JP3367152B2 - Method for producing nickel hydroxide powder coated with cobalt hydroxide - Google Patents

Method for producing nickel hydroxide powder coated with cobalt hydroxide

Info

Publication number
JP3367152B2
JP3367152B2 JP18353393A JP18353393A JP3367152B2 JP 3367152 B2 JP3367152 B2 JP 3367152B2 JP 18353393 A JP18353393 A JP 18353393A JP 18353393 A JP18353393 A JP 18353393A JP 3367152 B2 JP3367152 B2 JP 3367152B2
Authority
JP
Japan
Prior art keywords
cobalt
hydroxide
nickel hydroxide
solution
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18353393A
Other languages
Japanese (ja)
Other versions
JPH07133115A (en
Inventor
功 阿部
茂喜 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP18353393A priority Critical patent/JP3367152B2/en
Publication of JPH07133115A publication Critical patent/JPH07133115A/en
Application granted granted Critical
Publication of JP3367152B2 publication Critical patent/JP3367152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は非焼結式アルカリ電池の
正極用材料として使用される水酸化コバルトを被覆した
水酸化ニッケル粉末の製造方法に関する。 【0002】 【従来の技術】近年、ポータブルエレクトロニクス機器
の小型軽量化に伴い、その電源である電池にも高エネル
ギー密度化が望まれている。また、2次電池において
は、その充電時間を短縮することが求められている。第
一の高エネルギー密度化の問題であるが、従来のアルカ
リ電池の電極は、焼結式電極と言われるもので、その正
極のエネルギー密度は約400Ah/mlが限界であっ
た。ここで、最近更なる高容量化を目的としたペースト
式電極の開発がなされてきている。この方法は、ニッケ
ル多孔体などを電極基板とし、高嵩密度な水酸化ニッケ
ル粉末と利用率向上のための添加剤である金属コバルト
粉末の混合物をペースト状にし、その基板に直接充填し
正極とするものである。この方式の開発によりエネルギ
ー密度は、500〜600Ah/mlにまで高められ
た。第二の充電時間の短縮については、従来水酸化ニッ
ケル粉末にコバルトを固溶体添加して、高率充電時のガ
ス発生、電極の膨潤等の弊害を押える方策が取られてい
た。どちらの特性要求を満たす為にも、正極中にコバル
トを添加することが有用であると認められている。 【0003】ペースト式電極は、特開昭60−1317
65や特開昭60−131766の記述に見られるよう
に、従来の正極板製造に比べて、活物質である水酸化ニ
ッケルが高密度に充填されることが特徴であり、ペース
ト式電極の利点である。この利点を活かすためには、使
用する水酸化ニッケル粒子も高密度であり、具体的物性
としてタッピング密度が高い必要がある。また、特開昭
63−152866に記載されているように、密度だけ
でなくその比表面積、結晶度が電池の充放電特性に重要
である。この様な、必要基礎物性を満たしながら、現状
以上の高密度、高率充電を目指すためには、少なくと
も、10%以上のコバルトを水酸化ニッケル粉末への固
溶体添加が必要となる。しかしながら、水酸化ニッケル
へ10%以上のコバルトを固溶体化するとペースト式電
極用水酸化ニッケルの上記必要基礎物性を満たすのが困
難となる。これは、水酸化ニッケルの高密度化の条件と
水酸化コバルトの高密度化の条件域が異なるためと思わ
れる。そのため、10%以上のコバルトを水酸化ニッケ
ルに添加するためには、水酸化コバルト、オキシ水酸化
コバルト等の粒子を単独で生成し、電極成形時に水酸化
ニッケルと混合添加する方法が一般的であった。しか
し、水酸化ニッケルに混合する方法では、水酸化コバル
