JPH1029820A - Nickel-cobalt multiple hydroxide, its production and stock of active material of positive electrode for lithium secondary battery - Google Patents
Nickel-cobalt multiple hydroxide, its production and stock of active material of positive electrode for lithium secondary batteryInfo
- Publication number
- JPH1029820A JPH1029820A JP8203289A JP20328996A JPH1029820A JP H1029820 A JPH1029820 A JP H1029820A JP 8203289 A JP8203289 A JP 8203289A JP 20328996 A JP20328996 A JP 20328996A JP H1029820 A JPH1029820 A JP H1029820A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- cobalt
- salt
- particle
- hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、Ni−Co系複合
水酸化物とその製造方法及びリチウム二次電池用正極活
物質原料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ni-Co composite hydroxide, a method for producing the same, and a raw material for a positive electrode active material for a lithium secondary battery.
【0002】[0002]
【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進むに従い、小型電子機器の電源
としてリチウム二次電池が実用され始めている。このリ
チウム二次電池については、1980年に水島等により
コバルト酸リチウムがリチウム二次電池の正極活性物質
として有用であるとの報告〔“マテリアル リサーチブ
レイン”vo1.115 、783-789 頁(1980 年) 〕がなされて
以来、リチウム系複合酸化物に関する研究開発が活発に
進められており、これまでに多くの提案がなされてい
る。2. Description of the Related Art In recent years, portable electronic devices have become more portable.
As cordless technology has rapidly progressed, lithium secondary batteries have begun to be used as power sources for small electronic devices. Regarding this lithium secondary battery, Mizushima et al. Reported in 1980 that lithium cobaltate was useful as a positive electrode active material for lithium secondary batteries [“Material Research Brain” vo1.115, pp. 783-789 (1980). )], Research and development on lithium-based composite oxides have been actively promoted, and many proposals have been made so far.
【0003】例えば、Li1-a NiO2 (但し、0≦a
≦1)(米国特許第4302518 号明細書) 、Lib Ni
2-b O2 及びLiNi1-d Cod 02 (但し、0.84≦b
≦0.5)(特開平2-40861 号公報)、Lin Nim Co
1-m O2 (特開昭63-299056 号公報、特開平1-120765号
公報、特開平1-142056号公報)などのリチウムと遷移金
属を主体とする複合酸化物が提案されている。For example, Li 1-a NiO 2 (where 0 ≦ a
≦ 1) (US Pat. No. 4,302,518), Li b Ni
2-b O 2 and LiNi 1-d Co d O 2 (provided that 0.84 ≦ b
≦ 0.5) (JP-A-2-40861), Li n Ni m Co
A composite oxide mainly composed of lithium and a transition metal, such as 1- mO 2 (JP-A-63-299056, JP-A-1-120765, JP-A-1-42056), has been proposed.
【0004】上記の化合物において、コバルト酸リチウ
ムは結晶安定性が大なため、最も早くから検討されてき
たが、原料のコバルトが希産で高価なうえ、0.7電子
以上充電すると結晶性の低下や電解液の分解が生じるた
めに大容量化には適さないといった欠点がある。一方、
LiNiO2 は、コバルト酸リチウムに比べて安価であ
るという有利な点はあるが、結晶中に欠陥を生じやすい
ことから、活物質としての安定性が悪く、また電池に組
込んだときの放電容量特性はコバルト系に劣ることから
実用性にかなりの問題をかかえている。Among the above compounds, lithium cobalt oxide has been studied from the earliest due to its high crystal stability. However, cobalt as a raw material is rare and expensive, and the crystallinity deteriorates when charged to 0.7 electrons or more. And the decomposition of the electrolytic solution is not suitable for increasing the capacity. on the other hand,
LiNiO 2 has the advantage that it is less expensive than lithium cobalt oxide, but has a poor stability as an active material because it tends to cause defects in the crystal, and also has a discharge capacity when incorporated into a battery. Since the properties are inferior to those of the cobalt type, there are considerable problems in practicality.
【0005】[0005]
【発明が解決しようとする課題】このようなことから、
ニッケルの一部をコバルトで置換した複合金属酸リチウ
ム塩が経済的かつ機能的観点から検討されている。しか
しながら、通常コバルト含有ニッケル酸リチウムの製造
方法としては、単にコバルト及びニッケルの酸化物や水
酸化物と水酸化リチウムのそれぞれの原料を乾式で混合
して焼成する方法が知られているが、この方法では結晶
に欠陥が生成し易く、このために好ましい放電容量特性
を有するものは得られていない。SUMMARY OF THE INVENTION
A composite lithium metal salt in which nickel is partially substituted with cobalt has been studied from an economic and functional viewpoint. However, as a method of producing cobalt-containing lithium nickel oxide, a method of simply mixing the respective raw materials of oxides and hydroxides of cobalt and nickel and lithium hydroxide in a dry manner and firing the mixture is known. According to the method, defects are easily generated in the crystal, and therefore, those having favorable discharge capacity characteristics have not been obtained.
【0006】発明者らは、上記の事実に鑑み、電池用原
料としてのNi−Co系化合物について鋭意検討した結
果、リチウム複合酸化物の原料として優れたNi−Co
系複合水酸化物粒子とその製造方法を見出すことに成功
し本発明を完成した。従って、本発明の目的とするとこ
ろは、リチウム二次電池などの正極材として有効に使用
されるLi−Ni−Co系複合酸化物の原料として有用
で新規なNi−Co系複合水酸化物およびその製造方法
を提供することにある。In view of the above facts, the inventors of the present invention have conducted intensive studies on Ni-Co compounds as raw materials for batteries, and as a result, have found that Ni-Co compounds as raw materials for lithium composite oxides are excellent.
Succeeded in finding a composite hydroxide particle and a method for producing the same, and completed the present invention. Accordingly, an object of the present invention is to provide a novel and novel Ni-Co-based composite hydroxide useful as a raw material of a Li-Ni-Co-based composite oxide effectively used as a cathode material of a lithium secondary battery and the like. It is to provide a manufacturing method thereof.
【0007】[0007]
【課題を解決するための手段】即ち、上記の課題を解決
するための本発明によるNi−Co系複合水酸化物は、
ニッケルとコバルトとの固溶および/または共沈状態で
生成したNi−Co系複合水酸化物の結晶粒子であっ
て、該結晶粒子は板状、柱状若しくは針状の粒子形状、
又はこれらが混合した粒子形状を有する一次粒子が積層
し凝集してなる実質的に球状の二次粒子を構成している
ことを基本的な特徴とする。That is, a Ni—Co-based composite hydroxide according to the present invention for solving the above-mentioned problems is:
Ni-Co-based composite hydroxide crystal particles formed in a solid solution and / or coprecipitation state of nickel and cobalt, wherein the crystal particles have a plate-like, columnar or needle-like particle shape,
Alternatively, it is a fundamental feature that a substantially spherical secondary particle is formed by laminating and aggregating primary particles having a particle shape in which these are mixed.
【0008】また、ニッケルとコバルトとは、原子比N
i:Coが0:10〜10:0の範囲にあること、およ
びレーザー法による測定法で求めた球状の二次粒子の粒
度分布は(V95−V5)/V50が3以下であり、平
均粒子径が1〜50μmの範囲であることを、それぞれ
発明構成上の第2および第3の特徴とする。Further, nickel and cobalt have an atomic ratio N
i: Co is in the range of 0:10 to 10: 0, and the particle size distribution of the spherical secondary particles obtained by a measurement method using a laser method is such that (V95−V5) / V50 is 3 or less, and the average particles are The second and third features of the invention are that the diameter is in the range of 1 to 50 μm.
【0009】本発明によるNi−Co系複合水酸化物の
製造方法は、ニッケル塩及びコバルト塩の混合塩水溶液
のアルカリ加水分解に基づく水酸化ニッケル及び水酸化
コバルトの沈殿生成において、ニッケル塩及びコバルト
塩の混合塩水溶液に対し、ニッケルやコバルトの金属イ
オンに対して錯化力を有するキレート剤の存在下におい
て、アルカリ加水分解による沈殿生成反応を連続的に行
わせ、次いで沈殿生成物を必要かつ十分に熟成させるこ
とを構成上の特徴とする。The method for producing a Ni—Co-based composite hydroxide according to the present invention is directed to a method for producing a precipitate of nickel hydroxide and cobalt hydroxide based on alkaline hydrolysis of a mixed salt aqueous solution of a nickel salt and a cobalt salt. In a mixed salt aqueous solution of a salt, in the presence of a chelating agent having a complexing power for metal ions of nickel and cobalt, a precipitation generation reaction by alkali hydrolysis is continuously performed, and then a precipitation product is required. Sufficient aging is a structural feature.
【0010】また、上記の連続沈殿生成反応を多段式に
行うこと、およびキレート剤はアミノカルボン酸、オキ
シカルボン酸又はアンモニアから選ばれた少なくとも1
種又は2種以上であることを、それぞれ第2および第3
の特徴とする。さらに本発明によるリチウム二次電池用
正極活物質原料は上記のNi−Co系複合水酸化物を有
効成分とすることを特徴とする。In addition, the above-mentioned continuous precipitation forming reaction is carried out in a multistage manner, and the chelating agent is at least one selected from aminocarboxylic acids, oxycarboxylic acids or ammonia.
The second or third species, respectively,
The feature of. Further, the raw material for a positive electrode active material for a lithium secondary battery according to the present invention is characterized in that the above-mentioned Ni—Co-based composite hydroxide is used as an active ingredient.
【0011】本発明のNi−Co系複合水酸化物は、ニ
ッケルとコバルトとの固溶および/または共沈状態で生
成したNi−Co系複合水酸化物である。ここで、ニッ
ケルとコバルトとの固溶および/または共沈状態で生成
したものは、例えばニッケルとコバルトが単に混合して
いるものではなく、ニッケルの結晶相の格子点にある原
子がコバルトと一部置換しているものや、ニッケル塩と
コバルト塩が均一に共沈しているものである。固溶また
は共沈していないニッケル又はコバルトが単独で存在し
ている場合は、粉末X線回折により、これらのニッケル
又はコバルトの存在に起因して、生成した不純物として
のニッケル又はコバルトの水酸化物のピークが観察され
る。本発明のNi−Co系複合水酸化物には、かかる不
純物が極めて少なく、粉末X線回折において、それらの
ピークは殆ど存在しない。The Ni—Co composite hydroxide of the present invention is a Ni—Co composite hydroxide formed in a solid solution and / or coprecipitation state of nickel and cobalt. Here, what is formed in a solid solution and / or coprecipitation state of nickel and cobalt is not, for example, a simple mixture of nickel and cobalt, but an atom at a lattice point of a crystal phase of nickel is one of cobalt and cobalt. Some are partially substituted, and those in which nickel salt and cobalt salt are uniformly coprecipitated. When nickel or cobalt which is not dissolved or coprecipitated is present alone, powder X-ray diffraction indicates that the nickel or cobalt as an impurity formed due to the presence of nickel or cobalt is hydroxylated. An object peak is observed. The Ni—Co-based composite hydroxide of the present invention has very few such impurities, and there is almost no peak in powder X-ray diffraction.
【0012】本発明に係るNi−Co系複合水酸化物の
粒子特性において、粒子の形状や表面状態は、電子顕微
鏡により大部分確認することができるが、その一次粒子
は板状、柱状若しくは針状の粒子形状、またはこれらが
混合した粒子形状を有しており、これらの一次粒子が互
いに積層し合い、それが凝集して実質的に球状の二次粒
子を構成してなる特異な粒子構造を形成している。ここ
で、実質的に球状の二次粒子とは、真球状または卵のよ
うに楕円状のものや球状粒子が幾つか結合した繭状や団
子状の形状のものをいう。In the particle characteristics of the Ni—Co composite hydroxide according to the present invention, the shape and surface state of the particles can be mostly confirmed by an electron microscope, and the primary particles are plate-like, column-like or needle-like. Unique particle structure in which these primary particles have a laminar particle shape or a particle shape in which they are mixed, and these primary particles are stacked on each other and aggregate to form a substantially spherical secondary particle Is formed. Here, the substantially spherical secondary particles refer to those having a true spherical shape, an elliptical shape such as an egg, or a cocoon-like or dumpling-like shape in which some spherical particles are combined.
【0013】ニッケルとコバルトとは、原子比Ni:C
oが0:10〜10:0の範囲のものが好ましいが、生
成した結晶粒子において、板状、柱状若しくは針状の一
次粒子の大きさや積層した層の厚みは、上記のニッケル
とコバルトの原子比により異なり、例えばコバルトの原
子比が高くなるにしたがって、一次粒子の板、柱あるい
は針のサイズが大きくなり、積層の厚さも増す傾向にあ
る。Nickel and cobalt have an atomic ratio of Ni: C
Although o is preferably in the range of 0:10 to 10: 0, the size of the plate-like, columnar, or acicular primary particles and the thickness of the laminated layer in the generated crystal particles are the above-mentioned atomic ratios of nickel and cobalt. Depending on the ratio, for example, as the atomic ratio of cobalt increases, the size of plates, columns or needles of primary particles increases, and the thickness of the laminate tends to increase.
【0014】球状の二次粒子は、レーザー法による測定
法で求めた粒度分布が〔(V95−V5)/V50〕=
3以下の範囲のものが好ましい。粒度分布がこの範囲を
外れた場合には粒径の範囲が広くなり、リチウム二次電
池用の原料としては、好ましくない。また、球状の二次
粒子の平均粒子径は1〜50μmの範囲が好ましく、5
〜20μmの範囲がさらに好ましい。The spherical secondary particles have a particle size distribution obtained by a measuring method using a laser method, [(V95−V5) / V50] =
Those having a range of 3 or less are preferred. When the particle size distribution is out of this range, the range of the particle size is widened, which is not preferable as a raw material for a lithium secondary battery. The average particle diameter of the spherical secondary particles is preferably in the range of 1 to 50 μm,
The range of 2020 μm is more preferable.
【0015】本発明に係るNi−Co系複合水酸化物
は、上記のような粒子特性を有しているものであり、該
複合水酸化物にリチウム塩を混合し焼成したものは、リ
チウム二次電池用正極活物質として使用した場合、従来
に無い優れた放電特性と放電保持率を有することから、
この活物質用原料として特に有用である。The Ni—Co composite hydroxide according to the present invention has the above-mentioned particle characteristics. When used as a positive electrode active material for secondary batteries, it has unprecedented superior discharge characteristics and discharge retention,
It is particularly useful as a raw material for this active material.
【0016】[0016]
【発明の実施の形態】次に、本発明に係る製造方法につ
いて説明すると、ニッケル塩及びコバルト塩混合のアル
カリ加水分解反応において、ニッケル塩及びコバルト塩
の混合塩水溶液に対し、ニッケル及びコバルトの金属イ
オンに対して錯化力を有するキレート剤の存在下におい
て、アルカリ加水分解による沈殿生成反応を連続的に行
わせ、次いで沈殿生成物を必要かつ十分な滞留時間熟成
させることを特徴とするものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The production method according to the present invention will now be described. In an alkaline hydrolysis reaction of a mixture of a nickel salt and a cobalt salt, a nickel and cobalt metal solution is mixed with an aqueous solution of a mixed salt of the nickel salt and the cobalt salt. In the presence of a chelating agent having a complexing power for ions, a precipitation-forming reaction is continuously performed by alkali hydrolysis, and then the precipitation product is aged for a necessary and sufficient residence time. is there.
【0017】本発明に使用されるニッケル塩は、水に溶
解するものであれば特に制限されないが、通常、硫酸ニ
ッケル、硝酸ニッケル、塩化ニッケル等の水易溶性の鉱
酸塩類が挙げられる。また、コバルト塩もニッケルと同
様に水に溶解するものであれば特に制限されないが、通
常、硫酸コバルト、硝酸コバルト、塩化コバルト等の水
易溶性の鉱酸塩類が挙げられる。ニッケル塩及びコバル
ト塩は、0.5〜3.5モル/L程度の水溶液濃度が実
用的範囲で反応に好ましく使用される。The nickel salt used in the present invention is not particularly limited as long as it is soluble in water, and usually includes easily water-soluble mineral salts such as nickel sulfate, nickel nitrate and nickel chloride. The cobalt salt is not particularly limited as long as it dissolves in water similarly to nickel, and usually includes easily water-soluble mineral salts such as cobalt sulfate, cobalt nitrate, and cobalt chloride. The nickel salt and the cobalt salt are preferably used in the reaction at an aqueous solution concentration of about 0.5 to 3.5 mol / L within a practical range.
【0018】また、これらの金属イオンに対して錯化力
を有するキレート剤としては、例えばアミノカルボン
酸、オキシカルボン酸又はアンモニアから選ばれた少な
くとも1種又は2種以上が好ましい。アミノカルボン酸
としては、例えばヒドラジン、トリエタノールアミン、
グリシン、アラニン、アスパラギン、イミノジ酢酸、グ
ルタミン酸、エチレンジアミン、エチレンジアミン四酢
酸及びそれらの塩等が挙げられる。オキシカルボン酸と
しては、例えば酢酸、乳酸、シュウ酸、マロン酸、リン
ゴ酸、酒石酸、クエン酸、サリチル酸、チオグリコール
酸及びそれらの塩等が挙げられる。As the chelating agent having a complexing power for these metal ions, for example, at least one or more selected from aminocarboxylic acids, oxycarboxylic acids and ammonia are preferable. As aminocarboxylic acids, for example, hydrazine, triethanolamine,
Examples include glycine, alanine, asparagine, iminodiacetic acid, glutamic acid, ethylenediamine, ethylenediaminetetraacetic acid, and salts thereof. Examples of the oxycarboxylic acid include acetic acid, lactic acid, oxalic acid, malonic acid, malic acid, tartaric acid, citric acid, salicylic acid, thioglycolic acid, and salts thereof.
【0019】また、アンモニアは、アンモニウムイオン
を供給できるものであれば、特に制限されないが、例え
ば硝酸アンモニウム、硫酸アンモニウム、塩化アンモニ
ウムなどのアンモニウム塩の水溶液、アンモニア水、ア
ンモニアガス等が挙げられ、好ましくはアンモニア水で
ある。The ammonia is not particularly limited as long as it can supply ammonium ions. Examples of the ammonia include aqueous solutions of ammonium salts such as ammonium nitrate, ammonium sulfate, and ammonium chloride, aqueous ammonia, and ammonia gas. Water.
【0020】上記のキレート剤は、ニッケル塩及びコバ
ルト塩の1モル当たり0.2〜4.0モルの範囲で供給
されるのが好ましい。なおキレート剤は、単独で供給し
てもよいが、ニッケル塩水溶液及びコバルト塩水溶液の
何れかに所定割合混合して添加してもよい。0.2モル
未満では、粒子成長が十分でなく、また4.0モルを越
えた場合は、それ以上の顕著な効果が期待できないとと
もに経済的な問題が生じ好ましくない。The above-mentioned chelating agent is preferably supplied in the range of 0.2 to 4.0 mol per mol of the nickel salt and the cobalt salt. The chelating agent may be supplied alone, or may be added to any of the nickel salt aqueous solution and the cobalt salt aqueous solution by mixing at a predetermined ratio. If the amount is less than 0.2 mol, the grain growth is not sufficient, and if it exceeds 4.0 mol, no more remarkable effect can be expected and an economic problem occurs, which is not preferable.
【0021】アルカリ加水分解に使用するアルカリは、
水酸化ナトリウム、水酸化カリウム等の苛性アルカリ水
溶液が好ましいが、水酸化ナトリウムが最も好ましい。
アルカリの添加量は、ニッケル塩及びコバルト塩1モル
に対して、1.1〜3.0モルが好ましく、1.1モル
未満の場合には、未反応のニッケル塩及びコバルト塩が
生成し易くなり、3.0モルを越えて添加した場合は、
粒子成長が十分でなく未成長粒子が多く生成し易い。The alkali used for the alkali hydrolysis is
A caustic aqueous solution such as sodium hydroxide or potassium hydroxide is preferred, but sodium hydroxide is most preferred.
The addition amount of the alkali is preferably from 1.1 to 3.0 mol per 1 mol of the nickel salt and the cobalt salt, and when less than 1.1 mol, unreacted nickel salt and the cobalt salt are easily generated. When more than 3.0 moles are added,
Particle growth is not sufficient and many ungrown particles are likely to be generated.
【0022】上記の原料を用いて、金属水酸化物の沈殿
反応を行う場合、反応操作として幾つかの態様が考えら
れる。その態様を以下に例示する。 (1)アルカリ加水分解に基づく金属水酸化物の生成反
応において、反応系内のpHを9〜12の範囲に終始一
定に保持しつつ連続的に金属塩水溶液、キレート剤及び
アルカリ剤を定量的に添加させる方法である。この操作
により、終始安定した条件で、金属塩の加水分解に伴う
ニッケル及びコバルトの水酸化物が均質な共沈体として
連続的に生成することになる。次いで、生成した該共沈
体を同じ反応器又は別の受器で必要かつ十分な熟成処理
を施すことが必要である。 (2)第2の方法としては、キレート剤を含有する金属
塩水溶液へアルカリ剤を添加してアルカリ加水分解によ
る共沈体生成を行い、次いで熟成を同様に行う場合があ
る。 (3)他の方法として、反応液を連続的に添加して共沈
生成物を含む反応系のスラリーをオーバーフローさせる
ことなく、反応媒体液のみを除いて、系の反応液量を一
定に制御しながら反応及び熟成させる方法である。When a precipitation reaction of a metal hydroxide is carried out by using the above-mentioned raw materials, several modes can be considered as a reaction operation. The embodiment is illustrated below. (1) In the production reaction of a metal hydroxide based on alkali hydrolysis, the aqueous solution of the metal salt, the chelating agent and the alkali agent are continuously quantitatively maintained while keeping the pH in the reaction system constant in the range of 9 to 12 throughout. It is a method of adding to. By this operation, hydroxides of nickel and cobalt accompanying the hydrolysis of the metal salt are continuously produced as homogeneous coprecipitates under stable conditions throughout. Next, it is necessary to subject the produced coprecipitate to a necessary and sufficient aging treatment in the same reactor or another receiver. (2) As a second method, there is a case where an alkali agent is added to an aqueous metal salt solution containing a chelating agent to form a coprecipitate by alkali hydrolysis, and then ripening is performed in the same manner. (3) As another method, the amount of the reaction solution in the system is controlled to be constant except for the reaction medium solution without overflowing the reaction system slurry containing the coprecipitated product by continuously adding the reaction solution. This is a method of reacting and aging while reacting.
【0023】いずれの場合も、この熟成は沈殿生成後、
少なくとも3時間撹拌で行うことが望ましい。また、反
応系のスラリー濃度は、少なくとも70g/L以上にな
るように反応条件を設定することが望ましい。これより
も濃度が薄いと粒子成長が極端に遅くなったり、処理容
量が増大して好ましくない。本反応操作はバッチ式でも
よいが、連続法が好ましく、また、連続法において何度
かに分けて行う多段方式でもよい。反応温度は通常10
〜100℃が好ましく、さらに好ましくは20〜80℃
である。反応時間は1〜72時間程度である。In any case, this aging is carried out after precipitation
Desirably, stirring is performed for at least 3 hours. Further, it is desirable to set the reaction conditions so that the slurry concentration of the reaction system is at least 70 g / L or more. If the concentration is lower than this, the particle growth becomes extremely slow or the processing capacity increases, which is not preferable. This reaction operation may be a batch method, but is preferably a continuous method, or may be a multi-stage method in which the reaction is performed several times in the continuous method. The reaction temperature is usually 10
To 100 ° C, more preferably 20 to 80 ° C
It is. The reaction time is about 1 to 72 hours.
【0024】上記の製造方法により得られるNi−Co
系複合水酸化物は、実質的に球状の粒子形態を有してお
り、リチウム二次電池の正極活物質用原料として有用で
あり、また当該Ni−Co系複合水酸化物を有効成分と
した正極活物質を使用したリチウム二次電池は放電容量
および放電保持率などに優れた特性をそなえたものとな
る。The Ni-Co obtained by the above-mentioned manufacturing method
The composite hydroxide has a substantially spherical particle form, is useful as a raw material for a positive electrode active material of a lithium secondary battery, and has the Ni-Co composite hydroxide as an active ingredient. A lithium secondary battery using a positive electrode active material has excellent characteristics such as discharge capacity and discharge retention.
【0025】[0025]
実施例1 1L容量のビーカーに、予め200mLの水を張り、
1.6mol/LのNiSO4 ・6H2 Oと0.4mo
l/LのCoSO4 ・7H2 Oの混合塩水溶液1200
mL、6mol/LのNaOH溶液800mL、及び錯
化剤として1.5mol/Lのアンモニア溶液400m
Lを滴下するとともに、pHを11に調整しながら50
℃に保温して水酸化物を生成させ、次いで9時間撹拌熟
成した。この間オーバー方式で系内の液量を制御し、3
時間毎にオーバーフローした液の交換を行った。Example 1 200 mL of water was placed in a 1-L beaker in advance,
NiSO of 1.6mol / L 4 · 6H 2 O and 0.4mo
l / L CoSO 4 · 7H 2 O aqueous solution of mixed salts of 1200
mL, 6 mol / L NaOH solution 800 mL, and 1.5 mol / L ammonia solution 400 m as a complexing agent
L while dropping L and adjusting the pH to 11.
The mixture was kept warm at ℃ to form a hydroxide, and then aged for 9 hours with stirring. During this time, the amount of liquid in the system is controlled by the over method,
The liquid that overflowed was replaced every hour.
【0026】濾過後に沈殿生成した水酸化物をリパルプ
洗浄した。電導度計によって洗浄効果を判断しながら十
分に洗浄を行い、乾燥後、沈殿生成物のX線回折を行っ
た結果、沈殿生成物は非晶質ではなく、NiとCoとが
相互に固溶したNiとCoとの共晶体で、組成はNi/
Coがほぼ8/2であることが確認された。沈殿生成し
た結晶のSEM写真を図1に示す。図1から、この結晶
は、一次粒子が柱状の粒子形状を有し、これらの一次粒
が集合して実質的に球状の二次粒子を構成する粒子形態
を形成していることが認められる。The hydroxide formed after the filtration was subjected to repulping washing. After sufficient cleaning while judging the cleaning effect with a conductivity meter, and drying, X-ray diffraction of the precipitated product showed that the precipitated product was not amorphous, and Ni and Co were dissolved in each other. Eutectic of Ni and Co, with a composition of Ni /
It was confirmed that Co was approximately 8/2. FIG. 1 shows an SEM photograph of the precipitated crystals. From FIG. 1, it can be seen that this crystal has a primary particle having a columnar particle shape, and these primary particles are aggregated to form a particle form constituting a substantially spherical secondary particle.
【0027】実施例2 1L容量のビーカーに、予め200mLの水を張り、
1.8mol/LのNiSO4 ・6H2 Oと0.2mo
l/LのCoSO4 ・7H2 Oの混合塩水溶液1200
mL、6mol/LのNaOH溶液800mL、及び錯
化剤として1mol/Lのグリシン溶液400mLを滴
下方式で加え,pHを10に調整しながら70℃に保温
して水酸化物を沈殿生成させ、次いで9時間撹拌熟成し
た。この間オーバーフロー方式で系内の液量を制御し、
3時間毎にオーバーフローした液を交換した。Example 2 200 mL of water was poured into a 1 L beaker in advance,
NiSO of 1.8mol / L 4 · 6H 2 O and 0.2mo
l / L CoSO 4 · 7H 2 O aqueous solution of mixed salts of 1200
mL, 800 mL of a 6 mol / L NaOH solution, and 400 mL of a 1 mol / L glycine solution as a complexing agent were added dropwise, and the pH was adjusted to 10 while keeping the temperature at 70 ° C. to precipitate hydroxides. The mixture was stirred and aged for 9 hours. During this time, the amount of liquid in the system is controlled by the overflow method,
The overflowed liquid was replaced every three hours.
【0028】濾過後に得られた沈殿生成物をリパルプ洗
浄した。電導度計によって洗浄効果を確認しながら十分
に洗浄を行い、乾燥後、沈殿生成物のX線回折を行った
結果、沈殿生成物はNiとCoの共晶体からなる結晶粒
子であり、組成はNi/Coが約9/1であることが確
認された。また、この結晶粒子は、実施例1で得られた
結晶粒子と同様、柱状の一次粒子が集合した実質的に球
状の二次粒子を構成した粒子形態を有していた。The precipitated product obtained after the filtration was repulped and washed. After sufficiently washing while confirming the washing effect with a conductivity meter, and drying, X-ray diffraction was performed on the precipitate product. As a result, the precipitate product was crystal particles composed of a eutectic of Ni and Co, and the composition was It was confirmed that Ni / Co was about 9/1. In addition, like the crystal particles obtained in Example 1, the crystal particles had a particle form in which columnar primary particles were aggregated to form substantially spherical secondary particles.
【0029】実施例3 容量が500mLビーカーに、予め250mLの水を張
り、1.4mol/LのNiSO4 ・6H2 Oと0.6
mol/LのCoSO4 ・7H2 Oの混合塩水溶液2
L、6mol/LのNaOH溶液1300ml、及び錯
化剤として1mol/Lのリンゴ酸溶液670mLを滴
下方式で加え、pHを10に調整しながら70℃に保温
して水酸化物を沈殿生成させ、15時間撹拌熟成した。
この間、系内の液量を制御するために、反応媒体液のみ
を減圧濾去方式で除きながらスラリー濃度を上げていっ
た。[0029] Example 3 capacity 500mL beaker, tension of water in advance 250 mL, and NiSO 4 · 6H 2 O in 1.4 mol / L 0.6
mol / L CoSO of 4 · 7H 2 O aqueous solution of mixed salts of 2
L, 1300 ml of a 6 mol / L NaOH solution, and 670 mL of a 1 mol / L malic acid solution as a complexing agent were added dropwise, and the mixture was kept at 70 ° C. while adjusting the pH to 10 to precipitate hydroxides. The mixture was stirred and aged for 15 hours.
During this time, in order to control the amount of liquid in the system, the slurry concentration was increased while only the reaction medium liquid was removed by filtration under reduced pressure.
【0030】濾過後に沈殿生成物をリパルプ洗浄した。
電導度計に洗浄効果を判断しながら十分に洗浄を行い、
乾燥後の沈殿生成物についてX線回折を行った結果、沈
殿生成物はNiとCoの共晶体からなる結晶であり、N
i/Coが約8/2の組成を有するものであることが確
認された。また、結晶粒子は、実施例1で得られた結晶
粒子と同様、板状の粒子形状を有する一次粒子が積層、
凝集して、実質的に球状の二次粒子を構成した粒子形態
を有していた。After filtration, the precipitated product was repulped and washed.
Thoroughly clean the conductivity meter while judging the cleaning effect,
X-ray diffraction was performed on the precipitated product after drying. As a result, the precipitated product was a crystal composed of a eutectic of Ni and Co.
It was confirmed that i / Co had a composition of about 8/2. Further, the crystal particles, like the crystal particles obtained in Example 1, are laminated with primary particles having a plate-like particle shape,
It had a particle form that aggregated to form substantially spherical secondary particles.
【0031】[0031]
【発明の効果】本発明によれば、とくにリチウム二次電
池の正極材として用いられるLi−Ni−Co系複合酸
化物の原料として有用なNi−Co系複合水酸化物およ
びその製造方法が提供される。当該Ni−Co系複合水
酸化物を正極活物質の有効成分として使用した場合に
は、放電容量特性のきわめて優れたリチウム電池が得ら
れる。According to the present invention, there is provided a Ni-Co-based composite hydroxide useful as a raw material of a Li-Ni-Co-based composite oxide particularly used as a cathode material of a lithium secondary battery, and a method for producing the same. Is done. When the Ni-Co-based composite hydroxide is used as an active component of a positive electrode active material, a lithium battery having extremely excellent discharge capacity characteristics can be obtained.
【図1】本発明のNi−Co系複合水酸化物の結晶粒子
の粒子構造を示すSEM写真である。FIG. 1 is an SEM photograph showing a particle structure of a crystal particle of a Ni—Co-based composite hydroxide of the present invention.
【図2】図1の結晶粒子の粒子構造をさらに倍率を上げ
て観察した場合のSEM写真である。FIG. 2 is an SEM photograph when the particle structure of the crystal particle of FIG. 1 is observed at a higher magnification.
Claims (7)
たは共沈状態で生成したNi−Co系複合水酸化物の結
晶粒子であって、該結晶粒子は板状、柱状若しくは針状
の粒子形状、又はこれらが混合した粒子形状を有する一
次粒子が積層し凝集してなる実質的に球状の二次粒子を
構成していることを特徴とするNi−Co系複合水酸化
物。1. A crystal particle of a Ni—Co-based composite hydroxide formed in a solid solution and / or coprecipitation state of nickel and cobalt, wherein the crystal particle has a plate-like, columnar or needle-like particle shape. Or a substantially spherical secondary particle formed by laminating and aggregating primary particles having a mixed particle shape.
i:Coが0:10〜10:0の範囲にあることを特徴
とする請求項1記載のNi−Co系複合水酸化物。2. Nickel and cobalt have an atomic ratio of N
The Ni-Co composite hydroxide according to claim 1, wherein i: Co is in a range of 0:10 to 10: 0.
二次粒子の粒度分布は(V95−V5)/V50が3以
下であり、平均粒子径が1〜50μmの範囲にあること
を特徴とする請求項1又は2記載のNi−Co系複合水
酸化物。3. The particle size distribution of the spherical secondary particles determined by a measuring method using a laser method is such that (V95−V5) / V50 is 3 or less, and the average particle diameter is in the range of 1 to 50 μm. The Ni-Co-based composite hydroxide according to claim 1 or 2, wherein:
液のアルカリ加水分解に基づく水酸化ニッケル及び水酸
化コバルトの沈殿生成において、ニッケル塩及びコバル
ト塩の混合塩水溶液に対し、ニッケルやコバルトの金属
イオンに対して錯化力を有するキレート剤の存在下にお
いてアルカリ加水分解による沈殿生成反応を連続的に行
わせ、次いで沈殿生成物を必要かつ十分に熟成させるこ
とを特徴とするNi−Co系複合水酸化物の製造方法。4. A method for producing a precipitate of nickel hydroxide and cobalt hydroxide based on alkaline hydrolysis of an aqueous solution of a mixed salt of a nickel salt and a cobalt salt, wherein a metal ion of nickel or cobalt is added to the aqueous solution of a mixed salt of a nickel salt and a cobalt salt. Ni-Co-based composite water characterized in that a precipitation-forming reaction by alkali hydrolysis is continuously performed in the presence of a chelating agent having a complexing power with respect to A method for producing an oxide.
3記載のNi−Co系複合水酸化物の製造方法。5. The method for producing a Ni—Co-based composite hydroxide according to claim 3, wherein the continuous precipitation generation reaction is performed in a multistage manner.
シカルボン酸又はアンモニアから選ばれた少なくとも1
種又は2種以上である請求項4又は5記載のNi−Co
系複合水酸化物の製造方法。6. The chelating agent is at least one selected from aminocarboxylic acids, oxycarboxylic acids and ammonia.
The Ni-Co according to claim 4 or 5, wherein the Ni-Co is a kind or two or more kinds.
For producing a composite hydroxide.
−Co系複合水酸化物を有効成分とするリチウム二次電
池用正極活物質原料。7. The Ni according to claim 1, 2 or 3
-A positive electrode active material raw material for a lithium secondary battery containing a Co-based composite hydroxide as an active ingredient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20328996A JP3884796B2 (en) | 1996-07-12 | 1996-07-12 | Method for producing Ni-Co composite hydroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20328996A JP3884796B2 (en) | 1996-07-12 | 1996-07-12 | Method for producing Ni-Co composite hydroxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1029820A true JPH1029820A (en) | 1998-02-03 |
JP3884796B2 JP3884796B2 (en) | 2007-02-21 |
Family
ID=16471583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20328996A Expired - Fee Related JP3884796B2 (en) | 1996-07-12 | 1996-07-12 | Method for producing Ni-Co composite hydroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3884796B2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100307163B1 (en) * | 1999-06-12 | 2001-11-01 | 김순택 | Method of preparing positive active material of lithium secondary battery |
JP2002203549A (en) * | 2000-12-28 | 2002-07-19 | Shin Kobe Electric Mach Co Ltd | Lithium secondary battery and treatment method of the positive electrode active substance |
WO2002063704A1 (en) * | 2001-02-08 | 2002-08-15 | Qni Technology Pty Ltd | Cobalt (iii) encapsulated nickel hydroxides and basic carbonates for battery electrodes |
EP1044927A4 (en) * | 1998-06-10 | 2004-06-23 | Sakai Chemical Industry Co | Nickel hydroxide particles and production and use thereof |
AU2002227801B2 (en) * | 2001-02-08 | 2005-12-01 | Qni Technology Pty Ltd | Cobalt (III) encapsulated nickel hydroxides and basic carbonates for battery electrodes |
WO2009014158A1 (en) | 2007-07-25 | 2009-01-29 | Nippon Chemical Industrial Co., Ltd | Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery |
JP2009054576A (en) * | 2007-07-27 | 2009-03-12 | Nippon Chem Ind Co Ltd | Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus |
WO2011067937A1 (en) * | 2009-12-02 | 2011-06-09 | 住友金属鉱山株式会社 | Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery |
WO2011067935A1 (en) * | 2009-12-02 | 2011-06-09 | 住友金属鉱山株式会社 | Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery |
US8003256B2 (en) | 2007-07-20 | 2011-08-23 | Nippon Chemical Industrial Co., Ltd | Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same |
JP2011181193A (en) * | 2010-02-26 | 2011-09-15 | Sumitomo Metal Mining Co Ltd | Nickel-cobalt composite hydroxide for nonaqueous electrolyte secondary battery positive electrode active material, manufacturing method thereof, and method of manufacturing nonaqueous electrolyte secondary battery positive electrode active material using nickel-cobalt composite hydroxide |
JP2011201764A (en) * | 2010-03-02 | 2011-10-13 | Sumitomo Metal Mining Co Ltd | Nickel cobalt compound hydroxide and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery obtained by using the compound hydroxide |
US8137844B2 (en) | 2006-11-17 | 2012-03-20 | Nippon Chemical Industrial Co., Ltd. | Cathode active material for lithium rechargeable battery, manufacturing method thereof and lithium rechargeable battery |
WO2013094701A1 (en) * | 2011-12-20 | 2013-06-27 | 住友金属鉱山株式会社 | Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell |
WO2013125703A1 (en) * | 2012-02-23 | 2013-08-29 | 住友金属鉱山株式会社 | Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery |
JP2013170099A (en) * | 2012-02-21 | 2013-09-02 | Nippon Chem Ind Co Ltd | Method for producing cobalt hydroxide, method for producing cobalt oxide and method for producing lithium cobaltate |
WO2017150945A1 (en) * | 2016-03-04 | 2017-09-08 | 주식회사 엘지화학 | Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using same |
US10109849B2 (en) | 2012-06-06 | 2018-10-23 | Sumitomo Metal Mining Co., Ltd. | Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these |
US10741840B2 (en) | 2017-09-04 | 2020-08-11 | Samsung Electronics Co., Ltd. | Cathode active material precursor, cathode active material formed therefrom, method of preparing the cathode active material, and cathode and lithium battery each including the cathode active material |
WO2021010321A1 (en) * | 2019-07-18 | 2021-01-21 | 株式会社豊田自動織機 | Positive electrode active material in which aluminum is dispersed uniformly |
JP2021506076A (en) * | 2017-12-08 | 2021-02-18 | ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー | Low temperature preparation of positive electrode active material |
CN116646633A (en) * | 2023-05-31 | 2023-08-25 | 科立鑫(珠海)新能源有限公司 | Method for recycling active substances in lithium ion positive electrode material |
-
1996
- 1996-07-12 JP JP20328996A patent/JP3884796B2/en not_active Expired - Fee Related
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1044927A4 (en) * | 1998-06-10 | 2004-06-23 | Sakai Chemical Industry Co | Nickel hydroxide particles and production and use thereof |
KR100307163B1 (en) * | 1999-06-12 | 2001-11-01 | 김순택 | Method of preparing positive active material of lithium secondary battery |
JP2002203549A (en) * | 2000-12-28 | 2002-07-19 | Shin Kobe Electric Mach Co Ltd | Lithium secondary battery and treatment method of the positive electrode active substance |
WO2002063704A1 (en) * | 2001-02-08 | 2002-08-15 | Qni Technology Pty Ltd | Cobalt (iii) encapsulated nickel hydroxides and basic carbonates for battery electrodes |
AU2002227801B2 (en) * | 2001-02-08 | 2005-12-01 | Qni Technology Pty Ltd | Cobalt (III) encapsulated nickel hydroxides and basic carbonates for battery electrodes |
US8137844B2 (en) | 2006-11-17 | 2012-03-20 | Nippon Chemical Industrial Co., Ltd. | Cathode active material for lithium rechargeable battery, manufacturing method thereof and lithium rechargeable battery |
US8003256B2 (en) | 2007-07-20 | 2011-08-23 | Nippon Chemical Industrial Co., Ltd | Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same |
WO2009014158A1 (en) | 2007-07-25 | 2009-01-29 | Nippon Chemical Industrial Co., Ltd | Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery |
JP2009054576A (en) * | 2007-07-27 | 2009-03-12 | Nippon Chem Ind Co Ltd | Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus |
US20180145326A1 (en) * | 2009-12-02 | 2018-05-24 | Sumitomo Metal Mining Co., Ltd. | Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery |
US11394024B2 (en) | 2009-12-02 | 2022-07-19 | Sumitomo Metal Mining Co., Ltd. | Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery |
US9954224B2 (en) | 2009-12-02 | 2018-04-24 | Sumitomo Metal Mining Co., Ltd. | Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery |
JP2011116580A (en) * | 2009-12-02 | 2011-06-16 | Sumitomo Metal Mining Co Ltd | Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery |
WO2011067935A1 (en) * | 2009-12-02 | 2011-06-09 | 住友金属鉱山株式会社 | Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery |
JP4941617B2 (en) * | 2009-12-02 | 2012-05-30 | 住友金属鉱山株式会社 | Nickel composite hydroxide particles and non-aqueous electrolyte secondary battery |
US20120276454A1 (en) * | 2009-12-02 | 2012-11-01 | Kensaku Mori | Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery |
WO2011067937A1 (en) * | 2009-12-02 | 2011-06-09 | 住友金属鉱山株式会社 | Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery |
US10490815B2 (en) | 2009-12-02 | 2019-11-26 | Sumitomo Metal Mining Co., Ltd. | Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte second battery |
US9859557B2 (en) * | 2009-12-02 | 2018-01-02 | Sumitomo Metal Mining Co., Ltd. | Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery |
US10516165B2 (en) | 2009-12-02 | 2019-12-24 | Sumitomo Metal Mining Co., Ltd. | Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery |
US10818921B2 (en) * | 2009-12-02 | 2020-10-27 | Sumitomo Metal Mining Co., Ltd. | Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery |
KR101439714B1 (en) * | 2009-12-02 | 2014-10-13 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Nickel complex hydroxide particles and manufacturing method thereof, cathode active material and manufacturing method thereof and aqueofous electrolyte secondary battery |
JP2011181193A (en) * | 2010-02-26 | 2011-09-15 | Sumitomo Metal Mining Co Ltd | Nickel-cobalt composite hydroxide for nonaqueous electrolyte secondary battery positive electrode active material, manufacturing method thereof, and method of manufacturing nonaqueous electrolyte secondary battery positive electrode active material using nickel-cobalt composite hydroxide |
JP2011201764A (en) * | 2010-03-02 | 2011-10-13 | Sumitomo Metal Mining Co Ltd | Nickel cobalt compound hydroxide and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery obtained by using the compound hydroxide |
US9406930B2 (en) | 2011-12-20 | 2016-08-02 | Sumitomo Metal Mining Co., Ltd. | Nickel composite hydroxide and production method thereof, cathode active material for non-aqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery |
JP2013147416A (en) * | 2011-12-20 | 2013-08-01 | Sumitomo Metal Mining Co Ltd | Nickel compound hydroxide and method for producing the same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing the same, and nonaqueous electrolyte secondary cell |
WO2013094701A1 (en) * | 2011-12-20 | 2013-06-27 | 住友金属鉱山株式会社 | Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell |
JP2013170099A (en) * | 2012-02-21 | 2013-09-02 | Nippon Chem Ind Co Ltd | Method for producing cobalt hydroxide, method for producing cobalt oxide and method for producing lithium cobaltate |
US9685656B2 (en) | 2012-02-23 | 2017-06-20 | Sumitomo Metal Mining Co., Ltd | Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery |
WO2013125703A1 (en) * | 2012-02-23 | 2013-08-29 | 住友金属鉱山株式会社 | Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery |
US9583764B2 (en) | 2012-02-23 | 2017-02-28 | Sumitomo Metal Mining Co., Ltd. | Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery |
US9553312B2 (en) | 2012-02-23 | 2017-01-24 | Sumitomo Metal Mining Co., Ltd | Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery |
JPWO2013125703A1 (en) * | 2012-02-23 | 2015-07-30 | 住友金属鉱山株式会社 | Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery |
JP5505565B2 (en) * | 2012-02-23 | 2014-05-28 | 住友金属鉱山株式会社 | Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery |
US10109849B2 (en) | 2012-06-06 | 2018-10-23 | Sumitomo Metal Mining Co., Ltd. | Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these |
US10700352B2 (en) | 2016-03-04 | 2020-06-30 | Lg Chem, Ltd. | Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using the same |
WO2017150945A1 (en) * | 2016-03-04 | 2017-09-08 | 주식회사 엘지화학 | Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using same |
US10741840B2 (en) | 2017-09-04 | 2020-08-11 | Samsung Electronics Co., Ltd. | Cathode active material precursor, cathode active material formed therefrom, method of preparing the cathode active material, and cathode and lithium battery each including the cathode active material |
JP2021506076A (en) * | 2017-12-08 | 2021-02-18 | ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー | Low temperature preparation of positive electrode active material |
WO2021010321A1 (en) * | 2019-07-18 | 2021-01-21 | 株式会社豊田自動織機 | Positive electrode active material in which aluminum is dispersed uniformly |
CN116646633A (en) * | 2023-05-31 | 2023-08-25 | 科立鑫(珠海)新能源有限公司 | Method for recycling active substances in lithium ion positive electrode material |
CN116646633B (en) * | 2023-05-31 | 2023-12-12 | 科立鑫(珠海)新能源有限公司 | Method for recycling active substances in lithium ion positive electrode material |
Also Published As
Publication number | Publication date |
---|---|
JP3884796B2 (en) | 2007-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3884796B2 (en) | Method for producing Ni-Co composite hydroxide | |
JP3842348B2 (en) | Method for producing Ni-Mn composite hydroxide | |
JP3830586B2 (en) | Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery | |
JP4051771B2 (en) | Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof | |
KR101883406B1 (en) | Positive active material precursor and manufacturing method thereof, positive active material and manufacturing method thereof, lithium rechargeable battery including the same positive active material | |
JPH1027611A (en) | Lithium-containing compound oxide for lithium ion secondary battery and its manufacture | |
WO2018015210A1 (en) | A method for upscalable precipitation synthesis of battery materials with tunable particle size distribution | |
US20100108938A1 (en) | Method for preparing spherical nickelous hydroxide which is dopped and multiple metal oxides, and lithium ion secondary battery | |
KR20110073630A (en) | Method of producing ni- composite metal hydroxide, ni-composite metal hydroxide obtained thereby | |
KR20150095428A (en) | Continuously preparing method for Ni-Co-Mn composite precursor using Couette-Taylor vortix reactor | |
JPH111324A (en) | Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material | |
CN112687870B (en) | Positive electrode material precursor and preparation method thereof, and positive electrode material and application thereof | |
CN113659129A (en) | Multi-element doped ternary precursor and preparation method thereof | |
CN115064678A (en) | High-nickel low-cobalt positive electrode material, and preparation method and application thereof | |
JPS63152866A (en) | Nickel active material for storage battery and its manufacture | |
JP3425006B2 (en) | Ni-Mn composite hydroxide powder for positive electrode active material of lithium secondary battery and method for producing the same | |
US5840269A (en) | Method of preparing a double layered nickel hydroxide active material | |
CA2552324A1 (en) | Positive electrode active material for a nickel electrode | |
CN115504528A (en) | Multi-element precursor, synthesis method thereof, positive electrode material and lithium ion battery | |
KR100424635B1 (en) | Positive active material for lithium secondary battery and method of preparing same | |
JP2020205205A (en) | Method for manufacturing transition metal composite hydroxide | |
JPH1081520A (en) | Manganese-cobalt-based double hydroxide, its production and raw material for anode active material for lithium secondary cell | |
JPH1167200A (en) | Manufacture of high-density nickel hydroxide active material | |
JP3579545B2 (en) | Nickel hydroxide for alkaline storage batteries and method for producing the same | |
JPH09306487A (en) | Manufacture of positive electrode active material for alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061120 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131124 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |