JP2020205205A - Method for manufacturing transition metal composite hydroxide - Google Patents

Method for manufacturing transition metal composite hydroxide Download PDF

Info

Publication number
JP2020205205A
JP2020205205A JP2019113188A JP2019113188A JP2020205205A JP 2020205205 A JP2020205205 A JP 2020205205A JP 2019113188 A JP2019113188 A JP 2019113188A JP 2019113188 A JP2019113188 A JP 2019113188A JP 2020205205 A JP2020205205 A JP 2020205205A
Authority
JP
Japan
Prior art keywords
transition metal
composite hydroxide
solution
post
nucleus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019113188A
Other languages
Japanese (ja)
Other versions
JP7255386B2 (en
Inventor
福井 篤
Atsushi Fukui
篤 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019113188A priority Critical patent/JP7255386B2/en
Publication of JP2020205205A publication Critical patent/JP2020205205A/en
Application granted granted Critical
Publication of JP7255386B2 publication Critical patent/JP7255386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a manufacturing method which makes it possible to obtain a nickel cobalt manganese composite hydroxide having a uniform particle size distribution, and a desired particle size, and which enables an industrially stable operation.SOLUTION: A method for manufacturing a transition metal composite hydroxide to be used as a precursor of a positive electrode active material for a lithium ion secondary battery comprises neutralization crystallization, including at least: a nucleus-producing step of forming a post-nucleus production liquid produced in such a way that each fine transition metal composite hydroxide particle makes a nucleus while keeping pH of a reaction liquid within a predetermined range by addition of a pH conditioner; and a particle-growing step of growing each nucleus in the post-nucleus production liquid as a particle by precipitation while keeping pH of the post-nucleus production liquid within a predetermined range. In the nucleus-producing step, a reaction liquid is supplied to and mixed with a predetermined amount of the pH conditioner to form the post-nucleus production liquid. When pH of the post-nucleus production liquid is lowered by supply and mixing of the reaction liquid and then reaches a fixed value to be kept in the particle-growing step, the supply of an alkali metal aqueous solution is started. Since that time, the pH is kept at the fixed value until the end of the particle-growing step.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池用正極活物質の前駆体として用いられる、遷移金属複合水酸化物の製造方法に関する。 The present invention relates to a method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for a lithium ion secondary battery.

近年、スマートフォンやタブレットPCなどの小型情報端末の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。
このような二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極および正極と電解液等で構成され、負極および正極の活物質として、リチウムを脱離および挿入することの可能な材料が用いられている。
In recent years, with the widespread use of small information terminals such as smartphones and tablet PCs, the development of small and lightweight secondary batteries having a high energy density is strongly desired. Further, it is strongly desired to develop a high output secondary battery as a battery for electric vehicles such as hybrid vehicles.
As such a secondary battery, there is a lithium ion secondary battery. The lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and inserting lithium is used as an active material for the negative electrode and the positive electrode.

このリチウムイオン二次電池については、現在研究、開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。 This lithium-ion secondary battery is currently being actively researched and developed. Among them, the lithium-ion secondary battery using a layered or spinel-type lithium metal composite oxide as a positive electrode material is 4V. Since a high-grade voltage can be obtained, it is being put into practical use as a battery having a high energy density.

これまで主に提案されている材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)などを挙げることができる。
このうちリチウムニッケルコバルトマンガン複合酸化物は、サイクル特性が良く、低抵抗で高出力が取り出せる材料として注目されている。
The materials that have been mainly proposed so far are lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ), which uses nickel, which is cheaper than cobalt, and lithium nickel. Examples thereof include a cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and a lithium manganese composite oxide using manganese (LiMn 2 O 4 ).
Of these, lithium nickel-cobalt-manganese composite oxide is attracting attention as a material that has good cycle characteristics and can take out high output with low resistance.

ところで、上記に挙げた良い性能を得るためには、均一な粒径を有する複合酸化物が適している。これは、粒度分布が広い複合酸化物を使用すると、電極内で個々の粒子に掛かる電圧が不均一となることで、サイクル劣化が生じやすくなるなどの不具合が生じるためである。したがって、粒度分布の均一な複合酸化物を製造することが必要であり、そのためには粒度分布の均一な複合水酸化物を用い、製造条件を最適化することが重要である。
また、出力には粒子の比表面積も大きく影響することから、所望する比表面積にするためには粒子径を制御することが重要である。
By the way, in order to obtain the above-mentioned good performance, a composite oxide having a uniform particle size is suitable. This is because when a composite oxide having a wide particle size distribution is used, the voltage applied to each particle in the electrode becomes non-uniform, which causes problems such as cycle deterioration. Therefore, it is necessary to produce a composite oxide having a uniform particle size distribution, and for that purpose, it is important to use a composite hydroxide having a uniform particle size distribution and optimize the production conditions.
Further, since the specific surface area of the particles has a great influence on the output, it is important to control the particle size in order to obtain the desired specific surface area.

たとえば特許文献1では、複合水酸化物粒子の製造段階において、主として核生成反応が生じる工程(核生成工程)と、主として粒子成長反応が生じる工程(粒子成長工程)とを明確に分離する方法が記載されている。このような方法によれば、微粒子や粗大粒子の発生を防止することができるため、適度な粒径を有し、かつ、粒度分布が狭いニッケルコバルトマンガン複合水酸化物粒子を得ることができることが開示されている。 For example, in Patent Document 1, in the production stage of composite hydroxide particles, there is a method of clearly separating a step in which a nucleation reaction mainly occurs (nucleation step) and a step in which a particle growth reaction mainly occurs (particle growth step). Have been described. According to such a method, it is possible to prevent the generation of fine particles and coarse particles, so that nickel cobalt-manganese composite hydroxide particles having an appropriate particle size and a narrow particle size distribution can be obtained. It is disclosed.

しかしながら、特許文献1で示されるように、その工程を分離する際には、供給管内に逆流したアルカリ塩溶液とニッケルコバルトマンガン混合水溶液が反応して供給管内で水酸化物が析出し、供給管の先を詰まらせ、操業を停止する事態が発生するという問題や、pHを下げるために添加する硫酸の濃度が高い場合、短時間で下げることができるが、硫酸が入りすぎて所定のpHより低くなり、一部核が再溶解する問題や、中和熱により反応温度が高くなり、狙いpHが高振れするなど、物性制御が困難となる問題があり、一方、薄い硫酸を使用すると中和熱は抑えられるもののpHを下げる時間がかかる上、液量が多くなり、アンモニア濃度の低下やさらには希釈設備も必要となるため高コストとなる問題があった。 However, as shown in Patent Document 1, when the steps are separated, the alkali salt solution that has flowed back into the supply pipe reacts with the nickel-cobalt-manganese mixed aqueous solution to precipitate a hydroxide in the supply pipe, and the pH is precipitated in the supply pipe. If there is a problem that the tip of the pH is clogged and the operation is stopped, or if the concentration of sulfuric acid added to lower the pH is high, it can be lowered in a short time, but too much sulfuric acid enters and the pH is higher than the specified pH. There is a problem that it becomes low and some nuclei are redissolved, and the reaction temperature rises due to the heat of neutralization, which makes it difficult to control the physical properties such as the target pH fluctuates. On the other hand, it is neutralized by using dilute sulfuric acid. Although heat can be suppressed, it takes time to lower the pH, the amount of liquid increases, the concentration of ammonia is lowered, and a dilution facility is required, which causes a problem of high cost.

さらには、核生成工程で所定のpHを維持するためにNaOHを添加すると中和反応に必要なNaOH量より余剰に入るため、硫酸の代わりに原液で粒子成長工程までpHを下げると余剰分で核生成が起こり、所望する核生成量より多くなってしまい、粒径制御が困難となってしまう問題も生じている。 Furthermore, if NaOH is added to maintain a predetermined pH in the nucleation step, it will be in excess of the amount of NaOH required for the neutralization reaction, so if the pH is lowered to the particle growth step with a stock solution instead of sulfuric acid, the excess will be used. There is also a problem that nucleation occurs and the amount of nucleation exceeds the desired amount, which makes it difficult to control the particle size.

特開2011−116580号公報Japanese Unexamined Patent Publication No. 2011-116580

本発明は掛かる問題点に鑑み、粒度分布が均一であり、所望する粒径のニッケルコバルトマンガン複合水酸化物を得る工業的に安定的な操業を可能である製造方法を提供するものである。 In view of the problems involved, the present invention provides a production method capable of industrially stable operation to obtain a nickel-cobalt-manganese composite hydroxide having a uniform particle size distribution and a desired particle size.

本発明に係る遷移金属複合水酸化物の製造方法の態様は、粒度分布が狭く単分散性であることを特徴とし、平均粒径が3〜7μm、粒度分布の広がりを示す指標である〔(D90−D10)/D50〕が0.55以下であるニッケルコバルトマンガン複合水酸化物粒子を得るために、核生成工程で晶析反応槽に添加するニッケル、コバルト、マンガン混合水溶液(以下原液と称する)の液量から計算した中和に必要なNaOHをあらかじめ添加し、原液とアンモニア水を粒子成長工程の所定のpHになるまで成り行きで添加した後にNaOHの添加を再開し、核生成工程と粒子成長工程とを合計した所定の液量まで反応させて核生成工程と粒子成長工程を連続的に行うことで、原液でpH調整する際の余剰な核生成を防止し、原液供給停止によるノズル詰まりや硫酸添加による核の再溶解、中和熱による温度上昇を無くし、簡便で安定的な操業を可能とすることを特徴とするものである。 The aspect of the method for producing a transition metal composite hydroxide according to the present invention is characterized in that the particle size distribution is narrow and monodisperse, the average particle size is 3 to 7 μm, and it is an index showing the spread of the particle size distribution [((). D90-D10) / D50] is 0.55 or less. In order to obtain nickel-cobalt-manganese composite hydroxide particles, a mixed aqueous solution of nickel, cobalt, and manganese (hereinafter referred to as undiluted solution) added to the crystallization reaction tank in the nucleation step. ), The NaOH necessary for neutralization calculated from the liquid volume was added in advance, and the undiluted solution and aqueous ammonia were added until the specified pH in the particle growth process was reached, and then the addition of NaOH was restarted. By continuously performing the nucleation step and the particle growth step by reacting to a predetermined amount of liquid which is the total of the growth steps, excess nucleation when adjusting the pH with the undiluted solution is prevented, and the nozzle is clogged due to the suspension of the undiluted solution supply. It is characterized by eliminating the remelting of nuclei due to the addition of or sulfuric acid and the temperature rise due to heat of neutralization, enabling simple and stable operation.

本発明の第1の発明は、リチウムイオン二次電池用正極活物質の前駆体として用いられる遷移金属複合水酸化物の製造方法であって、pH調整剤の添加により液温25℃基準におけるpHを12.0以上、14.0以下の一定値に維持しつつ、遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物溶液を、反応槽内に連続的に供給、混合して反応液を形成することで、前記反応液中に微細な遷移金属複合水酸化物粒子を核として液中に生成させた核生成後液を形成する核生成工程と、前記核生成後液を、液温25℃基準におけるpHを9.0以上、12.0以下の範囲における一定値に維持しつつ、前記遷移金属の化合物溶液と、遷移金属と錯イオンを形成する化合物溶液を、前記核生成後液に連続的に供給して前記核の周囲に前記遷移金属の複合水酸化物を析出せしめて形成した粒子を成長させる粒子成長工程を、少なくとも含む中和晶析であり、前記核生成工程において供給する前記遷移金属の化合物溶液中に含まれる個々の遷移金属イオンの物質量をX(M)、X(M)、X(M)、・・・、X(M)(k=1、2、・・・N)とし、前記遷移金属イオンが遷移金属水酸化物となった時の価数をZ(M)、Z(M)、Z(M)、・・・Z(M)とした時、X(M)×Z(M)+X(M)×Z(M)+X(M)×Z(M)+・・・X(M)×Z(M)(K=1、2、・・・N)に相当する物質量のアルカリ金属水酸化物を、前記遷移金属の化合物溶液と前記遷移金属と錯イオンを形成する化合物溶液を連続的に供給、混合して反応液を形成する際に、前記pH調整剤として予め反応槽内に投入しておき、前記遷移金属の化合物溶液と遷移金属と錯イオンを形成する化合物溶液の連続的な供給、混合により核生成後液のpHが低下してゆき、前記核生成後液のpHが前記粒子成長工程において維持すべき前記一定値に達した時点から、pH調整剤のアルカリ金属水溶液の供給を開始し、以後核成長工程の終了まで前記pHを9.0以上、12.0以下の範囲における一定値に維持することを特徴とするリチウムイオン二次電池用正極活物質の前駆体として用いられる遷移金属複合水酸化物の製造方法である。 The first invention of the present invention is a method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for a lithium ion secondary battery, wherein a pH adjuster is added to adjust the pH at a liquid temperature of 25 ° C. A compound solution of a transition metal and a compound solution forming a complex ion with the transition metal are continuously supplied and mixed in a reaction vessel while maintaining a constant value of 12.0 or more and 14.0 or less. By forming the reaction solution, a nucleation step of forming a post-nuclearization solution in which fine transition metal composite hydroxide particles are formed in the solution as nuclei, and the post-nuclearization solution are formed. While maintaining the pH at a liquid temperature of 25 ° C. as a reference at a constant value in the range of 9.0 or more and 12.0 or less, the transition metal compound solution and the compound solution forming a complex ion with the transition metal are produced. Neutralization crystallization, which includes at least a particle growth step of continuously supplying the after-liquid to grow particles formed by precipitating a composite hydroxide of the transition metal around the nucleus, is the nuclear formation step. The amount of each transition metal ion contained in the compound solution of the transition metal supplied in the above is X (M 1 ), X (M 2 ), X (M 3 ), ..., X (M K ) ( When k = 1, 2, ... N), the valences when the transition metal ion becomes a transition metal hydroxide are Z (M 1 ), Z (M 2 ), Z (M 3 ), ...・ ・ When Z (M K ) is set, X (M 1 ) × Z (M 1 ) + X (M 2 ) × Z (M 2 ) + X (M 3 ) × Z (M 3 ) + ・ ・ ・ X ( An alkali metal hydroxide having a substance amount corresponding to M K ) × Z (M K ) (K = 1, 2, ... N) forms a complex ion with the transition metal compound solution and the transition metal. When a compound solution is continuously supplied and mixed to form a reaction solution, a compound that is previously charged into a reaction vessel as the pH adjuster to form a compound ion with the transition metal compound solution and the transition metal. The pH of the post-nuclear liquid is lowered by continuous supply and mixing of the solution, and the pH of the post-nuclear liquid reaches the constant value to be maintained in the particle growth step. A positive electrode active material for a lithium ion secondary battery, characterized in that the supply of an aqueous alkali metal solution is started and the pH is maintained at a constant value in the range of 9.0 or more and 12.0 or less until the end of the nuclear growth step thereafter. It is a method for producing a transition metal composite hydroxide used as a precursor of.

本発明の第2の発明は、第1の発明における遷移金属の化合物が、遷移金属硫酸塩、遷移金属塩化物、遷移金属硝酸塩のいずれか、または少なくとも2種以上の混合物であることを特徴とする遷移金属複合水酸化物の製造方法である。 A second aspect of the present invention is characterized in that the transition metal compound in the first invention is any one of a transition metal sulfate, a transition metal chloride, a transition metal nitrate, or a mixture of at least two or more kinds. This is a method for producing a transition metal composite hydroxide.

本発明の第3の発明は、第1及び第2の発明における遷移金属と錯イオンを形成する化合物溶液が、アンモニア水であることを特徴とする遷移金属複合水酸化物の製造方法である。 A third invention of the present invention is a method for producing a transition metal composite hydroxide according to the first and second inventions, wherein the compound solution forming a complex ion with the transition metal is aqueous ammonia.

本発明の第4の発明は、第1から第3の発明における遷移金属複合水酸化物が、3〜7μmの平均粒径を有し、粒度分布の広がりを示す指標である〔(D90−D10)/D50〕が0.55以下であることを特徴とする遷移金属複合水酸化物の製造方法である。 The fourth invention of the present invention is an index showing the spread of the particle size distribution, in which the transition metal composite hydroxide in the first to third inventions has an average particle size of 3 to 7 μm [(D90-D10). ) / D50] is 0.55 or less, which is a method for producing a transition metal composite hydroxide.

本発明の第5の発明は、第1から第4の発明における遷移金属複合水酸化物が、Ni、Co、Mn、添加元素Mの原子量比Ni:Co:Mn:Mが1−x−y−z:x:y:z(0.1≦x≦0.4、0.1≦y≦0.5、0≦z≦0.1、0.3≦1−x−y−z≦0.7、MはAl、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上)で表される一般式NixCoyMnz(OH)2+α(0.3≦x≦0.7、0.1≦y≦0.4、 0.1≦z≦0.5、x+y+z=1、0≦α≦0.5)のニッケルコバルトマンガン複合水酸化物であることを特徴とする遷移金属複合水酸化物の製造方法である。 In the fifth invention of the present invention, the transition metal composite hydroxide in the first to fourth inventions has an atomic weight ratio of Ni, Co, Mn, and the additive element M in which Ni: Co: Mn: M is 1-xy. −Z: x: y: z (0.1 ≦ x ≦ 0.4, 0.1 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.1, 0.3 ≦ 1-x−y−z ≦ 0 .7, M is Al, Mg, Ca, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, represented by the general formula 1 or more selected from W) Ni x Co y Mn z (OH ) 2 + α (0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.4, 0.1 ≦ z ≦ 0.5, x + y + z = 1, 0 ≦ α ≦ 0.5) nickel cobalt It is a method for producing a transition metal composite hydroxide, which is characterized by being a manganese composite hydroxide.

本発明により、粒度分布が狭く単分散性である、所望する粒径を有するニッケルコバルトマンガン複合水酸化物を工業的に安定的な操業により得ることができる。
また、本発明に係るニッケルコバルトマンガン複合水酸化物由来の非水系二次電池用正極活物質を用いた二次電池は、高容量で高出力の優れた電気特性を有することから、最近の携帯電話やノート型パソコンなどの携帯電子機器、パワーツールおよびハイブリッド車もしくは電気自動車などの電源装置に搭載されている小型二次電池に対する高出力かつ良サイクル特性などといった要求を満足することが可能となり、工業上極めて有用な効果を奏するものである。
According to the present invention, a nickel-cobalt-manganese composite hydroxide having a desired particle size, which has a narrow particle size distribution and is monodisperse, can be obtained by industrially stable operation.
In addition, the secondary battery using the positive electrode active material for a non-aqueous secondary battery derived from the nickel-cobalt-manganese composite hydroxide according to the present invention has excellent electrical characteristics with high capacity and high output, and is therefore recently portable. It has become possible to meet the demands of high output and good cycle characteristics for portable electronic devices such as telephones and laptop computers, power tools, and small secondary batteries installed in power supplies such as hybrid vehicles or electric vehicles. It has an extremely useful effect in industry.

本発明者は、粒度分布の狭い複合水酸化物粒子を安定的に得られる方法について詳細に検討し、その結果、所望するニッケルコバルトマンガン複合水酸化物粒子を得るために、核生成工程で晶析反応槽に添加する原液の液量から計算した中和に必要な量のNaOHを予め反応槽に添加しておいて、原液とアンモニア水の添加を行い、核生成工程を実施した後、原液とアンモニア水を粒子成長工程の所定のpHになるまで成り行きで添加した後に、pH調整剤のNaOHの添加を再開し、核生成工程と粒子成長工程とを合計した所定の液量まで反応させて核生成工程と粒子成長工程を連続的に行うことで晶析工程を簡便にでき、原液でpH調整する際の余剰NaOHによる核生成、硫酸による核の再溶解や中和熱による狙いpHのずれを無くし、原液の供給停止によるノズル詰まりを防止し、安定的な操業を可能とすることを見出し、本発明の完成に至った。
以下、本発明について詳細に説明する。
The present inventor has studied in detail a method for stably obtaining composite hydroxide particles having a narrow particle size distribution, and as a result, crystals are crystallized in the nucleation step in order to obtain the desired nickel-cobalt-manganese composite hydroxide particles. The amount of NaOH required for neutralization calculated from the amount of undiluted solution added to the analysis reaction tank is added to the reaction tank in advance, the undiluted solution and ammonia water are added, the nucleation process is performed, and then the undiluted solution. And ammonia water were added as they were until the pH reached the predetermined pH in the particle growth step, then the addition of the pH adjuster NaOH was restarted, and the reaction was carried out to the total predetermined liquid volume of the nucleation step and the particle growth step. By continuously performing the nucleation step and the particle growth step, the crystallization step can be simplified, and the target pH shift due to the formation of nuclei by excess NaOH when adjusting the pH with the undiluted solution, the re-dissolution of nuclei by sulfuric acid, and the heat of neutralization We have found that it is possible to prevent nozzle clogging due to suspension of supply of undiluted solution and enable stable operation, and completed the present invention.
Hereinafter, the present invention will be described in detail.

本発明の遷移金属複合水酸化物は、一般式NixCoyMnz(OH)2+α(0.3≦x≦0.7、0.1≦y≦0.4、 0.1≦z≦0.5、x+y+z=1、0≦α≦0.5)で表されるニッケルコバルトマンガン複合水酸化物であって、平均粒径が3〜7μmであり、粒度分布の広がりを示す指標である〔(D90−D10)/D50〕が0.55以下であり粒度分布が狭く単分散性であることを特徴とする。
本発明は、以上のような知見に基づき完成されたものである。
以下、本発明に係る遷移金属複合水酸化物の製造方法についてさらに詳細に説明する。
Transition metal composite hydroxide of the present invention have the general formula Ni x Co y Mn z (OH ) 2 + α (0.3 ≦ x ≦ 0.7,0.1 ≦ y ≦ 0.4, 0.1 ≦ A nickel-cobalt-manganese composite hydroxide represented by z ≦ 0.5, x + y + z = 1, 0 ≦ α ≦ 0.5), which has an average particle size of 3 to 7 μm and is an index showing the spread of the particle size distribution. [(D90-D10) / D50] is 0.55 or less, and the particle size distribution is narrow and monodisperse.
The present invention has been completed based on the above findings.
Hereinafter, the method for producing a transition metal composite hydroxide according to the present invention will be described in more detail.

(第1工程:核生成工程)
まず、易水溶性の遷移金属塩としてニッケル塩、コバルト塩、マンガン塩(いずれも硫酸塩が望ましい)を所定の割合で水に溶解してニッケル、コバルト、マンガン混合水溶液の原液を作製する。
その原液を晶析反応槽に、所定の液量の純水と、核生成で使用する原液量から計算により求めた中和に必要な量のpH調整剤の水酸化ナトリウム水溶液を装入後、アンモニア水などのアンモニウムイオン供給体を含む水溶液を、所定の濃度になるよう添加し、撹拌、混合させた所定pHを示す反応液を作製する。
(First step: Nucleation step)
First, a nickel salt, a cobalt salt, and a manganese salt (sulfates are preferably sulfates) are dissolved in water at a predetermined ratio as easily water-soluble transition metal salts to prepare a stock solution of a mixed aqueous solution of nickel, cobalt, and manganese.
After charging the stock solution into a crystallization reaction tank with a predetermined amount of pure water and an aqueous solution of sodium hydroxide as a pH adjuster in an amount required for neutralization calculated from the amount of the stock solution used for nucleation, An aqueous solution containing an ammonium ion feeder such as aqueous ammonia is added to a predetermined concentration, and the mixture is stirred and mixed to prepare a reaction solution having a predetermined pH.

ところで、中和に必要なpH調整剤の量は、以下のように計算して求める。
先ず、核生成工程において供給する遷移金属の化合物溶液中に含まれる個々の遷移金属イオンの物質量を、それぞれX(M)、X(M)、X(M)、・・・、X(M)(k=1、2、・・・N)とする。
次に、その遷移金属イオンが遷移金属水酸化物となった時の価数を、それぞれZ(M)、Z(M)、Z(M)、・・・Z(M)とする。
求めるpH調整剤の量Fは、下記(1)式で求められる。即ち、このFに相当する物質量がアルカリ金属水酸化物の必要量となる。
By the way, the amount of the pH adjuster required for neutralization is calculated and obtained as follows.
First, the amount of substance of each transition metal ion contained in the compound solution of the transition metal supplied in the nucleation step is X (M 1 ), X (M 2 ), X (M 3 ), ... Let X (M K ) (k = 1, 2, ... N).
Next, the valences of the transition metal ions when they become transition metal hydroxides are Z (M 1 ), Z (M 2 ), Z (M 3 ), ... Z (M K ), respectively. To do.
The amount F of the pH adjuster to be obtained is calculated by the following formula (1). That is, the amount of substance corresponding to F is the required amount of alkali metal hydroxide.

Figure 2020205205
Figure 2020205205

次いで、反応液中で遷移金属複合水酸化物の核を生成させて核生成後液を形成する。その際に、pH調整剤の水酸化ナトリウム水溶液の供給はせずに、晶析反応槽内へ原液とアンモニア水のみを、次工程の粒子成長工程における設定pH値になるまで定量的に連続供給し、そのpHになった時点から水酸化ナトリウム水溶液を供給し、所定のpHに維持し、粒子成長工程に移行する。 Next, nucleation of the transition metal composite hydroxide is generated in the reaction solution to form a post-nucleation solution. At that time, without supplying the pH adjuster aqueous sodium hydroxide solution, only the undiluted solution and aqueous ammonia are quantitatively and continuously supplied into the crystallization reaction tank until the pH value reaches the set pH value in the particle growth step of the next step. Then, the aqueous sodium hydroxide solution is supplied from the time when the pH is reached, the pH is maintained at a predetermined pH, and the process proceeds to the particle growth step.

ここで反応槽内のpHは、反応初期の状態では液温25℃を基準として測定するpH値として12.0以上になり、中和反応で原液が消費されるまでは核生成が起こり、その後pHが低下し始め、粒子成長工程のpH値に到達し、粒子成長工程が開始される。即ち核生成工程から粒子成長工程へと連続的に移行する。 Here, the pH in the reaction vessel becomes 12.0 or more as the pH value measured based on the liquid temperature of 25 ° C. in the initial state of the reaction, nucleation occurs until the undiluted solution is consumed in the neutralization reaction, and then nucleation occurs. The pH begins to drop, the pH value of the particle growth step is reached, and the particle growth step is started. That is, there is a continuous transition from the nucleation process to the particle growth process.

また、反応槽内の液中アンモニア濃度は3〜25g/Lの範囲内の一定値に保持する。
一定以上のアンモニア濃度が無ければ金属イオンの溶解度を一定に保持することができないため、ゲル状の核が生成されてしまう。ただし、25g/L以上の濃度では溶解度が上がりすぎ、溶液中に残存する金属イオン量が増えて、組成ずれが起こる。
Further, the concentration of ammonia in the liquid in the reaction vessel is maintained at a constant value within the range of 3 to 25 g / L.
Unless the ammonia concentration is above a certain level, the solubility of metal ions cannot be kept constant, and gel-like nuclei are generated. However, at a concentration of 25 g / L or more, the solubility increases too much, the amount of metal ions remaining in the solution increases, and the composition shifts.

反応槽内の温度は35℃以上、60℃以下に設定することが望ましい。
35℃未満では温度が低くて供給する金属イオンの溶解度が充分に得られず、また60℃を越えるとアンモニアの揮発が促進されることにより錯形成するためのアンモニアが不足し、金属イオンの溶解度が減少する。
It is desirable to set the temperature in the reaction vessel to 35 ° C or higher and 60 ° C or lower.
If the temperature is lower than 35 ° C, the temperature is too low to obtain sufficient solubility of the supplied metal ions, and if the temperature exceeds 60 ° C, the volatilization of ammonia is promoted, resulting in a shortage of ammonia for complex formation, and the solubility of the metal ions. Decreases.

反応槽内空間の酸素濃度はエアを吹き込む等により18%以上の大気雰囲気に制御し、反応槽内溶液中の溶存酸素濃度を4mg/L以上で晶析反応を行うことが望ましい。
この第1工程のpH値と制御時間については、目的とする複合水酸化物の平均粒径によって任意に設定することができる。
It is desirable to control the oxygen concentration in the reaction vessel space to an air atmosphere of 18% or more by blowing air or the like, and to carry out the crystallization reaction at a dissolved oxygen concentration of 4 mg / L or more in the reaction vessel solution.
The pH value and control time of this first step can be arbitrarily set according to the average particle size of the target composite hydroxide.

(第2工程)
この工程では、第1工程のあとの粒子成長段階として反応槽内を、液温25℃を基準として測定するpH値として10.5〜12.0に制御することを主な特徴とする。核生成時にこのpH値へ設定することで、第1工程で核生成に必要なNaOHが消費されるとpHが低下してくるため、継続して原液とアンモニア水を供給することで新たな核生成を抑制しつつ粒子成長工程に移行することができる。
(Second step)
The main feature of this step is that the inside of the reaction vessel is controlled to 10.5 to 12.0 as the pH value measured based on the liquid temperature of 25 ° C. as the particle growth step after the first step. By setting this pH value during nucleation, the pH will drop when the NaOH required for nucleation is consumed in the first step, so new nuclei can be obtained by continuously supplying undiluted solution and ammonia water. It is possible to shift to the particle growth process while suppressing the formation.

pH値が12.0より高い場合では、核発生が起こり均一な粒子とならない。
またpH値が10.5未満では、金属硫酸塩を原料として使用した場合に粒子中に残るS(イオウ)分が多くなるため望ましくない。
このpH値を変更する際には、通常、硫酸で行うところを原液の供給を継続することで行い、第1から第2工程へは、連続的に移行するものである。
When the pH value is higher than 12.0, nucleation occurs and the particles do not become uniform.
Further, if the pH value is less than 10.5, the amount of S (sulfur) remaining in the particles when the metal sulfate is used as a raw material increases, which is not desirable.
When changing the pH value, what is normally done with sulfuric acid is performed by continuing to supply the undiluted solution, and the steps from the first step to the second step are continuously performed.

なお、所望する水酸化物粒子の特性にあわせて第2工程初期の0〜30分程度の間を任意に大気雰囲気で成長させた後、窒素雰囲気に切り替えて成長反応を継続させる。この雰囲気切り替えの際には原液の送液を停止する必要があるため、純水を通液して配管及び先端ノズルを水洗し、ノズル詰まりを防止する。 In addition, after growing arbitrarily in an air atmosphere for about 0 to 30 minutes at the beginning of the second step according to the desired characteristics of the hydroxide particles, the growth reaction is continued by switching to a nitrogen atmosphere. Since it is necessary to stop the feeding of the undiluted solution when switching the atmosphere, the piping and the tip nozzle are washed with water by passing pure water to prevent nozzle clogging.

最終的に所定量の原液を通液して成長反応が終了した際には、純水を通液して配管及び先端ノズルを水洗し、ノズル詰まりを防止する。 When a predetermined amount of undiluted solution is finally passed to complete the growth reaction, pure water is passed to wash the pipe and the tip nozzle with water to prevent nozzle clogging.

以下、実施例を用いて本発明を詳述する。 Hereinafter, the present invention will be described in detail with reference to Examples.

(晶析工程)
・第1工程
まず、反応槽(600リットル)内に水を140リットルまで入れ、タービンタイプの撹拌羽根を使用して回転数を260rpmで撹拌しながら、温度調節制御を昇温側にして槽内温度を40℃に設定し、制御した。加えてエアを20〜40L/分にて吹き込み、大気雰囲気を保った状態で25%アンモニア水を所定量加えて、液のpHを、液温25℃を基準として測定するpH値として12.6に調整し、液中アンモニア濃度を10g/Lに調節した。
(Crystalization process)
-First step First, put up to 140 liters of water in the reaction tank (600 liters), and while stirring at 260 rpm using a turbine-type stirring blade, set the temperature control to the temperature rise side and inside the tank. The temperature was set to 40 ° C. and controlled. In addition, air is blown at 20 to 40 L / min, a predetermined amount of 25% ammonia water is added while maintaining the air atmosphere, and the pH of the liquid is measured as a pH value of 12.6 based on the liquid temperature of 25 ° C. The concentration of ammonia in the liquid was adjusted to 10 g / L.

ここに、硫酸ニッケル、硫酸コバルト、硫酸マンガン、(金属元素モル比でNi:Co:Mn=38:32:30)を水に溶かして得た2mol/Lの水溶液(以下原液と称する)2リットルを核生成用とし、その中和に必要な25%水酸化ナトリウム水溶液を計算して得た必要量、1.28リットルと共に添加、混合して核生成工程を実施して核生成後液を得た。 Here, 2 liters of a 2 mol / L aqueous solution (hereinafter referred to as a stock solution) obtained by dissolving nickel sulfate, cobalt sulfate, manganese sulfate (Ni: Co: Mn = 38: 32: 30 in molar ratio of metal elements) in water. Is used for nucleation, and the required amount obtained by calculating the 25% sodium hydroxide aqueous solution required for neutralization is added and mixed with 1.28 liters to carry out the nucleation step to obtain a post-nuclear solution. It was.

・第2工程
上記第1工程で得た核生成後液に原液と25%アンモニア水を一定の添加速度で加えていき、pHが液温25℃を基準として測定するpH値として11.6(粒子成長pH)になるよう制御pHを設定し、pH11.6になった時点でNaOHを供給し、pH値を11.6に制御したまま、22リットルの原液を通液して晶析を実施した。
-Second step Add the stock solution and 25% aqueous ammonia to the post-nucleation liquid obtained in the first step at a constant addition rate, and the pH is 11.6 (pH value measured based on the liquid temperature of 25 ° C.). The control pH is set so as to reach (particle growth pH), and when the pH reaches 11.6, NaOH is supplied, and while the pH value is controlled to 11.6, 22 liters of undiluted solution is passed through to perform nucleation. did.

その後、配管内に残留する原液を洗浄するため、純水を約5リットル通水してからNaOHとアンモニアの供給を停止した。途中の槽内温度の変化は無く、40℃に保たれていた。
ついで、窒素ガスを流通させて反応槽内空間の酸素濃度を1%以下、反応槽内溶液中の溶存酸素濃度を0.5mg/L以下にしたのち、原液、アンモニア、NaOHの供給を再開し、pH値を11.6に制御して約4時間、原液量で270リットルを通液した後に配管内に残留した原液を洗浄するため、純水を約5リットル通水してから、アンモニアの供給を停止し、さらにpH値を1.2上昇させて12.8とし、スラリー液中に含まれるNiをほぼ全量析出させた。得られた生成物を水洗、濾過、乾燥させた。
Then, in order to wash the stock solution remaining in the pipe, about 5 liters of pure water was passed through the pipe, and then the supply of NaOH and ammonia was stopped. There was no change in the temperature inside the tank on the way, and it was kept at 40 ° C.
Then, after flowing nitrogen gas to reduce the oxygen concentration in the reaction tank space to 1% or less and the dissolved oxygen concentration in the reaction tank solution to 0.5 mg / L or less, the supply of the stock solution, ammonia, and NaOH was restarted. In order to wash the undiluted solution remaining in the pipe after passing 270 liters of undiluted solution for about 4 hours with the pH value controlled to 11.6, about 5 liters of pure water was passed through and then ammonia. The supply was stopped, and the pH value was further increased by 1.2 to 12.8, and almost all of Ni contained in the slurry solution was precipitated. The resulting product was washed with water, filtered and dried.

以上に述べた方法により、Ni0.38Co0.32Mn0.30(OH)2+α(0≦α≦0.5)で表される複合水酸化物を得た。
得られた複合水酸化物の平均粒径は5.2μm、タップ密度は1.22g/ccであった。
By the method described above, a composite hydroxide represented by Ni 0.38 Co 0.32 Mn 0.30 (OH) 2 + α (0 ≦ α ≦ 0.5) was obtained.
The average particle size of the obtained composite hydroxide was 5.2 μm, and the tap density was 1.22 g / cc.

(比較例1)
実施例1と同様にして第1工程の核生成工程を実施後、原液配管内液の押し出しのため純水を約1リットル通液した。その後、第2工程の粒子成長工程で制御するpH11.6にするため、64%硫酸を添加した結果、pHがオーバーシュートにより11.4まで低下し、槽内温度が5℃ほど上昇した。そこから晶析を再開し、原液20リットルを通液する間に2℃程度低下したものの設定温度の40℃まで低下せず、見かけ上、制御pHは一定だが実pHは0.1程度変動した。窒素雰囲気に置換後は設定温度まで下がり、晶析を再開し、実施例1と同様の操作で水酸化物を得た。
得られた水酸化物の平均粒径は5.6μm、タップ密度は1.26g/ccであった。
(Comparative Example 1)
After performing the nucleation step of the first step in the same manner as in Example 1, about 1 liter of pure water was passed to extrude the liquid in the undiluted solution pipe. After that, as a result of adding 64% sulfuric acid in order to adjust the pH to 11.6 controlled in the particle growth step of the second step, the pH was lowered to 11.4 by overshoot and the temperature in the tank was raised by about 5 ° C. Crystallization was restarted from there, and although it decreased by about 2 ° C while passing 20 liters of the undiluted solution, it did not decrease to the set temperature of 40 ° C, and apparently the controlled pH was constant but the actual pH fluctuated by about 0.1. .. After the substitution with a nitrogen atmosphere, the temperature was lowered to the set temperature, crystallization was restarted, and a hydroxide was obtained by the same operation as in Example 1.
The average particle size of the obtained hydroxide was 5.6 μm, and the tap density was 1.26 g / cc.

(比較例2)
比較例1と同様にして第2工程の粒子成長工程で制御するpHに調整するため、64%硫酸を添加した結果、槽内温度が5℃ほど上昇した。そこで、その槽内温度を下げるため、反応槽の温度調節制御を冷却側に切り替え、設定温度になるまでジャケット内に水を通液した結果、オーバーシュートにより設定温度より3℃ほど低くなった。再び温度調節制御を昇温側に切り替え、オーバーシュートを加味しながら調整し、設定温度の40℃になるまで約20分を要した。原液配管内を洗浄していなければノズルが詰まる要因となっていた。そこから晶析を再開し、原液20リットルを通液した。その後、窒素雰囲気に置換後晶析を再開し、実施例1と同様の操作で水酸化物を得た。
得られた水酸化物の平均粒径は5.3μm、タップ密度は1.20g/ccであった。
(Comparative Example 2)
As a result of adding 64% sulfuric acid in order to adjust the pH to be controlled in the particle growth step of the second step in the same manner as in Comparative Example 1, the temperature in the tank increased by about 5 ° C. Therefore, in order to lower the temperature inside the tank, the temperature control control of the reaction tank was switched to the cooling side, and as a result of passing water through the jacket until the set temperature was reached, the temperature was lowered by about 3 ° C. from the set temperature due to overshoot. The temperature control was switched to the temperature rising side again, and the temperature was adjusted while taking the overshoot into consideration, and it took about 20 minutes to reach the set temperature of 40 ° C. If the inside of the undiluted solution pipe was not cleaned, it would cause the nozzle to become clogged. Crystallization was resumed from there, and 20 liters of the undiluted solution was passed. Then, after substitution with a nitrogen atmosphere, crystallization was restarted, and a hydroxide was obtained by the same operation as in Example 1.
The average particle size of the obtained hydroxide was 5.3 μm, and the tap density was 1.20 g / cc.

Claims (5)

リチウムイオン二次電池用正極活物質の前駆体として用いられる遷移金属複合水酸化物の製造方法であって、
pH調整剤の添加により液温25℃基準におけるpHを12.0以上、14.0以下の一定値に維持しつつ、遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物溶液を、反応槽内に連続的に供給、混合して反応液を形成することで、前記反応液中に微細な遷移金属複合水酸化物粒子を核として液中に生成させた核生成後液を形成する核生成工程と、
前記核生成後液を、液温25℃基準におけるpHを9.0以上、12.0以下の範囲における一定値に維持しつつ、前記遷移金属の化合物溶液と、遷移金属と錯イオンを形成する化合物溶液を、前記核生成後液に連続的に供給して前記核の周囲に前記遷移金属の複合水酸化物を析出せしめて形成した粒子を成長させる粒子成長工程を、少なくとも含む中和晶析であり、
前記核生成工程において供給する前記遷移金属の化合物溶液中に含まれる個々の遷移金属イオンの物質量をX(M)、X(M)、X(M)、・・・、X(M)(k=1、2、・・・N)とし、前記遷移金属イオンが遷移金属水酸化物となった時の価数をZ(M)、Z(M)、Z(M)、・・・Z(M)とした時、X(M)×Z(M)+X(M)×Z(M)+X(M)×Z(M)+・・・X(M)×Z(M)(K=1、2、・・・N)に相当する物質量のアルカリ金属水酸化物を、前記遷移金属の化合物溶液と前記遷移金属と錯イオンを形成する化合物溶液を連続的に供給、混合して反応液を形成する際に、前記pH調整剤として予め反応槽内に投入しておき、
前記遷移金属の化合物溶液と遷移金属と錯イオンを形成する化合物溶液の連続的な供給、混合により核生成後液のpHが低下してゆき、前記核生成後液のpHが前記粒子成長工程において維持すべき前記一定値に達した時点から、pH調整剤のアルカリ金属水溶液の供給を開始し、以後核成長工程の終了まで前記pHを9.0以上、12.0以下の範囲における一定値に維持することを特徴とするリチウムイオン二次電池用正極活物質の前駆体として用いられる遷移金属複合水酸化物の製造方法。
A method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for a lithium ion secondary battery.
By adding a pH adjuster, a compound solution of a transition metal and a compound solution forming a complex ion with the transition metal are prepared while maintaining the pH at a liquid temperature of 25 ° C. at a constant value of 12.0 or more and 14.0 or less. By continuously supplying and mixing in the reaction vessel to form a reaction solution, a post-nuclear solution is formed in which fine transition metal composite hydroxide particles are used as nuclei in the reaction solution. Nuclear generation process and
The post-nuclear solution forms a compound solution of the transition metal and a complex ion with the transition metal while maintaining the pH at a liquid temperature of 25 ° C. at a constant value in the range of 9.0 or more and 12.0 or less. Neutralization crystallization including at least a particle growth step of continuously supplying a compound solution to the post-nuclear liquid to grow particles formed by precipitating a composite hydroxide of the transition metal around the nucleus. And
The amount of each transition metal ion contained in the compound solution of the transition metal supplied in the nucleation step is X (M 1 ), X (M 2 ), X (M 3 ), ..., X ( M K ) (k = 1, 2, ... N), and the valences when the transition metal ion becomes a transition metal hydroxide are Z (M 1 ), Z (M 2 ), Z (M). 3 ), ... When Z (M K ) is set, X (M 1 ) x Z (M 1 ) + X (M 2 ) x Z (M 2 ) + X (M 3 ) x Z (M 3 ) + ... An alkali metal hydroxide having a substance amount corresponding to X (M K ) × Z (M K ) (K = 1, 2, ... N) is mixed with the transition metal compound solution and the transition metal. When a compound solution that forms ions is continuously supplied and mixed to form a reaction solution, the pH adjuster is previously charged into the reaction vessel.
The pH of the post-nuclear liquid is lowered by continuous supply and mixing of the transition metal compound solution and the compound solution forming a complex ion with the transition metal, and the pH of the post-nuclear liquid is adjusted in the particle growth step. When the constant value to be maintained is reached, the supply of the alkali metal aqueous solution of the pH adjuster is started, and the pH is kept constant in the range of 9.0 or more and 12.0 or less until the end of the nuclear growth step thereafter. A method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for a lithium ion secondary battery, which is characterized by being maintained.
前記遷移金属の化合物が、遷移金属硫酸塩、遷移金属塩化物、遷移金属硝酸塩のいずれか、または少なくとも2種以上の混合物であることを特徴とする請求項1に記載の遷移金属複合水酸化物の製造方法。 The transition metal composite hydroxide according to claim 1, wherein the transition metal compound is any one of a transition metal sulfate, a transition metal chloride, and a transition metal nitrate, or a mixture of at least two or more kinds. Manufacturing method. 前記遷移金属と錯イオンを形成する化合物溶液が、アンモニア水であることを特徴とする請求項1または2に記載の遷移金属複合水酸化物の製造方法。 The method for producing a transition metal composite hydroxide according to claim 1 or 2, wherein the compound solution forming a complex ion with the transition metal is aqueous ammonia. 前記遷移金属複合水酸化物が、3〜7μmの平均粒径を有し、粒度分布の広がりを示す指標である〔(D90−D10)/D50〕が0.55以下である請求項1〜3のいずれか1項に記載の遷移金属複合水酸化物の製造方法。 Claims 1 to 3 in which the transition metal composite hydroxide has an average particle size of 3 to 7 μm and [(D90-D10) / D50], which is an index indicating the spread of the particle size distribution, is 0.55 or less. The method for producing a transition metal composite hydroxide according to any one of the above items. 前記遷移金属複合水酸化物が、Ni、Co、Mn、添加元素Mの原子量比Ni:Co:Mn:Mが1−x−y−z:x:y:z(0.1≦x≦0.4、0.1≦y≦0.5、0≦z≦0.1、0.3≦1−x−y−z≦0.7、MはAl、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上)で表される一般式NixCoyMnz(OH)2+α(0.3≦x≦0.7、0.1≦y≦0.4、0.1≦z≦0.5、x+y+z=1、0≦α≦0.5)のニッケルコバルトマンガン複合水酸化物であることを特徴とする、請求項1〜4のいずれか1項に記載の遷移金属複合水酸化物の製造方法。 The transition metal composite hydroxide has an atomic weight ratio of Ni, Co, Mn, and the additive element M. Ni: Co: Mn: M is 1-x−y−z: x: y: z (0.1 ≦ x ≦ 0). .4, 0.1 ≤ y ≤ 0.5, 0 ≤ z ≤ 0.1, 0.3 ≤ 1-x-y-z ≤ 0.7, M is Al, Mg, Ca, Ti, V, Cr , Zr, Nb, Mo, Hf , Ta, represented by the general formula 1 or more selected from W) Ni x Co y Mn z (OH) 2 + α (0.3 ≦ x ≦ 0.7,0 .1 ≦ y ≦ 0.4, 0.1 ≦ z ≦ 0.5, x + y + z = 1, 0 ≦ α ≦ 0.5), which is a nickel-cobalt-manganese composite hydroxide. The method for producing a transition metal composite hydroxide according to any one of Items to 4.
JP2019113188A 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide Active JP7255386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019113188A JP7255386B2 (en) 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113188A JP7255386B2 (en) 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide

Publications (2)

Publication Number Publication Date
JP2020205205A true JP2020205205A (en) 2020-12-24
JP7255386B2 JP7255386B2 (en) 2023-04-11

Family

ID=73838027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113188A Active JP7255386B2 (en) 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide

Country Status (1)

Country Link
JP (1) JP7255386B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804223A (en) * 2021-01-21 2022-07-29 中国石油化工股份有限公司 Continuous and stable preparation method of ternary precursor for lithium ion battery
CN117228746A (en) * 2023-11-10 2023-12-15 泾河新城陕煤技术研究院新能源材料有限公司 Preparation method of high sphericity manganese-rich precursor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057311A1 (en) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
CN106745331A (en) * 2016-11-24 2017-05-31 华友新能源科技(衢州)有限公司 A kind of preparation method of low-sulfur small particle nickel cobalt manganese hydroxide
JP2017210395A (en) * 2016-05-27 2017-11-30 住友金属鉱山株式会社 Nickel composite hydroxide and manufacturing method therefor, cathode active material for nonaqueous electrolyte secondary cell and manufacturing method therefor and nonaqueous electrolyte secondary cell
JP2018032543A (en) * 2016-08-25 2018-03-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057311A1 (en) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
JP2017210395A (en) * 2016-05-27 2017-11-30 住友金属鉱山株式会社 Nickel composite hydroxide and manufacturing method therefor, cathode active material for nonaqueous electrolyte secondary cell and manufacturing method therefor and nonaqueous electrolyte secondary cell
JP2018032543A (en) * 2016-08-25 2018-03-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
CN106745331A (en) * 2016-11-24 2017-05-31 华友新能源科技(衢州)有限公司 A kind of preparation method of low-sulfur small particle nickel cobalt manganese hydroxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804223A (en) * 2021-01-21 2022-07-29 中国石油化工股份有限公司 Continuous and stable preparation method of ternary precursor for lithium ion battery
CN114804223B (en) * 2021-01-21 2023-11-10 中国石油化工股份有限公司 Continuous and stable preparation method of ternary precursor for lithium ion battery
CN117228746A (en) * 2023-11-10 2023-12-15 泾河新城陕煤技术研究院新能源材料有限公司 Preparation method of high sphericity manganese-rich precursor
CN117228746B (en) * 2023-11-10 2024-02-02 泾河新城陕煤技术研究院新能源材料有限公司 Preparation method of high sphericity manganese-rich precursor

Also Published As

Publication number Publication date
JP7255386B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
JP5626382B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
JP6265117B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP5464348B2 (en) Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
KR101576719B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
JP4848384B2 (en) High density cobalt manganese coprecipitated nickel hydroxide and process for producing the same
JP6287970B2 (en) Nickel composite hydroxide and production method thereof
JP6201895B2 (en) Method for producing nickel cobalt manganese composite hydroxide
JP6428105B2 (en) Nickel cobalt manganese compound and method for producing the same
JP6044463B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP2017533571A (en) Positive electrode active material for lithium battery having porous structure and production method
JPH1027611A (en) Lithium-containing compound oxide for lithium ion secondary battery and its manufacture
KR101883406B1 (en) Positive active material precursor and manufacturing method thereof, positive active material and manufacturing method thereof, lithium rechargeable battery including the same positive active material
JP7255386B2 (en) Method for producing transition metal composite hydroxide
JP2015038878A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6954111B2 (en) Method for producing nickel-containing hydroxide
JP5943051B2 (en) Method for producing nickel cobalt composite hydroxide
JP7345729B2 (en) Method for producing transition metal composite hydroxide
JP6136604B2 (en) Method for producing nickel cobalt composite hydroxide particles
JP7336647B2 (en) Method for producing transition metal composite hydroxide
JP7371354B2 (en) Method for producing nickel composite hydroxide
JP3609196B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
KR20240072630A (en) A PROCESS FOR PREPARING Ni-Co-Mn COMPOSITE PRECURSOR HAVING IMPROVED PROPERTIES THROUGH MULTISTEP CONTROL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150