ト等を均一に分散することが困難であり、かつ、混合す
る水酸化コバルト等が嵩密度が低いため、電極への活物
質の充填量が著しく低下する。そのため、水酸化ニッケ
ル表面に水酸化コバルト等を被覆する方法が考えられて
いる。 【0004】水酸化ニッケルにコバルトを被覆する方法
としては、特開平1−267957、特開昭62−23
7667等に記載されている方法がある。特開昭62−
237667記載の方法は、水酸化ニッケル懸濁液中に
硫酸コバルトなどのコバルト塩類水溶液を添加し、苛性
アルカリで中和する方法である。この方法では、生成す
る水酸化コバルトは、ゲル状になり水酸化ニッケル表面
に被覆されているという状態ではなく、本方法で生成し
た水酸化コバルト含有水酸化ニッケルは、表面層に非常
に密度の低い水酸化コバルト粒子が生成し、粒子の密度
が著しく低下し、タッピング密度も著しく低下する。特
開平1−267957に記載されている方法では、電池
電解液中にコバルト塩を添加し、電池反応中で水酸化ニ
ッケル表面に水酸化コバルト等を析出させるものであ
り、電池組み込み前の水酸化ニッケル表面を被覆する方
法ではない。 【0005】 【発明が解決しようとする課題】本発明は、その表面に
水酸化コバルトが均一に被覆された水酸化ニッケル粉末
であって、ペースト法で電池の正極を製造するに適した
水酸化コバルトを被覆した水酸化ニッケル粉末の製造方
法を提案することを課題とする。 【0006】 【課題を解決するための手段】本発明による水酸化コバ
ルトを被覆した水酸化ニッケル粉末の製造方法は、水酸
化ニッケル粉末を含有し苛性アルカリでPH11〜13
反応中継続して調整された水溶液に、コバルトを含む
水溶液とアンモニウムイオン供給体とを同時に連続的に
定量供給する点に特徴がある。 【0007】又、上記の製造方法で、アンモニウムイオ
ン供給体を反応液中のアンモニウムイオン濃度が10〜
25g/lとなるように供給する点に特徴がある。 【0008】 【作用】各種コバルト塩を苛性アルカリで中和するに
は、理論的には、PH8以上であれば良いが、PHが8
〜11では、使用したコバルト塩の陰イオンが完全に取
れず塩基性塩が生成し、これを含有する不純な水酸化コ
バルトが生成する。これを押えるためには、PHを11
以上にする必要がある。しかしながら、単にPHを11
以上とすると、生成する水酸化コバルトがゲル状とな
り、水酸化ニッケルにしっかり被覆出来ないばかりか生
成粒子のタッピング密度を著しく低下させる。これは、
高PHでは、コバルトイオンの溶解度が極度に低下し、
中和時に水酸化コバルトの結晶核発生が瞬時に起こり、
結晶成長が起こらないためと思われる。 【0009】本発明では、高PH域でアンモニウムイオ
ンを反応液中に導入するので、コバルトはアンミン錯塩
となってコバルトの溶解度を高め、従って高PHでもコ
バルトイオン濃度が高い状態に保てるので結晶核発生を
押え、結果的に結晶成長を促すことが可能となる。 【0010】また、各原料溶液を個別にかつ同時に添加
するので、PH、アンモニアイオン濃度が極力一定に保
たれ、従って反応槽内のコバルト濃度が一定に保たれて
水酸化コバルトの結晶核発生速度、発生量、結晶核成長
速度を一定に保つことが可能となる。従ってPH、アン
モニアイオン濃度が一定でない場合の様に、水酸化ニッ
ケルの結晶核発生速度等が不規則となり生成する水酸化
コバルトの1次粒子径が不均一となり、水酸化ニッケル
上への水酸化コバルトの被覆が不均一なものとなるばか
りか生成粒子のタッピング密度も低下するといった状態
にはならない。 【0011】PHを13以上とするアンモニアの気散が
激しくなり、アンモニアイオンが存在してもコバルト濃
度が最適な値に出来なくなり、均一な被覆ができなくな
る。 【0012】槽内アンモニア濃度が10g/l以下で
は、上記適性PH範囲内で適正なコバルト濃度に保てな
く、30g/l以上では、添加するアンモニアの気散が
激しくなり、アンモニウムイオン供給体を多量に消費す
るため実際的でない。 【0013】コバルト塩水溶液の添加速度すなわち、コ
バルトを含む水溶液を反応液中に添加する時間は、1時
間以下にすると、反応槽内でのコバルトイオンの濃度の
場所による不均一が発生し、被覆が不均一となる。 【0014】被覆するコバルト量が50%以上では、活
物質である水酸化ニッケル量が減少しすぎて電池容量を
極度に低下させ、ペースト式電極の従来法に比べて高容
量な電池が製造出来るという利点がなくなる。被覆する
コバルト量が1%以下では、被覆する利点がなくなり、
固溶体化によりコバルトを含有させる方法で達成でき
る。 【0015】反応温度は、80℃以上になると溶液中か
らのアンモニアの気散が激しくなり、槽内アンモニア濃
度を一定に保つことが困難となる。好ましい温度範囲は
20〜80℃である。 【0016】 【実施例】 各使用溶液調整 まず、使用するコバルト塩溶液、苛性アルカリ溶液、ア
ンモニアイオン供給体水溶液を下記のように調整した。
コバルト塩水溶液は、和光純薬製試薬1級硫酸コバルト
を純水に溶解しコバルト濃度1.6mol/lの溶液を
作成した。また、同様に和光純薬製試薬1級塩化コバル
トも同様の濃度に調整した。苛性アルカリ溶液は、和光
純薬製試薬1級苛性ソーダを純水に溶解し、3.2mo
l/lの溶液を調整した。アンモニアイオン供給体とし
ては、和光純薬製試薬1級アンモニア水を希釈せずにそ
のまま使用した。また、和光純薬製試薬1級硫酸アンモ
ニウムを純水に溶解し、アンモニア濃度で100g/l
の溶液を調整した。 【0017】実施例1 常法たとえば同出願人が平成5年5月28日に出願した
(整理番号KSMK0259−P)の様に含ニッケル液
と苛性アルカリとを同時にかつ連続的に供給して水酸化
ニッケルを製造する方法で製造した高タッピング密度水
酸化ニッケル(タッピング密度1.98g/ml)10
0gを500ml純水中に懸濁、攪拌しつつ上記方法で
調整した硫酸コバルト溶液とアンモニア水を同時添加し
つつ苛性ソーダ溶液でPHを11.5にコントロールし
た。硫酸コバルト水溶液の添加速度は、3ml/mi
n、アンモニア水の添加速度は、0.45ml/min
とした。本添加を、添加した水酸化ニッケル中のコバル
ト含有率が計算上15%となる時間(62.3min)
行ない、反応終了後生成した殿物を直ちにブフナーロー
トで吸引濾過し、1リットル純水で2回レパルプ水洗
後、濾過乾燥した。なお、反応液をサンプリングして分
析した結果、液中のアンモニウムイオン濃度は20g/
lであった。この、乾燥物を硝酸に溶解し原子吸光分析
したところコバルトが14.6%含有しており、タッピ
ング密度が1.76g/mlであった。また平均粒径は
10μmであった。また、このものをエポキシ樹脂に埋
包し、埋包した樹脂表面を研磨後日立製作所製X−65
0型EPMA装置で生成粒子断面のニッケルとコバルト
の面定性分析を行なった結果、水酸化ニッケル粒子表面
に水酸化コバルトが均一にコートされていることがわか
った。 【0018】実施例2 実施例1と同様の水酸化ニッケル100gを500ml
純水中に懸濁、攪拌しつつ前述の方法で調整した塩化コ
バルト溶液とアンモニア水を同時に添加しつつ苛性ソー
ダでPHを11.8にコントロールした。塩化コバルト
溶液の添加速度は、1.5ml/min、アンモニア水
の添加速度は、0.23ml/minとした。本添加を
添加した水酸化ニッケル中のコバルト含有率が計算上2
5%となる時間(208min)行ない、反応終了後生
成した殿物を直ちにブフナーロートで吸引濾過し、1リ
ットル純水で2回レパルプ水洗後、濾過乾燥した。な
お、液中のアンモニウムイオン濃度は15g/lであっ
た。この、乾燥物を硝酸に溶解し原子吸光分析したとこ
ろコバルトが24.3%含有しており、タッピング密度
が1.65g/mlであった。また平均粒径は12μm
であった。また、このものをエポキシ樹脂に埋包し、埋
包した樹脂表面を研磨後日立製作所製X−650型EP
MA装置で生成粒子断面のニッケルとコバルトの面定性
分析を行なった結果、水酸化ニッケル粒子表面に水酸化
コバルトが均一にコートされていることがわかった。 【0019】実施例3 実施例1と同様の水酸化ニッケル100gを500ml
純水中に懸濁、攪拌しつつ前述の方法で調整した硫酸コ
バルトと硫酸アンモニウム溶液を同時に添加しつつ苛性
ソーダでPHを11.8にコントロールした。硫酸コバ
ルト溶液の添加速度は、1.5ml/min、アンモニ
ア水の添加速度は、2.2ml/minとした。本添加
を添加した水酸化ニッケル中のコバルト含有率が計算上
50%となる時間(416min)行ない、反応終了後
生成した殿物を直ちにブフナーロートで吸引濾過し、1
リットル純水で2回レパルプ水洗後、濾過乾燥した。な
お、液中のアンモニウムイオン濃度は11g/lであっ
た。この、乾燥物を硝酸に溶解し原子吸光分析したとこ
ろコバルトが48.4%含有しており、タッピング密度
が1.45g/mlであった。また、平均粒径は8μm
であった。また、このものをエポキシ樹脂に埋包し、埋
包した樹脂表面を研磨後日立製作所製X−650型EP
MA装置で生成粒子断面のニッケルとコバルトの面定性
分析を行なった。その結果は、実施例1,2と同様に水
酸化ニッケル粒子表面に水酸化コバルトが被覆されてい
た。しかし、若干の離脱水酸化コバルトも観察された。 【0020】比較例 実施例1と同様の水酸化ニッケル100gを500ml
純水中に懸濁、攪拌しつつ前述の方法で調整した硫酸コ
バルト溶液を添加しつつ苛性ソーダでPHを11.8に
コントロールした。硫酸コバルト溶液の添加速度は、
1.5ml/minとした。本添加を添加した水酸化ニ
ッケル中のコバルト含有率が計算上50%となる時間
(416min)行ない、反応終了後生成した殿物を直
ちにブフナーロートで吸引濾過し、1リットル純水で2
回レパルプ水洗後、濾過乾燥した。この、乾燥物を硝酸
に溶解し原子吸光分析したところコバルトが49.8%
含有しており、タッピング密度が0.60g/mlであ
った。また、このものをエポキシ樹脂に埋包し、埋包し
た樹脂表面を研磨後日立製作所製X−650型EPMA
装置で生成粒子断面のニッケルとコバルトの面定性分析
を行なった。その結果は、若干水酸化ニッケル上に被覆
している水酸化コバルトが観察されたが、大部分の水酸
化コバルトは、単独粒子として存在していた。 【0021】 【発明の効果】本発明により、ペースト法電極の製造に
適した水酸化コバルトを被覆した水酸化ニッケル粉末を
得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing nickel hydroxide powder coated with cobalt hydroxide, which is used as a positive electrode material for non-sintered alkaline batteries. 2. Description of the Related Art In recent years, as portable electronic devices have become smaller and lighter, it has been desired that batteries as power sources have higher energy densities. Also, in a secondary battery, it is required to shorten the charging time. The first problem is to increase the energy density. The electrode of the conventional alkaline battery is called a sintered electrode, and the energy density of the positive electrode is limited to about 400 Ah / ml. Here, a paste-type electrode for the purpose of further increasing the capacity has recently been developed. In this method, a porous nickel body is used as an electrode substrate, and a mixture of a high bulk density nickel hydroxide powder and a metal cobalt powder as an additive for improving the utilization factor is formed into a paste, which is directly filled into the substrate to form a positive electrode. Is what you do. With the development of this method, the energy density has been increased to 500-600 Ah / ml. To reduce the second charging time, conventionally, a measure has been taken to add a solid solution of cobalt to nickel hydroxide powder to suppress adverse effects such as gas generation and swelling of the electrode during high-rate charging. It has been recognized that it is useful to add cobalt to the positive electrode in order to satisfy either property requirement. A paste type electrode is disclosed in Japanese Patent Application Laid-Open No. 60-1317.
