JPH0559546B2 - - Google Patents

Info

Publication number
JPH0559546B2
JPH0559546B2 JP61300528A JP30052886A JPH0559546B2 JP H0559546 B2 JPH0559546 B2 JP H0559546B2 JP 61300528 A JP61300528 A JP 61300528A JP 30052886 A JP30052886 A JP 30052886A JP H0559546 B2 JPH0559546 B2 JP H0559546B2
Authority
JP
Japan
Prior art keywords
nickel
active material
cobalt
hydroxide
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61300528A
Other languages
Japanese (ja)
Other versions
JPS63152866A (en
Inventor
Masahiko Oshitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP61300528A priority Critical patent/JPS63152866A/en
Publication of JPS63152866A publication Critical patent/JPS63152866A/en
Publication of JPH0559546B2 publication Critical patent/JPH0559546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はアルカリ蓄電池用ニツケル活物質に関
するものである。 従来技術とその問題点 従来の水酸化ニツケルは硝酸ニツケル塩あるい
は硫酸ニツケル塩を出発物質とし、苛性ソーダま
たは苛性カリ水溶液中で、PH13以上(たとえばPH
14)の高濃度液で水酸化ニツケルを生成させてい
た。このようにして生成させた水酸化ニツケルは
アルカリ分を除去するために多量の水と時間を要
する欠点がある。さらにこのような高濃度域で析
出された水酸化ニツケルは、結晶度が高く、比表
面積が低く、活性度が劣る。一方、PHを極端に低
くするとアルカリ分の除去の面でメリツトがある
が、結晶が無定形となり、比表面積は大きくなる
がかさ密度が非常に小さくなる。その為ペースト
式あるいはポケツト式極板の活物質として用いる
には、密度の点で不適当である。 又、特開昭60−131765号及び同・131766号公報
において、粒子形状が球状あるいはそれに類似し
た形状の水酸化ニツケル粒子について正極板のエ
ネルギー密度を向上させ、充填容量の均一化が図
れるとの記載がある。しかし、単に活物質を多量
につめても性能が向上するものでなく活物質自体
の比表面積、結晶度と言つた因子で利用率は大き
く左右される。そのことから、形状もさることな
がら、これらを考慮した活物質でなければ意味が
ない。 発明の目的 本発明は活物質の利用率の優れた、生産性の高
い値電池用ニツケル活物質及びその製造法を提供
することを目的とする。 発明の構成 本発明は上記目的を達成するべく、比表面積が
60m2/g以上であり且つ活結晶度が14以下で主成
分が水酸化ニツケルの粒子にβ型水酸化コバルト
の薄層を形成したことを特徴とする蓄電池用ニツ
ケル活物質である。 又、主成分が硫酸ニツケル塩あるいは硝酸ニツ
ケル塩の水溶液を用い、苛性カリあるいは苛性ソ
ーダ等のPH9.5〜12.5に調整されたアルカリ水溶
液中で水酸化ニツケル粉末を析出させた後、硫酸
コバルト塩あるいは硝酸コバルト塩の水溶液中に
浸漬し、次にアルカリ水溶液で中和させることを
特徴とする蓄電池用ニツケル活物質の製造法であ
る。 実施例 以下に本発明の実施例について詳述する。 硝酸ニツケル塩を溶かした水溶液をPH9.5〜
12.5に調整された苛性ソーダと反応させ、水酸化
ニツケル粉末を析出させる。この析出粒子を硝酸
コバルト塩を溶かした水溶液中に浸漬し、苛性ソ
ーダ溶液と反応させ、アルカリ分を充分に水洗除
去し、85℃以下で乾燥する。この一連の操作によ
り水酸化ニツケルの表面にβ−Co(OH)2の被覆
層が形成される。 上記の硝酸ニツケル塩の水溶液中に1〜5wt%
の硝酸コバルト塩あるいは1〜5wt%の硝酸カド
ミウム塩を単独もしくは両者の添加を行ないPH
9.5〜12.5に調整された苛性ソーダと反応させ、
水酸化ニツケルと水酸化コバルトあるいは水酸化
カドミウムを単独もしくは両者を固溶態化したニ
ツケル粉末が得られる。これに前記と同様の工程
によつて、β−Co(OH)2の被覆層が形成される。 上述により得られた活物質粉末を用いて、水及
びカルボキシメチルセルロース等を加えてスラリ
ー状とした。このスラリーを多孔度95%、厚さ
1.5mmのニツケル繊維焼結体に充填し、乾燥、厚
み調節を行い、厚さ0.7mmのニツケル極を得た。 実施例 1 硝酸ニツケル塩を溶かした水溶液を、PH7.5〜
14.0範囲にある各種のPH値の苛性ソーダ溶液に反
応させ、生成した水酸化ニツケル粉末に7wt%β
−Co(OH)2の被覆層を形成した。この各々の活
物質を用いて、各々のPH値におけるX線回折によ
る結晶度との関係、比表面積との関係を調べた結
果を第1図に示した。水酸化ニツケル粒子の結晶
度は、X線の特性ピークの巾と高さから算出する
ことが出来る。通常行われる方法は、水酸化ニツ
ケルの(001)面の特性ピークの高さを半価巾
(1/2の高さにおける巾)で割つたものであらわ
す。又、第2図にこの活物質による結晶度と活物
質利用率との関係を示した。第3図に比表面積と
活物質利用率の関係を示した。上記の結果より、
PH9.5〜PH12.5の範囲で生成した水酸化ニツケル
は、適切な比表面積と結晶度を有していることが
わかる。 実施例 2 硝酸ニツケル塩の水溶液中に硝酸コバルト塩を
0,1,3,5,7wt%添加し、PH9.5〜12.5に調
整した苛性ソーダを反応させ、水酸化ニツケルと
水酸化コバルトを固溶態化したニツケル粉末を得
た。更にこれに前記の工程により7wt%β−Co
(OH)2の被覆層を形成した活物質を用いて、ベ
ースト式ニツケル極を作成した。 充填0.1CA×15時間、放電1C1(終止電圧1.00V)
で、5〜45℃の温度範囲において活物質の利用率
を調べた。 この結果を第4図に示した。45℃高温領域にお
ける利用率低下が、コバルトの固溶態添加によつ
て改良されることが判明した。しかし低温域での
著るしい容量増加はコバルトでは防止効果が認め
られない。 実施例 3 硝酸ニツケル塩の水溶液中に硝酸カドミウム塩
を0,1,3,5,7wt%添加し、PH9.5〜12.5に
調整した苛性ソーダを反応させ、水酸化ニツケル
と水酸化カドミウムを固溶態化したニツケル粉末
を得た。これに前記した工程により7wt%β−Co
(OH)2の被覆層を形成した。この活物質を用い
て、ペースト式ニツケル極を作成した。充填
0.1CA×15時間、放電1CA(終止電圧1.00V)で、
5〜45℃の温度において活物質の利用率を調べ
た。この結果を第5図に示した。カドミウムの固
溶態添加によつて、低温領域の容量増加が防止さ
れる傾向が認められる。しかし高温領域の容量低
下に対しては効果が少ない。 実施例 4 硝酸ニケツル塩の水溶液中に硝酸カドミウム
塩、硝酸コバルト塩を添加し、ニツケルにカドミ
ウム、コバルトを固溶態化したニツケル粉末を得
た。これに前記した工程により7wt%β−Co
(OH)2の被覆層を形成した。この活物質を用い
て、ペースト式ニツケル極を作成し、前記と同様
の試験を行つた。 尚、Cd1wt%+Co5wt%、Cd3wt%+Co5wt
%、Cd5wt%+Co5wt%の3種類について試験し
た結果を第6図に示した。コバルト、カドミウム
の両者を添加すると、低温から高温域にわたり一
定した容量があることが判明した。 実施例 5 上記の実施例により得られたCd3wt%+Co5wt
%、Cd3wt%、Co5wt%、水酸化ニツケル100%
(Nionly)の4種類のニツケル極とペースト式カ
ドミウム極とを組合せて、比重1.26のKOHを注
液しAAサイズの電池を得た。 充電0.1CA×15時間、放電1CA(終止電圧1.00V)
温度20℃におけるサイクル寿命試験を実施し、こ
の結果を第7図に示した。 この結果より、水酸化ニツケル100%の活物質
はサイクル寿命が極端に悪い。 実施例 6 Cd(OH)2が1wt%、Co(OH)2が5wt%、Ni
(OH)2が94wt%である固溶態化したニツケルに
β−Co(OH)2を被覆し、固溶態活物質に対して
の被覆量を調査した結果を第1表に示した。これ
ら各種のニツケル活物質を用いてペースト式ニツ
ケル極を作成し、ペースト式カドミウム極板と組
合せて、公称容量250mAhの電池とした。この電
池を充電0.1CA×15時間、放電1CAで終止電圧
1.00V温度20℃試験条件で行い得られた結果を示
したものである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a nickel active material for alkaline storage batteries. Conventional technology and its problems Conventional nickel hydroxide uses nickel nitrate or nickel sulfate as a starting material, and is processed in a caustic soda or caustic potassium aqueous solution to a pH of 13 or higher (for example, PH
14) was used to generate nickel hydroxide. Nickel hydroxide produced in this manner has the disadvantage that it requires a large amount of water and time to remove the alkali content. Furthermore, nickel hydroxide precipitated in such a high concentration range has high crystallinity, low specific surface area, and poor activity. On the other hand, extremely low pH has the advantage of removing alkaline content, but the crystals become amorphous and the specific surface area becomes large, but the bulk density becomes extremely small. Therefore, it is unsuitable for use as an active material in paste-type or pocket-type electrode plates due to its density. In addition, Japanese Patent Application Laid-open No. 131765/1983 and Japanese Patent Publication No. 131766 disclose that nickel hydroxide particles having a spherical shape or a similar shape can improve the energy density of the positive electrode plate and make the filling capacity uniform. There is a description. However, simply adding a large amount of active material does not improve performance; the utilization rate is greatly influenced by factors such as the specific surface area and crystallinity of the active material itself. Therefore, apart from the shape, it is meaningless unless the active material takes these into consideration. OBJECTS OF THE INVENTION An object of the present invention is to provide a nickel active material for high-value batteries with excellent active material utilization and high productivity, and a method for producing the same. Structure of the invention In order to achieve the above object, the present invention has a specific surface area of
This is a nickel active material for a storage battery, which has an active crystallinity of 60 m 2 /g or more, an active crystallinity of 14 or less, and has a thin layer of β-type cobalt hydroxide formed on particles whose main component is nickel hydroxide. In addition, using an aqueous solution whose main component is nickel sulfate or nickel nitrate, nickel hydroxide powder is precipitated in an alkaline aqueous solution adjusted to pH 9.5 to 12.5, such as caustic potash or caustic soda, and then cobalt sulfate or nitric acid is precipitated. This is a method for producing a nickel active material for storage batteries, which is characterized by immersing the material in an aqueous solution of cobalt salt and then neutralizing it with an aqueous alkaline solution. Examples Examples of the present invention will be described in detail below. An aqueous solution containing nickel nitrate at pH9.5~
React with caustic soda adjusted to 12.5 to precipitate nickel hydroxide powder. The precipitated particles are immersed in an aqueous solution containing cobalt nitrate salt, reacted with a caustic soda solution, thoroughly washed with water to remove alkaline components, and dried at 85° C. or lower. Through this series of operations, a coating layer of β-Co(OH) 2 is formed on the surface of the nickel hydroxide. 1 to 5 wt% in the aqueous solution of the above nickel nitrate salt.
Addition of cobalt nitrate salt or cadmium nitrate salt of 1 to 5 wt%, alone or in combination, improves pH.
React with caustic soda adjusted to 9.5-12.5,
A nickel powder is obtained in which nickel hydroxide and cobalt hydroxide or cadmium hydroxide are used alone or in a solid solution form. A coating layer of β-Co(OH) 2 is formed thereon by a process similar to that described above. Using the active material powder obtained above, water, carboxymethyl cellulose, etc. were added to form a slurry. This slurry has a porosity of 95% and a thickness of
It was filled into a 1.5 mm nickel fiber sintered body, dried, and the thickness was adjusted to obtain a 0.7 mm thick nickel pole. Example 1 An aqueous solution containing nickel nitrate was heated to pH7.5~
The nickel hydroxide powder produced by reacting with caustic soda solutions with various pH values in the 14.0 range contains 7wt% β.
A coating layer of -Co(OH) 2 was formed. Using each of these active materials, the relationship between crystallinity and specific surface area was investigated by X-ray diffraction at each PH value, and the results are shown in FIG. The crystallinity of nickel hydroxide particles can be calculated from the width and height of the characteristic peak of X-rays. The commonly used method is to divide the height of the characteristic peak of the (001) plane of nickel hydroxide by the half-width (width at 1/2 height). Further, FIG. 2 shows the relationship between the crystallinity and active material utilization rate of this active material. Figure 3 shows the relationship between specific surface area and active material utilization rate. From the above results,
It can be seen that nickel hydroxide produced in the pH range of 9.5 to 12.5 has appropriate specific surface area and crystallinity. Example 2 0, 1, 3, 5, 7 wt% of cobalt nitrate salt was added to an aqueous solution of nickel nitrate salt, and caustic soda adjusted to pH 9.5 to 12.5 was reacted to form a solid solution of nickel hydroxide and cobalt hydroxide. A solidified nickel powder was obtained. Furthermore, 7wt% β-Co was added to this by the above process.
A base-type nickel electrode was created using an active material coated with (OH) 2 . Filling 0.1C A × 15 hours, discharging 1C 1 (final voltage 1.00V)
The utilization rate of the active material was investigated in the temperature range of 5 to 45°C. The results are shown in FIG. It was found that the decrease in utilization rate in the high temperature region of 45°C was improved by adding cobalt in solid solution form. However, cobalt is not effective in preventing a significant increase in capacity at low temperatures. Example 3 Add 0, 1, 3, 5, 7 wt% of cadmium nitrate salt to an aqueous solution of nickel nitrate salt, react with caustic soda adjusted to pH 9.5 to 12.5, and form a solid solution of nickel hydroxide and cadmium hydroxide. A solidified nickel powder was obtained. This was followed by the process described above to obtain 7wt% β-Co.
A coating layer of (OH) 2 was formed. A paste-type nickel electrode was created using this active material. filling
0.1C A × 15 hours, discharge 1C A (final voltage 1.00V),
The utilization rate of the active material was investigated at temperatures between 5 and 45°C. The results are shown in FIG. It has been observed that the addition of cadmium in solid solution tends to prevent an increase in capacity in the low temperature region. However, it is less effective in reducing capacity in high-temperature regions. Example 4 A cadmium nitrate salt and a cobalt nitrate salt were added to an aqueous solution of a nitrate salt to obtain a nickel powder in which cadmium and cobalt were made into a solid solution in nickel. This was followed by the process described above to obtain 7wt% β-Co.
A coating layer of (OH) 2 was formed. A paste-type nickel electrode was prepared using this active material, and the same tests as above were conducted. In addition, Cd1wt% + Co5wt%, Cd3wt% + Co5wt
%, Cd5wt% + Co5wt%, and the results are shown in FIG. It was found that when both cobalt and cadmium were added, the capacity remained constant from low to high temperatures. Example 5 Cd3wt% + Co5wt obtained by the above example
%, Cd3wt%, Co5wt%, Nickel hydroxide 100%
By combining four types of nickel electrodes (Nionly) and paste-type cadmium electrodes, an AA-sized battery was obtained by injecting KOH with a specific gravity of 1.26. Charging 0.1C A × 15 hours, discharging 1C A (final voltage 1.00V)
A cycle life test was conducted at a temperature of 20°C, and the results are shown in FIG. From this result, the cycle life of 100% nickel hydroxide active material is extremely poor. Example 6 Cd(OH) 2 is 1wt%, Co(OH) 2 is 5wt%, Ni
Table 1 shows the results of coating β-Co(OH) 2 on nickel containing 94 wt % (OH) 2 in a solid solution state and investigating the amount of coating on the solid solution active material. Paste-type nickel electrodes were created using these various nickel active materials, and combined with paste-type cadmium electrode plates to create a battery with a nominal capacity of 250mAh. Charge this battery at 0.1C A for 15 hours and discharge at 1C A to reach the final voltage.
This shows the results obtained under the test conditions of 1.00V and 20℃.

【表】 第1表の結果より2〜25wt%の被覆量が適切
である。 水酸化ニツケルの粒子表面にβ型水酸化コバル
ト薄層を形成させる理由を以下に詳述する。水酸
化ニツケルの活物質利用率を向上させる有効な手
段として水酸化コバルト粉末の添加が行なわれて
いる。しかし添加する水酸化コバルトのすべてが
有効とは限らずその結晶構造によつて大きく左右
される。利用率を向上させるには、アルカリ電解
液中で溶解し、二価のblue co−mplex ion
(HCoO2 -)を生成しそれらが貴な電位に於いて
電導性を有するCoOOH化合物に変化し、活物質
表面をコーテイングする二価の水酸化コバルトに
限定される。二価コバルト水酸化物であるβ−
Co(OH)2はNi(OH)2粉末に混合しても良いが、
均一な分散性を考えた場合最も良い方法は、Ni
(OH)2粉末にあらかじめコーテイングしておく
ことである。粒子表面のβ−Co(OH)2同志が充
電によつて均一なCoOOHの被覆を形成しやすい
ためである。 水酸化ニツケルに水酸化コバル、水酸化カドミ
ウムの適切な範囲の共晶状態の粒子にB型水酸化
コバルト薄層を形成したものを活物質とした極板
は、極板の膨潤が無く、且つ高エネルギー密度の
正極板である。この理由は水酸化ニツケルにコバ
ルト、カドミウムが固溶態で添加されると低密度
のオキシ水酸化ニツケルであるγ−NiOOHの生
成が防止され、極板の膨潤がなくなるものと考え
られる。 発明の効果 上述した如く、本発明は活物質の利用率の優れ
た、生産性の高い蓄電池用ニツケル活物質及びそ
の製造法を提供することが出来るので、その工業
的価値は極めて大である。
[Table] From the results in Table 1, a coating amount of 2 to 25 wt% is appropriate. The reason why a thin layer of β-type cobalt hydroxide is formed on the surface of nickel hydroxide particles will be explained in detail below. Cobalt hydroxide powder is added as an effective means to improve the active material utilization rate of nickel hydroxide. However, not all of the cobalt hydroxide added is effective, and it largely depends on its crystal structure. To improve utilization, divalent blue co-mplex ions can be dissolved in an alkaline electrolyte.
It is limited to divalent cobalt hydroxide that forms (HCoO 2 ), which transforms into conductive CoOOH compounds at noble potentials and coats the surface of the active material. β- which is divalent cobalt hydroxide
Co(OH) 2 may be mixed with Ni(OH) 2 powder, but
Considering uniform dispersion, the best method is Ni
(OH) 2 The method is to coat the powder in advance. This is because β-Co(OH) 2 comrades on the particle surface easily form a uniform CoOOH coating by charging. An electrode plate whose active material is formed by forming a thin layer of B-type cobalt hydroxide on eutectic particles of nickel hydroxide, cobal hydroxide, and cadmium hydroxide in an appropriate range has no swelling of the electrode plate, and It is a positive electrode plate with high energy density. The reason for this is thought to be that when cobalt and cadmium are added in solid solution to nickel hydroxide, the formation of γ-NiOOH, which is a low-density nickel oxyhydroxide, is prevented and the swelling of the electrode plate is eliminated. Effects of the Invention As described above, the present invention can provide a highly productive nickel active material for storage batteries with an excellent active material utilization rate, and a method for producing the same, so its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPH値とX線回折及び結晶度との関係を
示した図、第2図は結晶度と活物質利用率との関
係を示した図、第3図は比表面積と活物質利用率
の関係を示した図、第4図はコバルト添加量と活
物質利用率の関係を示した図、第5図はカドミウ
ム添加量と活物質利用率の関係を示した図、第6
図はカドミウム、コバルト添加の活物量の活物質
利用率の関係を示した図、第7図はサイクル寿命
特性を示した図である。
Figure 1 shows the relationship between PH value, X-ray diffraction and crystallinity, Figure 2 shows the relationship between crystallinity and active material utilization rate, and Figure 3 shows the relationship between specific surface area and active material utilization. Figure 4 is a diagram showing the relationship between the amount of cobalt added and the active material utilization rate, Figure 5 is a diagram showing the relationship between the amount of cadmium added and the active material utilization rate, and Figure 6 is a diagram showing the relationship between the amount of cadmium added and the active material utilization rate.
The figure shows the relationship between the amount of active material added with cadmium and cobalt and the utilization rate of the active material, and FIG. 7 shows the cycle life characteristics.

Claims (1)

【特許請求の範囲】 1 比表面積が60m2/g以上であり且つ結晶度が
14以下で、主成分が水酸化ニツケルの粒子にβ型
水酸化コバルトの薄層を形成したことを特徴とす
る蓄電池用ニツケル活物質。 2 主成分が硫酸ニツケル塩あるいは硝酸ニツケ
ル塩の水溶液を用い、苛性カリあるいは苛性ソー
ダ等のPH9.5〜12.5に調整されたアルカリ水溶液
中で水酸化ニツケル粉末を析出させた後、硫酸コ
バルト塩あるいは硝酸コバルト塩の水溶液中に浸
漬し、次にアルカリ水溶液で中和させることを特
徴とする蓄電池用ニツケル活物質の製造法。 3 ニツケル塩水溶液中に1〜5wt%のコバルト
塩あるいは1〜5wt%のカドミウム塩を単独もし
くは両者の添加を行ない共沈させた特許請求の範
囲第2項記載の蓄電池用ニツケル活物質の製造
法。 4 水酸化コバルトの薄層が水酸化ニツケルに対
して2〜25wt%である特許請求の範囲第1項記
載の蓄電池用ニツケル活物質。
[Claims] 1. Specific surface area is 60 m 2 /g or more and crystallinity is
14 or less, a nickel active material for storage batteries characterized by forming a thin layer of β-type cobalt hydroxide on particles of nickel hydroxide as a main component. 2 Using an aqueous solution whose main component is nickel sulfate or nickel nitrate, nickel hydroxide powder is precipitated in an alkaline aqueous solution such as caustic potash or caustic soda whose pH is adjusted to 9.5 to 12.5, and then cobalt sulfate or cobalt nitrate is precipitated. A method for producing a nickel active material for storage batteries, which comprises immersing it in an aqueous salt solution and then neutralizing it with an aqueous alkaline solution. 3. A method for producing a nickel active material for a storage battery according to claim 2, wherein 1 to 5 wt% of a cobalt salt or 1 to 5 wt% of a cadmium salt is added alone or in combination to a nickel salt aqueous solution and co-precipitated. . 4. The nickel active material for a storage battery according to claim 1, wherein the thin layer of cobalt hydroxide is 2 to 25 wt% based on nickel hydroxide.
JP61300528A 1986-12-16 1986-12-16 Nickel active material for storage battery and its manufacture Granted JPS63152866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61300528A JPS63152866A (en) 1986-12-16 1986-12-16 Nickel active material for storage battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61300528A JPS63152866A (en) 1986-12-16 1986-12-16 Nickel active material for storage battery and its manufacture

Publications (2)

Publication Number Publication Date
JPS63152866A JPS63152866A (en) 1988-06-25
JPH0559546B2 true JPH0559546B2 (en) 1993-08-31

Family

ID=17885905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61300528A Granted JPS63152866A (en) 1986-12-16 1986-12-16 Nickel active material for storage battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS63152866A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682162B2 (en) * 1989-08-22 1997-11-26 株式会社ユアサコーポレーション Nickel electrode active material for alkaline storage batteries
JP3080441B2 (en) * 1991-04-25 2000-08-28 東芝電池株式会社 Paste nickel electrode and alkaline storage battery
JP2731050B2 (en) * 1991-04-25 1998-03-25 東芝電池株式会社 Paste nickel electrode and alkaline storage battery
US5744259A (en) * 1995-05-25 1998-04-28 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
DE69626495T2 (en) * 1995-11-22 2003-12-24 Matsushita Electric Ind Co Ltd ELECTRODE WITH ACTIVE MATERIAL FOR POSITIVE PLATE OF A BATTERY
US6040007A (en) * 1996-06-19 2000-03-21 Tanaka Chemical Corporation Nickel hydroxide particles having an α- or β-cobalt hydroxide coating layer for use in alkali batteries and a process for producing the nickel hydroxide
CN1129198C (en) 1997-02-03 2003-11-26 松下电器产业株式会社 Manufacturing method of active materials for positive electrode in alkaline storage batteries
JP3489960B2 (en) * 1997-04-01 2004-01-26 松下電器産業株式会社 Alkaline storage battery
JP4914074B2 (en) * 2006-01-30 2012-04-11 日本電信電話株式会社 Branch line structure and branch line foundation construction method
JP5213989B2 (en) 2011-04-27 2013-06-19 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
JP5626387B2 (en) 2012-10-25 2014-11-19 住友金属鉱山株式会社 The evaluation method of the coating adhesiveness of the coating nickel hydroxide powder for alkaline secondary battery positive electrode active materials and a coating nickel hydroxide powder.
JP5610010B2 (en) 2012-10-25 2014-10-22 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
JP5892048B2 (en) 2012-11-20 2016-03-23 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
JP5842794B2 (en) 2012-11-20 2016-01-13 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
EP3400625A4 (en) * 2016-01-05 2019-11-06 BASF Corporation Nickel hydroxide composite material for alkaline rechargeable battery

Also Published As

Publication number Publication date
JPS63152866A (en) 1988-06-25

Similar Documents

Publication Publication Date Title
JPH0724218B2 (en) Nickel electrode for alkaline battery and battery using the same
JPH0559546B2 (en)
JP2682162B2 (en) Nickel electrode active material for alkaline storage batteries
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JPH0777129B2 (en) Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
JPH0350384B2 (en)
JP3324781B2 (en) Alkaline secondary battery
JP3367152B2 (en) Method for producing nickel hydroxide powder coated with cobalt hydroxide
JP3077473B2 (en) Alkaline storage battery
JP2835282B2 (en) Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same
JP3125096B2 (en) Ni-M hydroxycarbonate powder and method for producing the same
JPH04328257A (en) Paste type nickel pole
JPH11268917A (en) Production of nickel hydroxide
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JP3094062B2 (en) Method for producing paste-type nickel electrode and method for producing alkaline storage battery
JPS62222566A (en) Nickel electrode for alkaline battery
JP3112660B2 (en) Method for producing paste-type nickel electrode and method for producing alkaline storage battery
JP3407983B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery
JP2731050B2 (en) Paste nickel electrode and alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH02234356A (en) Sealed-type alkali battery
JPH0430713B2 (en)
JPH1074514A (en) Nickel positive electrode active material for alkali storage battery
JP2975129B2 (en) Electrodes for alkaline storage batteries

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term