JPH11312519A - Compound nickel hydroxide active material containing mn, and preparation thereof - Google Patents

Compound nickel hydroxide active material containing mn, and preparation thereof

Info

Publication number
JPH11312519A
JPH11312519A JP10143800A JP14380098A JPH11312519A JP H11312519 A JPH11312519 A JP H11312519A JP 10143800 A JP10143800 A JP 10143800A JP 14380098 A JP14380098 A JP 14380098A JP H11312519 A JPH11312519 A JP H11312519A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
active material
containing composite
producing
composite nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10143800A
Other languages
Japanese (ja)
Inventor
Kazuhito Komatsu
和仁 小松
Sumihiko Makizoe
澄彦 牧添
Tsuneyoshi Kamata
恒好 鎌田
Yasuhiro Ochi
康弘 越智
Takashi Okifuji
貴嗣 沖藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP10143800A priority Critical patent/JPH11312519A/en
Publication of JPH11312519A publication Critical patent/JPH11312519A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a superior discharging characteristic, in particular for improving the utilization factor, when used for an electrode material of a secondary battery. SOLUTION: In this active material, tapped density is set to 1.9 g/cc or more, a specific surface area is set to be 8 m<2> /g or more, space volume of pores is made to be 0.01 cm<3> /g or more, pore volume of pores having 30 Å or more of pore radius is made to be 40% or less with respect to total pore volume, a Mn content is made to be within a range from 5 mol.% or more to 15 mol.% or less, and an average oxidation number of Mn is made to be 3.5 or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Mn含有複合水酸
化ニッケル活物質及びその製造方法に関する。
The present invention relates to a Mn-containing composite nickel hydroxide active material and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ニッケ
ル・カドミウム蓄電池やニッケル・金属水素化物蓄電池
等のアルカリ蓄電池に共通的に使用される水酸化ニッケ
ル正極は、電池の高エネルギー密度化の要望が高まる中
で、従来の焼結式に代えて、高容量密度化が可能なペー
スト式が主体となりつつある。このペースト式ニッケル
正極は、95%程度の高い多孔度を有する発泡ニッケル
基板やニッケル繊維基板に、水酸化ニッケル粉末をコバ
ルト化合物粉末等と共に、充填、加圧成形して得られて
いる。このような発泡ニッケル基板は、ウレタン等の発
泡プラスチックにニッケルをメッキした後に加熱し、発
泡プラスチックを熱分解して発泡金属を得るものであ
る。
2. Description of the Related Art A nickel hydroxide positive electrode commonly used in alkaline storage batteries such as nickel-cadmium storage batteries and nickel-metal hydride storage batteries is required to have a high energy density. In the course of the increase, the paste type capable of increasing the capacity density has been mainly used instead of the conventional sintered type. This paste-type nickel positive electrode is obtained by filling nickel hydroxide powder together with a cobalt compound powder and the like into a foamed nickel substrate or nickel fiber substrate having a high porosity of about 95%, followed by pressure molding. Such a foamed nickel substrate is obtained by plating nickel on a foamed plastic such as urethane and then heating it to thermally decompose the foamed plastic to obtain a foamed metal.

【0003】アルカリ蓄電池用正極材である水酸化ニッ
ケルの充放電中の反応は、一般的には、β−Ni(OH)2
とβ−NiOOHの間の反応を利用しており、これは一
電子反応であるが、最も安定な反応であり、汎用されて
いる。これをβ−Ni(OH)2とγ−NiOOHの間の反
応を利用することにより多電子反応とすると、容量が増
加するという利点がある。しかし、β−Ni(OH)2とγ
−NiOOHの格子定数差により充放電時に生成したγ
−NiOOHからβ−Ni(OH)2への放電反応が困難で
ある、という問題がある。
The reaction during charging and discharging of nickel hydroxide, which is a positive electrode material for an alkaline storage battery, generally involves β-Ni (OH) 2
And β-NiOOH, which is a one-electron reaction, but the most stable reaction, and is widely used. If this is made a multi-electron reaction by utilizing the reaction between β-Ni (OH) 2 and γ-NiOOH, there is an advantage that the capacity is increased. However, β-Ni (OH) 2 and γ
Γ generated during charge / discharge due to the lattice constant difference of NiOOH
There is a problem that a discharge reaction from -NiOOH to β-Ni (OH) 2 is difficult.

【0004】一方、α−Ni(OH)2とγ−NiOOHの
間の反応を利用すると、これも多電子反応であるので容
量が増加するという利点があり、かつα−Ni(OH)2
γ−NiOOHでは格子定数差が小さいので充放電時の
体積変化も小さく、好ましいものである。
On the other hand, when utilizing the reaction between α-Ni (OH) 2 and gamma-NiOOH, which also has the advantage that capacitance increases because it is a multi-electron reaction, and α-Ni (OH) 2 and γ-NiOOH is preferable because the difference in lattice constant is small so that the volume change during charging and discharging is small.

【0005】しかし、α−Ni(OH)2はアルカリ液中で
不安定であり、容易にβ−Ni(OH)2に変化してしまう
という問題があり、実用化できない原因となっていた。
[0005] However, α-Ni (OH) 2 is unstable in an alkaline solution and has a problem that it is easily changed to β-Ni (OH) 2 , which has been a cause that it cannot be put to practical use.

【0006】本発明は、上記問題に鑑み、電池の電極材
料として用いた場合に、優れた放電特性、特に利用率の
向上を図った水酸化ニッケル活物質およびその製造方法
を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a nickel hydroxide active material having excellent discharge characteristics, particularly improved utilization when used as a battery electrode material, and a method for producing the same. And

【0007】[0007]

【課題を解決するための手段】上記課題を達成する[請
求項1]の発明は、タップ密度が1.9g/cc以上であ
り、Mnの含有量が5モル%以上15モル%以下の範囲
にあり、4価のMnが総Mn量の50重量%以上であ
り、Mnの平均酸化度が3.5以上であることを特徴とす
る。
Means for Solving the Problems According to the invention of claim 1 which achieves the above object, the tap density is not less than 1.9 g / cc and the content of Mn is not less than 5 mol% and not more than 15 mol%. Wherein the tetravalent Mn is at least 50% by weight of the total Mn content and the average degree of oxidation of Mn is at least 3.5.

【0008】[請求項2]の発明は、請求項1におい
て、比表面積が8m2/g以上であり、細孔の空間体積が
0.01 cm3/g以上であり、30Å以上の細孔半径を有
する細孔容積が全細孔容積に対して40%以下であるこ
とを特徴とする。
[0008] In a second aspect of the present invention, in the first aspect, the specific surface area is at least 8 m 2 / g and the spatial volume of the pores is
The pore volume is 0.01 cm 3 / g or more, and the pore volume having a pore radius of 30 ° or more is 40% or less of the total pore volume.

【0009】[請求項3]の発明は、請求項1又は2に
おいて、水酸化ニッケル生成工程が不活性ガス雰囲気下
においてされてなることを特徴とする。
The invention of claim 3 is characterized in that, in claim 1 or 2, the nickel hydroxide producing step is performed in an inert gas atmosphere.

【0010】[請求項4]の発明は、Mnを含むNi塩
溶液とアルカリ水溶液及びアンモニウムイオンを含む水
溶液を密閉された反応槽内に連続的に供給し、成長した
複合水酸化物を連続的に取り出すMn含有複合水酸化ニ
ッケルの製造方法において、水酸化ニッケル中に含まれ
るMnが2価の状態で合成され、その後取り出されたM
n含有複合水酸化ニッケルを大気もしくは酸素雰囲気で
乾燥し、酸化することを特徴とする。
[0010] The invention of claim 4 is to continuously supply an Ni salt solution containing Mn, an aqueous alkali solution and an aqueous solution containing ammonium ions into a sealed reaction vessel and continuously grow the composite hydroxide. In the method for producing a Mn-containing composite nickel hydroxide to be extracted to Mn, Mn contained in the nickel hydroxide is synthesized in a divalent state, and then M
It is characterized in that the n-containing composite nickel hydroxide is dried and oxidized in the air or oxygen atmosphere.

【0011】[請求項5]の発明は、請求項4におい
て、密閉された槽内溶液中の溶存酸素濃度が0.5mg/L
以下で合成されることを特徴とする。
The invention of claim 5 is the invention according to claim 4, wherein the dissolved oxygen concentration in the solution in the closed tank is 0.5 mg / L.
It is characterized by being synthesized below.

【0012】[請求項6]の発明は、請求項4又は5に
おいて、上記合成が不活性ガス雰囲気下で行うことを特
徴とする。
[0012] The invention of claim 6 is characterized in that, in claim 4 or 5, the synthesis is performed in an inert gas atmosphere.

【0013】[請求項7]の発明は、請求項4乃至6に
おいて、槽内の平均滞留時間が3時間以上12時間以下
であり、槽内の溶液 pHが12以上13.5以下であり、
槽内の反応温度が25℃以上40℃以下で反応させるこ
とを特徴とする。
The invention according to claim 7 is the invention according to claims 4 to 6, wherein the average residence time in the tank is 3 hours or more and 12 hours or less, and the solution pH in the tank is 12 or more and 13.5 or less;
The reaction is performed at a reaction temperature of 25 ° C. or more and 40 ° C. or less in the tank.

【0014】[請求項8]の発明は、請求項4乃至7に
おいて、乾燥温度が70℃以上であり、乾燥時間が16
時間以上であることを特徴とする。
The invention of claim 8 is the invention according to claims 4 to 7, wherein the drying temperature is 70 ° C. or more and the drying time is 16 hours.
It is longer than an hour.

【0015】[請求項9]の発明は、請求項4乃至8に
おいて、Mn含有複合水酸化ニッケルは共晶状態及び/
又は固溶状態にあることを特徴とする。
The invention of claim 9 is the invention according to claims 4 to 8, wherein the Mn-containing composite nickel hydroxide is in a eutectic state and / or
Alternatively, it is characterized by being in a solid solution state.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、本発明はこれに限定されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

【0017】本発明のMn含有複合水酸化ニッケル活物
質は、タップ密度が1.9g/cc以上であり、Mnの含有
量が5モル%以上15モル%以下の範囲にあり、4価の
Mnが総Mn量の50重量%以上であり、Mnの平均酸
化度が3.5以上としたものである。
The Mn-containing composite nickel hydroxide active material of the present invention has a tap density of 1.9 g / cc or more, an Mn content of 5 mol% to 15 mol%, and a tetravalent Mn content. Is 50% by weight or more of the total Mn amount, and the average degree of oxidation of Mn is 3.5 or more.

【0018】また、上記Mn含有複合水酸化ニッケル活
物質は、さらに比表面積が8m2/g以上であり、細孔の
空間体積が0.01 cm3/g以上であり、30Å以上の細
孔半径を有する細孔容積が全細孔容積に対して40%以
下としたものである。
The Mn-containing composite nickel hydroxide active material further has a specific surface area of 8 m 2 / g or more, a pore volume of 0.01 cm 3 / g or more, and a pore size of 30 ° or more. The pore volume having a radius is 40% or less of the total pore volume.

【0019】本発明の活物質の製造方法は、Mnを含む
Ni塩溶液とアルカリ水溶液及びアンモニウムイオンを
含む水溶液を密閉された反応槽内に連続的に供給し、成
長した複合水酸化物を連続的に取り出すMn含有複合水
酸化ニッケルの製造方法において、水酸化ニッケル中に
含まれるMnが2価の状態で合成され、その後取り出さ
れたMn含有複合水酸化ニッケルを大気もしくは酸素雰
囲気で乾燥し、酸化するものである。
In the method for producing an active material of the present invention, a Ni salt solution containing Mn, an alkaline aqueous solution and an aqueous solution containing ammonium ions are continuously supplied into a closed reaction vessel, and the grown composite hydroxide is continuously supplied. In the method for producing a Mn-containing composite nickel hydroxide to be extracted, Mn contained in the nickel hydroxide is synthesized in a divalent state, and then the extracted Mn-containing composite nickel hydroxide is dried in an air or oxygen atmosphere, It oxidizes.

【0020】ここで、本発明でNi塩としては、例えば
硫酸塩,硝酸塩,塩化物等を用い、Mn塩としては、塩
化物,硫酸塩等を用いている。アルカリ水溶液は特に限
定されるものではないが、水酸化ナトリウムを用いるの
が好適である。
Here, in the present invention, for example, sulfates, nitrates, chlorides and the like are used as Ni salts, and chlorides, sulfates and the like are used as Mn salts. The alkaline aqueous solution is not particularly limited, but it is preferable to use sodium hydroxide.

【0021】本実施の形態において使用する水酸化ニッ
ケル合成槽は、内部が密閉状態となるものが好ましく、
水酸化ニッケルの合成前及び合成中には、不活性ガス及
び還元性ガスを導入し、槽内溶液中の溶存酸素濃度が0.
5mg/L以下の条件で合成するようにしている。これ
は、溶存酸素濃度が0.5mg/Lを超えた場合には、合成
中に酸化反応が起こり、好ましくないからである。導入
する不活性ガスとしては、例えばアルゴン,窒素,ヘリ
ウム等を用い、槽内にバブリングして、溶在酸素濃度を
0.5mg/Lを超えないようにしている。
The nickel hydroxide synthesizing tank used in the present embodiment is preferably one in which the inside is sealed.
Before and during the synthesis of nickel hydroxide, an inert gas and a reducing gas are introduced, and the dissolved oxygen concentration in the solution in the tank is reduced to 0.
The synthesis is performed under the condition of 5 mg / L or less. This is because, when the dissolved oxygen concentration exceeds 0.5 mg / L, an oxidation reaction occurs during the synthesis, which is not preferable. As the inert gas to be introduced, for example, argon, nitrogen, helium or the like is used, and the concentration of dissolved oxygen is bubbled in the tank.
Do not exceed 0.5 mg / L.

【0022】ここで、Mn含有複合水酸化ニッケル活物
質の製造において、上記水酸化ニッケル合成槽におい
て、不活性ガス雰囲気下で合成することにより、Mn2
価の状態で含有させることができる。その後、酸化反応
により、3価及び4価に酸化させることにより、4価の
Mnが総Mn量の50重量%以上であり、Mnの平均酸
化度が3.5以上としたものを得ることができる。
Here, in the production of the Mn-containing composite nickel hydroxide active material, Mn2 is synthesized by synthesizing in the nickel hydroxide synthesis tank under an inert gas atmosphere.
It can be contained in a valence state. Then, by oxidizing to trivalent and tetravalent by an oxidation reaction, it is possible to obtain one in which tetravalent Mn is 50% by weight or more of the total Mn amount and the average degree of oxidation of Mn is 3.5 or more. it can.

【0023】反応槽内にはMnを含むNi塩溶液とアル
カリ水溶液及びアンモニウムイオンを含む水溶液を連続
的に供給するのが好ましい。ここで、Ni/Mnの比率
は95/5〜85/15とし、例えば1.75 mol/Lに
調製したNi/Mn硫酸塩水溶液を用い、アンモニア水
溶液としては、例えば6.5 mol/Lのアンモニア水溶
液、アルカリ水溶液としては6 mol/Lの水酸化ナトリ
ウム水溶液を用いるのが好ましいが、本発明はこれに限
定されるものではない。
It is preferable to continuously supply a Ni salt solution containing Mn, an aqueous alkali solution and an aqueous solution containing ammonium ions into the reaction tank. Here, the ratio of Ni / Mn is 95/5 to 85/15, for example, an aqueous solution of Ni / Mn sulfate adjusted to 1.75 mol / L is used, and the aqueous ammonia solution is, for example, 6.5 mol / L. As the aqueous ammonia solution and the aqueous alkaline solution, it is preferable to use a 6 mol / L aqueous sodium hydroxide solution, but the present invention is not limited thereto.

【0024】また、Mnを含むNi塩溶液の供給は、毎
分5.0〜18ml、好ましくは10mlの速度とするのがよ
く、アンモニア溶液の供給は、毎分3.0〜11ml、好ま
しくは6.2mlの速度とするのがよい。これは、供給速度
が遅い場合には、後述するように、比表面積が小さく、
しかも乾燥後のMnの平均酸化度が3.1と少なくなるの
で、好ましくないからである。また、供給速度が早い場
合には、後述するように、微粒子の凝集体で未反応とな
り、好ましくないからである。また、供給速度とも関係
するが、平均滞留時間は3時間以上12時間以下とする
のが好ましい。
The supply of the Ni salt solution containing Mn is preferably at a rate of 5.0 to 18 ml / min, preferably 10 ml / min, and the supply of the ammonia solution is 3.0 to 11 ml / min, preferably A good speed is 6.2 ml. This is because when the supply speed is low, as described later, the specific surface area is small,
In addition, the average degree of oxidation of Mn after drying is reduced to 3.1, which is not preferable. Also, if the supply rate is high, as described later, it becomes unreacted by aggregates of fine particles, which is not preferable. The average residence time is preferably 3 hours or more and 12 hours or less, although it depends on the supply speed.

【0025】また、Mnを含むNi塩溶液とアンモニア
溶液とは同時に供給するのが好ましい。これは、同時に
供給しない場合には、結晶核発生速度すなわち析出速度
が極端に速くなり、微粒子の凝集状態が発生し十分なタ
ップ密度が得られにくいので好ましくないからである。
Preferably, the Ni salt solution containing Mn and the ammonia solution are supplied simultaneously. This is because, if they are not supplied at the same time, the crystal nucleus generation speed, that is, the precipitation speed becomes extremely high, and the agglomeration state of the fine particles occurs, making it difficult to obtain a sufficient tap density.

【0026】反応温度は、25〜40℃程度、好ましく
は30℃近傍に保ちながら反応するのがよい。これは、
上記40℃とした場合には、比表面積が小さく好ましく
なく、また25℃未満であると嵩高いものとなり、共に
好ましくないからである。
The reaction is carried out while maintaining the reaction temperature at about 25 to 40 ° C., preferably around 30 ° C. this is,
When the temperature is 40 ° C., the specific surface area is small, which is not preferable. When the temperature is lower than 25 ° C., it becomes bulky, and both are not preferable.

【0027】反応pHは、pHが12〜13.5 程度、好
ましくは12.5近傍に保ちながら反応させるのが好まし
い。これは、pHが12未満では、タップ密度が低くな
り、また、pHが13.5以上では、タップ密度は高い
ものの比表面積が小さいものとなり、共に好ましくない
からである。
It is preferable to carry out the reaction while maintaining the reaction pH at about 12 to 13.5, preferably around 12.5. This is because if the pH is less than 12, the tap density is low, and if the pH is 13.5 or more, the tap density is high but the specific surface area is small, which is not preferable.

【0028】得られた水酸化ニッケルは濾過・洗浄、脱
水をした後、乾燥する。この乾燥工程は大気中70℃以
上、好ましくは80℃で、少なくとも16時間以上、こ
のましくは1週間(7日間)程度行い、合成反応中不活
性雰囲気下で酸化させない状態であったものを酸化させ
ることとなる。
The obtained nickel hydroxide is filtered, washed, dehydrated and dried. This drying step is performed in the atmosphere at 70 ° C. or higher, preferably 80 ° C., for at least 16 hours or longer, preferably for about one week (7 days). It will be oxidized.

【0029】このような方法により得られた本発明の水
酸化ニッケル活物質は、タップ密度が1.9g/cc以上で
あり、比表面積が8m2/g以上であり、細孔の空間体積
が0.01 cm3/g以上であり、30Å以上の細孔半径を
有する細孔容積が全細孔容積に対して40%以下であ
り、Mnの含有量が5モル%以上15モル%以下の範囲
にあり、Mnの平均酸化度が3.5以上の物性値を有する
ものとなる。ここで、本発明の水酸化ニッケル活物質に
おいて、Mnの含有量を5モル%以上15モル%以下の
範囲としたのは、5モル%未満ではタップ密度が低く、
利用率が低いものとなるからであり。また15モル%を
超えたものでは利用率は向上するものの、タップ密度が
低く好ましくないからである。
The nickel hydroxide active material of the present invention obtained by such a method has a tap density of 1.9 g / cc or more, a specific surface area of 8 m 2 / g or more, and a pore volume of space. 0.01 cm 3 / g or more, the pore volume having a pore radius of 30 ° or more is 40% or less with respect to the total pore volume, and the Mn content is 5 mol% or more and 15 mol% or less. Within the range, the average degree of oxidation of Mn has physical properties of 3.5 or more. Here, in the nickel hydroxide active material of the present invention, the content of Mn is in the range of 5 mol% or more and 15 mol% or less.
This is because the utilization rate is low. If it exceeds 15 mol%, the utilization rate is improved, but the tap density is low, which is not preferable.

【0030】本発明のMn含有水酸化ニッケルは、共晶
状態及び/又は固溶状態にあるものである。このように
水酸化ニッケル結晶中にマンガン原子が共晶状態及び/
又は固溶状態にするのは、充放電時に結晶格子中を移動
するプロトンの移動度が向上し、充放電反応が速やかに
進行するからである。すなわち、固溶状態になく、分離
し析出している場合には、水酸化ニッケルのみが反応に
関与し、十分な利用率は得られないこととなり、好まし
くないからである。
The Mn-containing nickel hydroxide of the present invention is in a eutectic state and / or a solid solution state. Thus, the manganese atoms in the nickel hydroxide crystal are in the eutectic state and / or
Alternatively, the solid solution state is set because the mobility of protons moving in the crystal lattice during charge / discharge is improved, and the charge / discharge reaction proceeds quickly. In other words, if it is not in a solid solution state and is separated and precipitated, only nickel hydroxide participates in the reaction, and a sufficient utilization rate cannot be obtained, which is not preferable.

【0031】[0031]

【実施例】以下、本発明の好適な実施例について説明す
るが、本発明はこれに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

【0032】<実施例1:活物質の作製(N2 ガス有)
>1.75 mol/Lに調製したNi/Mn=9/1の硫酸
塩水溶液、6.5 mol/Lのアンモニア水溶液、6 mol/
Lの水酸化ナトリウム水溶液を準備した。槽内には窒素
ガスを毎分1リットルバブリングさせた。この時の溶存
酸素は0.2mg/Lであった。上記Ni塩溶液を毎分10
ml及びアンモニア溶液を毎分6.2mlの速度で、30℃に
保ちながら7.2Lの反応槽内に同時に供給し、速やかに
均一になるよう混合撹拌した。槽内温度を30℃に保っ
たまま6 mol/Lの水酸化ナトリウムを平均毎分6.2ml
の速度で反応槽内の pHが12.5±0.2の範囲で保持す
るように供給しつつ撹拌した。Ni,Mn塩の総量1に
対して水酸化ナトリウムは2.1、アンモニアは2になる
ようにした。生成した複合水酸化物を反応槽上部よりオ
ーバーフローさせ連続的に取り出した。この時の平均滞
留時間は6時間であり、6時間連続作動させた後サンプ
ルを採取し、水洗濾過後、緑色の第1粒子(*1)を得
た。このときのMnは酸化されず2価のMnが含まれて
いる。定量分析の結果からこの時のマンガン量は金属原
子比で10モル%であり、出発原料の混合比と一致し、
硫酸第一鉄アンモニウム法によりMnの平均価数を測定
したところ2.0であった。このことから得られた第1粒
子中のMn価数が2価であることがわかる。
<Example 1: Preparation of active material (with N 2 gas)
Ni / Mn = 9/1 sulfate aqueous solution prepared to> 1.75 mol / L, 6.5 mol / L ammonia aqueous solution, 6 mol / L
L of sodium hydroxide aqueous solution was prepared. Nitrogen gas was bubbled into the tank at 1 liter per minute. The dissolved oxygen at this time was 0.2 mg / L. The Ni salt solution is added at
ml and an ammonia solution were simultaneously supplied into a 7.2 L reaction tank at a rate of 6.2 ml / min while maintaining the temperature at 30 ° C., and the mixture was stirred and mixed quickly and uniformly. While maintaining the temperature in the bath at 30 ° C., 6.2 mol / L of sodium hydroxide at an average rate of 6 mol / L was used.
The mixture was stirred while being supplied at such a speed as to maintain the pH in the reaction tank within the range of 12.5 ± 0.2. The amount of sodium hydroxide was 2.1 and the amount of ammonia was 2 with respect to a total amount of 1 of Ni and Mn salts. The produced composite hydroxide overflowed from the upper part of the reaction tank and was continuously taken out. The average residence time at this time was 6 hours. After operating continuously for 6 hours, a sample was collected, washed with water, and filtered to obtain green first particles (* 1). Mn at this time is not oxidized and contains divalent Mn. From the results of the quantitative analysis, the amount of manganese at this time was 10 mol% in metal atom ratio, which was consistent with the mixing ratio of the starting materials,
When the average valence of Mn was measured by the ferrous ammonium sulfate method, it was 2.0. This indicates that the Mn valence in the first particles obtained is divalent.

【0033】上記得られた第1粒子を80℃大気中で1
週間乾燥を行い、茶褐色の第2粒子(*2)を得た。こ
のときのMnは容易に酸化され、3価若しくは4価のM
nとなる。定量分析の結果からこの時のマンガン量は金
属原子比で10モル%であり、出発原料の混合比と一致
し、硫酸第一鉄アンモニウム法によりMnの平均価数を
測定したところ3.7であった。このことから得られた第
2粒子(*2)中のMn価数が3価以上の価数を含んで
いることがわかる。
The first particles obtained above were placed in an atmosphere at 80 ° C. for 1 hour.
Drying was performed for a week to obtain brownish second particles (* 2). Mn at this time is easily oxidized and trivalent or tetravalent M
n. From the results of the quantitative analysis, the manganese content at this time was 10 mol% in terms of the metal atom ratio, which coincided with the mixing ratio of the starting materials. When the average valence of Mn was measured by the ammonium ferrous sulfate method, it was 3.7 there were. This shows that the Mn valence in the obtained second particles (* 2) includes a valence of 3 or more.

【0034】X線回折図から水酸化ニッケルに帰属され
るピークのみ観測され均一な組成の結晶であることを確
認した。また、SEM写真から粒径のそろった球状粒子
であることも確認できた。タップ密度は、20mlメスシ
リンダーに粉体を15g入れ1000回タッピングした
ときの容積を測定し、投入重量/測定容積の計算式で求
めた。この測定の結果、本実施例の微粒子粉末のタップ
密度は2.2g/ccであった。また、比表面積及び細孔容
積測定は窒素ガス吸着法により求め、比表面積が16m2
/g、全細孔容積が0.023cm3/g、30Å以上の細孔
半径を有する細孔容積の全細孔容積に対する割合は30
%であった。
From the X-ray diffraction pattern, only the peak attributed to nickel hydroxide was observed, confirming that the crystal had a uniform composition. It was also confirmed from the SEM photograph that the particles were spherical particles having a uniform particle diameter. The tap density was determined by measuring the volume when 15 g of powder was put into a 20-ml measuring cylinder and tapped 1,000 times, and calculated by the formula of input weight / measured volume. As a result of this measurement, the tap density of the fine particle powder of this example was 2.2 g / cc. The specific surface area and the pore volume were measured by a nitrogen gas adsorption method, and the specific surface area was 16 m 2.
/ G, the total pore volume is 0.023 cm 3 / g, and the ratio of the pore volume having a pore radius of 30 ° or more to the total pore volume is 30.
%Met.

【0035】<比較例1:比較活物質の作製(N2 ガス
無)>槽内に窒素ガスを送らず大気中に開放とした以外
は実施例1と同条件で操作した。この時の槽内の溶存酸
素量は5mg/Lであった。水洗濾過後の茶褐色の第3の
粒子(*3)を得た。定量分析の結果より、この時のマ
ンガン量は金属原子比で10モル%であり、硫酸第一鉄
アンモニウム法によるMnの平均価数を測定したところ
3.5であり、嵩高い微粒子の凝集体で球状ではなかっ
た。このことから得られた粒子中のMn価数が3価以上
の価数を含んでいることが判明した。この得られた微粒
子粉末のタップ密度は1.2g/ccであった。またX線回
折図から不純物と思われる水酸化ニッケル以外のピーク
が観測された。
<Comparative Example 1: Preparation of Comparative Active Material (No N 2 Gas)> The operation was performed under the same conditions as in Example 1 except that nitrogen gas was not sent into the tank and the tank was opened to the atmosphere. At this time, the amount of dissolved oxygen in the tank was 5 mg / L. The brown third particles (* 3) after the washing and filtration were obtained. From the results of the quantitative analysis, the amount of manganese at this time was 10 mol% in terms of metal atom ratio, and the average valence of Mn was measured by the ammonium ferrous sulfate method.
3.5, which was not bulky but an aggregate of bulky fine particles. From this, it was found that the Mn valence in the obtained particles contained a valence of 3 or more. The tap density of the obtained fine particle powder was 1.2 g / cc. Further, peaks other than nickel hydroxide, which are considered to be impurities, were observed from the X-ray diffraction diagram.

【0036】<Mn3価及び4価の定量>次に、各水酸
化ニッケルと市販水酸化ニッケル,市販マンガナイト
(γ−MnO(OH):Mnの酸化数は3価)の粒子1
0gを一定量の濃塩酸と濃硝酸とに各々溶解させる。こ
のとき求められたMn量とNi量とを「表1」に示す。
濃硝酸においては、溶解した溶液を濾過して不溶物と濾
別し、濾液中のMn量とNi量とを求めた。また、濾別
したものについては、硫酸第一鉄アンモニウム法により
Mnの平均価数を求めた。この結果も「表1」に示す。
<Quantitative Determination of Mn Trivalent and Tetravalent> Next, particles of nickel hydroxide, commercially available nickel hydroxide, and commercially available manganite (γ-MnO (OH): Mn has a trivalent oxidation number of 1)
0 g are dissolved in fixed amounts of concentrated hydrochloric acid and concentrated nitric acid. Table 1 shows the amounts of Mn and Ni obtained at this time.
For concentrated nitric acid, the dissolved solution was filtered to separate it from insoluble matter, and the Mn content and the Ni content in the filtrate were determined. In addition, the average valence of Mn was determined by the ammonium ferrous sulfate method for those separated by filtration. The results are also shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】濃塩酸溶解においては、すべての価数が2
価として溶解し、総Mn量が求められる。濃硝酸溶解に
おいては、Mn2価は溶解するが、Mn4価は不溶であ
る。Mn3価は不均化反応を起こし、Mn2価とMn4
価とを等量ずつ生成する。このことは「表1」のマンガ
ナイトの結果から、濾液中に含まれるMn量が濃硝酸で
は濃塩酸の半分となり、濾別した不溶物のMn平均酸化
度が4であることからも明らかである。さらに、Niに
ついては、Mnを含む含まないにかかわらず、酸の種類
には依存せず、測定値は等しい。
In the dissolution of concentrated hydrochloric acid, all valences are 2
Dissolved as a valency, and the total amount of Mn is determined. In concentrated nitric acid dissolution, Mn divalent is dissolved, but Mn tetravalent is insoluble. Mn trivalent causes a disproportionation reaction, and Mn divalent and Mn4
Are generated in equal amounts. This is evident from the results of manganite in Table 1 in that the amount of Mn contained in the filtrate is half that of concentrated hydrochloric acid in concentrated nitric acid, and the insoluble matter filtered out has an average Mn oxidation degree of 4. is there. Furthermore, Ni does not depend on the type of acid, regardless of whether it contains Mn or not, and the measured values are equal.

【0039】また、Mn含有水酸化ニッケル粒子の第1
の粒子(*1)では、濃塩酸,濃硝酸とも値は等しく、
Mn2価で含有されていることがわかる。また、硫酸第
一アンモニウム法から求めたMn平均価数とも一致す
る。第2の粒子(*2)及び第3の粒子(*3)につい
ては、濃硝酸に溶解して求められたMn量が上述の結果
から3価のMn量の半分であることから、濃塩酸で求め
た結果である総Mn量から以下の式(1)でMn4価の
量を求めた結果を「表2」に示す。また求められた3価
のMn量,4価のMn量から計算されたMnの平均酸化
数を硫酸第一鉄アンモニウム法から求めた結果も併せて
「表2」に示す。活物質中の4価のMn量=濃塩酸に溶
解して求めた総Mn量−(濃硝酸に溶解して求めたMn
量×2) ・・・(1)
In addition, the first of the Mn-containing nickel hydroxide particles
Particles (* 1) have the same value for both concentrated hydrochloric acid and concentrated nitric acid.
It turns out that it is contained by Mn divalent. In addition, it also agrees with the Mn average valence determined by the ammonium monosulfate method. Regarding the second particles (* 2) and the third particles (* 3), since the amount of Mn obtained by dissolving in concentrated nitric acid is half of the amount of trivalent Mn from the above results, concentrated hydrochloric acid is used. Table 2 shows the results obtained by calculating the amount of Mn tetravalent by the following formula (1) from the total Mn amount obtained as a result. Table 2 also shows the average oxidation number of Mn calculated from the trivalent Mn content and the tetravalent Mn content obtained by the ammonium ferrous sulfate method. Tetravalent Mn content in active material = Total Mn content determined by dissolving in concentrated hydrochloric acid-(Mn determined by dissolving in concentrated nitric acid
Amount x 2) ... (1)

【0040】[0040]

【表2】 [Table 2]

【0041】「表2」の結果から2つの方法から求めら
れた平均酸化数が一致しており、第2粒子(*2)、第
3粒子(*3)は3価と4価のMnを含んでいることが
わかる。この結果より、実施例1の方法では、反応時に
おいては不活性ガスとしてのN 2 ガスの作用により、大
気乾燥前は、2価のMnのみを含み、乾燥による酸化後
において3価,4価のMnを含むこととなる。よって、
比較例1のように、水酸化ニッケル生成時から3価,4
価のMnを含むものとは明らかに異なるものであること
が判明した。
From the results of "Table 2", the values were obtained from the two methods.
The average oxidation numbers obtained correspond to the second particles (* 2) and
Tri-particles (* 3) may contain trivalent and tetravalent Mn
Recognize. From these results, it was found that the method of Example 1
N as an inert gas TwoDue to the action of gas, large
Before air drying, containing only divalent Mn, after oxidation by drying
Contains trivalent and tetravalent Mn. Therefore,
As in Comparative Example 1, trivalent, 4
Must be clearly different from those containing monovalent Mn
There was found.

【0042】次に、実施例1の条件において、供給する
液の速度を変化させた場合、反応温度を変化させた場
合、水酸化ナトリウムの送液速度を変化させた場合につ
いて比較試験を行った。
Next, under the conditions of Example 1, a comparative test was performed for a case where the speed of the liquid to be supplied was changed, a case where the reaction temperature was changed, and a case where the speed of sending sodium hydroxide was changed. .

【0043】<比較例2>槽内に供給する液の供給速度
を実施例1の条件の3分の1とした以外は実施例1と同
様に操作した。平均滞留時間は18時間とした。得られ
た微粒子粉末は比表面積が6m2/gと小さく、乾燥後の
Mn平均酸化度は3.1と少なかった。
<Comparative Example 2> The operation was performed in the same manner as in Example 1 except that the supply rate of the liquid to be supplied into the tank was changed to one third of the condition in Example 1. The average residence time was 18 hours. The obtained fine particle powder had a small specific surface area of 6 m 2 / g, and the average degree of oxidation of Mn after drying was as low as 3.1.

【0044】<比較例3>槽内に供給する液の供給速度
を実施例1の条件の2.5倍とした以外は実施例1と同
様に操作した。平均滞留時間は2.4時間とした。得られ
た粉末は微粒子の凝集体で球状ではなく、ほとんど未反
応の液が槽上部よりオーバーフローした。
<Comparative Example 3> An operation was performed in the same manner as in Example 1 except that the supply rate of the liquid to be supplied into the tank was changed to 2.5 times the condition in Example 1. The average residence time was 2.4 hours. The obtained powder was an aggregate of fine particles, not spherical, and almost unreacted liquid overflowed from the upper part of the tank.

【0045】<比較例4>反応温度を50℃とした以外
は実施例1と同様に操作した。得られた粉体は比表面積
が5m2/gと小さく、30Å以上細孔半径をもつ細孔容
積が全細孔容積に対して70%もあった。
<Comparative Example 4> The same operation as in Example 1 was carried out except that the reaction temperature was changed to 50 ° C. The obtained powder had a small specific surface area of 5 m 2 / g, and the pore volume having a pore radius of 30 ° or more was 70% of the total pore volume.

【0046】<比較例5>反応温度を20℃とした以外
は実施例1と同様に操作した。得られた粉体は球状の粒
子であったが嵩高いものであった。
<Comparative Example 5> The same operation as in Example 1 was carried out except that the reaction temperature was changed to 20 ° C. The resulting powder was spherical, but bulky.

【0047】<比較例6>実施例1において、6.0 mol
/Lの水酸化ナトリウム水溶液を毎分5.5ml送液し、こ
の時の平均滞留時間を6.5時間、溶液 pHを11.5とし
た以外は実施例1と同様に操作した。得られた粉体は比
表面積が19m2/gであったがタップ密度が1.5g/cc
と嵩高いものであった。
<Comparative Example 6> In Example 1, 6.0 mol
/ L sodium hydroxide aqueous solution was fed at a rate of 5.5 ml / min. The operation was carried out in the same manner as in Example 1 except that the average residence time was 6.5 hours and the solution pH was 11.5. The resulting powder had a specific surface area of 19 m 2 / g but a tap density of 1.5 g / cc.
It was bulky.

【0048】<比較例7>実施例1の方法で6.0 mol/
Lの水酸化ナトリウム水溶液を毎分7.5ml送液し、この
時の平均滞留時間が5.8時間、溶液 pHは13.7とした
以外は実施例1と同様に操作した。得られた粉体はタッ
プ密度が2.3g/ccと高密度ものであったが、比表面積
は6m2/gと小さいものであった。
<Comparative Example 7> 6.0 mol /
The same operation as in Example 1 was carried out except that 7.5 ml of L aqueous sodium hydroxide solution was fed per minute, the average residence time was 5.8 hours, and the solution pH was 13.7. The resulting powder had a high tap density of 2.3 g / cc, but a small specific surface area of 6 m 2 / g.

【0049】実施例1及び比較例2乃至7をまとめた結
果を「表3」に示す。
The results of Example 1 and Comparative Examples 2 to 7 are shown in Table 3.

【0050】[0050]

【表3】 [Table 3]

【0051】以下に、Ni塩溶液に対するMnの添加量
に対する効果について説明する。 <実施例2>先ず、[実施例2]として、Ni塩溶液に
対するMnの含有量を5モル%とし、実施例1の条件に
よって合成し、実施例2と同様に、モデルセルを作製し
て放電容量を求めた。 <実施例3>また、[実施例3]として、Ni塩溶液に
対するMnの含有量を15モル%とし、実施例1の条件
によって粒子を合成し、実施例2と同様に、モデルセル
を作製して放電容量を求めた。上記実施例1により得ら
れた10モル%含まれる粒子(*2)10gをペースト
状態にしたものを多孔性ニッケル集電体に充填した後乾
燥し、加圧したニッケル電極を作製した。対極に水素吸
蔵合金を用い、電解液には7.2mol/Lの水酸化カリ
ウム水溶液を用いてモデルセルを作製した。同様にし
て、実施例2及び実施例3の粒子を用いてモデルセルを
作製した。
The effect on the amount of Mn added to the Ni salt solution will be described below. <Example 2> First, as [Example 2], the content of Mn with respect to the Ni salt solution was set to 5 mol%, synthesis was performed under the conditions of Example 1, and a model cell was fabricated in the same manner as in Example 2. The discharge capacity was determined. <Example 3> Further, as [Example 3], the content of Mn in the Ni salt solution was set to 15 mol%, particles were synthesized under the conditions of Example 1, and a model cell was fabricated in the same manner as in Example 2. To determine the discharge capacity. A porous nickel current collector was filled with 10 g of the particles (* 2) containing 10 mol% obtained in Example 1 in a paste state, and then dried and pressurized to produce a nickel electrode. A model cell was fabricated using a hydrogen storage alloy as a counter electrode and a 7.2 mol / L aqueous solution of potassium hydroxide as an electrolyte. Similarly, a model cell was produced using the particles of Example 2 and Example 3.

【0052】0.1C相当の電流で18時間充電した後、
0.2C相当の電流で0.5Vまで放電して放電容量を求め
た。そして、一電子酸化・還元時の理論放電容量を10
0として実際に得られた放電容量を割ったものを放電利
用率として計算した。得られた粒子の放電容量、タップ
密度、3価のMn量及び4価のMn量、硫酸第一鉄アン
モニウム法で求めたMn平均酸化数、比表面積を求め
た。得られた実施例1にかかる粒子のMn平均酸化数は
3.7 であり、3価の総Mn量は2.0 %、4価の総Mn量
は3.7 %であり、総Mn量に対して4価のMnが占める
割合は64.9%であった。また、タップ密度は2.2 g/c
cであり、比表面積は15m2 /gであった。
After charging for 18 hours at a current equivalent to 0.1 C,
The battery was discharged to 0.5 V at a current equivalent to 0.2 C to determine the discharge capacity. The theoretical discharge capacity during one-electron oxidation / reduction is 10
The value obtained by dividing the actually obtained discharge capacity as 0 was calculated as the discharge utilization rate. The discharge capacity, tap density, trivalent Mn content and tetravalent Mn content of the obtained particles, Mn average oxidation number and specific surface area determined by the ferrous ammonium sulfate method were determined. The Mn average oxidation number of the obtained particles according to Example 1 is
The total amount of trivalent Mn was 2.0%, the total amount of tetravalent Mn was 3.7%, and the ratio of tetravalent Mn to the total amount of Mn was 64.9%. The tap density is 2.2 g / c
c and the specific surface area was 15 m 2 / g.

【0053】得られた実施例2にかかる粒子のMn平均
酸化数は3.6 であり、3価の総Mn量は1.1 %、4価の
総Mn量は1.7 %であり、総Mn量に対して4価のMn
が占める割合は60.7%であった。また、タップ密度は2.
0 g/ccであり、比表面積は10m2 /gであった。
The average oxidation number of Mn of the obtained particles according to Example 2 was 3.6, the total amount of trivalent Mn was 1.1%, and the total amount of Mn of tetravalent was 1.7%. Tetravalent Mn
Accounted for 60.7%. The tap density is 2.
0 g / cc, and the specific surface area was 10 m 2 / g.

【0054】得られた実施例3にかかる粒子のMn平均
酸化数は3.7 であり、3価の総Mn量は2.6 %、4価の
総Mn量は6.1 %であり、総Mn量に対して4価のMn
が占める割合は70.1%であった。また、タップ密度は1.
9 g/ccであり、比表面積は17m2 /gであった。
The Mn average oxidation number of the obtained particles according to Example 3 was 3.7, the total trivalent Mn content was 2.6%, and the total tetravalent Mn content was 6.1%. Tetravalent Mn
Accounted for 70.1%. The tap density is 1.
It was 9 g / cc, and the specific surface area was 17 m 2 / g.

【0055】<比較例9>Ni塩溶液に対するMnの含
有量を3モル%とし、実施例1の条件によって粒子を合
成し、同様に、モデルセルを作製して放電容量を求め
た。得られた粒子の放電利用率、タップ密度、3価のM
n量及び4価のMn量、硫酸第一鉄アンモニウム法で求
めたMn平均酸化数、比表面積を求めた。得られた粒子
のMn平均酸化数は3.6 であり、3価の総Mn量は0.7
%、4価の総Mn量は1.0 %であり、総Mn量に対して
4価のMnが占める割合は58.8%であった。また、タッ
プ密度は2.1 g/ccであり、比表面積は10m2 /g
であった。
<Comparative Example 9> Particles were synthesized under the conditions of Example 1 with the content of Mn in the Ni salt solution being 3 mol%, and a model cell was similarly prepared to determine the discharge capacity. Discharge utilization rate, tap density, trivalent M of the obtained particles
The amount of n and the amount of tetravalent Mn, the average oxidation number of Mn determined by the ferrous ammonium sulfate method, and the specific surface area were determined. The Mn average oxidation number of the obtained particles was 3.6, and the total amount of trivalent Mn was 0.7.
%, The total amount of tetravalent Mn was 1.0%, and the ratio of tetravalent Mn to the total amount of Mn was 58.8%. The tap density is 2.1 g / cc and the specific surface area is 10 m 2 / g.
Met.

【0056】<比較例10>Ni塩溶液に対するMnの
含有量を20モル%とし、実施例1の条件によって粒子
を合成し、同様に、モデルセルを作製して放電容量を求
めた。得られた粒子の放電利用率、タップ密度、3価の
Mn量及び4価のMn量、硫酸第一鉄アンモニウム法で
求めたMn平均酸化数、比表面積を求めた。得られた粒
子のMn平均酸化数は3.7 であり、3価の総Mn量は3.
5 %、4価の総Mn量は8.0 %であり、総Mn量に対し
て4価のMnが占める割合は69.5%であった。また、タ
ップ密度は1.4 g/ccであり、比表面積は12m2
gであった。
<Comparative Example 10> Particles were synthesized under the conditions of Example 1 with the content of Mn relative to the Ni salt solution being 20 mol%, and a model cell was similarly prepared to determine the discharge capacity. The discharge utilization factor, tap density, trivalent Mn amount and tetravalent Mn amount of the obtained particles, Mn average oxidation number and specific surface area determined by the ferrous ammonium sulfate method were determined. The Mn average oxidation number of the obtained particles is 3.7, and the total amount of trivalent Mn is 3.
5%, the total amount of tetravalent Mn was 8.0%, and the ratio of tetravalent Mn to the total amount of Mn was 69.5%. The tap density is 1.4 g / cc and the specific surface area is 12 m 2 /
g.

【0057】<比較例1:水酸化ニッケル生成時のMn
価数の効果>比較例1の粒子を用い、同様に、モデルセ
ルを作製して放電容量を求めた。得られた粒子の放電利
用率、タップ密度、3価のMn量及び4価のMn量、硫
酸第一鉄アンモニウム法で求めたMn平均酸化数、比表
面積を求めた。得られた粒子のMn平均酸化数は3.5 で
あり、3価の総Mn量は3.0 %、4価の総Mn量は2.7
%であり、総Mn量に対して4価のMnが占める割合は
47.4%であった。また、タップ密度は1.2 g/ccであ
り、比表面積は4.5m2 /gであった。
<Comparative Example 1: Mn during formation of nickel hydroxide
Effect of valence> Using the particles of Comparative Example 1, a model cell was similarly prepared, and the discharge capacity was determined. The discharge utilization factor, tap density, trivalent Mn amount and tetravalent Mn amount of the obtained particles, Mn average oxidation number and specific surface area determined by the ferrous ammonium sulfate method were determined. The average oxidation number of Mn of the obtained particles was 3.5, the total amount of trivalent Mn was 3.0%, and the total amount of tetravalent Mn was 2.7.
%, And the ratio of tetravalent Mn to the total Mn amount is
47.4%. The tap density was 1.2 g / cc, and the specific surface area was 4.5 m 2 / g.

【0058】<実施例4:乾燥後の水酸化ニッケル中に
含まれる4価のMn量の効果>上記実施例1において、
乾燥温度を110℃として合成した。得られた粒子は同
様に、モデルセルを作製して放電容量を求めた。得られ
た粒子のMn平均酸化数は3.8 であり、3価の総Mn量
は1.1 %、4価の総Mn量は4.5 %であり、総Mn量に
対して4価のMnが占める割合は80.3%であった。ま
た、タップ密度は2.2 g/ccであり、比表面積は17
2 /gであった。
<Example 4: Effect of the amount of tetravalent Mn contained in the nickel hydroxide after drying>
The synthesis was performed at a drying temperature of 110 ° C. Similarly, a model cell was prepared from the obtained particles, and the discharge capacity was determined. The average oxidation number of Mn of the obtained particles is 3.8, the total amount of trivalent Mn is 1.1%, the total amount of tetravalent Mn is 4.5%, and the ratio of tetravalent Mn to the total Mn amount is 80.3%. The tap density is 2.2 g / cc and the specific surface area is 17 g / cc.
m 2 / g.

【0059】<比較例11:乾燥後の水酸化ニッケル中
に含まれる4価のMn量の効果>上記実施例1におい
て、乾燥温度を60℃として合成した。得られた粒子は
実施例2と同様に、モデルセルを作製して放電容量を求
めた。得られた粒子のMn平均酸化数は3.2 であり、3
価の総Mn量は4.4 %、4価の総Mn量は1.2 %であ
り、総Mn量に対して4価のMnが占める割合は21.4%
であった。また、タップ密度は2.2 g/ccであり、比
表面積は m2 /gであった。
<Comparative Example 11: Effect of the amount of tetravalent Mn contained in dried nickel hydroxide> In Example 1, the drying temperature was 60 ° C. For the obtained particles, a model cell was prepared in the same manner as in Example 2 to determine the discharge capacity. The average oxidation number of Mn of the obtained particles was 3.2 and 3
The total Mn content of tetravalent is 4.4%, the total Mn content of tetravalent is 1.2%, and the ratio of tetravalent Mn to the total Mn content is 21.4%.
Met. The tap density was 2.2 g / cc and the specific surface area was m 2 / g.

【0060】実施例1乃至4並びに比較例9,1,1
0,乃至11の結果を「表4」に示す。
Examples 1 to 4 and Comparative Examples 9, 1, 1
Tables 4 and 5 show the results.

【0061】[0061]

【表4】 [Table 4]

【0062】<比較例12>実施例1の方法において真
空中80℃にて乾燥した。
<Comparative Example 12> Drying was performed at 80 ° C in a vacuum in the same manner as in Example 1.

【0063】<比較例13>実施例3の乾燥温度を60
℃とした。
<Comparative Example 13> The drying temperature in Example 3 was set to 60
° C.

【0064】実施例1についても同様に乾燥温度に対す
る平均酸化度を測定した。その結果を実施例4、比較例
12、比較例13の結果と共に図1に示す。図1に示す
ように、比較例のものは酸化度が規定値まで達していな
いことが判明した。
In Example 1, the average degree of oxidation with respect to the drying temperature was measured in the same manner. FIG. 1 shows the results together with the results of Example 4, Comparative Example 12, and Comparative Example 13. As shown in FIG. 1, it was found that the oxidation degree of the comparative example did not reach the specified value.

【0065】[0065]

【発明の効果】以上のように、本発明によれば、合成反
応においてMnを酸化させず、2価のまま水酸化ニッケ
ル中に固溶させ、その後大気中で乾燥させる際に、酸化
させて、酸化数を3.5以上とすることにより、過充電で
γ−NiOOH生成しても、放電時に充分にβ−Ni
(OH)2 に戻ることができ、利用率の高いものとな
り、二次電池の電極材料として用いた場合に、優れた放
電特性、特に利用率の向上を図ることができる。
As described above, according to the present invention, Mn is not oxidized in the synthesis reaction, but is dissolved in nickel hydroxide in a divalent state without being oxidized, and then oxidized when dried in air. By setting the oxidation number to 3.5 or more, even if γ-NiOOH is generated due to overcharging, β-Ni
It can return to (OH) 2 and has a high utilization factor, and when used as an electrode material for a secondary battery, excellent discharge characteristics, particularly an improvement in utilization factor, can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】乾燥日数とマンガン平均酸化数との関係を示す
図。
FIG. 1 is a diagram showing the relationship between the number of dry days and the average manganese oxidation number.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 越智 康弘 広島県竹原市塩町1丁目5番1号 三井金 属鉱業株式会社電池材料研究所内 (72)発明者 沖藤 貴嗣 広島県竹原市塩町1丁目5番1号 三井金 属鉱業株式会社電池材料研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuhiro Ochi 1-5-1, Shiomachi, Takehara-shi, Hiroshima Prefecture Battery Materials Research Laboratories, Mitsui Kinzoku Mining Co., Ltd. (72) Takashi Okito 1-5, Shiomachi, Takehara-shi, Hiroshima Prefecture No. 1 Mitsui Kin Mining Co., Ltd. Battery Materials Research Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 タップ密度が1.9g/cc以上であり、M
nの含有量が5モル%以上15モル%以下の範囲にあ
り、4価のMnが総Mn量の50重量%以上であり、M
nの平均酸化度が3.5以上であることを特徴とするMn
含有複合水酸化ニッケル活物質。
(1) a tap density of 1.9 g / cc or more;
n is in the range of 5 mol% to 15 mol%, and tetravalent Mn is 50% by weight or more of the total Mn amount;
n having an average degree of oxidation of 3.5 or more.
Containing composite nickel hydroxide active material.
【請求項2】 請求項1において、 比表面積が8m2/g以上であり、細孔の空間体積が0.0
1 cm3/g以上であり、30Å以上の細孔半径を有する
細孔容積が全細孔容積に対して40%以下であることを
特徴とするMn含有複合水酸化ニッケル活物質。
2. The method according to claim 1, wherein the specific surface area is 8 m 2 / g or more, and the space volume of the pores is 0.0.
A Mn-containing composite nickel hydroxide active material, having a pore volume of 1 cm 3 / g or more and a pore radius having a pore radius of 30 ° or more with respect to the total pore volume of 40% or less.
【請求項3】 請求項1又は2において、 水酸化ニッケル生成工程が不活性ガス雰囲気下において
されてなることを特徴とするMn含有複合水酸化ニッケ
ル活物質。
3. The Mn-containing composite nickel hydroxide active material according to claim 1, wherein the nickel hydroxide generation step is performed in an inert gas atmosphere.
【請求項4】 Mnを含むNi塩溶液とアルカリ水溶液
及びアンモニウムイオンを含む水溶液を密閉された反応
槽内に連続的に供給し、成長した複合水酸化物を連続的
に取り出すMn含有複合水酸化ニッケルの製造方法にお
いて、 水酸化ニッケル中に含まれるMnが2価の状態で合成さ
れ、その後取り出されたMn含有複合水酸化ニッケルを
大気もしくは酸素雰囲気で乾燥し、酸化することを特徴
とするMn含有複合水酸化ニッケル活物質の製造方法。
4. A Mn-containing composite hydroxide that continuously supplies a Ni salt solution containing Mn, an alkaline aqueous solution, and an aqueous solution containing ammonium ions into a sealed reaction vessel and continuously removes the grown composite hydroxide. A method for producing nickel, characterized in that Mn contained in nickel hydroxide is synthesized in a divalent state, and then the extracted Mn-containing composite nickel hydroxide is dried and oxidized in air or an oxygen atmosphere. Method for producing a composite nickel hydroxide active material.
【請求項5】 請求項4において、 密閉された槽内溶液中の溶存酸素濃度が0.5mg/L以下
で合成されることを特徴とするMn含有複合水酸化ニッ
ケル活物質の製造方法。
5. The method for producing a Mn-containing composite nickel hydroxide active material according to claim 4, wherein the compound is synthesized at a dissolved oxygen concentration of 0.5 mg / L or less in a closed tank solution.
【請求項6】 請求項4又は5において、 上記合成が不活性ガス雰囲気下で行うことを特徴とする
Mn含有複合水酸化ニッケル活物質の製造方法。
6. The method for producing a Mn-containing composite nickel hydroxide active material according to claim 4, wherein the synthesis is performed in an inert gas atmosphere.
【請求項7】 請求項4乃至6において、 槽内の平均滞留時間が3時間以上12時間以下であり、
槽内の溶液 pHが12以上13.5以下であり、槽内の反
応温度が25℃以上40℃以下で反応させることを特徴
とするMn含有複合水酸化ニッケル活物質の製造方法。
7. The method according to claim 4, wherein the average residence time in the tank is 3 hours or more and 12 hours or less,
A method for producing a Mn-containing composite nickel hydroxide active material, characterized in that the solution pH in the tank is 12 or more and 13.5 or less and the reaction temperature in the tank is 25 ° C or more and 40 ° C or less.
【請求項8】 請求項4乃至7において、 乾燥温度が70℃以上であり、乾燥時間が16時間以上
であることを特徴とするMn含有複合水酸化ニッケル活
物質の製造方法。
8. The method for producing a Mn-containing composite nickel hydroxide active material according to claim 4, wherein the drying temperature is 70 ° C. or more and the drying time is 16 hours or more.
【請求項9】 請求項4乃至8において、 Mn含有複合水酸化ニッケルは共晶状態及び/又は固溶
状態にあることを特徴とするMn含有複合水酸化ニッケ
ル活物質の製造方法。
9. The method for producing a Mn-containing composite nickel hydroxide active material according to claim 4, wherein the Mn-containing composite nickel hydroxide is in a eutectic state and / or a solid solution state.
JP10143800A 1998-02-25 1998-05-26 Compound nickel hydroxide active material containing mn, and preparation thereof Withdrawn JPH11312519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10143800A JPH11312519A (en) 1998-02-25 1998-05-26 Compound nickel hydroxide active material containing mn, and preparation thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4309798 1998-02-25
JP10-43097 1998-02-25
JP10143800A JPH11312519A (en) 1998-02-25 1998-05-26 Compound nickel hydroxide active material containing mn, and preparation thereof

Publications (1)

Publication Number Publication Date
JPH11312519A true JPH11312519A (en) 1999-11-09

Family

ID=26382847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10143800A Withdrawn JPH11312519A (en) 1998-02-25 1998-05-26 Compound nickel hydroxide active material containing mn, and preparation thereof

Country Status (1)

Country Link
JP (1) JPH11312519A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086993A1 (en) 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2008078146A (en) * 2001-03-22 2008-04-03 Matsushita Electric Ind Co Ltd Cathode active material and nonaqueous electrolyte secondary battery containing this
JP2008084871A (en) * 2001-03-22 2008-04-10 Matsushita Electric Ind Co Ltd Method for producing positive-electrode active material
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US7585435B2 (en) 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2016208413A1 (en) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 Composite hydroxide containing transition metal and method for producing same, positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585432B2 (en) 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US7585435B2 (en) 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2008078146A (en) * 2001-03-22 2008-04-03 Matsushita Electric Ind Co Ltd Cathode active material and nonaqueous electrolyte secondary battery containing this
JP2008084871A (en) * 2001-03-22 2008-04-10 Matsushita Electric Ind Co Ltd Method for producing positive-electrode active material
EP2144314A2 (en) 2001-04-20 2010-01-13 GS Yuasa Corporation Positive active materials and process for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2002086993A1 (en) 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2016208413A1 (en) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 Composite hydroxide containing transition metal and method for producing same, positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery
JP2017016753A (en) * 2015-06-26 2017-01-19 住友金属鉱山株式会社 Transition metal composite hydroxide particle, manufacturing method for the same, positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery
US10547052B2 (en) 2015-06-26 2020-01-28 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
US11404690B2 (en) 2015-06-26 2022-08-02 Sumitomo Metal Mining Co., Ltd. Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3232990B2 (en) Alkaline storage battery and method for manufacturing the same
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
CN111769277A (en) Gradient single crystal high-nickel cathode material and preparation method thereof
JP4403594B2 (en) Cathode active material for alkaline storage battery and method for producing the same
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
US6132639A (en) Manganese-nickel mixed hydroxide for battery active material and process for manufacturing thereof
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
JP3205276B2 (en) Method for producing positive electrode active material for alkaline secondary battery, paste-type nickel electrode, alkaline secondary battery and method for producing the same
JPH10125318A (en) Positive active material and positive electrode for alkaline storage battery
JPH11312519A (en) Compound nickel hydroxide active material containing mn, and preparation thereof
US6156456A (en) Positive electrode active material for alkaline storage battery
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JP4330832B2 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
JPH09306487A (en) Manufacture of positive electrode active material for alkaline storage battery
JPH11260364A (en) Manganese-containing composite nickel hydroxide active material and manufacture thereof
JP3609231B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JPH10326617A (en) Manufacture of positive electrode active material for alkaline secondary battery, paste type nickel electrode and alkaline secondary battery
JP3249366B2 (en) Paste nickel electrode for alkaline storage batteries
JPH10188975A (en) Positive electrode material for silver oxide battery and its manufacture
JP2001348224A (en) Lithium-manganese multi component oxide and method for manufacturing the same as well as lithium battery using the same
JPH11185746A (en) Positive electrode material for alkaline storage battery
JPH10334911A (en) Alkaline storage battery and its manufacture
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JPH11307093A (en) Mn-containing composite nickel hydroxide active material and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802