65 and JP-A-60-131766, it is characterized in that nickel hydroxide, which is an active material, is densely packed as compared with the conventional positive electrode plate manufacturing. It is. In order to take advantage of this advantage, it is necessary that the nickel hydroxide particles used are also high in density and specific tapping density is high. Further, as described in JP-A-63-152866, not only the density but also its specific surface area and crystallinity are important for the charge / discharge characteristics of a battery. In order to achieve higher density and higher rate charging than the current state while satisfying such required basic physical properties, it is necessary to add at least 10% or more of cobalt to nickel hydroxide powder as a solid solution. However, when 10% or more of cobalt is made into a solid solution in nickel hydroxide, it becomes difficult to satisfy the above-mentioned necessary basic physical properties of nickel hydroxide for paste electrodes. This is presumably because the conditions for increasing the density of nickel hydroxide and the conditions for increasing the density of cobalt hydroxide are different. Therefore, in order to add 10% or more of cobalt to nickel hydroxide, a method is generally used in which particles such as cobalt hydroxide and cobalt oxyhydroxide are formed alone and mixed with nickel hydroxide at the time of electrode molding. there were. However, in the method of mixing with nickel hydroxide, it is difficult to uniformly disperse the cobalt hydroxide and the like, and since the cobalt hydroxide and the like to be mixed have a low bulk density, the amount of the active material filled in the electrode is reduced. It decreases significantly. Therefore, a method of coating the surface of nickel hydroxide with cobalt hydroxide or the like has been considered. As a method of coating nickel hydroxide with cobalt, Japanese Patent Application Laid-Open Nos. 1-267957 and 62-23
7667 and the like. JP-A-62-2
The method described in 237667 is a method in which an aqueous solution of a cobalt salt such as cobalt sulfate is added to a nickel hydroxide suspension and neutralized with a caustic alkali. In this method, the produced cobalt hydroxide is not in a state of being gelled and coated on the nickel hydroxide surface, but the cobalt hydroxide-containing nickel hydroxide produced by the present method has a very dense surface layer. Low cobalt hydroxide particles are formed, the density of the particles is significantly reduced, and the tapping density is also significantly reduced. In the method described in JP-A-1-267957, a cobalt salt is added to a battery electrolyte to precipitate cobalt hydroxide or the like on the surface of nickel hydroxide during the battery reaction. It is not a method of coating the nickel surface. [0005] The present invention relates to a nickel hydroxide powder whose surface is uniformly coated with cobalt hydroxide, which is suitable for producing a positive electrode of a battery by a paste method. An object of the present invention is to propose a method for producing nickel hydroxide powder coated with cobalt. According to the present invention, there is provided a method for producing a nickel hydroxide powder coated with cobalt hydroxide, comprising the steps of:
It is characterized in that an aqueous solution containing cobalt and an ammonium ion donor are continuously and quantitatively supplied to an aqueous solution continuously adjusted during the reaction . [0007] In the above-mentioned production method, the ammonium ion supplier may have an ammonium ion concentration of 10 to 10 in the reaction solution.
It is characterized in that it is supplied at 25 g / l. In order to neutralize various cobalt salts with caustic alkali, it is theoretically sufficient if the pH is 8 or more.
