JP2002029755A - Method for manufacturing nickel hydroxide powder for alkali secondary cell - Google Patents

Method for manufacturing nickel hydroxide powder for alkali secondary cell

Info

Publication number
JP2002029755A
JP2002029755A JP2000213635A JP2000213635A JP2002029755A JP 2002029755 A JP2002029755 A JP 2002029755A JP 2000213635 A JP2000213635 A JP 2000213635A JP 2000213635 A JP2000213635 A JP 2000213635A JP 2002029755 A JP2002029755 A JP 2002029755A
Authority
JP
Japan
Prior art keywords
cobalt
nickel hydroxide
hydroxide powder
hydroxide
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000213635A
Other languages
Japanese (ja)
Inventor
Atsushi Yamanaka
厚志 山中
Yoshinari Yamauchi
巧也 山内
Daizo Tomioka
大造 冨岡
Masushi Kasai
益志 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000213635A priority Critical patent/JP2002029755A/en
Publication of JP2002029755A publication Critical patent/JP2002029755A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide nickel hydroxide powder the surface of which is uniformly coated with cobalt hydroxide having good crystallinity and to provide a method for manufacturing nickel hydroxide powder coated with cobalt hydroxide suitable for the manufacture of positive poles of alkali secondary cells by a paste method. SOLUTION: A reducing organic matter is made present in an aqueous solution containing nickel hydroxide powder and having the pH controlled to 10.5 to 12.5 with caustic alkali, to which further an aqueous solution containing cobalt and ammonium ion source material is continuously and quantitatively supplied so as to obtain 10 to 25 g/L ammonium ion concentration in the reaction liquid. In the coating process, the nickel ion concentration in the reaction solution is controlled to 10 to 300 mg/L and the total cobalt ion concentration is controlled to 5 to 300 mg/L. The solution contains hydrazine or formaldehyde by 1 to 10 vol.% as the reducing organic compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ二次電池用
の水酸化ニッケル粉末の製造方法に関し、特に非焼結式
アルカリ二次電池の正極用活物質として好適な高充填密
度を有する水酸化コバルトを被覆した水酸化ニッケル粉
末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing nickel hydroxide powder for an alkaline secondary battery, and more particularly, to a cobalt hydroxide having a high packing density suitable as an active material for a positive electrode of a non-sintered alkaline secondary battery. The present invention relates to a method for producing a nickel hydroxide powder coated with.

【0002】[0002]

【従来の技術】ポータブルエレクトロニクス機器の小型
軽量化により、その電源である電池においては、高エネ
ルギー密度化が要求されている。このために、95%の
高多孔度の金属繊維焼結体を基板とし、水酸化ニッケル
活物質粉末をペースト状にして充填するペースト式ニッ
ケル極板が開発されている。このような使用において
は、活物質である水酸化ニッケルを高密度に充填できる
という利点と引き換えに活物質利用率が低下してしまう
という問題があった。
2. Description of the Related Art As portable electronic devices have become smaller and lighter, batteries as a power source have been required to have higher energy density. To this end, a paste-type nickel electrode plate has been developed in which a metal fiber sintered body having a high porosity of 95% is used as a substrate, and a nickel hydroxide active material powder is filled in a paste form. In such a use, there is a problem that the utilization rate of the active material is lowered in exchange for the advantage that nickel hydroxide as the active material can be filled at a high density.

【0003】利用率を向上させるためには、電極基板と
水酸化ニッケル粒子との間の導電性を高める必要があ
る。このため、水酸化ニッケル活物質のぺ一スト作製時
に水酸化コバルト等のコバルト化合物を混合添加し、電
極反応により高導電性のオキシ水酸化コバルトとし電極
基板と水酸化ニッケル粒子間の導電性を改善することが
一般的である。
In order to improve the utilization, it is necessary to increase the conductivity between the electrode substrate and the nickel hydroxide particles. For this reason, a cobalt compound such as cobalt hydroxide is mixed and added during the production of the paste of the nickel hydroxide active material, and a highly conductive cobalt oxyhydroxide is formed by an electrode reaction to improve the conductivity between the electrode substrate and the nickel hydroxide particles. It is common to improve.

【0004】しかし、コバルト化合物を水酸化ニッケル
粒子に混合する方法では均一に分散することが困難であ
り、少量の添加では導電性の改善は望めない。したがっ
て、充填密度の低いコバルト化合物粒子を10%程度混
合する必要があり、結果として活物質である水酸化ニッ
ケル粒子自体の充填量を低下させてしまうという問題が
あらたに生じてしまう。
[0004] However, it is difficult to uniformly disperse the compound by mixing the cobalt compound with the nickel hydroxide particles, and improvement in conductivity cannot be expected by adding a small amount of the compound. Therefore, it is necessary to mix about 10% of the cobalt compound particles having a low filling density, and as a result, there is a problem that the filling amount of the nickel hydroxide particles as the active material itself is reduced.

【0005】そのため、水酸化ニッケル表面に種々のコ
バルト化合物を被覆する方法が考えられている。たとえ
ば、特開平3−93161号に開示されるように無電解
メッキ等を用いて水酸化ニッケル表面にコバルトをコー
ティングする方法、あいは特開平6−187984号に
開示されるようにメカノケミカル反応によってコバルト
等を表面にコートする方法が提案されている。
[0005] Therefore, a method of coating various cobalt compounds on the surface of nickel hydroxide has been considered. For example, a method of coating the surface of nickel hydroxide with cobalt using electroless plating or the like as disclosed in JP-A-3-93161, or by a mechanochemical reaction as disclosed in JP-A-6-187984. A method of coating the surface with cobalt or the like has been proposed.

【0006】特に水酸化ニッケル粒子表面に水酸化コバ
ルトを被覆する方法としては、例えば特開昭62−23
7667号に記載されている方法がある。この方法は、
水酸化ニッケル懸濁液中に硫酸コバルトなどのコバルト
塩類水溶液を添加し、苛性アルカリで中和する方法であ
る。しかし、この方法では、生成する水酸化コバルト
は、ゲル状になり水酸化ニッケル表面に被覆されている
という状態ではなく、本方法で生成した水酸化コバルト
含有水酸化ニッケルは、表面層に非常に密度の低い水酸
化コバルト粒子が生成し、粒子の密度が著しく低下し、
タッピング密度も著しく低下してしまうという問題があ
った。
[0006] In particular, a method of coating the surface of nickel hydroxide particles with cobalt hydroxide is disclosed in, for example, JP-A-62-23.
No. 7667. This method
This is a method in which an aqueous solution of a cobalt salt such as cobalt sulfate is added to the nickel hydroxide suspension and neutralized with caustic alkali. However, according to this method, the generated cobalt hydroxide is not in a state of being gelled and coated on the nickel hydroxide surface, and the cobalt hydroxide-containing nickel hydroxide generated by the present method has a very small surface layer. Low density cobalt hydroxide particles are generated, the density of the particles is significantly reduced,
There was a problem that the tapping density was significantly reduced.

【0007】これを改善する方法として特開平7−13
3115号には、高タッピング密度の水酸化ニッケル粒
子を水に分散させ、これに硫酸コバルト水溶液とアンモ
ニア水とを同時に添加して、その反応系を水酸化ナトリ
ウム水溶液でpH11〜13の範囲にコントロールしな
がら水酸化ニッケル粒子表面に水酸化コバルト被覆層を
形成させる方法が記載されている。これはアンモニウム
イオンを反応系に存在させてコバルト塩の溶解度を高め
ることにより、均一な水酸化コバルト層の形成を目的と
している。しかしながら、該公報の実施例に示されるよ
うに、水酸化コバルト被覆粒子のタッピング密度が、核
となる水酸化二ッケル粒子の密度に比べて0.2g/ミ
リリットル以上も低下しており、高密度充填を可能とす
る目的に対して十分満足できるものではなかった。
As a method for improving this, Japanese Patent Laid-Open Publication No.
In No. 3115, nickel hydroxide particles having a high tapping density are dispersed in water, an aqueous solution of cobalt sulfate and aqueous ammonia are simultaneously added thereto, and the reaction system is adjusted to a pH range of 11 to 13 with an aqueous solution of sodium hydroxide. A method of forming a cobalt hydroxide coating layer on the surface of nickel hydroxide particles while the nickel hydroxide particles are being described. This aims at forming a uniform cobalt hydroxide layer by increasing the solubility of the cobalt salt by causing ammonium ions to be present in the reaction system. However, as shown in the examples of the publication, the tapping density of the cobalt hydroxide-coated particles is lower than the density of the nickel hydroxide particles serving as nuclei by 0.2 g / ml or more. It was not fully satisfactory for the purpose of enabling filling.

【0008】[0008]

【発明が解決しようとする課題】本発明は、表面に結晶
性の良い水酸化コバルトが均一に被覆された水酸化ニッ
ケル粉末であって、ペースト法でアルカリ二次電池の正
極を製造するに適した水酸化コバルトを被覆した水酸化
ニッケル粉末の製造方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention relates to a nickel hydroxide powder having a surface uniformly coated with cobalt hydroxide having good crystallinity, which is suitable for producing a cathode of an alkaline secondary battery by a paste method. It is an object to provide a method for producing nickel hydroxide powder coated with cobalt hydroxide.

【0009】[0009]

【課題を解決するための手段】本発明による水酸化コバ
ルトを被覆した水酸化ニッケル粉末の製造方法は、水酸
化ニッケル粉末を含有し苛性アルカリでpH10.5〜
12.5に調整された水溶液に還元性有機物を共存させ
ることに特徴があり、さらにコバルトとアンモニウムイ
オン供給体を含む水溶液を反応液中のアンモニウムイオ
ン濃度が10〜25g/リットルとなるように連続的に
定量供給する点に特徴があり、被覆処理時における反応
溶液中の全ニッケルイオン濃度にあっては10〜300
mg/リットル、全コバルトイオン濃度にあっては5〜
300mg/リットルであることを特徴とする。
According to the present invention, there is provided a method for producing a nickel hydroxide powder coated with cobalt hydroxide according to the present invention.
It is characterized in that a reducing organic substance is allowed to coexist in an aqueous solution adjusted to 12.5, and an aqueous solution containing cobalt and an ammonium ion donor is continuously added so that the ammonium ion concentration in the reaction solution becomes 10 to 25 g / liter. It is characterized in that it is quantitatively supplied quantitatively, and the total nickel ion concentration in the reaction solution during the coating treatment is 10 to 300
mg / liter, 5 to 5 for the total cobalt ion concentration
It is characterized by being 300 mg / liter.

【0010】また、前記被覆処理は、反応液温度を30
〜55℃に保持し、コバルト塩水溶液を水酸化ニッケル
粉末1kgに対してコバルト換算で0.6g/分以下の添
加速度で加えることが好ましく、還元性の有機化合物と
しては、1〜10容量%のヒドラジンあるいはホルムアル
デヒドを含むことが好ましい。
In the coating treatment, the temperature of the reaction solution is set at 30.
It is preferable to add the cobalt salt aqueous solution at an addition rate of 0.6 g / min or less in terms of cobalt with respect to 1 kg of nickel hydroxide powder while maintaining the temperature at -55 ° C. Of hydrazine or formaldehyde.

【0011】本発明の方法においては、コバルトおよび
アンモニウム供給体は、同一の溶液で添加されても、コ
バルトを含む水溶液とアンモニウムイオン供給体を含む
液を別々にかつ同時に添加されるものであっても差し支
えない。
In the method of the present invention, the cobalt and ammonium donors are added in the same solution, but the aqueous solution containing cobalt and the solution containing the ammonium ion donor are added separately and simultaneously. No problem.

【0012】[0012]

【発明の実施の形態】本発明の水酸化コバルト被覆時の
条件では、好適なpH領域は10.5〜12.5であ
る。pHが10.5未満では、使用したコバルト塩の陰
イオンが完全に取れず塩基性塩が生成し、これを含有す
る不純な水酸化コバルトが生成してしまう。pHが1
2.5を超えるとコバルトイオンの溶解度が極度に低下
し、中和時に水酸化コバルトの核生成が瞬時に起こり、
均一な被覆が出来ないばかりか水酸化コバルトの単独粒
子が生成してしまう。より好ましいpH領域は11〜1
2である。
BEST MODE FOR CARRYING OUT THE INVENTION Under the conditions when coating with cobalt hydroxide according to the present invention, a preferable pH range is from 10.5 to 12.5. If the pH is less than 10.5, the anion of the used cobalt salt cannot be completely removed to form a basic salt, which results in the generation of impure cobalt hydroxide containing the salt. pH 1
If it exceeds 2.5, the solubility of cobalt ions is extremely reduced, and nucleation of cobalt hydroxide occurs instantaneously during neutralization.
Not only cannot uniform coating be obtained, but also single particles of cobalt hydroxide. More preferable pH range is 11 to 1
2.

【0013】本発明では、高pH領域でアンモニウムイ
オンを反応液中に導入するので、コバルトはアンミン錯
塩となって反応溶液中に存在する。よって、高pH領域
でもコバルトの溶解度が高く、コバルトイオン濃度を一
定かつ高い状態に保てるので結晶核発生を押さえ、結果
的に結晶成長を促すことが可能となる。
In the present invention, since ammonium ions are introduced into the reaction solution in a high pH range, cobalt is present in the reaction solution as an ammine complex salt. Therefore, even in a high pH region, the solubility of cobalt is high, and the concentration of cobalt ions can be kept constant and high, so that the generation of crystal nuclei can be suppressed, and as a result, crystal growth can be promoted.

【0014】また、pH、アンモニアイオン濃度が一定
に保てない場合は、水酸化コバルトの結晶核発生速度等
が不規則となるため、生成する水酸化コバルトの1次粒
子径が不均一となる。したがって、水酸化ニッケル粒子
表面への水酸化コバルトの被覆が不均一なものとなるば
かりか、生成粒子のタッピング密度が低下する。
If the pH and ammonia ion concentration cannot be kept constant, the crystal nucleus generation rate of cobalt hydroxide and the like become irregular, so that the primary particle diameter of the produced cobalt hydroxide becomes uneven. . Therefore, not only the coating of the cobalt hydroxide on the surface of the nickel hydroxide particles becomes uneven, but also the tapping density of the produced particles decreases.

【0015】また、pHが一定であってもpHが13を
超える場合にはアンモニアの気散が激しくなり、アンモ
ニアイオンが存在してもコバルト濃度を最適な値に出来
なくなり、均一な被覆ができなくなる。コバルトおよび
アンモニウム供給体を同時に含む原料溶液を使用する場
合に比較して、コバルトを含む水溶液およびアンモニウ
ム供給体を含む水溶液を個別に用意し同時に添加すれ
ば、pH、アンモニアイオン濃度は攪拌混合により極力
一定に保つことが可能となり、反応槽内のコバルト濃度
が安定するため、水酸化コバルトの結晶核発生速度、発
生量、結晶核成長速度を一定に保つことが可能となる。
In addition, even if the pH is constant, if the pH exceeds 13, ammonia will be greatly diffused, and even if ammonia ions are present, the cobalt concentration cannot be adjusted to an optimum value, and uniform coating cannot be achieved. Disappears. Compared to the case where a raw material solution containing both a cobalt and an ammonium supplier is used, if an aqueous solution containing a cobalt and an aqueous solution containing an ammonium supplier are separately prepared and added at the same time, the pH and ammonia ion concentration can be minimized by stirring and mixing. Since the concentration can be kept constant and the cobalt concentration in the reaction tank is stabilized, it is possible to keep the crystal nucleus generation rate, the generation amount, and the crystal nucleus growth rate of cobalt hydroxide constant.

【0016】槽内アンモニア濃度が10g/リットル以
下では、上記適性pH領域内で、適正なコバルト濃度範
囲内に保つことが困難になり、25g/リットル以上で
は、添加するアンモニアの気散が激しくなり、アンモニ
ウムイオン供給体を多量に消費するため実用的でない。
If the ammonia concentration in the tank is 10 g / l or less, it becomes difficult to maintain the appropriate cobalt concentration within the above-mentioned appropriate pH range, and if it is 25 g / l or more, the diffusion of added ammonia becomes severe. Is not practical because it consumes a large amount of the ammonium ion donor.

【0017】コバルト塩水溶液の添加速度すなわち、コ
バルトを含む水溶液を反応液中に添加する時間は、ゆっ
くりした添加が望ましい。しかしながら、添加速度は生
産性に直接影響をおよぼすため過度の添加速度の低下は
好ましくない。逆に添加速度を早くすると、反応槽内で
のコバルトイオンの濃度の場所による不均一が発生し、
被覆が不均一となる。したがってコバルト塩水溶液の添
加速度は液中の水酸化ニッケル1kgに対して、コバル
ト量として、0.6g/分以下であることが望ましい。
It is desirable that the addition rate of the aqueous solution of the cobalt salt, that is, the time for adding the aqueous solution containing cobalt to the reaction solution, is slow. However, an excessive decrease in the addition rate is not preferable because the addition rate directly affects the productivity. Conversely, if the addition rate is increased, non-uniformity due to the location of the concentration of cobalt ions in the reaction tank occurs,
The coating becomes uneven. Therefore, the addition rate of the aqueous cobalt salt solution is preferably 0.6 g / min or less as the amount of cobalt per 1 kg of nickel hydroxide in the liquid.

【0018】被覆するコバルト量に関して上限は特にな
いが、10%を超えると活物質である水酸化ニッケル量
が減少しすぎて電池容量を極度に低下させ、ペースト式
電極の従来法に比べて高容量な電池が製造出来るという
利点が生かすことが出来なくなる。多量のコバルトで被
覆するということは、結果的には少量のコバルト化合物
を均一に電極中に分散させ、導電パスを形成させるとい
う本来の目的に反するものである。また、被覆するコバ
ルト量が1%以下では、被覆する利点がなくなり、固溶
体化によりコバルトを含有させる方法と効果が変わらな
いもののコストが上昇して不経済である。
There is no particular upper limit on the amount of cobalt to be coated. However, if it exceeds 10%, the amount of nickel hydroxide as an active material is excessively reduced, and the battery capacity is extremely reduced. The advantage that a battery with a large capacity can be manufactured cannot be used. Coating with a large amount of cobalt contradicts the original purpose of uniformly dispersing a small amount of a cobalt compound in an electrode to form a conductive path. Further, if the amount of cobalt to be coated is 1% or less, the advantage of coating is lost, and the effect is not changed from the method of containing cobalt by solid solution, but the cost is increased and it is uneconomical.

【0019】反応中は溶液中に還元性の有機化合物が共
存することが必要であり、この有機化合物の存在によっ
て、高pH領域において被覆層の水酸化コバルト中のコ
バルトの3価イオンの生成を防止し、被覆層を効率良く
形成させることができる。また、前記有機化合物の反応
液中の濃度は、1〜10容量%であることが望ましい。
During the reaction, it is necessary that a reducing organic compound coexist in the solution, and the presence of this organic compound causes the formation of trivalent cobalt ions in the cobalt hydroxide of the coating layer in a high pH region. Thus, the coating layer can be efficiently formed. The concentration of the organic compound in the reaction solution is desirably 1 to 10% by volume.

【0020】反応温度は、55℃を超えると溶液中から
のアンモニアの気散が激しくなり、槽内アンモニア濃度
を一定に保つことが困難なるばかりか、さらに共存する
有機物の還元力が強くなり、一部メタルが析出していし
まう。30℃未満では共存する還元性の有機物の反応性
が低下して還元力が不十分となりコバルトの3価イオン
が生じ、さらに被覆状態において均一性に問題が出る。
よって、被覆時の反応液の温度範囲は30〜55℃が好
ましく、より好ましくは35〜50℃である。
When the reaction temperature exceeds 55 ° C., the diffusion of ammonia from the solution becomes intense, which makes it difficult not only to keep the ammonia concentration in the tank constant, but also to increase the coexisting organic substance reducing power. Some metal is deposited. If the temperature is lower than 30 ° C., the reactivity of the coexisting reducing organic substance is reduced, the reducing power becomes insufficient, and trivalent ions of cobalt are generated.
Therefore, the temperature range of the reaction solution at the time of coating is preferably from 30 to 55 ° C, more preferably from 35 to 50 ° C.

【0021】被覆時における反応溶液中の全ニッケルイ
オン濃度は10〜300mg/リットルであることが望
ましい。10mg/リットル未満ではタップ密度が低下
する。上限は特にないが過大な場合は水酸化ニッケルの
再結晶による細孔径分布の変化、半価幅の減少が生じ粉
体特性が悪化する。さらにはニッケルが系外へ流失し不
経済である。タップ密度の向上が目的であれば300mg
/リットル程度で十分である。
It is desirable that the total nickel ion concentration in the reaction solution at the time of coating is 10 to 300 mg / liter. If it is less than 10 mg / liter, the tap density will decrease. There is no particular upper limit, but if it is too large, the recrystallization of nickel hydroxide causes a change in the pore size distribution and a decrease in the half-value width, degrading the powder characteristics. Furthermore, nickel is washed out of the system, which is uneconomical. 300mg for tap density improvement
Per liter is sufficient.

【0022】反応溶液中の全コバルトイオン濃度は5〜
300mg/リットルであることが望ましい。5mg/
リットル未満では均一なコートが出来ないばかりか水酸
化コバルトの単独粒子が生成する。300mg/リット
ルを超えると被覆粒子のタップ密度が低下するという問
題がある。
The total cobalt ion concentration in the reaction solution is 5 to
Desirably, it is 300 mg / liter. 5mg /
If the amount is less than 1 liter, not only a uniform coat cannot be formed but also a single particle of cobalt hydroxide is formed. If it exceeds 300 mg / liter, there is a problem that the tap density of the coated particles decreases.

【0023】以下実施例に基づき本発明を明らかにす
る。
Hereinafter, the present invention will be described based on examples.

【0024】[0024]

【実施例】[原料水酸化ニッケルの製造]原料である高
嵩密度水酸化ニッケルは、たとえば特開平9−0174
29に記載の方法で製造することができる。すなわち、
ニッケルを含む水溶液と水酸化アルカリとアンモニウム
水とを、撹拌機を備えた反応槽に同時に、連続的に供給
し、反応液中のニッケルイオン濃度を1〜50mg/リ
ットル、反応温度を40〜70℃、該反応温度の変動幅
を±1℃、該撹拌機の攪拌羽根の吐出ヘッドを14〜7
0m2/sec2および生成水酸化ニッケルの該反応槽内の
滞留時間を6時間以上として合成する方法である。
EXAMPLES [Production of Raw Material Nickel Hydroxide] The raw material of high bulk density nickel hydroxide is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-0174.
29 can be produced. That is,
An aqueous solution containing nickel, an alkali hydroxide and ammonium water are simultaneously and continuously supplied to a reaction vessel equipped with a stirrer, the nickel ion concentration in the reaction solution is 1 to 50 mg / liter, and the reaction temperature is 40 to 70. ° C, the fluctuation range of the reaction temperature is ± 1 ° C, and the discharge head of the stirring blade of the stirrer is 14 to 7
This is a method in which 0 m 2 / sec 2 and the produced nickel hydroxide are kept in the reaction tank for a residence time of 6 hours or more.

【0025】[各使用溶液調整]使用するコバルト塩溶
液、苛性アルカリ溶液、アンモニウムイオン供給体水溶
液を下記のように調製した。コバルト塩水溶液は、和光
純薬製特級硫酸コバルトを純水に溶解しコバルト濃度
が、1.6モル/リットルの溶液を作製した。苛性アル
カリ溶液は、和光純薬製試薬1級苛性ソーダを純水に溶
解し、3.2モル/リットルの溶液を調製した。アンモ
ニウムイオン供給体としては、試薬特級アンモニア水を
そのまま使用した。
[Preparation of Each Use Solution] A cobalt salt solution, a caustic alkali solution, and an ammonium ion donor aqueous solution to be used were prepared as follows. The cobalt salt aqueous solution was prepared by dissolving a special grade cobalt sulfate manufactured by Wako Pure Chemical in pure water to form a solution having a cobalt concentration of 1.6 mol / liter. The caustic alkali solution was prepared by dissolving reagent grade 1 caustic soda manufactured by Wako Pure Chemical in pure water to prepare a 3.2 mol / liter solution. As an ammonium ion supplier, reagent-grade ammonia water was used as it was.

【0026】(実施例1)19リットルの純水、1.1
リットルのアンモニア水および300ミリリットルのヒ
ドラジン一水和物を混合し、50℃に加熱し前記高嵩密
度水酸化ニッケル(タップ密度2.15g/ミリリット
ル)5kgを縣濁させた。得られた懸濁液を攪拌しつつ
上記方法で調整した硫酸コバルト水溶液とアンモニア水
を同時添加しつつ苛性ソーダ溶液でpHを12.0にコ
ントロールした。硫酸コバルト水溶液の添加速度は、3
0ミリリットル/分、アンモニア水の添加速度は、4.
2ミリリットル/分とした。以上の条件で、投入した水
酸化ニッケル中のコバルト含有率が計算上3%となる時
間(50分)反応させた。
Example 1 19 liters of pure water, 1.1
One liter of aqueous ammonia and 300 ml of hydrazine monohydrate were mixed and heated to 50 ° C. to suspend 5 kg of the high bulk density nickel hydroxide (tap density 2.15 g / ml). The pH of the obtained suspension was controlled to 12.0 with a sodium hydroxide solution while simultaneously adding the aqueous solution of cobalt sulfate and the aqueous ammonia adjusted by the above method while stirring the obtained suspension. The addition rate of the aqueous solution of cobalt sulfate is 3
0 ml / min, the addition rate of aqueous ammonia is 4.
It was 2 ml / min. Under the above conditions, the reaction was performed for a time (50 minutes) until the calculated cobalt content in the charged nickel hydroxide became 3%.

【0027】反応終了後、生成した殿物を直ちにブフナ
ーロートで吸引濾過し、10リットルの純水で2回レパ
ルプ水洗後、濾過乾燥した。なお、反応液をサンプリン
グして分析した結果、液中のアンモニウムイオン濃度は
9.6g/リットルであった。この乾燥物を硝酸に溶解
し原子吸光分析したところ、コバルトを2.97重量%
含有していた。またタップ密度を測定したところ、2.
11g/ミリリットルであり、SEM観察の結果、微粒
子の存在が少ない、つまり水酸化コバルトの単独析出粒
子の少ないことが確認でき、コート状態が良い水酸化コ
バルト被覆水酸化ニッケルが得られた。
After the completion of the reaction, the formed product was immediately suction-filtered with a Buchner funnel, washed twice with 10 l of pure water and then filtered and dried. As a result of sampling and analyzing the reaction solution, the ammonium ion concentration in the solution was 9.6 g / liter. This dried product was dissolved in nitric acid and analyzed by atomic absorption spectroscopy.
Contained. The tap density was measured.
It was 11 g / milliliter, and as a result of SEM observation, it was confirmed that the presence of fine particles was small, that is, the amount of cobalt hydroxide single precipitate particles was small, and thus a nickel hydroxide-coated nickel hydroxide having a good coating state was obtained.

【0028】(実施例2)19リットルの純水、1.1
リットルのアンモニア水および260ミリリットルのヒ
ドラジン一水和物を混合し、50℃に加熱し、水酸化ニ
ッケル(タップ密度2.19g/ミリリットル)3.5
kgを懸濁させた。得られた懸濁液を攪拌しつつ前述の
方法で調製した硫酸コバルト溶液とアンモニア水を同時
に添加しつつ苛性ソーダでpHを11.0にコントロー
ルした。硫酸コバルト溶液の添加速度は、22ミリリッ
トル/分、アンモニア水の添加速度は、4.7ミリリッ
トル/分とした。投入した水酸化ニッケル中のコバルト
含有率が計算上5%となる時間(85分)反応させた。
反応終了後、生成した澱物を直ちにブフナーロートで吸
引濾過し、7リットルの純水で2回レパルプ水洗後、濾
過、乾燥した。なお、反応液をサンプリングして分析し
た結果、液中のアンモニウムイオン濃度は12.8g/
リットルであった。この乾燥物を硝酸に溶解し原子吸光
分析したところコバルトを4.93%含有しており、タ
ッピング密度は、2.05g/ミリリットルであった。
Example 2 19 liters of pure water, 1.1
One liter of aqueous ammonia and 260 milliliters of hydrazine monohydrate are mixed, heated to 50 ° C., and nickel hydroxide (tap density 2.19 g / ml) 3.5
kg were suspended. The pH of the resulting suspension was controlled at 11.0 with caustic soda while simultaneously adding the cobalt sulfate solution prepared by the above-described method and aqueous ammonia while stirring the suspension. The addition rate of the cobalt sulfate solution was 22 ml / min, and the addition rate of aqueous ammonia was 4.7 ml / min. The reaction was carried out for a time (85 minutes) at which the calculated cobalt content in the charged nickel hydroxide became 5%.
After the completion of the reaction, the resulting precipitate was immediately suction-filtered with a Buchner funnel, washed twice with 7 l of pure water and then filtered and dried. As a result of sampling and analyzing the reaction solution, the concentration of ammonium ion in the solution was 12.8 g /
Liters. The dried product was dissolved in nitric acid and subjected to atomic absorption analysis to find that it contained 4.93% of cobalt and had a tapping density of 2.05 g / ml.

【0029】(実施例3)19リットルの純水、1.1
リットルのアンモニア水および1.2リットルのヒドラ
ジン一水和物を混合し、50℃に加熱し、水酸化ニッケ
ル(タップ密度2.19g/ミリリットル)5kgを懸
濁させた。得られた懸濁液を攪拌しつつ前述の方法で調
製した硫酸コバルトと硫酸アンモニウム溶液を同時に添
加しつつ苛性ソーダでpHを11.5にコントロールし
た。硫酸コバルト溶液の添加速度は、32ミリリットル
/分、アンモニア水の添加速度は、4.8ミリリットル
/分とした。投入した水酸化ニッケル中のコバルト含有
率が計算上4.5%となる時間(75分)反応させた。
反応終了後、生成した澱物を直ちにブフナーロートで吸
引濾過し、1リットルの純水で2回レパルプ水洗後、濾
過乾燥した。なお、液中のアンモニウムイオン濃度は1
2.5g/リットルであった。この乾燥物を硝酸に溶解
し原子吸光分析したところコバルトを4.41重量%含有
しており、タッピング密度は、2.08g/ミリリット
ルであった。
Example 3 19 liters of pure water, 1.1
One liter of aqueous ammonia and 1.2 liter of hydrazine monohydrate were mixed and heated to 50 ° C. to suspend 5 kg of nickel hydroxide (tap density 2.19 g / ml). While stirring the obtained suspension, the pH was controlled at 11.5 with sodium hydroxide while simultaneously adding the cobalt sulfate and ammonium sulfate solutions prepared by the above-described method. The addition rate of the cobalt sulfate solution was 32 ml / min, and the addition rate of the aqueous ammonia was 4.8 ml / min. The reaction was allowed to proceed for a time (75 minutes) at which the calculated cobalt content in the charged nickel hydroxide was 4.5%.
After completion of the reaction, the formed precipitate was immediately suction-filtered with a Buchner funnel, washed twice with 1 liter of pure water and then filtered and dried. The concentration of ammonium ion in the solution was 1
It was 2.5 g / liter. The dried product was dissolved in nitric acid and analyzed by atomic absorption spectroscopy. As a result, it contained 4.41% by weight of cobalt and had a tapping density of 2.08 g / ml.

【0030】(比較例1)水酸化ニッケル(タップ密度
2.15g/ミリリットル)5kgを40℃に保持した
1リットルのアンモニア水と19リットルの純水と10
0ミリリットルのヒドラジン一水和物との混合溶液中に
懸濁させ、攪拌しつつ前述の方法で調製した硫酸コバル
ト溶液を添加しつつ苛性ソーダでpHを11.5にコン
トロールした。硫酸コバルト溶液の添加速度は、32ミ
リリットル/分、アンモニア水の添加速度は、4.5ミ
リリットル/分とした。投入した水酸化ニッケル中のコ
バルト含有率が計算上4%となる時間(67分)反応さ
せた。反応終了後生成した澱物を直ちにブフナーロート
で吸引ろ過し、10リットルの純水で2回レパルブ水洗
後、濾過乾燥した。なお、液中のアンモニウムイオン濃
度は11.6g/リットルであった。この乾燥物を硝酸
に溶解し原子吸光分析したところ、コバルトを3.94
%含有しており、タッピング密度は、1.97g/ミリリ
ットルであった。SEM観察を行ったところ、一部水酸
化ニッケル上を被覆している水酸化コバルトが観察され
たが、大部分の水酸化コバルトは、単独粒子として存在
していた。
Comparative Example 1 1 liter of ammonia water, 19 liters of pure water and 5 liters of 5 kg of nickel hydroxide (tap density 2.15 g / ml) maintained at 40 ° C.
The suspension was suspended in a mixed solution with 0 ml of hydrazine monohydrate, and the pH was controlled at 11.5 with caustic soda while adding the cobalt sulfate solution prepared by the above method while stirring. The addition rate of the cobalt sulfate solution was 32 ml / min, and the addition rate of aqueous ammonia was 4.5 ml / min. The reaction was allowed to proceed for a time (67 minutes) at which the cobalt content in the charged nickel hydroxide was calculated to be 4%. After the completion of the reaction, the resulting precipitate was immediately suction-filtered with a Buchner funnel, washed twice with 10 liters of pure water, then filtered and dried. The ammonium ion concentration in the solution was 11.6 g / liter. The dried product was dissolved in nitric acid and subjected to atomic absorption analysis.
% And the tapping density was 1.97 g / ml. As a result of SEM observation, cobalt hydroxide partially covering nickel hydroxide was observed, but most of the cobalt hydroxide was present as single particles.

【0031】(比較例2)水酸化ニッケル(タップ密度
2.15g/ミリリットル)3.5kgを25℃に保持
した1.0リットルのアンモニア水と19リットルの純
水と300ミリリットルのヒドラジン一水和物との混合
液中に懸濁させ、攪拌しつつ前述の方法で調製した硫酸
コバルト溶液を添加しつつ苛性ソーダでpHを10.0
にコントロールした。硫酸コバルト溶液の添加速度は、
32ミリリットル/分、アンモニア水の添加速度は、
4.5ミリリットル/分とした。投入した水酸化ニッケ
ル中のコバルト含有率が計算上5%となる時間(58
分)反応させた。反応終了後生成した澱物を直ちにブフ
ナーロートで吸引ろ過し、7リットルの純水で2回レパ
ルブ水洗後、濾過乾燥した。なお、液中のアンモニウム
イオン濃度は11.8g/リットルであった。この乾燥
物を硝酸に溶解し原子吸光分析したところ、コバルトを
4.12%含有しており、タッピング密度は、1.65
g/ミリリットルであった。SEM観察を行ったとこ
ろ、一部水酸化ニッケル上に被覆している水酸化コバル
トが観察されたが、大部分の水酸化コバルトは、単独粒
子として存在していた。
COMPARATIVE EXAMPLE 2 1.0 liter of ammonia water, 19 liter of pure water and 300 ml of hydrazine monohydrate containing 3.5 kg of nickel hydroxide (tap density 2.15 g / ml) kept at 25 ° C. The mixture was suspended in a mixed solution with sodium chloride, and the pH was adjusted to 10.0 with caustic soda while adding the cobalt sulfate solution prepared by the above method while stirring.
Was controlled. The addition rate of the cobalt sulfate solution is
32 ml / min, the addition rate of aqueous ammonia is
4.5 ml / min. Time (58) when the cobalt content in the charged nickel hydroxide is calculated to be 5%.
Min) reacted. After the completion of the reaction, the formed precipitate was immediately suction-filtered with a Buchner funnel, washed twice with 7 liters of pure water and then dried by filtration. The concentration of ammonium ion in the solution was 11.8 g / liter. The dried product was dissolved in nitric acid and subjected to atomic absorption analysis. The dried product contained 4.12% of cobalt and had a tapping density of 1.65.
g / milliliter. As a result of SEM observation, cobalt hydroxide partially covering nickel hydroxide was observed, but most of the cobalt hydroxide was present as single particles.

【0032】(比較例3)水酸化ニッケル(タップ密度
2.15g/ミリリットル)3.5kgを60℃に保持
した1リットルのアンモニア水と19リットルの純水と
3リットルのヒドラジン一水和物との混合液中に懸濁さ
せ、攪拌しつつ前述の方法で調製した硫酸コバルト溶液
を添加しつつ苛性ソーダでpHを12.0にコントロー
ルした。硫酸コバルト溶液の添加速度は、32ミリリッ
トル/分、アンモニア水の添加速度は4.5ミリリット
ル/分とした。投入した水酸化ニッケル中のコバルト含
有率が計算上5%となる時間(58分)反応させた。反
応終了後生成した澱物を直ちにブフナーロートで吸引ろ
過し、7リットルの純水で2回レパルブ水洗後、濾過乾
燥した。なお、液中のアンモニウムイオン濃度は10.
8g/リットルであった。この乾燥物を硝酸に溶解し原
子吸光分析したところコバルトを4.97%含有してお
り、タッピング密度は、1.83g/ミリリットルであ
った。得られた水酸化ニッケルは黒色になっていた。こ
れは、還元性有機物が多く含まれ、また処理温度が高い
ために水酸化ニッケルの一部まで還元され、黒色とな
り、タップ密度が低下したと考えられる。
(Comparative Example 3) 1 liter of ammonia water, 19 liters of pure water and 3 liters of hydrazine monohydrate containing 3.5 kg of nickel hydroxide (tap density 2.15 g / milliliter) kept at 60 ° C. And the pH was controlled at 12.0 with caustic soda while adding the cobalt sulfate solution prepared by the above method while stirring. The addition rate of the cobalt sulfate solution was 32 ml / min, and the addition rate of the aqueous ammonia was 4.5 ml / min. The reaction was allowed to proceed for a time (58 minutes) at which the cobalt content in the charged nickel hydroxide was calculated to be 5%. After the completion of the reaction, the formed precipitate was immediately suction-filtered with a Buchner funnel, washed twice with 7 liters of pure water and then dried by filtration. The concentration of ammonium ion in the solution was 10.
It was 8 g / liter. The dried product was dissolved in nitric acid and subjected to atomic absorption analysis. As a result, it contained 4.97% of cobalt and had a tapping density of 1.83 g / ml. The obtained nickel hydroxide was black. This is considered to be because a large amount of reducing organic substances were contained and the processing temperature was high, so that the nickel hydroxide was reduced to a part of the nickel hydroxide, turned black, and the tap density decreased.

【0033】上記実施例1〜3および比較例1〜3の主
要構成および核粒子と被覆物のタップ密度を表1に示
す。
Table 1 shows the main constitutions of Examples 1 to 3 and Comparative Examples 1 to 3 and the tap densities of the core particles and the coating.

【0034】[0034]

【表1】 [Table 1]

【0035】(電池評価)実施例1〜3および比較例
1、2の水酸化ニッケルを用いて以下のように正極を作
製した。水酸化コバルト被覆水酸化ニッケルに水酸化コ
バルト(伊勢化学製)を正極中のCo量が8wt%となる
ように添加し、バインダー量が2重量%となるようにH
PC(ヒドロキシプロピルセルロース1000〜400
0cP;和光純薬工業製試薬1級)水溶液を加えてノンバ
ブリングニーダー(日本精工製)を用いてペースト化
し、発泡ニッケル(住友電工製セルメット:多孔度95
%)に充填し、乾燥後、2トン/cm2の圧力で静水圧
プレスし正極とした。
(Evaluation of Battery) Positive electrodes were prepared as follows using the nickel hydroxides of Examples 1 to 3 and Comparative Examples 1 and 2. Cobalt hydroxide (manufactured by Ise Chemical Co., Ltd.) is added to the cobalt hydroxide-coated nickel hydroxide so that the Co content in the positive electrode becomes 8 wt%, and H is added so that the binder amount becomes 2 wt%.
PC (hydroxypropyl cellulose 1000-400
0cP; Reagent Grade 1 made by Wako Pure Chemical Industries) Aqueous solution was added to form a paste using a non-babbling kneader (manufactured by Nippon Seiko), and nickel foam (Celmet manufactured by Sumitomo Electric: porosity 95)
%), Dried and isostatically pressed at a pressure of 2 ton / cm 2 to obtain a positive electrode.

【0036】負極にはカドミウム電極、セパレータとし
てスルホン化ポリオレフィン不織布をそれぞれ用いた。
電解液には7.2モル/リットルの水酸化カリウム水溶
液を用いた。テストセルは20℃の恒温槽に保持し、充
電は0.1Cで理論容量(289mA/g-1)の150
%まで行い、放電は、0.2Cで1.0Vまで行った。
このとき利用率は、理論容量に対する放電容量の百分率
で表される。表2に5サイクル目の利用率を示す。
A cadmium electrode was used as the negative electrode, and a sulfonated polyolefin nonwoven fabric was used as the separator.
An 7.2 mol / liter potassium hydroxide aqueous solution was used as an electrolyte. The test cell was kept in a thermostat at 20 ° C., and charged at 0.1 C at 150 C of theoretical capacity (289 mA / g −1 ).
%, And discharge was performed at 0.2 C to 1.0 V.
At this time, the utilization is expressed as a percentage of the discharge capacity with respect to the theoretical capacity. Table 2 shows the utilization rate at the fifth cycle.

【0037】[0037]

【表2】 [Table 2]

【0038】以上のように本製造方法によればタップ密
度が高い水酸化ニッケル粉末を得ることが可能であり、
利用率の高い電池の製造が可能であることがわかる。
As described above, according to the present production method, it is possible to obtain a nickel hydroxide powder having a high tap density.
It can be seen that a battery with a high utilization rate can be manufactured.

【0039】[0039]

【発明の効果】本発明により、ペースト式電極の製造に
適した利用率高い水酸化コバルトを被覆した水酸化ニッ
ケル粉未を得ることができる。
According to the present invention, it is possible to obtain a nickel hydroxide powder coated with cobalt hydroxide having a high availability suitable for the production of a paste type electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠井 益志 愛媛県新居浜市西原町3−5−3 住友金 属鉱山株式会社別子事業所内 Fターム(参考) 4G048 AA03 AB04 AC06 AD03 AE05 AE07 5H050 AA08 AA12 BA13 CA03 CB14 DA02 DA10 EA12 FA17 FA18 GA14 GA15 HA10 HA14  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masashi Kasai 3-5-3 Nishihara-cho, Niihama-shi, Ehime F-term in the Besshi Works of Sumitomo Metal Mining Co., Ltd. 4G048 AA03 AB04 AC06 AD03 AE05 AE07 5H050 AA08 AA12 BA13 CA03 CB14 DA02 DA10 EA12 FA17 FA18 GA14 GA15 HA10 HA14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル粉末と還元性有機化合物
とを含有し、苛性アルカリでpH10.5〜12.5に
調整された水溶液に、コバルトおよびアンモニウムイオ
ン供給体を含む水溶液を前記反応液中のアンモニウムイ
オン濃度が10〜25g/リットルとなるように連続的
に定量供給し、前記反応液中の全ニッケルイオン濃度が
10〜300mg/リットルとし、全コバルトイオン濃
度が5〜300mg/リットルとして、前記水酸化ニッ
ケルに水酸化コバルトを被覆することを特徴とするアル
カリ二次電池用水酸化ニッケル粉末の製造方法。
1. An aqueous solution containing nickel hydroxide powder and a reducing organic compound and adjusted to a pH of 10.5-12.5 with caustic alkali, and an aqueous solution containing a cobalt and ammonium ion donor in the reaction solution. And the total amount of nickel ions in the reaction solution is 10 to 300 mg / L, and the total concentration of cobalt ions is 5 to 300 mg / L. A method for producing nickel hydroxide powder for an alkaline secondary battery, comprising coating the nickel hydroxide with cobalt hydroxide.
【請求項2】 反応液温度を30〜55℃に保持し、コ
バルト塩水溶液を水酸化ニッケル粉末1kgに対してコバ
ルト換算で0.6g/分以下の添加速度で加えることに
より水酸化コバルトを被覆を行うことを特徴とする請求
項1に記載のアルカリ二次電池用水酸化ニッケル粉末の
製造方法。
2. Coating the cobalt hydroxide by maintaining the temperature of the reaction solution at 30 to 55 ° C. and adding an aqueous solution of a cobalt salt to 1 kg of nickel hydroxide powder at an addition rate of 0.6 g / min or less in terms of cobalt. The method for producing a nickel hydroxide powder for an alkaline secondary battery according to claim 1, wherein:
【請求項3】 還元性有機化合物がヒドラジンまたはホ
ルムアルデヒドであることを特徴とする請求項1または
2に記載のアルカリ二次電池用水酸化ニッケル粉末の製
造方法。
3. The method for producing a nickel hydroxide powder for an alkaline secondary battery according to claim 1, wherein the reducing organic compound is hydrazine or formaldehyde.
【請求項4】 還元性有機化合物の反応溶液中の濃度が
1〜10容量%であることを特徴とする請求項1から3
のいずれかに記載のアルカリ二次電池用水酸化ニッケル
粉末の製造方法。
4. The method according to claim 1, wherein the concentration of the reducing organic compound in the reaction solution is 1 to 10% by volume.
The method for producing a nickel hydroxide powder for an alkaline secondary battery according to any one of the above.
JP2000213635A 2000-07-14 2000-07-14 Method for manufacturing nickel hydroxide powder for alkali secondary cell Pending JP2002029755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213635A JP2002029755A (en) 2000-07-14 2000-07-14 Method for manufacturing nickel hydroxide powder for alkali secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213635A JP2002029755A (en) 2000-07-14 2000-07-14 Method for manufacturing nickel hydroxide powder for alkali secondary cell

Publications (1)

Publication Number Publication Date
JP2002029755A true JP2002029755A (en) 2002-01-29

Family

ID=18709353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213635A Pending JP2002029755A (en) 2000-07-14 2000-07-14 Method for manufacturing nickel hydroxide powder for alkali secondary cell

Country Status (1)

Country Link
JP (1) JP2002029755A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335154A (en) * 2006-06-13 2007-12-27 Tanaka Chemical Corp Alkaline battery cathode active material
WO2012018077A1 (en) * 2010-08-05 2012-02-09 株式会社Gsユアサ Alkali battery and method for manufacturing positive electrode material for alkali battery
JP2012230840A (en) * 2011-04-27 2012-11-22 Sumitomo Metal Mining Co Ltd Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery, and method for manufacturing the same
JP2012234819A (en) * 2012-06-22 2012-11-29 Sumitomo Metal Mining Co Ltd Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery, and method for manufacturing the same
US8535573B2 (en) 2007-11-05 2013-09-17 Sumitomo Metal Mining Co., Ltd. Copper fine particles, method for producing the same, and copper fine particle dispersion
JP2014103089A (en) * 2012-10-25 2014-06-05 Sumitomo Metal Mining Co Ltd Coated nickel hydroxide powder for alkaline secondary battery positive electrode active material and evaluation method of adhesion of coating of coated nickel hydroxide powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335154A (en) * 2006-06-13 2007-12-27 Tanaka Chemical Corp Alkaline battery cathode active material
US8535573B2 (en) 2007-11-05 2013-09-17 Sumitomo Metal Mining Co., Ltd. Copper fine particles, method for producing the same, and copper fine particle dispersion
WO2012018077A1 (en) * 2010-08-05 2012-02-09 株式会社Gsユアサ Alkali battery and method for manufacturing positive electrode material for alkali battery
US8883349B2 (en) 2010-08-05 2014-11-11 Gs Yuasa International Ltd. Alkaline secondary battery and method for manufacturing positive electrode material for alkaline secondary battery
JP5783178B2 (en) * 2010-08-05 2015-09-24 株式会社Gsユアサ Alkaline storage battery and method for producing positive electrode material for alkaline storage battery
JP2012230840A (en) * 2011-04-27 2012-11-22 Sumitomo Metal Mining Co Ltd Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery, and method for manufacturing the same
US8603677B2 (en) 2011-04-27 2013-12-10 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder as cathode active material for alkaline secondary battery and method for producing the same
US9059461B2 (en) 2011-04-27 2015-06-16 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder as cathode active material for alkaline secondary battery and method for producing same
JP2012234819A (en) * 2012-06-22 2012-11-29 Sumitomo Metal Mining Co Ltd Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery, and method for manufacturing the same
JP2014103089A (en) * 2012-10-25 2014-06-05 Sumitomo Metal Mining Co Ltd Coated nickel hydroxide powder for alkaline secondary battery positive electrode active material and evaluation method of adhesion of coating of coated nickel hydroxide powder
US9768444B2 (en) 2012-10-25 2017-09-19 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery, and evaluation method for coating adhesion properties of coated nickel hydroxide powder

Similar Documents

Publication Publication Date Title
KR100676762B1 (en) Composition Precursor For Aluminum-Containing Lithium Transition Metal Oxide And Process For Preparation Of The Same
CN110817975B (en) Method for reducing sulfur content of ternary precursor
KR100480864B1 (en) Method for preparing nickel fine powder
KR100855509B1 (en) Methods for producing spherical particles of cobalt hydroxide
CN109671924A (en) A kind of preparation method of nickel-cobalt-manganternary ternary anode material
US20210175502A1 (en) Positive electrode active material particle for secondary battery and method for producing positive electrode active material particle for secondary battery
CN102790208A (en) Preparation method of ternary precursor and ternary precursor
EP1689682B1 (en) Process for making nickel hydroxide
US20150311511A1 (en) Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
CN101083318A (en) Process for preparing anode composite material of lithium ionic cell
CN110817976B (en) Positive electrode material precursor and preparation method and application thereof
CN104813523B (en) The cladding nickel hydroxide powder and its manufacturing method of alkaline secondary cell anode active matter
JP2000077070A (en) Nickel hydroxide powder and its manufacture
US9059461B2 (en) Coated nickel hydroxide powder as cathode active material for alkaline secondary battery and method for producing same
JP2002029755A (en) Method for manufacturing nickel hydroxide powder for alkali secondary cell
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
KR20050073456A (en) Cathode active material based on mixed nickel hydroxide for alkaline batteries and a process for the production thereof
KR20020010144A (en) Method for Producing Nickel Hydroxides
JP2001291515A (en) Nickel hydroxide powder for alkaline secondary battery and its manufacturing method and evaluation method
CN115594233B (en) Quaternary positive electrode material precursor of sodium-ion battery, and preparation method and application thereof
JP3367152B2 (en) Method for producing nickel hydroxide powder coated with cobalt hydroxide
JPH09306487A (en) Manufacture of positive electrode active material for alkaline storage battery
JP2002175804A (en) Manufacturing method of nickel hydroxide powder for alkali secondary battery
JP3255078B2 (en) Method for producing nickel hydroxide
JP3415364B2 (en) Nickel hydroxide coated with α-cobalt hydroxide layer for alkaline storage battery and method for producing the same