JPS63152866A - Nickel active material for storage battery and its manufacture - Google Patents

Nickel active material for storage battery and its manufacture

Info

Publication number
JPS63152866A
JPS63152866A JP61300528A JP30052886A JPS63152866A JP S63152866 A JPS63152866 A JP S63152866A JP 61300528 A JP61300528 A JP 61300528A JP 30052886 A JP30052886 A JP 30052886A JP S63152866 A JPS63152866 A JP S63152866A
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
active material
cobalt
thin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61300528A
Other languages
Japanese (ja)
Other versions
JPH0559546B2 (en
Inventor
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP61300528A priority Critical patent/JPS63152866A/en
Publication of JPS63152866A publication Critical patent/JPS63152866A/en
Publication of JPH0559546B2 publication Critical patent/JPH0559546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the utilization and the productivity of active material by forming a thin layer of beta-cobalt hydroxide on a particle mainly comprising nickel hydroxide having a specific surface area of 60 m<2>/g or more and a cristallinity of 14 or below. CONSTITUTION:A thin layer of beta-cobalt hydroxide is formed on a particle mainly comprising nickel hydroxide having a specific surface area of 60 m<2>/g or more and a cristallinity of 14 or below. By forming a thin layer of beta-cobalt hydroxide on a particle having a suitable range of eutectic structure of nickel hydroxide with cobalt hydroxide and cadmium hydroxide and using as active material of a plate, the expansion of the plate is eliminated and a positive plate having high energy density is formed. By forming solid solution of nickel hydroxide with cobalt and cadmium, the formation of nickel oxyhydroxide (gamma-NiOOH) having low density is prevented, and the expansion of the plate is eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアVカリ蓄電池用ニッケル活物質に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to nickel active materials for AV alkaline storage batteries.

従来技術とその問題点 従来の水酸化ニッケルは硝酸ニッケAI塩あるいは硫酸
ニッケル塩を出発物質とし、苛性ソーダまたは苛性カリ
水溶液中で、PH13以上(たとえばP1114)の高
濃度液で水酸化;ツヶルを生成させていた。このように
して生成させた水酸化ニッケ〃はアルカリ分を除去する
ために多量の水と時間を要する欠点がある。さらにこの
ような高濃度域で析出された水酸化ニッケルは、結晶度
が高く、比表面積が低く、活性度が劣る。
Conventional technology and its problems Conventional nickel hydroxide uses nickel nitrate AI salt or nickel sulfate salt as a starting material, and is hydroxylated in a highly concentrated solution with a pH of 13 or higher (for example, P1114) in a caustic soda or caustic potassium aqueous solution; was. Nickel hydroxide produced in this manner has the disadvantage that it requires a large amount of water and time to remove the alkaline content. Furthermore, nickel hydroxide precipitated in such a high concentration range has high crystallinity, low specific surface area, and poor activity.

一方、PHを極端に低くするとアルカリ分の除去の面で
メリットがあるが、結晶が無定形となリ、比表面積は大
きくなるがかさ密度が非常に小さくなる。その為ペース
ト式あるいはポケット式極板の活物質として用いるには
、密度の点で不適当である。
On the other hand, if the pH is extremely low, there is an advantage in terms of removing alkaline components, but the crystals become amorphous and the specific surface area becomes large, but the bulk density becomes very small. Therefore, it is unsuitable for use as an active material in paste-type or pocket-type electrode plates due to its density.

又、特開昭60−151765号及び同・、 1317
66号会報において、粒子形状が球状あるいはそれに類
似した形状の水酸化ニッケル粒子について正極板のエネ
ルギー密度を向上させ、充填容量の均一化が図れるとの
記載がある。しかし、単に活物質を多量につめても性能
が向上するものでなく活物質自体の比表面積1結晶度と
言った因子で利用率は大きく左右される。そのことから
、形状もさることながら、これらを考慮した活物質でな
ければ意味がない。
Also, JP-A-60-151765 and JP-A No. 1317
In Bulletin No. 66, it is stated that nickel hydroxide particles having a spherical shape or a similar shape can improve the energy density of the positive electrode plate and make the filling capacity uniform. However, performance does not improve simply by packing a large amount of active material, and the utilization rate is greatly influenced by factors such as the specific surface area 1 crystallinity of the active material itself. Therefore, apart from the shape, it is meaningless unless the active material takes these into consideration.

発明の目的 本発明は活物質の利用率の優れた、生産性の高い蓄電池
用ニッケル活物質及びその製造法を提供することを目的
とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a nickel active material for storage batteries with excellent active material utilization and high productivity, and a method for producing the same.

発明の構成 本発明は上記目的を達成するべく、比表面積が60d/
g以上であり且つ結晶度が14以下で主成分が水酸化ニ
ッケルの粒子にβ型水酸化コバルトの薄層を形成したこ
とを特徴とする蓄電池層ニッケル活物質である。
Structure of the Invention In order to achieve the above object, the present invention has a specific surface area of 60 d/
This is a nickel active material for a storage battery layer, which has a crystallinity of 14 or less and has a crystallinity of 14 or less, and is characterized in that a thin layer of β-type cobalt hydroxide is formed on particles of nickel hydroxide as a main component.

又、主成分が硫酸ニッケル塩あるいは硝酸ニッケル塩の
水溶液を用い、苛性カリあるいは苛性ソーダ等のPH9
,5〜12.5に調整されたアルカリ水溶液中で水酸化
ニッケル粉末を析出させた後、硫酸コバルト塩あるいは
硝酸コバルト塩の水溶液中に浸漬し、次にアルカリ水溶
液で中和させることを特徴とする蓄電池用ニッケル活物
質の製造法である。
In addition, using an aqueous solution whose main component is nickel sulfate or nickel nitrate, the pH 9 of caustic potash or caustic soda, etc.
The nickel hydroxide powder is precipitated in an aqueous alkaline solution adjusted to 5 to 12.5, immersed in an aqueous solution of cobalt sulfate or cobalt nitrate, and then neutralized with an aqueous alkaline solution. This is a method for producing nickel active material for storage batteries.

実施例 以下に本発明の実施例について詳述する。Example Examples of the present invention will be described in detail below.

硝酸−yケル塩を溶かした水溶液をPH9,5〜12.
5に調整された苛性ソーダと反応させ、水酸化−ツケル
粉末を析出させる。この析出粒子を硝酸コバルト塩を溶
かした水溶液中に浸漬し、苛性ソーダ溶液と反応させ、
アルカリ分を充分に水洗除去し、85℃以下で乾燥する
。この一連の操作により水酸化ニッケルの表面にβ−0
0(OH)2の被覆層が形成される。
An aqueous solution containing nitric acid-ykel salt has a pH of 9.5 to 12.
The mixture is reacted with caustic soda adjusted to a pH of 5 to precipitate hydroxide powder. The precipitated particles are immersed in an aqueous solution containing cobalt nitrate salt and reacted with a caustic soda solution.
The alkaline content is thoroughly washed away with water and dried at 85°C or lower. Through this series of operations, β-0 is formed on the surface of nickel hydroxide.
A coating layer of 0(OH)2 is formed.

上記の硝酸ニッケA/塩の水溶液中に1〜5vt%の硝
酸コバルト塩あるいは1〜5wt%の硝酸カドミウム塩
を単独もしくは両者の添加を行ないP H9,5〜12
.5にm整された苛性ソーダと反応させ、水酸化ニッケ
ルと水酸化コバルトあるいは水酸化カドミウムを単独も
しくは両者を固溶態化したニッケル粉末が得られる。こ
れに前記と同様の工程によって、β−Co(OH)2の
被覆層が形成される。
Adding 1 to 5 vt% of cobalt nitrate or 1 to 5 wt% of cadmium nitrate alone or in combination to the above aqueous solution of nickel nitrate A/salt results in a pH of 9.5 to 12.
.. By reacting with caustic soda adjusted to 5 m, a nickel powder containing nickel hydroxide, cobalt hydroxide or cadmium hydroxide alone or both in a solid solution is obtained. A coating layer of β-Co(OH)2 is formed thereon by the same steps as above.

上述により得られた活物質粉末を用いて、水及びカルボ
キシメチルセルロース等を加えてスラリー状とした。こ
のスラリーを多孔度95%、厚さ1.5簡のニッケル繊
維焼結体に充填し、乾燥、厚み調節を行い、厚さ0.7
龍のニッケル極を得た。
Using the active material powder obtained above, water, carboxymethyl cellulose, etc. were added to form a slurry. This slurry was filled into a nickel fiber sintered body with a porosity of 95% and a thickness of 1.5 mm, dried, and the thickness adjusted to a thickness of 0.7 mm.
Obtained the Dragon Nickel Pole.

実施例1 硝酸ニッケA/塩を溶かした水溶液を、PH7,5〜1
4.0範囲にある各種のPH値の苛性ソーダ溶液に反応
させ、生成した水酸化ニッケル粉末に7vt%β−00
(OH)2の被覆層を形成した。この各々の活物質を用
いて、各々のPH値におけるX線回折による結晶度との
関係、比表面積との関係を調べた結果を第1図に示した
。水酸化ニッケル粒子の結晶度は、X線の特性ピークの
巾と高さから算出することが出来る。通常行われる方法
は、水酸化ニッケルの(001)面の特性ピークの高さ
を半価中(にの高さにおける巾)で割ったものであられ
す。又、第2図にこの活物質による結晶度と活物質利用
率との関係を示した。第3図に比表面積と活物質利用率
の関係を示した。上記の結果より、PH9,5〜P H
12,5の範囲で生成した水酸化ニッケルは、適切な比
表面積と結晶度を有していることがわかる。
Example 1 An aqueous solution in which nickel nitrate A/salt was dissolved was adjusted to pH 7.5 to 1.
7vt%β-00 to the nickel hydroxide powder produced by reacting with caustic soda solutions with various pH values in the 4.0 range.
A coating layer of (OH)2 was formed. Using each of these active materials, the relationship between crystallinity and specific surface area by X-ray diffraction at each pH value was investigated, and the results are shown in FIG. The crystallinity of nickel hydroxide particles can be calculated from the width and height of the characteristic peak of X-rays. The commonly used method is to divide the height of the characteristic peak of the (001) plane of nickel hydroxide by the half value (width at the height of nickel). Further, FIG. 2 shows the relationship between the crystallinity and active material utilization rate of this active material. Figure 3 shows the relationship between specific surface area and active material utilization rate. From the above results, PH9.5~PH
It can be seen that the nickel hydroxide produced in the range of 12.5 has an appropriate specific surface area and crystallinity.

実施例2 硝酸ニッケル塩の水溶液中に硝酸コバルト塩を0.1.
3.5.7vt%添加し、PH9,5〜12.5に調整
した苛性ソーダと反応させ、水酸化ニッケルと水酸化コ
バルトを固溶態化したニッケ゛ル粉末を得た。更にこれ
に前記の工程により7vt%β−00(OH)2の被覆
層を形成した活物質を用いて、ペースト式ニッケル極を
作成した。
Example 2 Cobalt nitrate salt was added to an aqueous solution of nickel nitrate salt in an amount of 0.1.
A nickel powder containing nickel hydroxide and cobalt hydroxide in a solid solution was obtained by reacting with caustic soda added at 3.5.7 vt% and adjusted to pH 9.5 to 12.5. Furthermore, a paste-type nickel electrode was prepared using the active material on which a coating layer of 7 vt% β-00(OH)2 was formed by the above-described process.

充電0.10AX15時間、放電10A (終止電圧1
.0OV)で、5〜45℃の温度範囲において活物質の
利用率を調べた。
Charging 0.10AX 15 hours, discharging 10A (final voltage 1
.. 0OV), and the utilization rate of the active material was investigated in a temperature range of 5 to 45°C.

この結果を第4vliに示した。45℃高温領−におけ
る利用率低下が、コバルトの固溶覇添加によりて改良さ
れることが判明した・しかし低温域での着るしい容量増
加はコバルトでは防止効果が認められない。
The results are shown in 4th vli. It was found that the decrease in utilization rate in the high temperature range of 45°C was improved by adding cobalt as a solid solution. However, cobalt was not effective in preventing the increase in capacity in the low temperature range.

実施例3 硝酸ニッケA/塩の水溶液中に硝酸カドミウム塩を0.
1.3.5.71t%添加し、PH9,5〜12.5に
調整した苛性ソーダと反応させ、水酸化ニッケルと水酸
化カドミウムを固溶態化したニッケル粉末を得た。これ
に前記した工程により7vt%β−00(OH)2の被
覆層を形成した。この活物質を用いて、ペースト式ニッ
ケル極を作成した。
Example 3 Cadmium nitrate salt was added to an aqueous solution of nickel nitrate A/salt at a concentration of 0.
A nickel powder containing nickel hydroxide and cadmium hydroxide in a solid solution was obtained by reacting with caustic soda added with 1.3.5.71 t% and adjusted to pH 9.5 to 12.5. A coating layer of 7vt% β-00(OH)2 was formed on this by the process described above. A paste-type nickel electrode was created using this active material.

充電0.10ム×15時間、放電10ム(終止電圧’1
.00V)で、5〜45℃の温度において活物質の利用
率を調べた。この結果を第5図に示した。カドミウムの
固溶態添加によって、低温領域の容量増加が防止される
傾向が認められる。しかし高温領域の容量低下に対して
は効果が少ない。
Charging 0.10 m x 15 hours, discharging 10 m (final voltage '1
.. 00V), and the utilization rate of the active material was investigated at a temperature of 5 to 45°C. The results are shown in FIG. Addition of cadmium in solid solution form tends to prevent capacity increase in the low temperature region. However, it is less effective in reducing capacity in high-temperature regions.

実施例4 硝酸;ツケJv樵の水溶液中に硝酸カドミウム墳、硝酸
コバルト塩を添加し、ニッケルにカドミウム、コバルト
を固溶態化したニッケル粉末を得た。これに前記した工
程により7wt%β−C。
Example 4 Nitric acid: Cadmium nitrate and cobalt nitrate salt were added to an aqueous solution of Tsuke Jv woodcutter to obtain nickel powder in which cadmium and cobalt were made into a solid solution in nickel. This was subjected to the steps described above to obtain 7 wt% β-C.

(OH)2の被覆層を形成した。この活物質を用いて、
ペースト式ニッケル極を作成し、前記と同様の試験を行
った。
A coating layer of (OH)2 was formed. Using this active material,
A paste-type nickel electrode was created and tested in the same manner as above.

尚、Od1wt%+Oo5wt%、Od!+wt%+Q
05vt%、oasvt%+005wt%の3種類につ
いて試験した結果を第6図に示した。コバルト、カドミ
ウムの両者を添加すると、低温から高温域にわたり一定
した容量があることが判明した。
In addition, Od1wt%+Oo5wt%, Od! +wt%+Q
FIG. 6 shows the results of testing three types: 05vt% and oasvt%+005wt%. It was found that when both cobalt and cadmium were added, the capacity remained constant from low to high temperatures.

実施例5 上記の実施例により得られた0d3vt%+0o5vt
%、043 wt%、Cto5yt%、水酸化=2ケ1
v100%(NiOnly)の4種類のニッケル極とペ
ースト式カドミウム極とを組合せて、比重1.26のK
OHを注液しムムサイズの電池を得た@ 充電0.10人×15時間、放電10ム(終止電圧1.
0OV) m度20℃におけるサイクル寿命試験を実施
し、この結果を第7図に示した。
Example 5 0d3vt%+0o5vt obtained by the above example
%, 043 wt%, Cto5yt%, hydroxide = 2 ke 1
By combining four types of nickel electrodes of v100% (NiOnly) and paste-type cadmium electrodes, K with a specific gravity of 1.26 is used.
A mum-sized battery was obtained by injecting OH @ Charging 0.10 people x 15 hours, discharging 10 μm (final voltage 1.
A cycle life test was conducted at 20° C. and the results are shown in FIG.

この結果より、水酸化ニッケル100%の活物質はサイ
ク〃寿命が極端に悪い。
From this result, the active material made of 100% nickel hydroxide has an extremely poor cycle life.

実施例6 0(1(OH)2が1 wt%、Co(OH)2が5w
t%、N1(OH)2が94wt%である固溶態化した
ニッケルにβ−Co(OH)2を被覆し、固溶部活物質
に対しての被覆量を調査した結果を第1表に示した。
Example 6 0(1(OH)2 is 1 wt%, Co(OH)2 is 5w
Table 1 shows the results of coating β-Co(OH)2 on solid solution nickel with N1(OH)2 of 94wt% and investigating the amount of coating on the solid solution active material. Indicated.

これら各種のニッケM活物質を用いてペースト式ニッケ
ル極を作成し、ペースト式カドミウム極板と組合せて、
公称容量250 mAhの電池とした。この電池を充電
0.10AX15時間、放Yt10Aで終止電圧1.0
0v温度20℃試験条件で行い得られた結果を示したも
のである。
Paste-type nickel electrodes are created using these various types of nickel M active materials, and combined with paste-type cadmium electrode plates,
The battery had a nominal capacity of 250 mAh. This battery was charged at 0.10AX for 15 hours and discharged at Yt10A with a final voltage of 1.0.
This shows the results obtained under the test conditions of 0V temperature and 20°C.

第  1  表 単位: mAh 第1表の結果より2〜25vt%の被覆量が適切である
・ 水酸化ニッケルの粒子表面にβ型水酸化コバルト薄層を
形成させる理由を以下に詳述する。
Table 1 Unit: mAh According to the results in Table 1, a coating amount of 2 to 25 vt% is appropriate. The reason for forming a thin layer of β-type cobalt hydroxide on the surface of nickel hydroxide particles will be explained in detail below.

水酸化ニッケルの活物質利用率を向上させる有効な手段
として水酸化コバルト粉末の添加が行なわれている。し
かし添加する水酸化コバルトのすべてが有効とは限らず
その結晶構造によって大きく左右される。利用率を向上
させるには、アルカリ電解液中で溶解し、二価のblu
eoo−mplex ion (H(3002)を生成
シソレらが責な電位に於いて電導性を有するCo0OH
化合物に変化し、活物質表面を=−ティングする二価の
水酸化コバルトに限定される。二価コバルト水酸化物で
あるβ−00(OH)2はNi(OH)2粉末に混合し
ても良いが、均一な分散性を考えた場合最も良い方法は
、Ni(OH)2粉末にあらかじめコーティングしてお
くことである。粒子表面のβ−00(OR)2同志が充
電によって均一な0oOOHの被覆を形成しやすいため
である。
Cobalt hydroxide powder is added as an effective means for improving the active material utilization rate of nickel hydroxide. However, not all of the cobalt hydroxide added is effective, and it is greatly influenced by its crystal structure. To improve the utilization rate, divalent blue can be dissolved in alkaline electrolyte.
generates eoo-complex ion (H(3002)).
It is limited to divalent cobalt hydroxide that changes into a compound and damages the surface of the active material. β-00(OH)2, which is divalent cobalt hydroxide, may be mixed with Ni(OH)2 powder, but considering uniform dispersibility, the best method is to mix it with Ni(OH)2 powder. It should be coated in advance. This is because β-00(OR)2 comrades on the particle surface easily form a uniform 0oOOH coating by charging.

水酸化ニッケルに水酸化コバルト、水酸化カドミラふの
適切な範囲の共晶状態の粒子にβ覆水酸化コバルトの薄
層を形成し亀ものを活物質とした極板は、極板の膨潤が
無く、且つ高エネルギー密度の正極板である。この理由
は水酸化ニッケルにコバルト為カドミウムが固溶態で添
加されると低密度のオキV水酸化ニッケルであるγ−N
iOOHの生成が防止され、極板の膨潤がなくなるもの
と考えられる。
An electrode plate with a thin layer of β-coated cobalt hydroxide formed on particles in an appropriate range of eutectic state of nickel hydroxide, cobalt hydroxide, and cadmila hydroxide, and using turtle as an active material, does not cause swelling of the electrode plate. , and a positive electrode plate with high energy density. The reason for this is that when cadmium is added as a solid solution to nickel hydroxide due to cobalt, it becomes a low-density oxidized nickel hydroxide.
It is thought that the formation of iOOH is prevented and the swelling of the electrode plate is eliminated.

発明の効果 上述した如く、本発明は活物質の利用率の優れた、生産
性の高い蓄電池用=ツケル活物質及びその製造法を提供
することが出来るので、その工業的価値は極めて大であ
る・
Effects of the Invention As mentioned above, the present invention can provide a highly productive storage battery active material with an excellent active material utilization rate, and a method for producing the same, so its industrial value is extremely large.・

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (4)

【特許請求の範囲】[Claims] (1)比表面積が60m^2/g以上であり且つ結晶度
が14以下で、主成分が水酸化ニッケルの粒子にβ型水
酸化コバルトの薄層を形成したことを特徴とする蓄電池
用ニッケル活物質。
(1) Nickel for storage batteries, which has a specific surface area of 60 m^2/g or more, a crystallinity of 14 or less, and has a thin layer of β-type cobalt hydroxide formed on particles whose main component is nickel hydroxide. active material.
(2)主成分が硫酸ニッケル塩あるいは硝酸ニッケル塩
の水溶液を用い、苛性カリあるいは苛性ソーダ等のPH
9.5〜12.5に調整されたアルカリ水溶液中で水酸
化ニッケル粉末を析出させた後、硫酸コバルト塩あるい
は硝酸コバルト塩の水溶液中に浸漬し、次にアルカリ水
溶液で中和させることを特徴とする蓄電池用ニッケル活
物質の製造法。
(2) Using an aqueous solution whose main component is nickel sulfate or nickel nitrate, the pH of caustic potash or caustic soda, etc.
It is characterized by precipitating nickel hydroxide powder in an aqueous alkaline solution adjusted to 9.5 to 12.5, then immersing it in an aqueous solution of cobalt sulfate or cobalt nitrate, and then neutralizing it with an aqueous alkaline solution. A method for producing nickel active material for storage batteries.
(3)ニッケル塩水溶液中に1〜5wt%のコバルト塩
あるいは1〜5wt%のカドミウム塩を単独もしくは両
者の添加を行ない共沈させた特許請求の範囲第2項記載
の蓄電池用ニッケル活物質の製造法。
(3) A nickel active material for a storage battery according to claim 2, which is prepared by adding 1 to 5 wt% of a cobalt salt or 1 to 5 wt% of a cadmium salt to an aqueous nickel salt solution, either singly or in combination. Manufacturing method.
(4)水酸化コバルトの薄層が水酸化ニッケルに対して
2〜25wt%である特許請求の範囲第1項記載の蓄電
池用ニッケル活物質。
(4) The nickel active material for a storage battery according to claim 1, wherein the thin layer of cobalt hydroxide is 2 to 25 wt% based on nickel hydroxide.
JP61300528A 1986-12-16 1986-12-16 Nickel active material for storage battery and its manufacture Granted JPS63152866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61300528A JPS63152866A (en) 1986-12-16 1986-12-16 Nickel active material for storage battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61300528A JPS63152866A (en) 1986-12-16 1986-12-16 Nickel active material for storage battery and its manufacture

Publications (2)

Publication Number Publication Date
JPS63152866A true JPS63152866A (en) 1988-06-25
JPH0559546B2 JPH0559546B2 (en) 1993-08-31

Family

ID=17885905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61300528A Granted JPS63152866A (en) 1986-12-16 1986-12-16 Nickel active material for storage battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS63152866A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378965A (en) * 1989-08-22 1991-04-04 Yuasa Battery Co Ltd Nickel active material for alkaline storage battery
JPH04328255A (en) * 1991-04-25 1992-11-17 Toshiba Battery Co Ltd Paste type nickel electrode
JPH04328257A (en) * 1991-04-25 1992-11-17 Toshiba Battery Co Ltd Paste type nickel pole
EP0744781A1 (en) * 1995-05-25 1996-11-27 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
EP0809309A1 (en) * 1995-11-22 1997-11-26 Matsushita Electric Industrial Co., Ltd. Positive plate active material for alkaline storage battery and positive electrode
EP0856899A3 (en) * 1997-02-03 1998-10-14 Matsushita Electric Industrial Co., Ltd. The manufacturing method of active materials for the positive electrode in alkaline storage batteries
US6013390A (en) * 1997-04-01 2000-01-11 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
US6040007A (en) * 1996-06-19 2000-03-21 Tanaka Chemical Corporation Nickel hydroxide particles having an α- or β-cobalt hydroxide coating layer for use in alkali batteries and a process for producing the nickel hydroxide
JP2007198083A (en) * 2006-01-30 2007-08-09 Nippon Telegr & Teleph Corp <Ntt> Branch line rod, branch line structure and branch line foundation construction method
US8603677B2 (en) 2011-04-27 2013-12-10 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder as cathode active material for alkaline secondary battery and method for producing the same
US9768444B2 (en) 2012-10-25 2017-09-19 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery, and evaluation method for coating adhesion properties of coated nickel hydroxide powder
US10020498B2 (en) 2012-10-25 2018-07-10 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for positive electrode active material for alkaline secondary battery, and production method therefor
CN108475780A (en) * 2016-01-05 2018-08-31 巴斯夫公司 nickel hydroxide composite material for alkaline rechargeable battery
US10680239B2 (en) 2012-11-20 2020-06-09 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
US10797316B2 (en) 2012-11-20 2020-10-06 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682162B2 (en) * 1989-08-22 1997-11-26 株式会社ユアサコーポレーション Nickel electrode active material for alkaline storage batteries
JPH0378965A (en) * 1989-08-22 1991-04-04 Yuasa Battery Co Ltd Nickel active material for alkaline storage battery
JPH04328255A (en) * 1991-04-25 1992-11-17 Toshiba Battery Co Ltd Paste type nickel electrode
JPH04328257A (en) * 1991-04-25 1992-11-17 Toshiba Battery Co Ltd Paste type nickel pole
EP0744781A1 (en) * 1995-05-25 1996-11-27 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
US5744259A (en) * 1995-05-25 1998-04-28 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
EP0809309A4 (en) * 1995-11-22 1999-02-24 Matsushita Electric Ind Co Ltd Positive plate active material for alkaline storage battery and positive electrode
EP0809309A1 (en) * 1995-11-22 1997-11-26 Matsushita Electric Industrial Co., Ltd. Positive plate active material for alkaline storage battery and positive electrode
US6040007A (en) * 1996-06-19 2000-03-21 Tanaka Chemical Corporation Nickel hydroxide particles having an α- or β-cobalt hydroxide coating layer for use in alkali batteries and a process for producing the nickel hydroxide
EP0856899A3 (en) * 1997-02-03 1998-10-14 Matsushita Electric Industrial Co., Ltd. The manufacturing method of active materials for the positive electrode in alkaline storage batteries
US6284215B1 (en) 1997-02-03 2001-09-04 Matsushita Electric Industrial Co., Ltd. Manufacturing method of active materials for the positive electrode in alkaline storage batteries
US6013390A (en) * 1997-04-01 2000-01-11 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
JP2007198083A (en) * 2006-01-30 2007-08-09 Nippon Telegr & Teleph Corp <Ntt> Branch line rod, branch line structure and branch line foundation construction method
US8603677B2 (en) 2011-04-27 2013-12-10 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder as cathode active material for alkaline secondary battery and method for producing the same
US9059461B2 (en) 2011-04-27 2015-06-16 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder as cathode active material for alkaline secondary battery and method for producing same
US9768444B2 (en) 2012-10-25 2017-09-19 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery, and evaluation method for coating adhesion properties of coated nickel hydroxide powder
US10020498B2 (en) 2012-10-25 2018-07-10 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for positive electrode active material for alkaline secondary battery, and production method therefor
US10680239B2 (en) 2012-11-20 2020-06-09 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
US10797316B2 (en) 2012-11-20 2020-10-06 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
CN108475780A (en) * 2016-01-05 2018-08-31 巴斯夫公司 nickel hydroxide composite material for alkaline rechargeable battery
JP2019501503A (en) * 2016-01-05 2019-01-17 ビーエーエスエフ コーポレーション Nickel hydroxide composites for alkaline rechargeable batteries

Also Published As

Publication number Publication date
JPH0559546B2 (en) 1993-08-31

Similar Documents

Publication Publication Date Title
CN112750999B (en) Cathode material, preparation method thereof and lithium ion battery
JPS63152866A (en) Nickel active material for storage battery and its manufacture
JPH01260762A (en) Nickel electrode for alkaline battery and battery using same
CN111081987A (en) Lithium cobaltate cathode material of lithium ion battery with voltage of more than 4.45V and preparation method thereof
JPH1029820A (en) Nickel-cobalt multiple hydroxide, its production and stock of active material of positive electrode for lithium secondary battery
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
WO2023138220A1 (en) Preparation method for positive electrode material precursor having large channel, and application thereof
JP2682162B2 (en) Nickel electrode active material for alkaline storage batteries
JP4405547B2 (en) Method for producing calcium zincate for cathode
JPH1171114A (en) Production of active material of positive electrode for secondary battery
JPS62237667A (en) Nickel positive electrode for alkaline storage battery
MXPA06007861A (en) Positive electrode active material for a nickel electrode.
CN110697797A (en) Preparation method and application of hollow carbonate precursor
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP3324781B2 (en) Alkaline secondary battery
CN114560510A (en) Modified 7-series ternary cathode material and preparation method and application thereof
JP3367152B2 (en) Method for producing nickel hydroxide powder coated with cobalt hydroxide
JPS62234867A (en) Nickel electrode for alkaline cell
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPH0275156A (en) Cd-containing powder and negative electrode material for alkaline storage battery
JPH0393163A (en) Nonaqueous system secondary battery
JPH02234356A (en) Sealed-type alkali battery
JPH04328257A (en) Paste type nickel pole
JPS62222566A (en) Nickel electrode for alkaline battery
JP3112660B2 (en) Method for producing paste-type nickel electrode and method for producing alkaline storage battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term