In Nos. To 11, the anion of the used cobalt salt cannot be completely removed to form a basic salt, and impure cobalt hydroxide containing the salt is generated. In order to suppress this, PH should be 11
It is necessary to do above. However, simply increasing the PH to 11
In this case, the produced cobalt hydroxide becomes gel-like, so that not only the nickel hydroxide cannot be firmly coated, but also the tapping density of the produced particles is remarkably reduced. this is,
At high pH, the solubility of cobalt ions drops extremely,
Crystal nucleation of cobalt hydroxide occurs instantaneously during neutralization,
This is probably because no crystal growth occurred. In the present invention, since ammonium ions are introduced into the reaction solution in the high pH range, cobalt becomes an ammine complex salt to increase the solubility of cobalt. Generation can be suppressed, and as a result, crystal growth can be promoted. Further, since each raw material solution is added individually and simultaneously, the PH and ammonia ion concentrations are kept as constant as possible, so that the cobalt concentration in the reaction vessel is kept constant and the crystal nucleation rate of cobalt hydroxide is increased. , Generation amount and crystal nucleus growth rate can be kept constant. Therefore, as in the case where the concentrations of PH and ammonia ions are not constant, the crystal nucleus generation rate of nickel hydroxide is irregular, and the primary particle diameter of the generated cobalt hydroxide is not uniform. Not only does the cobalt coating become non-uniform, but the tapping density of the formed particles also does not decrease. [0011] The diffusion of ammonia having a pH of 13 or more becomes severe, so that even if ammonia ions are present, the cobalt concentration cannot be set to an optimum value, and uniform coating cannot be performed. [0012] If the ammonia concentration in the tank is 10 g / l or less, an appropriate cobalt concentration cannot be maintained within the above-mentioned appropriate pH range. It is not practical because it consumes a lot. If the addition rate of the aqueous cobalt salt solution, that is, the time during which the aqueous solution containing cobalt is added to the reaction solution, is set to 1 hour or less, the concentration of the cobalt ions in the reaction tank becomes uneven depending on the location, and Becomes non-uniform. [0014] When the amount of cobalt to be coated is 50% or more, the amount of nickel hydroxide as an active material is excessively reduced, so that the battery capacity is extremely reduced. Thus, a battery having a higher capacity can be manufactured as compared with the conventional paste type electrode. The advantage of that is lost. If the amount of cobalt to be coated is 1% or less, the advantage of coating is lost,
It can be achieved by a method of containing cobalt by solid solution. When the reaction temperature is 80 ° C. or higher, the gas is diffused so strongly from the solution that it becomes difficult to keep the ammonia concentration in the tank constant. The preferred temperature range is 20-80C. EXAMPLES Preparation of Each Use Solution First, a cobalt salt solution, a caustic alkali solution, and an aqueous ammonia ion donor solution to be used were prepared as follows.
The cobalt salt aqueous solution was prepared by dissolving reagent grade 1 cobalt sulfate manufactured by Wako Pure Chemical Industries in pure water to prepare a solution having a cobalt concentration of 1.6 mol / l. Similarly, the concentration of reagent grade 1 cobalt chloride manufactured by Wako Pure Chemical Industries was adjusted to the same concentration. The caustic alkali solution is prepared by dissolving reagent grade 1 caustic soda made by Wako Pure Chemical in pure water, and adding 3.2 mol
A 1 / l solution was prepared. As the ammonia ion supplier, reagent grade 1 aqueous ammonia manufactured by Wako Pure Chemical Industries was used without dilution. In addition, a reagent primary grade ammonium sulfate manufactured by Wako Pure Chemical is dissolved in pure water, and the concentration of ammonia is 100 g / l.
Was prepared. Example 1 A conventional method, for example, as was filed by the applicant on May 28, 1993 (reference number KSMK0259-P), a nickel-containing solution and a caustic alkali were supplied simultaneously and continuously to supply water. High tapping density nickel hydroxide (tapping density 1.98 g / ml) 10 produced by a method for producing nickel oxide
0 g was suspended in 500 ml of pure water, and the pH was controlled at 11.5 with a caustic soda solution while simultaneously adding the cobalt sulfate solution prepared by the above method and aqueous ammonia while stirring. The addition rate of the aqueous solution of cobalt sulfate is 3 ml / mi.
n, the addition rate of ammonia water is 0.45 ml / min
And The time (62.3 min) at which the cobalt content in the added nickel hydroxide is calculated to be 15%.
After completion of the reaction, the formed product was immediately suction-filtered with a Buchner funnel, washed twice with 1 liter of pure water and then dried by filtration. As a result of sampling and analyzing the reaction solution, the ammonium ion concentration in the solution was 20 g /
l. The dried product was dissolved in nitric acid and subjected to atomic absorption analysis. As a result, the content of cobalt was 14.6%, and the tapping density was 1.76 g / ml. The average particle size was 10 μm. Also, this product is embedded in an epoxy resin, the surface of the embedded resin is polished, and then X-65 manufactured by Hitachi, Ltd.
As a result of performing surface qualitative analysis of nickel and cobalt on the cross section of the formed particles with a 0-type EPMA apparatus, it was found that the surface of the nickel hydroxide particles was uniformly coated with cobalt hydroxide. Example 2 500 g of nickel hydroxide 100 g as in Example 1
While suspending and stirring in pure water, the pH was controlled to 11.8 with caustic soda while simultaneously adding the cobalt chloride solution and the aqueous ammonia adjusted by the method described above. The addition rate of the cobalt chloride solution was 1.5 ml / min, and the addition rate of aqueous ammonia was 0.23 ml / min. The cobalt content in the nickel hydroxide with this addition was calculated to be 2
The reaction was carried out for 5 minutes (208 min), and after the reaction was completed, the formed product was immediately suction-filtered with a Buchner funnel, washed twice with 1 liter of pure water and then filtered and dried. The concentration of ammonium ion in the solution was 15 g / l. The dried product was dissolved in nitric acid and atomic absorption analysis revealed that it contained 24.3% of cobalt and had a tapping density of 1.65 g / ml. The average particle size is 12 μm
Met. Further, this is embedded in an epoxy resin, and the surface of the embedded resin is polished, and then the X-650 type EP manufactured by Hitachi, Ltd. is polished.
As a result of performing surface qualitative analysis of nickel and cobalt on the cross section of the formed particles with the MA apparatus, it was found that the surface of the nickel hydroxide particles was uniformly coated with cobalt hydroxide. Example 3 500 g of nickel hydroxide 100 g similar to that of Example 1 was used.
While suspending and stirring in pure water, the pH was controlled to 11.8 with caustic soda while simultaneously adding the cobalt sulfate and ammonium sulfate solutions prepared by the method described above. The addition rate of the cobalt sulfate solution was 1.5 ml / min, and the addition rate of aqueous ammonia was 2.2 ml / min. After a period of time (416 min) at which the calculated cobalt content in the nickel hydroxide to which this addition was added becomes 50%, and the reaction was completed, the formed product was immediately suction-filtered with a Buchner funnel and filtered.
After being washed twice with 1 l of pure water and then filtered and dried. The ammonium ion concentration in the solution was 11 g / l. The dried product was dissolved in nitric acid and subjected to atomic absorption analysis. The dried product contained 48.4% of cobalt and had a tapping density of 1.45 g / ml. The average particle size is 8 μm
Met. Further, this is embedded in an epoxy resin, and the surface of the embedded resin is polished, and then the X-650 type EP manufactured by Hitachi, Ltd. is polished.
The surface qualitative analysis of nickel and cobalt on the cross section of the formed particles was performed by the MA apparatus. As a result, similarly to Examples 1 and 2, the surface of the nickel hydroxide particles was coated with cobalt hydroxide. However, some liberated cobalt hydroxide was also observed. Comparative Example 500 g of nickel hydroxide 100 g as in Example 1 was used.
While suspending and stirring in pure water, the pH was controlled at 11.8 with caustic soda while adding the cobalt sulfate solution prepared by the above method. The addition rate of the cobalt sulfate solution is
It was 1.5 ml / min. After the completion of the reaction, the formed product is immediately suction-filtered with a Buchner funnel, and filtered with 1 liter of pure water.
After repeated repulping with water, filtration and drying were performed. The dried product was dissolved in nitric acid and atomic absorption analysis revealed that cobalt was 49.8%.
Contained and the tapping density was 0.60 g / ml. Also, this is embedded in an epoxy resin, and the surface of the embedded resin is polished, and then the X-650 type EPMA manufactured by Hitachi, Ltd. is polished.
The surface qualitative analysis of nickel and cobalt on the cross section of the formed particles was performed by the apparatus. As a result, although cobalt hydroxide slightly coated on nickel hydroxide was observed, most of the cobalt hydroxide was present as single particles. According to the present invention, it is possible to obtain a nickel hydroxide powder coated with cobalt hydroxide suitable for the production of a paste electrode.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 水酸化ニッケル粉末を含有し苛性アルカ
リでPH11〜13に反応中継続して調整された水溶液
に、コバルトを含む水溶液とアンモニウムイオン供給体
とを同時に連続的に、且つ反応液中のアンモニウムイオ
ン濃度が10〜25g/lとなるように定量供給するこ
とを特徴とする、水酸化コバルトを被覆した水酸化ニッ
ケル粉末の製造方法。
(57) Claims 1. An aqueous solution containing nickel hydroxide powder and continuously adjusted to pH 11 to 13 with a caustic alkali during the reaction is mixed with an aqueous solution containing cobalt and an ammonium ion donor. Simultaneously and continuously, ammonium ion in the reaction solution
Constant supply so that the concentration of
A method for producing nickel hydroxide powder coated with cobalt hydroxide.
JP18353393A 1993-06-30 1993-06-30 Method for producing nickel hydroxide powder coated with cobalt hydroxide Expired - Fee Related JP3367152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18353393A JP3367152B2 (en) 1993-06-30 1993-06-30 Method for producing nickel hydroxide powder coated with cobalt hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18353393A JP3367152B2 (en) 1993-06-30 1993-06-30 Method for producing nickel hydroxide powder coated with cobalt hydroxide

Publications (2)

Publication Number Publication Date
JPH07133115A JPH07133115A (en) 1995-05-23
JP3367152B2 true JP3367152B2 (en) 2003-01-14

Family

ID=16137500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18353393A Expired - Fee Related JP3367152B2 (en) 1993-06-30 1993-06-30 Method for producing nickel hydroxide powder coated with cobalt hydroxide

Country Status (1)

Country Link
JP (1) JP3367152B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213989B2 (en) 2011-04-27 2013-06-19 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
JP5626387B2 (en) 2012-10-25 2014-11-19 住友金属鉱山株式会社 The evaluation method of the coating adhesiveness of the coating nickel hydroxide powder for alkaline secondary battery positive electrode active materials and a coating nickel hydroxide powder.
JP5610010B2 (en) 2012-10-25 2014-10-22 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
JP5842794B2 (en) 2012-11-20 2016-01-13 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
JP5892048B2 (en) 2012-11-20 2016-03-23 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same

Also Published As

Publication number Publication date
JPH07133115A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
EP0757395B1 (en) A non-sintered nickel electrode, an alkaline storage cell and manufacturing method
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
CN109037644B (en) Preparation method of coated lithium ion battery ternary cathode material
CN101083318A (en) Process for preparing anode composite material of lithium ionic cell
JPH0559546B2 (en)
US6132639A (en) Manganese-nickel mixed hydroxide for battery active material and process for manufacturing thereof
JP3367152B2 (en) Method for producing nickel hydroxide powder coated with cobalt hydroxide
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
US5840269A (en) Method of preparing a double layered nickel hydroxide active material
JP2000077070A (en) Nickel hydroxide powder and its manufacture
JPH10228907A (en) Manufacture of positive electrode active material for alkaline secondary battery, paste nickel electrode, alkaline secondary battery and manufacture thereof
CN116514180A (en) Ternary precursor material, preparation method, ternary positive electrode material and lithium ion battery
JP2001291515A (en) Nickel hydroxide powder for alkaline secondary battery and its manufacturing method and evaluation method
JP3579545B2 (en) Nickel hydroxide for alkaline storage batteries and method for producing the same
JPH03252318A (en) Production of nickel hydroxide
JP2002029755A (en) Method for manufacturing nickel hydroxide powder for alkali secondary cell
JP3324781B2 (en) Alkaline secondary battery
CA2274356C (en) Method for doping and coating nickel hydroxide
JP3415364B2 (en) Nickel hydroxide coated with α-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JPS62222566A (en) Nickel electrode for alkaline battery
CN116873989B (en) Nickel-cobalt-manganese ternary precursor, preparation method thereof, positive electrode material and lithium ion battery
US5587139A (en) High density nickel hydroxide containing boron and a method for preparing it
JP3609196B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JP3407983B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees