JPH11268917A - Production of nickel hydroxide - Google Patents

Production of nickel hydroxide

Info

Publication number
JPH11268917A
JPH11268917A JP10092722A JP9272298A JPH11268917A JP H11268917 A JPH11268917 A JP H11268917A JP 10092722 A JP10092722 A JP 10092722A JP 9272298 A JP9272298 A JP 9272298A JP H11268917 A JPH11268917 A JP H11268917A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
nickel
solution
hydroxide particles
propanediamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10092722A
Other languages
Japanese (ja)
Inventor
Shinya Morishita
真也 森下
Shinichi Towata
真一 砥綿
Yasuhito Kondo
康仁 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10092722A priority Critical patent/JPH11268917A/en
Publication of JPH11268917A publication Critical patent/JPH11268917A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce nickel hydroxide having a high filling density and good in high-rate discharge characteristics by using 1,3-propanediamine as a complexing agent for nickel ions when producing the nickel hydroxide from a nickel salt solution and an alkali solution. SOLUTION: The concentration of 1,3-propanediamine in a reactional solution is preferably 0.1-10 mol. The nickel salt is not especially limited and nickel sulfate, nickel chloride, etc., are used. For example, an alkali metal hydroxide (e.g. NaOH or KOH) is used as an alkali solution. The pH of the reactional solution is preferably 12-13. The reactional solution is kept at temperature of 40-100 deg.C. Thereby, the deposition rate of the nickel hydroxide becomes optimal and the spherical nickel hydroxide having a high tap density can be synthesized. The resultant nickel hydroxide is particles comprising an aggregate of a scaly crystal. Thereby, the specific surface area is high and the high-rate discharge characteristics and utilization ratio of active materials can remarkably be raised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,ニッケル電池の正極活物質とし
て用いられる水酸化ニッケルの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing nickel hydroxide used as a positive electrode active material of a nickel battery.

【0002】[0002]

【従来技術】高容量タイプのNi−Cd,Ni−MH電
池の正極活物質として,従来,球状水酸化ニッケル粒子
が用いられている。この水酸化ニッケル粒子は,充填密
度が高いことが要求されるため,室温に保った攪拌槽内
のアンモニア水溶液にニッケルイオンの溶液とアルカリ
水溶液を投入し,pHを一定に保ちながら水酸化ニッケ
ル粒子を成長させている(特公平4−80513号公
報)。
2. Description of the Related Art Conventionally, spherical nickel hydroxide particles have been used as a positive electrode active material of a high capacity type Ni-Cd, Ni-MH battery. Since the nickel hydroxide particles are required to have a high packing density, a nickel ion solution and an alkaline aqueous solution are added to an aqueous ammonia solution in a stirred tank maintained at room temperature, and the pH is kept constant while the nickel hydroxide particles are maintained. (Japanese Patent Publication No. 4-80513).

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来の水
酸化ニッケルの製造方法においては,時間をかけてゆっ
くり球状結晶を成長させるため,製造に長時間を要して
いた。更に,Ni極の膨潤抑制のためZnを添加した場
合,表面が緻密化しハイレート放電特性が低下するとい
う問題があった。また,揮発しやすいアンモニアを用い
るため,作業環境が悪化するという問題点もあった。
However, in the above-mentioned conventional method for producing nickel hydroxide, it takes a long time to produce spherical crystals because the spherical crystals grow slowly over time. Furthermore, when Zn is added to suppress the swelling of the Ni electrode, there is a problem that the surface is densified and the high-rate discharge characteristics deteriorate. In addition, there is a problem in that the working environment is deteriorated because the volatile ammonia is used.

【0004】また,特開昭54−99944号公報には
ニッケル化合物の粒度分布に関する技術,特開昭54−
102539号公報には水酸化ニッケルの粒子径と発泡
ニッケルの空間径に関する技術,特開平10−1732
8号公報にはグリシンを用いる水酸化ニッケルの製造方
法が開示されているが,これらはいずれも上記問題を十
分に解決するものではない。
Japanese Patent Application Laid-Open No. 54-99944 discloses a technique relating to the particle size distribution of a nickel compound.
Japanese Patent Application Laid-Open No. 102539 discloses a technique relating to the particle diameter of nickel hydroxide and the space diameter of foamed nickel.
No. 8 discloses a method for producing nickel hydroxide using glycine, but none of these methods sufficiently solves the above problems.

【0005】本発明は,かかる従来の問題点に鑑みてな
されたもので,充填密度及びハイレート放電特性が良好
で,かつ短時間で製造できる,水酸化ニッケルの製造方
法を提供しようとするものである。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a method for producing nickel hydroxide which has good packing density and high-rate discharge characteristics and can be produced in a short time. is there.

【0006】[0006]

【課題の解決手段】本発明は,ニッケル塩溶液とアルカ
リ溶液とから水酸化ニッケルを製造する方法において,
ニッケルイオンの錯化剤として1,3−プロパンジアミ
ンを用いることを特徴とする水酸化ニッケルの製造方法
である。
The present invention relates to a method for producing nickel hydroxide from a nickel salt solution and an alkaline solution,
A method for producing nickel hydroxide, comprising using 1,3-propanediamine as a complexing agent for nickel ions.

【0007】本発明の作用及び効果につき説明する。本
発明において,1,3−プロパンジアミン(H2 N(C
2 3 NH2 )は錯化剤の役割を果たし,アルカリ溶
液及びニッケル塩溶液が添加されると,以下の優れた水
酸化ニッケルが得られる。
The operation and effect of the present invention will be described. In the present invention, 1,3-propanediamine (H 2 N (C
H 2 ) 3 NH 2 ) acts as a complexing agent, and when an alkaline solution and a nickel salt solution are added, the following excellent nickel hydroxide is obtained.

【0008】得られた水酸化ニッケルは,鱗片状結晶の
集合体からなる粒子を形成する。そのため,比表面積が
高く,ハイレート放電特性や活物質利用率が,従来品に
比べて一段と高くなる。しかも,充填密度も高い。ハイ
レート放電を一概に規定することはできないが,本発明
では,0.5C以上の電流値,即ち正極活物質である水
酸化ニッケルに貯えた電気量を2時間以内ですべて放出
する放電条件をいう。
[0008] The obtained nickel hydroxide forms particles composed of aggregates of flaky crystals. As a result, the specific surface area is high, and the high-rate discharge characteristics and the active material utilization rate are much higher than conventional products. Moreover, the packing density is high. Although high-rate discharge cannot be specified unconditionally, in the present invention, it refers to a discharge condition in which a current value of 0.5 C or more, that is, all electricity stored in nickel hydroxide as a positive electrode active material is discharged within 2 hours. .

【0009】また,従来品では膨潤抑制剤としてZnを
添加すると比表面積が低下したが,本発明で得られた水
酸化ニッケル粒子は表面積の低下はしない。更に,本発
明によれば,短時間で水酸化ニッケルを製造でき,しか
も1,3−プロパンジアミンの沸点が140℃と高いこ
とから,高い液温で水酸化ニッケルを合成しても容器外
部にほとんど1,3−プロパンジアミン蒸気が漏れ出る
ことはない。そのため,揮発性の高いアンモニウムによ
る作業環境悪化を回避することができる。
Further, in the conventional product, the specific surface area is reduced when Zn is added as a swelling inhibitor, but the surface area of the nickel hydroxide particles obtained in the present invention does not decrease. Further, according to the present invention, nickel hydroxide can be produced in a short time, and since the boiling point of 1,3-propanediamine is as high as 140 ° C., even if nickel hydroxide is synthesized at a high liquid temperature, it can be produced outside the container. Almost no 1,3-propanediamine vapor escapes. For this reason, it is possible to avoid deterioration of the working environment due to highly volatile ammonium.

【0010】次に,本発明の詳細について説明する。
1,3−プロパンジアミンを含む反応溶液中の1,3−
プロパンジアミンの濃度は,0.1M〜10Mであるこ
とが好ましい。0.1M未満の場合には,球状で高タッ
プ密度の水酸化ニッケルが生成しないおそれがある。ま
た,10Mを超える場合には,生成した水酸化ニッケル
内に残留する1,3−プロパンジアミンを水洗工程で完
全に除去できないおそれがある。更に,1,3−プロパ
ンジアミンの濃度は0.18M以上であることが好まし
い。これにより,充填密度が高い水酸化ニッケルが得ら
れる。
Next, the details of the present invention will be described.
1,3-propanediamine in a reaction solution containing 1,3-propanediamine
The concentration of propanediamine is preferably from 0.1M to 10M. If it is less than 0.1 M, nickel hydroxide having a spherical shape and a high tap density may not be generated. If it exceeds 10M, 1,3-propanediamine remaining in the generated nickel hydroxide may not be completely removed in the washing step. Further, the concentration of 1,3-propanediamine is preferably 0.18M or more. As a result, nickel hydroxide having a high packing density can be obtained.

【0011】ニッケル塩は特に限定されず,例えば,硫
酸ニッケル,硝酸ニッケル,塩化ニッケルなどの無機酸
のニッケル塩を用いることができる。また,アルカリ溶
液としては,例えば,アルカリ金属の水酸化物を含む水
溶液を用いることができる。アルカリ金属の水酸化物と
しては,例えば,NaOH,KOH,LiOHを用いる
ことができる。上記反応溶液は,上記アルカリ溶液の添
加により,pH12〜13とすることが好ましい。これ
により,水酸化ニッケルの析出速度が最適となり,球状
で高タップ密度の水酸化ニッケルを容易に合成すること
ができるようになる。
The nickel salt is not particularly limited, and for example, a nickel salt of an inorganic acid such as nickel sulfate, nickel nitrate and nickel chloride can be used. As the alkali solution, for example, an aqueous solution containing an alkali metal hydroxide can be used. As the alkali metal hydroxide, for example, NaOH, KOH, and LiOH can be used. The above reaction solution is preferably adjusted to pH 12 to 13 by adding the above alkaline solution. As a result, the deposition rate of nickel hydroxide is optimized, so that nickel hydroxide having a spherical shape and a high tap density can be easily synthesized.

【0012】上記反応溶液は,40〜100℃に保温す
ることが好ましい。これにより,充填密度が高い水酸化
ニッケルが得られる。特にその下限は50℃以上である
ことが好ましい。これにより,さらに充填密度が高くな
る。
The above reaction solution is preferably kept at a temperature of 40 to 100 ° C. As a result, nickel hydroxide having a high packing density can be obtained. In particular, the lower limit is preferably 50 ° C. or higher. This further increases the packing density.

【0013】また,上記アルカリ溶液及びニッケル塩溶
液の添加方法は,上記反応溶液の上方から滴下する方
法,または反応溶液内部に注入する方法などがある。両
者を別々に添加する際には,反応溶液を攪拌することが
好ましい。反応溶液内の1,3−プロパンジアミンがニ
ッケル塩及びアルカリ溶液と接触する機会を多くするた
めである。
The method of adding the alkali solution and the nickel salt solution includes a method of dropping the reaction solution from above, and a method of injecting the solution into the reaction solution. When adding both separately, it is preferable to stir the reaction solution. This is for increasing the chance that 1,3-propanediamine in the reaction solution comes into contact with the nickel salt and the alkali solution.

【0014】上記アルカリ溶液及びニッケル塩溶液を反
応溶液に添加すると,水酸化ニッケル粒子が成長してく
る。そして,後数時間すると,水酸化ニッケル粒子の沈
殿物が形成される。この沈殿物を,必要に応じて濾過,
水洗,乾燥する。これにより,本発明の水酸化ニッケル
が得られる。
When the alkali solution and the nickel salt solution are added to the reaction solution, nickel hydroxide particles grow. Then, after several hours, a precipitate of nickel hydroxide particles is formed. This precipitate is filtered if necessary,
Wash and dry. Thereby, the nickel hydroxide of the present invention is obtained.

【0015】[0015]

【発明の実施の形態】実施形態例1 本発明の実施形態例にかかる水酸化ニッケルの製造方法
について,図1〜図5を用いて説明する。図1に示すご
とく,2リットルのガラス製の円筒容器51に0.1M
以上の1,3−プロパンジアミン水溶液8を400ml
入れ,中心の攪拌棒52を400〜2000rpmにて
回転させた。1M以上の硫酸ニッケル水溶液6及び,濃
度がその2倍の水酸化ナトリウム水溶液7を容器の内面
の相対する位置(例えば,時計表示で,3時と9時の位
置)から別々に毎分0.4〜5ml滴下した。滴下時間
は1時間以上とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 A method for producing nickel hydroxide according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, 0.1 M was placed in a 2 liter glass cylindrical container 51.
400 ml of the above 1,3-propanediamine aqueous solution 8
The stirring rod 52 at the center was rotated at 400 to 2000 rpm. A nickel sulfate aqueous solution 6 of 1M or more and a sodium hydroxide aqueous solution 7 having a concentration twice that of the nickel sulfate aqueous solution 6 are separately added to the inner surface of the container from the opposing positions (for example, the positions of 3 o'clock and 9 o'clock in the clock display) at 0. 4 to 5 ml were added dropwise. The dropping time was 1 hour or more.

【0016】上記のように濃厚な硫酸ニッケル溶液6を
添加しても,硫酸ニッケル溶液6が滴下された部位で
は,ニッケル(Ni2+)イオンと1,3−プロパンジア
ミンとの錯体,即ちNi2+−アンミン錯体86が生成す
る。そのため,溶液中のニッケルイオン濃度は極めて低
い値となる。一方,アルカリ溶液(例えば,NaOH)
が滴下された部位では,Ni2+−アンミン錯体86が分
解して水酸化ニッケル87が生成する。
Even if the concentrated nickel sulfate solution 6 is added as described above, the complex of nickel (Ni 2+ ) ion and 1,3-propanediamine, ie, Ni A 2 + -ammine complex 86 is formed. Therefore, the concentration of nickel ions in the solution is extremely low. On the other hand, an alkaline solution (for example, NaOH)
Is dropped, the Ni 2+ -ammine complex 86 is decomposed to produce nickel hydroxide 87.

【0017】Ni2+−アンミン錯体86の濃度が高くな
るにつれて,ニッケルイオン濃度も上昇する。やがて,
水酸化ニッケルの溶解度に対して,生成した水酸化ニッ
ケル量が過飽和状態に達すると,水酸化ニッケルが析出
する。このとき,水酸化ニッケルの析出が緩やかに進行
するため,高タップ密度の水酸化ニッケル粒子となる。
従来のように錯化剤としてアンモニア(NH3 )を用い
た場合に比べて,粒子表面に鱗片状結晶が成長し,比表
面積の高い水酸化ニッケル粒子が得られる。
As the concentration of the Ni 2+ -ammine complex 86 increases, the nickel ion concentration also increases. Eventually,
When the amount of generated nickel hydroxide reaches a supersaturated state with respect to the solubility of nickel hydroxide, nickel hydroxide precipitates. At this time, the precipitation of nickel hydroxide progresses slowly, resulting in nickel hydroxide particles having a high tap density.
Compared with the case where ammonia (NH 3 ) is used as a complexing agent as in the related art, flaky crystals grow on the particle surface, and nickel hydroxide particles having a high specific surface area can be obtained.

【0018】次に,本例の製造方法において1,3−プ
ロパンジアミンの濃度と反応溶液の温度とを変化させた
場合における,水酸化ニッケル粒子のタップ密度への影
響を測定した。その結果を図2に示した。タップ密度は
粒子を容器に充填し1秒間に1回の上下振動を100回
繰返した後,測定された粒子の単位体積当たりの重量を
いう。
Next, the influence on the tap density of the nickel hydroxide particles when the concentration of 1,3-propanediamine and the temperature of the reaction solution were changed in the production method of this example was measured. The result is shown in FIG. The tap density refers to the measured weight of a particle per unit volume after the particle is filled in a container and one vertical oscillation is repeated 100 times per second.

【0019】図2より,タップ密度が1.6/gcm-3
以上の高い水酸化ニッケル粒子が得られるのは,1,3
−プロパンジアミンの濃度が0.18M以上であり,か
つ水溶液の温度が50℃以上である場合であることが好
ましいことがわかる。
FIG. 2 shows that the tap density is 1.6 / gcm -3.
The above high nickel hydroxide particles can be obtained only in 1,3
-It is understood that it is preferable that the concentration of propanediamine is 0.18 M or more and the temperature of the aqueous solution is 50 ° C or more.

【0020】また,本例により得られた水酸化ニッケル
粒子と,従来技術(特公平4−80513号公報)によ
り得られた水酸化ニッケル粒子(これを,比較例1とす
る)とを,走査電子顕微鏡で観察し,その写真を図3,
図4にそれぞれ示した。図3に示すごとく,本例の水酸
化ニッケル粒子の表面には鱗片状結晶が認められたが,
図4に示すごとく,比較例1の水酸化ニッケル粒子の表
面には認められなかった。このことから,本例の水酸化
ニッケル粒子は,比較例1の水酸化ニッケル粒子より
も,比表面積が大きいことがわかる。
Further, the nickel hydroxide particles obtained in this example and the nickel hydroxide particles obtained in the prior art (Japanese Patent Publication No. 4-80513) (this is referred to as Comparative Example 1) were scanned. Observed with an electron microscope
Each is shown in FIG. As shown in FIG. 3, flaky crystals were observed on the surface of the nickel hydroxide particles of this example.
As shown in FIG. 4, no nickel hydroxide particles were observed on the surface of the nickel hydroxide particles of Comparative Example 1. This shows that the nickel hydroxide particles of this example have a larger specific surface area than the nickel hydroxide particles of Comparative Example 1.

【0021】次に,本例の水酸化ニッケル粒子,及び比
較例1の水酸化ニッケル粒子を用いてニッケル−MH電
池を製造し,その充放電試験を行った。即ち,本例の水
酸化ニッケル粒子,及び比較例1の水酸化ニッケル粒子
をそれぞれ3g秤量し,1gの2重量%メチルセルロー
ス水溶液と混練して正極活物質ペーストとした。次い
で,3cm×4cm角に切断した発泡ニッケル(住友電
工製,セルメット#7)を準備し,これに厚み60μm
のニッケル板を端子としてスポット溶接した。この発泡
ニッケルの空孔内に上記正極活物質ペーストを充填,乾
燥後,プレスすることにより正極電極を作製した。水酸
化ニッケルの充填量は1.5g,理論容量は430mA
hである。
Next, a nickel-MH battery was manufactured using the nickel hydroxide particles of the present example and the nickel hydroxide particles of Comparative Example 1, and a charge / discharge test was performed. That is, 3 g of each of the nickel hydroxide particles of this example and the nickel hydroxide particles of Comparative Example 1 were weighed, and kneaded with 1 g of a 2% by weight aqueous solution of methylcellulose to obtain a positive electrode active material paste. Next, foamed nickel (Celmet # 7, manufactured by Sumitomo Electric Industries, Ltd.) cut into a 3 cm × 4 cm square was prepared, and the thickness was 60 μm.
Was spot-welded using the nickel plate as a terminal. The positive electrode active material paste was filled in the pores of the foamed nickel, dried, and pressed to produce a positive electrode. Filling amount of nickel hydroxide is 1.5g, theoretical capacity is 430mA
h.

【0022】負極には,AB5 系の水素吸蔵合金を用い
た。これにセパレータである繊維径10μm以下のポリ
プロピレン−ポリエチレン不織布に袋詰めした。容量は
約700mAhであった。
[0022] negative electrode, using the AB 5 type hydrogen storage alloy. This was packed in a polypropylene-polyethylene nonwoven fabric having a fiber diameter of 10 μm or less as a separator. The capacity was about 700 mAh.

【0023】正極電極1枚をこの負極電極を2枚で挟み
込み電解液(6.8M−KOH+0.8M−LiOH)
を注液してニッケル−MH電池を構成した。これら電池
は,20℃の恒温槽内で0.2Cにて120%充電,休
止30分,0.2Cにて放電(打ち切り電圧=1.0
V)の条件で充放電試験を行なった。正極の容量がほぼ
一定値となった後に放電レートと活物質利用率との関係
を求めた。正極電極の容量が負極電極の容量の1/3で
あるから,得られる放電容量は正極容量を示している。
測定した結果を図5に示した。
An electrolyte (6.8 M-KOH + 0.8 M-LiOH) is sandwiched between one positive electrode and two negative electrodes.
Was injected to form a nickel-MH battery. These batteries were charged in a 20 ° C. constant temperature bath at 120% charge at 0.2 C, stopped for 30 minutes, and discharged at 0.2 C (cutoff voltage = 1.0).
A charge / discharge test was performed under the condition of V). After the capacity of the positive electrode became substantially constant, the relationship between the discharge rate and the active material utilization was determined. Since the capacity of the positive electrode is one third of the capacity of the negative electrode, the obtained discharge capacity indicates the positive electrode capacity.
The measurement results are shown in FIG.

【0024】同図において,比較例1の水酸化ニッケル
粒子を用いた場合に比べて,本例の水酸化ニッケル粒子
は放電レートが高くても高い活物質利用率を示すことが
わかる。これは,本例の水酸化ニッケル粒子では表面に
鱗片状結晶により凹凸が多くあり,電解液との接触面積
が高いためであると考えられる。
In the figure, it can be seen that the nickel hydroxide particles of this example show a higher active material utilization rate even at a higher discharge rate than the nickel hydroxide particles of Comparative Example 1 used. This is considered to be because the nickel hydroxide particles of this example have many irregularities due to the scale-like crystals on the surface and have a large contact area with the electrolytic solution.

【0025】実施形態例2 実施形態例1で用いた2リットルのガラス製の円筒容器
に2Mの1,3−プロパンジアミン水溶液を400ml
入れ,中心の攪拌棒を2000rpmにて回転させた。
1.71Mの硫酸ニッケル水溶液に硫酸亜鉛(膨潤抑制
剤)を0.29Mの濃度になるように加え,4Mの水酸
化ナトリウム水溶液とともに円筒容器の内面の対向する
位置から別々に毎分0.46ml添加した。
Second Embodiment 400 ml of a 2M 1,3-propanediamine aqueous solution is placed in the 2 liter glass cylindrical container used in the first embodiment.
And the central stirring rod was rotated at 2000 rpm.
To a 1.71M aqueous nickel sulfate solution, add zinc sulfate (a swelling inhibitor) to a concentration of 0.29M, and separately with a 4M aqueous sodium hydroxide solution from the opposite position on the inner surface of the cylindrical container at 0.46 ml / min. Was added.

【0026】これら滴下実験は65℃の恒温水槽内に円
筒容器を浸漬して行った。滴下開始約10分後から凝集
した複数の核の形成が認められ,さらに4時間滴下を継
続して亜鉛を固溶した水酸化ニッケル粒子を合成した。
その後,濾過,充分な水洗,乾燥工程を経て粉末状の水
酸化ニッケル粒子を得た。これを本例の水酸化ニッケル
粒子とした。
These dropping experiments were performed by immersing the cylindrical container in a constant temperature water bath at 65 ° C. Approximately 10 minutes after the start of the dropping, formation of a plurality of aggregated nuclei was observed, and the dropping was continued for further 4 hours to synthesize nickel hydroxide particles having a solid solution of zinc.
Thereafter, filtration, sufficient washing with water, and drying were performed to obtain powdery nickel hydroxide particles. This was used as the nickel hydroxide particles of this example.

【0027】また,比較のために,特公平4−8051
3号に記載されている方法に従って同量の亜鉛を固溶し
た水酸化ニッケル粒子を作製し,これを比較例2の水酸
化ニッケル粒子とした。
For comparison, Japanese Patent Publication No. 4-8051
According to the method described in No. 3, nickel hydroxide particles in which the same amount of zinc was dissolved in solid solution were prepared, and this was used as the nickel hydroxide particles of Comparative Example 2.

【0028】また,本例により得られた水酸化ニッケル
粒子と,比較例2の水酸化ニッケル粒子とを,走査電子
顕微鏡で観察したところ,本例の水酸化ニッケル粒子の
表面には鱗片状結晶が認められたが,比較例2の水酸化
ニッケル粒子の表面には認められなかった。このことか
ら,本例の水酸化ニッケル粒子は,比較例2の水酸化ニ
ッケル粒子よりも,比表面積が大きいことがわかる。
When the nickel hydroxide particles obtained in this example and the nickel hydroxide particles of Comparative Example 2 were observed with a scanning electron microscope, the surface of the nickel hydroxide particles of this example showed scaly crystals. Was observed, but was not observed on the surface of the nickel hydroxide particles of Comparative Example 2. This indicates that the nickel hydroxide particles of this example have a larger specific surface area than the nickel hydroxide particles of Comparative Example 2.

【0029】本例の水酸化ニッケル粒子及び比較例2の
水酸化ニッケル粒子を用いて実施形態例1と同様に電池
を作製し,サイクル特性を求めた。その結果を図6に示
した。図6より,比較例2の水酸化ニッケル粒子を用い
た場合に比べて,本例の水酸化ニッケル粒子は初期サイ
クル特性が向上することがわかる。これは,本例の水酸
化ニッケル粒子では表面に鱗片状結晶により凹凸が多く
あり,電解液との接触面積が高いためであると考えられ
る。
A battery was fabricated using the nickel hydroxide particles of this example and the nickel hydroxide particles of Comparative Example 2 in the same manner as in Example 1, and the cycle characteristics were determined. FIG. 6 shows the result. FIG. 6 shows that the initial cycle characteristics of the nickel hydroxide particles of this example are improved as compared with the case where the nickel hydroxide particles of Comparative Example 2 are used. This is considered to be because the nickel hydroxide particles of this example have many irregularities due to the scale-like crystals on the surface and have a large contact area with the electrolytic solution.

【0030】[0030]

【発明の効果】上述のごとく,本発明によれば,充填密
度が高くハイレート放電特性が良好な水酸化ニッケルを
短時間で製造できる,水酸化ニッケルの製造方法を提供
することができる。
As described above, according to the present invention, it is possible to provide a method for producing nickel hydroxide which can produce nickel hydroxide having a high filling density and good high-rate discharge characteristics in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,水酸化ニッケルの製造
方法を示す説明図。
FIG. 1 is an explanatory view showing a method for producing nickel hydroxide in a first embodiment.

【図2】実施形態例1における,高いタップ密度を有す
る水酸化ニッケルを得るための,製造条件を示す特性
図。
FIG. 2 is a characteristic diagram showing manufacturing conditions for obtaining nickel hydroxide having a high tap density in the first embodiment.

【図3】実施形態例1の水酸化ニッケル粒子構造を示す
走査電子顕微鏡写真。
FIG. 3 is a scanning electron micrograph showing the structure of nickel hydroxide particles of Example 1;

【図4】比較例1の水酸化ニッケル粒子構造を示す走査
電子顕微鏡写真。
FIG. 4 is a scanning electron micrograph showing the structure of nickel hydroxide particles of Comparative Example 1.

【図5】実施形態例1の水酸化ニッケル粒子及び比較例
1の水酸化ニッケル粒子の充放電試験結果を示す線図。
FIG. 5 is a diagram showing charge / discharge test results of the nickel hydroxide particles of Example 1 and the nickel hydroxide particles of Comparative Example 1.

【図6】実施形態例2の水酸化ニッケル粒子及び比較例
2の水酸化ニッケル粒子の充放電試験結果を示す線図。
FIG. 6 is a diagram showing charge / discharge test results of nickel hydroxide particles of Example 2 and nickel hydroxide particles of Comparative Example 2.

【符号の説明】[Explanation of symbols]

6...硫酸ニッケル溶液, 7...水酸化ナトリウム溶液, 8...1,3−プロパンジアミン, 51...円筒容器, 52...攪拌棒, 86...Ni2+−アンミン錯体 87...水酸化ニッケル,6. . . 6. Nickel sulfate solution, . . 7. sodium hydroxide solution, . . 1,3-propanediamine, 51. . . Cylindrical container, 52. . . Stir bar, 86. . . Ni 2+ -ammine complex 87. . . Nickel hydroxide,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル塩溶液とアルカリ溶液とから水
酸化ニッケルを製造する方法において,ニッケルイオン
の錯化剤として1,3−プロパンジアミンを用いること
を特徴とする水酸化ニッケルの製造方法。
1. A method for producing nickel hydroxide from a nickel salt solution and an alkaline solution, wherein 1,3-propanediamine is used as a complexing agent for nickel ions.
JP10092722A 1998-03-20 1998-03-20 Production of nickel hydroxide Pending JPH11268917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10092722A JPH11268917A (en) 1998-03-20 1998-03-20 Production of nickel hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10092722A JPH11268917A (en) 1998-03-20 1998-03-20 Production of nickel hydroxide

Publications (1)

Publication Number Publication Date
JPH11268917A true JPH11268917A (en) 1999-10-05

Family

ID=14062350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10092722A Pending JPH11268917A (en) 1998-03-20 1998-03-20 Production of nickel hydroxide

Country Status (1)

Country Link
JP (1) JPH11268917A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194156A (en) * 2004-01-09 2005-07-21 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing nickel hydroxide powder
JP2009173495A (en) * 2008-01-25 2009-08-06 Univ Of Miyazaki Nickel hydroxide nanosheet and its manufacturing method
JP2012176888A (en) * 2012-04-23 2012-09-13 Univ Of Miyazaki Nickel hydroxide nanosheet and manufacturing method thereof
JP2015187051A (en) * 2014-03-27 2015-10-29 株式会社Gsユアサ Nickel hydroxide and alkali battery
CN105502522A (en) * 2015-12-17 2016-04-20 宁波繁盛商业管理有限公司 Preparation method of hollow nickel oxide microspheres

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194156A (en) * 2004-01-09 2005-07-21 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing nickel hydroxide powder
JP2009173495A (en) * 2008-01-25 2009-08-06 Univ Of Miyazaki Nickel hydroxide nanosheet and its manufacturing method
JP2012176888A (en) * 2012-04-23 2012-09-13 Univ Of Miyazaki Nickel hydroxide nanosheet and manufacturing method thereof
JP2015187051A (en) * 2014-03-27 2015-10-29 株式会社Gsユアサ Nickel hydroxide and alkali battery
CN105502522A (en) * 2015-12-17 2016-04-20 宁波繁盛商业管理有限公司 Preparation method of hollow nickel oxide microspheres

Similar Documents

Publication Publication Date Title
CN113823779B (en) Radial nickel-based precursor and preparation method thereof
CN100533822C (en) Anode active substance and its preparing method and anode and battery
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JP4405547B2 (en) Method for producing calcium zincate for cathode
JPH0559546B2 (en)
JPH0230061A (en) Nickel electrode active material, and nickel electrode and alkaline battery using same
CN1187853C (en) Positive electrode active material for alkaline storage battery
JP3205276B2 (en) Method for producing positive electrode active material for alkaline secondary battery, paste-type nickel electrode, alkaline secondary battery and method for producing the same
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JPH11268917A (en) Production of nickel hydroxide
JP3324781B2 (en) Alkaline secondary battery
JP3579545B2 (en) Nickel hydroxide for alkaline storage batteries and method for producing the same
KR100385479B1 (en) Manufacturing Method of Alkaline Battery and Nickel Electrode for Alkaline Battery with High Cycle Life
JPH10172561A (en) Positive electrode active material for nickel battery and manufacture of positive electrode for nickel battery
JP3125096B2 (en) Ni-M hydroxycarbonate powder and method for producing the same
KR100205136B1 (en) Active material for anode of nickel series cell and method manufacturing it
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3594322B2 (en) Non-sintered nickel positive electrode for alkaline storage battery and method for producing the same
JP3415364B2 (en) Nickel hydroxide coated with α-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPH04328257A (en) Paste type nickel pole
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JPH1074514A (en) Nickel positive electrode active material for alkali storage battery
JPH11185746A (en) Positive electrode material for alkaline storage battery
US20160233505A1 (en) Nickel Hydroxide Positive Electrode for Alkaline Rechargeable Battery