to 2 mol.

【0032】これにより、Ni、Mn、Co及びZnか
らなる複合金属酸化物が生成し、これを反応槽の上部よ
りオーバーフローさせて連続的に取り出し、30時間連
続作動させた後に評価用サンプルを採取した。実施例1
と同様、得られた複合金属酸化物は均一組成で、高密度
な粒径の揃った球状粒子であることが確認できた。
As a result, a composite metal oxide composed of Ni, Mn, Co and Zn is produced, which is continuously taken out by overflowing it from the upper part of the reaction tank and continuously operated for 30 hours, and then a sample for evaluation is taken. did. Example 1
Similarly to the above, it was confirmed that the obtained composite metal oxide was a spherical particle having a uniform composition and high density and uniform size.

【0033】(比較例8)まず、4.8mol/lのア
ンモニア水溶液1l中に2mol/lの硫酸ニッケル、
0.25mol/lの硫酸マンガン、0.1mol/l
の硫酸亜鉛水溶液及び0.05mol/lの硫酸コバル
ト水溶液をそれぞれ1l添加し、次いで、この混合水溶
液を50℃に保ちながら平均0.5ml/minの速度
で3lの反応槽内に供給し、槽内温度を50℃で一定に
保った状態で素早く均一になるように攪はんしながら、
4.8mol/lの水酸化ナトリウム水溶液を平均0.
5ml/minの速度で反応槽内のpH値が12.5±
0.2の範囲で保持するように添加した。
(Comparative Example 8) First, 2 mol / l of nickel sulfate was added to 1 liter of a 4.8 mol / l aqueous ammonia solution.
0.25 mol / l manganese sulfate, 0.1 mol / l
1 zinc sulphate aqueous solution and 0.05 mol / l cobalt sulphate aqueous solution were added respectively, and then this mixed aqueous solution was supplied to a 3 liter reaction tank at an average rate of 0.5 ml / min while maintaining at 50 ° C. While keeping the internal temperature constant at 50 ℃, stir it quickly and evenly.
An aqueous solution of 4.8 mol / l sodium hydroxide was added on average to 0.
The pH value in the reaction tank was 12.5 ± at a rate of 5 ml / min.
It was added so as to keep in the range of 0.2.

【0034】しかしながら、金属塩水溶液にアンモニア
を作用させたところ、亜鉛酸化物及びマンガン酸化物が
沈澱し、ポンプが詰まるなどその後の操作が困難であっ
た。また、この方法では、目的の複数金属元素の酸化物
の組成コントロールが不可能であった。以上のように、
金属イオンの種類によって安定なpH域が異なるため、
予めNi塩以外の金属塩水溶液にアンモニアを作用させ
ることは不適当である。
However, when ammonia was allowed to act on the aqueous metal salt solution, zinc oxide and manganese oxide were precipitated, and the pump was clogged, making subsequent operations difficult. In addition, this method cannot control the composition of the target oxide of a plurality of metal elements. As mentioned above,
Since the stable pH range varies depending on the type of metal ion,
It is inappropriate to apply ammonia to the aqueous solution of metal salt other than Ni salt in advance.

【0035】(比較例9)まず、2mol/lの硫酸ニ
ッケル水溶液、0.25mol/lの硝酸カルシウム水
溶液、0.1mol/lの硫酸亜鉛水溶液、0.05m
ol/lの硫酸コバルト水溶液をそれぞれ1lずつ混合
し、次いで、この混合水溶液と4.8mol/lのアン
モニア水溶液を50℃に保ちながら平均0.5ml/m
inの速度で3lの反応槽1内に供給し、槽内温度を5
0℃で一定に保った状態で、素早く均一になるように攪
はんしながら、4.8mol/lの水酸化ナトリウム水
溶液を平均0.5ml/minで反応槽内のpH値が1
2.5±0.2の範囲内で保持するように添加した。し
かしながら、各金属塩水溶液を混合したところCaSO
4が沈澱し、目的とするNi−Ca−Zn−Co複合金
属酸化物を得ることができなかった。 以上のように、
金属塩の種類によって溶解度及び反応速度が異なり、予
め混合することは不適当である。そのため、均一組成の
複合金属酸化物を得るためには、それぞれの金属塩水溶
液を常に反応系内で濃度が一定となるように独立に供給
することが好ましい。
Comparative Example 9 First, a 2 mol / l nickel sulfate aqueous solution, a 0.25 mol / l calcium nitrate aqueous solution, a 0.1 mol / l zinc sulfate aqueous solution, 0.05 m
1 liter each of ol / l cobalt sulfate aqueous solution was mixed, and then the mixed aqueous solution and 4.8 mol / l ammonia aqueous solution were kept at 50 ° C. to give an average of 0.5 ml / m.
It is supplied at a rate of in into the reaction vessel 1 of 3 liters, and the temperature in the vessel is set to 5
While keeping the temperature constant at 0 ° C., the pH value in the reaction tank was adjusted to 1 at an average of 0.5 ml / min with a 4.8 mol / l sodium hydroxide aqueous solution while stirring quickly and uniformly.
It was added so as to keep it within the range of 2.5 ± 0.2. However, when each metal salt aqueous solution was mixed, CaSO
4 was precipitated and the target Ni-Ca-Zn-Co mixed metal oxide could not be obtained. As mentioned above,
The solubility and reaction rate differ depending on the type of metal salt, and premixing is inappropriate. Therefore, in order to obtain a composite metal oxide having a uniform composition, it is preferable to independently supply the respective metal salt aqueous solutions so that the concentration is always constant in the reaction system.

【0036】次に、実施例1および実施例2で得られた
複合金属酸化物のうち、(a)Mn、(b)Al、
(l)Sn、(m)Sb、(n)Ca、(o)Y、
(p)Ti、(q)Srを用いて正極を作成し、電極活
物質としての利用率、酸素発生過電圧を調べた結果につ
いて示す。
Next, among the composite metal oxides obtained in Examples 1 and 2, (a) Mn, (b) Al,
(L) Sn, (m) Sb, (n) Ca, (o) Y,
The results of examining the utilization rate as an electrode active material and the oxygen generation overvoltage by forming a positive electrode using (p) Ti and (q) Sr are shown below.

【0037】正極は、それぞれの複合金属酸化物100
gに対して、金属コバルト8g混合し、水を加えてペー
スト状にし、発泡メタルからなる基板(厚さ1.3m
m、多孔度約95%)に充填し、乾燥後一定条件で加圧
プレスを行い、発泡メタル式正極を得た。これらの正極
を用い、負極には正極より大過剰の容量をもつ水素吸蔵
合金電極を用い、電解液には濃度30wt%の水酸化カ
リウム水溶液を用いて、開放系のモデルセルを組み立て
た。
The positive electrode is composed of the respective composite metal oxides 100.
8 g of metallic cobalt was mixed with g, and water was added to form a paste. A substrate made of foam metal (thickness: 1.3 m
m, porosity of about 95%), dried and press-pressed under a fixed condition to obtain a metal foam positive electrode. Using these positive electrodes, a hydrogen storage alloy electrode having a large excess capacity than the positive electrode was used as the negative electrode, and an aqueous potassium hydroxide solution having a concentration of 30 wt% was used as the electrolytic solution to assemble an open model cell.

【0038】それらのモデルセルを0.1C相当の電流
で15時間充電した後、0.2C相当の電流で0.9V
まで放電して、放電容量を測定し、その放電容量と活物
質中の水酸化ニッケル及び異種金属相当量のより求めた
理論電気容量からそれぞれの利用率を求めた。また、酸
素発生の過電圧は0.1C相当の電流で13時間充電時
の負極に対する電位を測定し、それらの評価は水酸化ニ
ッケル極の電位と比較した。以上のようにして求めた2
0℃及び40℃での利用率、酸素過電圧を(表3)にま
とめて示した。
After charging the model cells with a current equivalent to 0.1 C for 15 hours, 0.9 V was applied at a current equivalent to 0.2 C.
Then, the discharge capacity was measured, and the respective utilization factors were calculated from the calculated discharge capacity and the theoretical electric capacity obtained from the nickel hydroxide in the active material and the equivalent amount of the different metals. The overvoltage of oxygen generation was measured by measuring the potential with respect to the negative electrode after charging for 13 hours with a current equivalent to 0.1 C, and the evaluation was compared with the potential of the nickel hydroxide electrode. 2 obtained as above
The utilization rate and oxygen overvoltage at 0 ° C. and 40 ° C. are summarized in (Table 3).

【0039】[0039]

【表3】 [Table 3]

【0040】(表3)に示すように、本発明の製造法に
て得られた複数金属酸化物はいずれも高い利用率を示し
たが、特にMn、Al、Sn、Sb添加において100
%以上の利用率を示した。また、Ca、Y、Ti、Sr
の添加により高温での利用率において高い値を示した。
このことは、表3に示したように、それらの高い酸素発
生過電圧に起因するものである。
As shown in (Table 3), all of the multi-metal oxides obtained by the production method of the present invention showed a high utilization rate, but especially when Mn, Al, Sn, and Sb were added, 100% was obtained.
The usage rate was over%. In addition, Ca, Y, Ti, Sr
With the addition of, a high value was obtained in the utilization factor at high temperature.
This is due to their high oxygen evolution overvoltage, as shown in Table 3.

【0041】本実施例において、アルカリ水溶液の使用
量は、Ni塩及びNi塩以外の金属塩1モルに対して
1.9〜2.3モルとなるように比例供給するのが好ま
しく、アンモニウムイオンを含む水溶液の使用量は、ニ
ッケル塩及び異種金属塩1モルに対して2モル以上とな
るように比例供給するのが好ましい。反応系のpHは1
1〜13が好ましく、反応系の温度は30〜60℃が好
ましい。また、滞留時間は20〜50時間が好ましい。
In the present embodiment, the amount of the alkaline aqueous solution used is preferably proportionally supplied so as to be 1.9 to 2.3 mol with respect to 1 mol of the Ni salt and the metal salt other than the Ni salt. It is preferable that the amount of the aqueous solution containing is used in proportion to 2 mol or more per 1 mol of the nickel salt and the different metal salt. PH of reaction system is 1
1 to 13 are preferable, and the temperature of the reaction system is preferably 30 to 60 ° C. The residence time is preferably 20 to 50 hours.

【0042】ニッケル酸化物粉末に含有させる量として
は、0.5〜20.0重量%が適している。つまり、
0.5重量%より少ない場合は、特性向上の効果が充分
でなく、また、20.0重量%より多くなると、前記条
件下でも均一組成の粉末を得ることが困難になるため好
ましくない。
The amount contained in the nickel oxide powder is preferably 0.5 to 20.0% by weight. That is,
If it is less than 0.5% by weight, the effect of improving the properties is not sufficient, and if it is more than 20.0% by weight, it becomes difficult to obtain a powder having a uniform composition even under the above conditions, which is not preferable.

【0043】これらの試薬濃度比、pH、温度、滞留時
間等の条件下で、タップ密度が1.9g/cm3以上の
複数金属元素の酸化物粉末を得ることができ、また電極
を構成した場合、現行のニッケル酸化物を活物質として
用いた正極と同レベルの充填密度にすることが可能とな
る。
Under these conditions of reagent concentration ratio, pH, temperature, residence time, etc., oxide powders of a plurality of metal elements having a tap density of 1.9 g / cm 3 or more can be obtained, and electrodes are formed. In this case, it is possible to achieve the same packing density as that of the positive electrode using the current nickel oxide as the active material.

【0044】Ni以外の金属としては、Zn、Cd、C
oのうち少なくとも一種以上の金属、及び、主に高温充
電効率を向上させる効果が期待されるCa、Y、Ti、
Sr、希土類金属、Bi、または、主に反応次数向上が
期待されるMn、Al、V、Cr、Fe、Cu、Ge、
Nb、Mo、Ag、W、Sn、Sbから選ばれた一種以
上を選ぶのが好ましい。
Metals other than Ni include Zn, Cd, and C.
o, at least one or more metals, and Ca, Y, and Ti, which are mainly expected to have an effect of improving high-temperature charging efficiency.
Sr, rare earth metal, Bi, or Mn, Al, V, Cr, Fe, Cu, Ge, which is expected mainly to improve the reaction order,
It is preferable to select one or more selected from Nb, Mo, Ag, W, Sn, and Sb.

【0045】[0045]

【発明の効果】以上のように本発明は、所定の濃度比の
ニッケル塩水溶液、異種金属塩水溶液、アンモニウムイ
オンを含む水溶液、アルカリ金属水酸化物水溶液を所定
のpH及び温度で一定となるように制御された反応系に
所定の滞留時間となるように攪はんしながら同時に供給
することで、高密度な複合金属酸化物を得ることができ
る。これらをアルカリ蓄電池正極材料として用いた場
合、高容量化あるいは高温充電効率等の特性を向上させ
ることができる。
As described above, according to the present invention, the nickel salt aqueous solution, the dissimilar metal salt aqueous solution, the ammonium ion-containing aqueous solution, and the alkali metal hydroxide aqueous solution having a predetermined concentration ratio are kept constant at a predetermined pH and temperature. High-density composite metal oxides can be obtained by simultaneously supplying to a reaction system controlled at 1, while stirring so as to have a predetermined residence time. When these are used as the positive electrode material for alkaline storage batteries, it is possible to improve the characteristics such as high capacity or high temperature charging efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に使用する反応装置の概念図FIG. 1 is a conceptual diagram of a reaction apparatus used in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 ニッケル塩水溶液供給ライン 3 異種金属塩水溶液供給ライン 4 アンモニウムイオン供給ライン 5 アルカリ水溶液供給ライン 6 pHスタット 7 恒温槽 8 複合酸化物粒子含有液取出しライン 9 攪拌装置 10 攪拌翼 1 Reaction Tank 2 Nickel Salt Aqueous Solution Supply Line 3 Dissimilar Metal Salt Aqueous Solution Supply Line 4 Ammonium Ion Supply Line 5 Alkaline Aqueous Solution Supply Line 6 pH Stat 7 Constant Temperature Tank 8 Complex Oxide Particle-Containing Liquid Extraction Line 9 Stirrer 10 Stirrer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Ni塩水溶液である第1の水溶液と、C
o、Zn、Cdのうち少なくとも一種以上の金属の塩を
含む第2の水溶液と、Mn、Al、V、Cr、Fe、C
u、Ge、Nb、Mo、Ag、W、Sn、Sb、Ca、
Y、Ti、Sr、希土類金属、Biから選ばれた一種以
上の金属の塩を含む第3の水溶液と、アルカリ水溶液で
ある第4の水溶液及びアンモニウムイオンを含む第5の
水溶液とを用いる複合金属酸化物の製造法であって、第
4の水溶液中のアルカリ金属の量は第1、第2および第
3の水溶液中の金属イオンの総量1モルに対して1.9
〜2.3モルであって、第5の水溶液中のアンモニウム
イオンが第1、第2および第3の水溶液中の金属イオン
の総量1モルに対して2モル以上に調整したそれぞれの
溶液を、pHが11〜13でかつ温度が30〜60℃で
一定に制御された反応槽に同時に供給し、平均の滞留時
間が20〜50時間となるように攪はんしながら成長粒
子を取り出して、複合金属酸化物を連続的に得ることを
特徴とするアルカリ蓄電池用正極活物質の製造法。
1. A first aqueous solution which is an aqueous solution of Ni salt, and C
a second aqueous solution containing a salt of at least one metal selected from o, Zn and Cd, and Mn, Al, V, Cr, Fe and C
u, Ge, Nb, Mo, Ag, W, Sn, Sb, Ca,
Composite metal using a third aqueous solution containing a salt of one or more metals selected from Y, Ti, Sr, rare earth metals and Bi, a fourth aqueous solution which is an alkaline aqueous solution and a fifth aqueous solution containing ammonium ions In the method for producing an oxide, the amount of the alkali metal in the fourth aqueous solution is 1.9 with respect to 1 mol of the total amount of metal ions in the first, second and third aqueous solutions.
~ 2.3 mol, each ammonium ion in the fifth aqueous solution is adjusted to 2 mol or more with respect to the total amount of 1 mol of metal ions in the first, second and third aqueous solutions, The pH is 11 to 13 and the temperature is 30 to 60 ° C., and the mixture is simultaneously supplied to a reaction tank controlled to be constant, and the grown particles are taken out while stirring so that the average residence time is 20 to 50 hours. A method for producing a positive electrode active material for an alkaline storage battery, which comprises continuously obtaining a composite metal oxide.
【請求項2】すべての水溶液はそれぞれ独立して調整し
た後、同時に反応槽に供給することを特徴とする請求項
1記載のアルカリ蓄電池用正極活物質の製造法。
2. The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein all the aqueous solutions are independently adjusted and then simultaneously supplied to the reaction tank.
【請求項3】第1の水溶液と第5の水溶液の混合水溶液
と、第2の水溶液と第3の水溶液の混合水溶液と、第4
の水溶液とをそれぞれ独立して調整した後、同時に反応
槽に供給することを特徴とする請求項1記載のアルカリ
蓄電池用正極活物質の製造法。
3. A mixed aqueous solution of a first aqueous solution and a fifth aqueous solution, a mixed aqueous solution of a second aqueous solution and a third aqueous solution, and a fourth aqueous solution.
The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein the aqueous solution and the aqueous solution are each independently adjusted and then simultaneously supplied to the reaction tank.
【請求項4】複合金属酸化物は、共晶状態、及び/また
は、それぞれの金属の固溶状態の酸化物である請求項
1、2または3記載のアルカリ蓄電池用正極活物質の製
造法。
4. The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein the composite metal oxide is an oxide in a eutectic state and / or a solid solution state of each metal.
JP02018297A 1996-03-13 1997-02-03 Method for producing positive electrode active material for alkaline storage battery Expired - Fee Related JP3656353B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP02018297A JP3656353B2 (en) 1996-03-13 1997-02-03 Method for producing positive electrode active material for alkaline storage battery
CN98106185A CN1129198C (en) 1997-02-03 1998-01-26 Manufacturing method of active materials for positive electrode in alkaline storage batteries
EP07022225A EP1890350A3 (en) 1997-02-03 1998-02-02 The manufacturing method of active materials for the positive electrode in alkaline storage batteries
US09/017,029 US6129902A (en) 1997-02-03 1998-02-02 Manufacturing method of active materials for the positive electrode in alkaline storage batteries
EP98101747A EP0856899B1 (en) 1997-02-03 1998-02-02 The manufacturing method of active materials for the positive electrode in alkaline storage batteries
US09/560,296 US6284215B1 (en) 1997-02-03 2000-04-27 Manufacturing method of active materials for the positive electrode in alkaline storage batteries

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5572596 1996-03-13
JP8-55725 1996-03-13
JP02018297A JP3656353B2 (en) 1996-03-13 1997-02-03 Method for producing positive electrode active material for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09306487A true JPH09306487A (en) 1997-11-28
JP3656353B2 JP3656353B2 (en) 2005-06-08

Family

ID=26357084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02018297A Expired - Fee Related JP3656353B2 (en) 1996-03-13 1997-02-03 Method for producing positive electrode active material for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3656353B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322817A (en) * 2000-05-12 2001-11-20 Sakai Chem Ind Co Ltd Manganese solid solution nickel hydroxide particle and its manufacturing method
JP2002208400A (en) * 2000-11-09 2002-07-26 Toyota Central Res & Dev Lab Inc Nickel hydroxide for positive electrode active material of alkaline secondary battery, alkaline secondary battery using same, its characteristics evaluation method and manufacturing method
JP2004516607A (en) * 2000-09-13 2004-06-03 オヴォニック バッテリー カンパニー インコーポレイテッド How to make nickel hydroxide
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2014082195A (en) * 2012-09-28 2014-05-08 Gs Yuasa Corp Alkaline storage battery, positive electrode material for alkaline storage battery, and method for manufacturing positive electrode material for alkaline storage battery
JP2017162621A (en) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 Method of producing positive electrode active material for lithium ion battery
JP2017162620A (en) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 Method of producing positive electrode active material for lithium ion battery
WO2021201270A1 (en) * 2020-04-03 2021-10-07 株式会社田中化学研究所 Method for producing composite hydroxide, and composite hydroxide

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322817A (en) * 2000-05-12 2001-11-20 Sakai Chem Ind Co Ltd Manganese solid solution nickel hydroxide particle and its manufacturing method
JP2004516607A (en) * 2000-09-13 2004-06-03 オヴォニック バッテリー カンパニー インコーポレイテッド How to make nickel hydroxide
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2002208400A (en) * 2000-11-09 2002-07-26 Toyota Central Res & Dev Lab Inc Nickel hydroxide for positive electrode active material of alkaline secondary battery, alkaline secondary battery using same, its characteristics evaluation method and manufacturing method
JP4498647B2 (en) * 2000-11-09 2010-07-07 株式会社豊田中央研究所 Nickel hydroxide for positive electrode active material of alkaline secondary battery, alkaline secondary battery using the same, characteristic evaluation method thereof, and production method thereof
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
JP2014082195A (en) * 2012-09-28 2014-05-08 Gs Yuasa Corp Alkaline storage battery, positive electrode material for alkaline storage battery, and method for manufacturing positive electrode material for alkaline storage battery
US9419273B2 (en) 2012-09-28 2016-08-16 Gs Yuasa International Ltd. Alkaline storage battery, positive electrode material for alkaline storage battery, and method for manufacturing positive electrode material for alkaline storage battery
JP2017162621A (en) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 Method of producing positive electrode active material for lithium ion battery
JP2017162620A (en) * 2016-03-08 2017-09-14 Csエナジーマテリアルズ株式会社 Method of producing positive electrode active material for lithium ion battery
WO2021201270A1 (en) * 2020-04-03 2021-10-07 株式会社田中化学研究所 Method for producing composite hydroxide, and composite hydroxide

Also Published As

Publication number Publication date
JP3656353B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
CN103563137B (en) Transition metal complex hydroxide and preparation method, the preparation method of positive active material
EP1044927B1 (en) Nickel hydroxide particles and production and use thereof
JP6985406B2 (en) Methods for Preparing Precursors and Precursors for Cathodic Materials with Improved Rechargeable Battery Performance
JP3830586B2 (en) Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery
EP3487813A1 (en) A method for upscalable precipitation synthesis of battery materials with tunable particle size distribution
JP4051771B2 (en) Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof
US6129902A (en) Manufacturing method of active materials for the positive electrode in alkaline storage batteries
JP2001106534A (en) Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material
JP2945377B2 (en) Method for producing positive electrode active material for secondary battery
JP7064685B2 (en) A method for producing a nickel-manganese composite hydroxide and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP2007523824A (en) Method for producing calcium zincate for cathode
JPH09306487A (en) Manufacture of positive electrode active material for alkaline storage battery
JP2011219354A (en) Crystalline manganese complex oxide, lithium manganese complex oxide for lithium secondary battery and method for producing the same
EP0932211B1 (en) Positive electrode active material for alkaline storage battery
JP2001322817A (en) Manganese solid solution nickel hydroxide particle and its manufacturing method
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JP3057755B2 (en) Method for producing lithium manganese composite oxide and use thereof
JP2005272213A (en) Method for producing lithium-cobalt oxide
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
JPH11312519A (en) Compound nickel hydroxide active material containing mn, and preparation thereof
KR20060122450A (en) Manganese oxides, spinel type cathode active material for lithium secondary batteries using thereby and preparation of the same
JP3609231B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JPH11260364A (en) Manganese-containing composite nickel hydroxide active material and manufacture thereof
JP3415364B2 (en) Nickel hydroxide coated with α-cobalt hydroxide layer for alkaline storage battery and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees