JP4225859B2 - Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom - Google Patents

Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom Download PDF

Info

Publication number
JP4225859B2
JP4225859B2 JP2003281562A JP2003281562A JP4225859B2 JP 4225859 B2 JP4225859 B2 JP 4225859B2 JP 2003281562 A JP2003281562 A JP 2003281562A JP 2003281562 A JP2003281562 A JP 2003281562A JP 4225859 B2 JP4225859 B2 JP 4225859B2
Authority
JP
Japan
Prior art keywords
lithium
phosphate
composite oxide
atoms
lithium iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003281562A
Other languages
Japanese (ja)
Other versions
JP2005050684A (en
Inventor
泰裕 仲岡
真之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2003281562A priority Critical patent/JP4225859B2/en
Publication of JP2005050684A publication Critical patent/JP2005050684A/en
Application granted granted Critical
Publication of JP4225859B2 publication Critical patent/JP4225859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法、更に詳しくは特にリチウム二次電池正極活物質として有用なMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法に関するものである。   The present invention relates to a method for producing a lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms, and more specifically, a lithium iron phosphorus composite oxide carbon containing Mn atoms particularly useful as a positive electrode active material for a lithium secondary battery. The present invention relates to a method for producing a composite.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアル リサーチブレティン」vol15,P783-789(1980))がなされて以来、コバルト酸リチウムに関する研究開発が活発に進められており、これまで多くの提案がなされている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries ("Material Research Bulletin" vol15, P783-789 (1980)). Since then, research and development on lithium cobaltate has been actively promoted, and many proposals have been made so far.

しかしながら、Coは地球上に偏在し、希少な資源であるため、コバルト酸リチウムに代わる新たな正極活物質として、例えば、LiNiO2、LiMn24、LiFeO2、LiFePO4等の開発が進められている。 However, Co is unevenly distributed on the earth and is a scarce resource. Therefore, for example, LiNiO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4, etc. are being developed as new positive electrode active materials to replace lithium cobalt oxide. ing.

この中、リチウム鉄リン系複合酸化物に関して、LiFePO4のFeをMnで置換したMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体が提案され(特許文献1〜3参照。)、このMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を正極活物質として用いたリチウム二次電池は、高放電容量となることが報告されている(例えば、特許文献1〜4参照。)。 Among these, regarding the lithium iron phosphorus composite oxide, a lithium iron phosphorus composite oxide carbon composite containing a Mn atom obtained by substituting Fe of LiFePO 4 with Mn has been proposed (see Patent Documents 1 to 3). It has been reported that a lithium secondary battery using a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms as a positive electrode active material has a high discharge capacity (see, for example, Patent Documents 1 to 4). .

従来このMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法として、固相反応を行うものに関して、例えば、炭酸リチウム、シュウ酸鉄、リン酸二水素アンモニウム、炭酸マンガン及び導電性炭素材料を反応原料する方法(例えば、特許文献1〜3参照。)が提案されている。この炭酸リチウム、シュウ酸鉄、リン酸二水素アンモニウム及び炭酸マンガンの反応は、下記反応式(1)

Figure 0004225859
に従って進行するため、製造時の有毒ガスの発生の問題や、原料系が複雑であるためLi、Fe、Mn、Pの各元素の組成調整が難しく、また、リチウム二次電池の正極活物質として用いる場合に要望される物性として、平均粒径が0.5μm以下の微粒でX線回折的に単相のものが得られ難いと言う問題がある。 Conventionally, as a method for producing a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms, for example, in which solid-phase reaction is performed, for example, lithium carbonate, iron oxalate, ammonium dihydrogen phosphate, manganese carbonate, and conductivity A method of reacting a carbon material with a reaction material (see, for example, Patent Documents 1 to 3) has been proposed. This reaction of lithium carbonate, iron oxalate, ammonium dihydrogen phosphate and manganese carbonate is represented by the following reaction formula (1)
Figure 0004225859
Therefore, it is difficult to adjust the composition of each element of Li, Fe, Mn, and P because the raw material system is complicated and the composition of the raw material system is complicated. Also, as a positive electrode active material of a lithium secondary battery As a physical property desired for use, there is a problem that it is difficult to obtain a single particle having an average particle diameter of 0.5 μm or less in X-ray diffraction.

また、特許文献1(特開2002−117908号公報)には、用いることができる原料の一例として各種のリン酸塩が使用できるとの記載はあるが、本件特許発明に係るLi源、Fe源、Mn源の全ての原料をリン酸塩とすることに関しては具体的な記載はなく、示唆もない。更に、特許文献1では少なくとも平均粒径が数μm程度のものを対象としているのに対して、本件特許発明では平均粒径が0.5μm以下のものを対象としている点でも相違する。   In addition, Patent Document 1 (Japanese Patent Laid-Open No. 2002-117908) describes that various phosphates can be used as an example of a raw material that can be used. However, the Li source and the Fe source according to the patented invention are disclosed. There is no specific description or suggestion regarding making all the raw materials of the Mn source phosphate. Further, Patent Document 1 is at least intended for those having an average particle diameter of about several μm, but the present patent invention is also different in that it is intended for those having an average particle diameter of 0.5 μm or less.

特開2002−117908号公報、第3頁。JP 2002-117908 A, page 3. 特開2001−307732号公報、第5頁。JP 2001-307732 A, page 5. WO 00/60679号公報、第17頁。WO 00/60679, page 17. 特開2003−157845号公報、第1頁。JP 2003-157845 A, page 1.

本発明者らは、かかる実情に鑑み、製造時に副生する有毒ガスの発生がなく、Li、Fe、Mn、Pの各元素の組成調整が容易で、尚且つリチウム二次電池の正極活物質として使用することができるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得る方法について鋭意研究を重ねた結果、原料としてリン酸第一鉄、リン酸リチウム、リン酸マンガン及び導電性炭素質材料を用いると、製造時に有毒ガスの発生がなく、また、Li、Fe、Mn、Pの各元素の組成調整が容易となり、更に、該原料を含む混合物を特定比容積まで粉砕処理して反応前駆体としたものを特定温度範囲で焼成することにより、リチウム二次電池の正極活物質として必要な平均粒径0.5μm以下の微細な粒子でX線回折分析からみて単相のリチウム鉄リン系複合酸化物炭素複合体となることを見出し、本発明を完成するに至った。   In view of such circumstances, the present inventors have no generation of toxic gas produced as a by-product during production, easy composition adjustment of each element of Li, Fe, Mn, and P, and a positive electrode active material for a lithium secondary battery As a result of extensive research on a method for obtaining a lithium iron-phosphorus-based composite oxide-carbon composite containing Mn atoms that can be used as a raw material, ferrous phosphate, lithium phosphate, manganese phosphate, and conductivity as raw materials When carbonaceous materials are used, no toxic gas is generated during production, the composition of each element of Li, Fe, Mn, and P can be easily adjusted, and the mixture containing the raw materials is pulverized to a specific volume. As a result of firing the reaction precursor in a specific temperature range, fine particles with an average particle size of 0.5 μm or less, which are necessary as a positive electrode active material for lithium secondary batteries, are single-phase lithium as seen from X-ray diffraction analysis. iron It found that the emission compound oxide carbon complex, and have completed the present invention.

即ち、本発明の目的は、製造時に有毒ガスの発生もなく、Li、Fe、Mn、Pの各元素の組成調整が容易で、且つ平均粒径が0.5μm以下でX線回折分析からみて単相のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を工業的に有利な方法で製造する方法の提供にある。   That is, the object of the present invention is that no toxic gas is generated during production, the composition of each element of Li, Fe, Mn, and P can be easily adjusted, and the average particle size is 0.5 μm or less from the viewpoint of X-ray diffraction analysis. An object of the present invention is to provide a method for producing a lithium iron phosphorus-based composite oxide carbon composite containing a single-phase Mn atom by an industrially advantageous method.

本発明が提供しようとするMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法は、リン酸第一鉄、リン酸リチウム、リン酸マンガン及び導電性炭素質材料を混合する第一工程、次いで、得られる混合物を乾式で粉砕処理して比容積が1.5mL/g以下の反応前駆体を得る第二工程、次いで、該反応前駆体を500〜700℃で焼成する第三工程を含み、該第一工程のリン酸リチウムが、平均粒径が10μm以下且つ格子面(010)面の半値幅が0.2°以上のリン酸リチウムであることを特徴とするMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法である。
かかるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法において、前記第二工程後、得られる反応前駆体を加圧成形する工程を設けるが好ましい。
また、前記第一工程のリン酸第一鉄は、平均粒径が5μm以下で、格子面(020)面の半値幅が0.20°以上のリン酸第一鉄含水塩(Fe3(PO42・8H2O)を用いることが好ましい
た、前記第一工程のリン酸マンガンは、平均粒径が10μm以下のものを用いることが好ましい。
A method for producing a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms to be provided by the present invention includes mixing ferrous phosphate, lithium phosphate, manganese phosphate, and a conductive carbonaceous material. One step, then the second step of obtaining a reaction precursor having a specific volume of 1.5 mL / g or less by pulverizing the resulting mixture in a dry process, and then the third step of calcining the reaction precursor at 500 to 700 ° C. step only containing, Mn atoms lithium phosphate of the first step, the half-width of the average particle diameter of 10μm or less and the lattice plane (010) plane is characterized in that it is a more than 0.2 ° lithium phosphate It is a manufacturing method of the lithium iron phosphorus type complex oxide carbon composite containing this.
In the method for producing a lithium iron phosphorus composite oxide-carbon composite containing Mn atoms, it is preferable to provide a step of pressure-molding the obtained reaction precursor after the second step.
Further, the ferrous phosphate in the first step has an average particle diameter of 5 μm or less and a ferrous phosphate hydrate (Fe 3 (PO 3 )) having a lattice plane (020) plane with a half-value width of 0.20 ° or more. 4 ) It is preferable to use 2 · 8H 2 O) .
Also, the manganese phosphate in the first step, the average particle size is preferably of a 10μm or less.

本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法によれば、製造時に有毒ガスの発生もなく、また、Li、Fe、Mn、Pの各元素の組成調整が容易で、且つリチウム二次電池の正極活物質としての用途に期待できる平均粒径が0.5μm以下の粒子で、X線回折分析からみて単相のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を工業的に有利に製造することができる。   According to the method for producing a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms of the present invention, no toxic gas is generated during production, and composition adjustment of each element of Li, Fe, Mn, and P is possible. Lithium iron-phosphorus composite oxide that is easy and has an average particle size of 0.5 μm or less that can be expected for use as a positive electrode active material of a lithium secondary battery, and that contains single-phase Mn atoms as seen from X-ray diffraction analysis A carbon composite can be produced industrially advantageously.

以下、本発明をその好ましい実施形態に基づき詳細に説明する。
本発明の第一工程は、リン酸第一鉄、リン酸リチウム、リン酸マンガン及び導電性炭素材料を混合し原料混合物を調製する工程である。
Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
The first step of the present invention is a step of preparing a raw material mixture by mixing ferrous phosphate, lithium phosphate, manganese phosphate and a conductive carbon material.

第1の原料のリン酸第一鉄は工業的に入手可能なものであれば特に制限されるものではないが、一般式Fe3(PO42・8H2Oで表されるリン酸第一鉄含水塩で、レーザー回折法により求められる平均粒径が5μm以下、好ましくは1〜5μmで、更に線源としてCuKα線を用いて該リン酸第一鉄含水塩(Fe3(PO42・8H2O)をX線回折分析したときに2θ=13.1近傍の回折ピーク(020)面の半値幅が0.20°以上、好ましくは0.20〜0.40°である結晶性が低く粉砕等の加工性及び反応性に優れたリン酸第一鉄含水塩(Fe3(PO42・8H2O)を用いると後述する反応前駆体の比容積を容易に1.5mL/g以下とすることができることから特に好ましい。 The first raw material ferrous phosphate is not particularly limited as long as it is industrially available, but the phosphoric acid compound represented by the general formula Fe 3 (PO 4 ) 2 · 8H 2 O is used. A ferrous hydrate salt having an average particle size of 5 μm or less, preferably 1 to 5 μm determined by a laser diffraction method, and using the CuKα ray as a radiation source, the ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) is a crystal having a diffraction peak (020) plane near 2θ = 13.1 of 0.20 ° or more, preferably 0.20 to 0.40 ° when X-ray diffraction analysis is performed. When using ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 .8H 2 O), which has low processability and excellent processability and reactivity such as pulverization, the specific volume of the reaction precursor described later can be easily increased. It is particularly preferable because it can be 5 mL / g or less.

このような物性を有するリン酸第一鉄含水塩(Fe3(PO42・8H2O)は、2価の鉄塩とリン酸を含む水溶液に、アルカリを添加して反応を行うことにより容易に製造することができる。 Ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) having such physical properties is reacted by adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid. Can be manufactured more easily.

かかるリン酸第一鉄含水塩の製造方法において用いることができる2価の鉄塩としては、例えば、硫酸第一鉄、酢酸鉄、蓚酸鉄等が挙げられ、これらは、含水物であっても無水物であってもよい。この中、硫酸第一鉄7水和物(FeSO4・7H2O)が安価で高純度のものが工業的に入手しやすいことから特に好ましい。
また、用いることができるリン酸としては、工業的に入手できるものであれば特に制限はない。
また、用いることができるアルカリとしては、特に制限はなく、例えば、アンモニアガス、アンモニア水、水酸化ナトリウム、水酸化カリウム、NaHCO3、Na2CO3、LiOH、K2CO3、KHCO3、Ca(OH)2等の無機アルカリ、またはエタノールアミン等の有機アルカリ等が挙げられる。これらのアルカリは1種又は2種以上で用いることができ、この中、水酸化ナトリウムが安価で工業的に入手しやすいことから特に好ましい。
これらの原料の2価の鉄塩、リン酸及びアルカリは、高純度のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得る上で不純物含有量が少ないものを用いることが特に好ましい。
Examples of the divalent iron salt that can be used in such a method for producing ferrous phosphate hydrate include ferrous sulfate, iron acetate, iron oxalate, and the like. It may be an anhydride. Among these, ferrous sulfate heptahydrate (FeSO 4 .7H 2 O) is particularly preferable because it is inexpensive and highly pure because it is easily available industrially.
The phosphoric acid that can be used is not particularly limited as long as it is industrially available.
As the alkali which can be used is not particularly limited, for example, ammonia gas, aqueous ammonia, sodium hydroxide, potassium hydroxide, NaHCO 3, Na 2 CO 3 , LiOH, K 2 CO 3, KHCO 3, Ca An inorganic alkali such as (OH) 2 or an organic alkali such as ethanolamine can be used. These alkalis can be used alone or in combination of two or more. Among them, sodium hydroxide is particularly preferable because it is inexpensive and easily available industrially.
The divalent iron salt, phosphoric acid, and alkali of these raw materials are particularly preferably those having a low impurity content in order to obtain a lithium iron phosphorus-based composite oxide-carbon composite containing high-purity Mn atoms. .

具体的な反応操作としては、まず、リン酸を2価の鉄塩中の鉄原子に対するモル比で0.60〜0.75、好ましくは0.65〜0.70となるように2価の鉄塩とリン酸を溶解した水溶液を調製する。この場合水溶液の濃度は、2価の鉄塩とリン酸を溶解できる濃度であれば特に制限はないが、通常2価の鉄塩として0.1モル/L以上、好ましくは0.5〜1.0モル/Lとすることが好ましい。
次いで、この水溶液にアルカリを添加し、リン酸第一鉄を析出させる。リン酸第一鉄の析出反応は、このアルカリの添加により速やかに進行する。アルカリの添加量は、2価の鉄塩に対するモル比で1.8〜2.0、好ましくは1.95〜2.0である。
このアルカリの添加温度は、特に制限はなく、通常5〜80℃、好ましくは15〜35℃である。また、アルカリの滴下速度等は特に制限されるものではないが、安定した品質のものを得るため一定の滴下速度で除々に反応系内に導入することが好ましい。
反応終了後、常法により固液分離して、析出物を回収し、洗浄、乾燥して製品とする。
なお、洗浄は、特に、アルカリとして水酸化ナトリウムを用いた場合には、析出したリン酸第一鉄含水塩(Fe3(PO42・8H2O)のNa含有量が1重量%以下、好ましくは0.8重量%以下となるまで水で十分に洗浄することが好ましい。
また、乾燥は、35℃未満では乾燥に時間がかかり、50℃を超えると2価の鉄の酸化や結晶水の脱離が起こるため35〜50℃で行うことが好ましい。
As a specific reaction operation, first, phosphoric acid is divalent so that the molar ratio to the iron atom in the divalent iron salt is 0.60 to 0.75, preferably 0.65 to 0.70. An aqueous solution in which an iron salt and phosphoric acid are dissolved is prepared. In this case, the concentration of the aqueous solution is not particularly limited as long as it can dissolve the divalent iron salt and phosphoric acid, but usually 0.1 mol / L or more, preferably 0.5 to 1 as the divalent iron salt. It is preferable to set it to 0.0 mol / L.
Next, an alkali is added to the aqueous solution to precipitate ferrous phosphate. The precipitation reaction of ferrous phosphate proceeds rapidly by the addition of this alkali. The addition amount of the alkali is 1.8 to 2.0, preferably 1.95 to 2.0 in terms of a molar ratio to the divalent iron salt.
There is no restriction | limiting in particular in the addition temperature of this alkali, Usually, 5-80 degreeC, Preferably it is 15-35 degreeC. The alkali dropping rate is not particularly limited, but it is preferable to gradually introduce it into the reaction system at a constant dropping rate in order to obtain a stable quality.
After completion of the reaction, solid-liquid separation is performed by a conventional method, and the precipitate is collected, washed and dried to obtain a product.
In the cleaning, particularly when sodium hydroxide is used as the alkali, the Na content of the precipitated ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) is 1% by weight or less. It is preferable to thoroughly wash with water until it becomes 0.8% by weight or less.
In addition, drying is preferably performed at 35 to 50 ° C. since drying takes time when the temperature is lower than 35 ° C., and oxidation of divalent iron and elimination of crystal water occur when the temperature exceeds 50 ° C.

かくして得られるリン酸第一鉄含水塩(Fe3(PO42・8H2O)は、レーザー回折法により求められる平均粒径が5μm以下、好ましくは1〜5μmで、X線回折分析から求められる格子面(020)面の回折ピークの半値幅が0.20°以上、好ましくは0.20〜0.40°であり、更に好ましい物性としては、不純物としてのNa含有量が1重量%以下、好ましくは0.8重量%以下であることが特に好ましい。 The ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) thus obtained has an average particle size determined by a laser diffraction method of 5 μm or less, preferably 1 to 5 μm. The half-value width of the required diffraction peak of the lattice plane (020) plane is 0.20 ° or more, preferably 0.20 to 0.40 °, and more preferable physical properties include an Na content as an impurity of 1% by weight. Hereinafter, it is particularly preferably 0.8% by weight or less.

第2の原料のリン酸リチウムは、工業的に入手できるものであれば特に制限はないが、走査型電子顕微鏡写真から求められる平均粒径が10μm以下、好ましくは1〜5μmで、更に線源としてCuKα線を用いて該リン酸リチウムをX線回折分析したときに2θ=16.8°近傍の回折ピーク(010)面の半値幅が0.2°以上、好ましくは0.2〜0.3°の結晶性が低く粉砕等の加工性及び反応性に優れたリン酸リチウムを用いると後述する反応前駆体の比容積を容易に1.5mL/g以下とすることができることから特に好ましく、また、該リン酸リチウムは上記特性に加えて、安息角が50度以下、好ましくは30〜50度の微細な一次粒子が一次粒子の集合体を形成してなり、該一次粒子の集合体の平均粒径が当該範囲の10μm以下のリン酸リチウム凝集体を用いると各原料の均一分散性が良好となるため特に好ましい。   The lithium phosphate as the second raw material is not particularly limited as long as it is industrially available, but the average particle size obtained from a scanning electron micrograph is 10 μm or less, preferably 1 to 5 μm, and further a radiation source. When the lithium phosphate is subjected to X-ray diffraction analysis using CuKα rays, the half value width of the diffraction peak (010) plane near 2θ = 16.8 ° is 0.2 ° or more, preferably 0.2-0. When lithium phosphate having a low 3 ° crystallinity and excellent processability and reactivity such as pulverization is used, the specific volume of the reaction precursor described later can be easily reduced to 1.5 mL / g or less, and is particularly preferable. Further, in addition to the above characteristics, the lithium phosphate is composed of fine primary particles having an angle of repose of 50 degrees or less, preferably 30 to 50 degrees, forming an aggregate of primary particles. The average particle size is 10 μm or more in the range The use of the lower lithium phosphate aggregate is particularly preferable because the uniform dispersibility of each raw material is improved.

このようなリン酸リチウムは、水酸化リチウムを含む水溶液とリン酸を含む水溶液との反応によりリン酸リチウムを製造する方法において、用いる水酸化リチウム水溶液の濃度を4〜6重量%とし、更に反応条件において反応温度を70℃以下、好ましくは5〜40℃で反応を行うことにより製造することができる。   Such lithium phosphate is used in a method for producing lithium phosphate by a reaction between an aqueous solution containing lithium hydroxide and an aqueous solution containing phosphoric acid. It can be produced by carrying out the reaction at a reaction temperature of 70 ° C. or lower, preferably 5 to 40 ° C. under the conditions.

用いることができる水酸化リチウムは、工業的に入手可能なものであれば特に制限はなく含水物であっても無水物であってもよいが、高純度のリン酸リチウムを得る上で不純物含有量が少ないものを用いることが好ましく、特に工業的に入手可能な水酸化リチウムにはNaが20ppm以上、Caが60ppm以上、Alが100ppm以上、Siが100ppm以上含有されていることから、これらの不純物を除去した精製水酸化リチウムを用いることが高純度のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得る上で特に好ましい。この精製水酸化リチウムは、水酸化リチウムを含む水溶液を精密濾過した後、晶析を行うことによりNa、Ca、Al、Si等の不純物を低減した精製水酸化リチウムであることが好ましい(特願2003−131032号参照。)。   The lithium hydroxide that can be used is not particularly limited as long as it is industrially available, and may be a hydrate or an anhydride, but it contains impurities to obtain a high purity lithium phosphate. It is preferable to use a small amount of lithium hydroxide, and industrially available lithium hydroxide contains Na of 20 ppm or more, Ca of 60 ppm or more, Al of 100 ppm or more, and Si of 100 ppm or more. It is particularly preferable to use purified lithium hydroxide from which impurities have been removed, in order to obtain a lithium iron-phosphorus composite oxide carbon composite containing high-purity Mn atoms. The purified lithium hydroxide is preferably purified lithium hydroxide in which impurities such as Na, Ca, Al, Si, etc. are reduced by microfiltration of an aqueous solution containing lithium hydroxide and crystallization. 2003-131032).

第3の原料のリン酸マンガンは、工業的に入手できるものであれば特に制限はないが、レーザー回折法により求められる平均粒径が10μm以下、好ましくは5μm以下の微細な反応性に優れたリン酸マンガンを用いると後述する反応前駆体の比容積を容易に1.5mL/g以下とすることができることから特に好ましい。このような微細で反応性に優れたリン酸マンガンは、例えば、硫酸マンガンをMnSO4として0.1モル/L以上、好ましくは0.1〜1.0モル/L含み、リン酸を硫酸マンガン中のMn原子に対するモル比で0.60〜0.75、好ましくは0.65〜0.70となるように硫酸マンガンとリン酸を溶解した水溶液を調製した後、次いで、この水溶液にアルカリを添加して5〜80℃で反応を行うことにより容易に製造することができる。 The third raw material manganese phosphate is not particularly limited as long as it is industrially available, but has an excellent fine reactivity with an average particle size of 10 μm or less, preferably 5 μm or less, determined by a laser diffraction method. The use of manganese phosphate is particularly preferable because the specific volume of the reaction precursor described later can be easily reduced to 1.5 mL / g or less. Such fine and excellent manganese phosphate contains, for example, manganese sulfate as MnSO 4 in an amount of 0.1 mol / L or more, preferably 0.1 to 1.0 mol / L, and phosphoric acid is manganese sulfate. After preparing an aqueous solution in which manganese sulfate and phosphoric acid are dissolved so that the molar ratio with respect to the Mn atom is 0.60 to 0.75, preferably 0.65 to 0.70, an alkali is added to the aqueous solution. It can manufacture easily by adding and reacting at 5-80 degreeC.

第4の原料の導電性炭素材料としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等の天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維等が挙げられ、これらは1種又は2種以上で用いることができる。この中、ケッチェンブラックが微粒なものを工業的に容易に入手できるため特に好ましい。   Examples of the conductive carbon material as the fourth raw material include graphite such as natural graphite such as scaly graphite, scaly graphite and earthy graphite, and artificial graphite, carbon black, acetylene black, ketjen black, channel black, and furnace black. , Carbon blacks such as lamp black and thermal black, carbon fibers, and the like, and these may be used alone or in combination of two or more. Among these, those having fine ketjen black are particularly preferable because they can be easily obtained industrially.

これらの導電性炭素材料は走査型電子顕微鏡写真(SEM)から求められる平均粒径が0.5μm以下、好ましくは0.1μm以下、特に好ましくは0.01〜0.1μmであると得られるMn原子を含有するリチウム鉄リン系複合酸化物の粒子表面に高分散状態で付着させることができることから好ましい。   These conductive carbon materials have an average particle size determined from a scanning electron micrograph (SEM) of 0.5 μm or less, preferably 0.1 μm or less, and particularly preferably 0.01 to 0.1 μm. It is preferable because it can be attached in a highly dispersed state to the particle surface of the lithium iron phosphorus-based composite oxide containing atoms.

第一工程の操作は、まず、前記第1〜第4の原料のリン酸第一鉄、リン酸リチウム、リン酸マンガンおよび導電性炭素材料を所定量混合する。   In the operation of the first step, first, a predetermined amount of ferrous phosphate, lithium phosphate, manganese phosphate and conductive carbon material as the first to fourth raw materials are mixed.

リン酸第一鉄、リン酸リチウムおよびリン酸マンガンの配合割合は、リン酸第一鉄中のFe原子、リン酸リチウム中のLi原子およびリン酸マンガン中のMn原子のモル比として、Li/(Fe+Mn)で0.9〜1.1、好ましくは1.00〜1.05であると、Mn原子を含有するリチウム鉄リン系複合酸化物の単相が得られる点で特に好ましい。なお、本発明において、Fe原子とMn原子のモル比は任意に設定することができる。   The blending ratio of ferrous phosphate, lithium phosphate and manganese phosphate is expressed as a molar ratio of Fe atom in ferrous phosphate, Li atom in lithium phosphate and Mn atom in manganese phosphate. When (Fe + Mn) is 0.9 to 1.1, preferably 1.00 to 1.05, it is particularly preferable in that a single phase of a lithium iron phosphorus composite oxide containing Mn atoms is obtained. In the present invention, the molar ratio of Fe atoms to Mn atoms can be arbitrarily set.

また、導電性炭素材料は、焼成前に比べて焼成後では導電性炭素材料に含まれるC原子の量が若干ながら減少する傾向があることから、導電性炭素材料の配合量がリン酸第一鉄、リン酸リチウム及びリン酸マンガンの総量に対して0.08〜15.5重量%、好ましくは3.8〜9.5重量%であると、導電性炭素材料の被覆量は、Mn原子を含有するリチウム鉄リン系複合酸化物に対するC原子の含有量で0.1〜20重量%、好ましくは5〜12重量%となる。この導電性炭素材料の配合量が0.08重量%未満では、例えば、該Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体をリチウム二次電池の正極活物質として用いた場合に十分に導電性を付与することができなくなるため得られるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を正極活物質とするリチウム二次電池において内部抵抗が上昇しやすくなり、一方、15.5重量%を超えると逆に重量或いは体積当たりの放電容量が減少しやすくなるため好ましくない。   In addition, the conductive carbon material has a tendency that the amount of C atoms contained in the conductive carbon material is slightly decreased after firing compared to before firing. When the amount of the conductive carbon material is 0.08 to 15.5% by weight, preferably 3.8 to 9.5% by weight, based on the total amount of iron, lithium phosphate and manganese phosphate, The content of C atoms with respect to the lithium iron-phosphorus composite oxide containing 0.1 to 20% by weight, preferably 5 to 12% by weight. When the blending amount of the conductive carbon material is less than 0.08% by weight, for example, it is sufficient when the lithium iron phosphorus composite oxide carbon composite containing the Mn atom is used as a positive electrode active material of a lithium secondary battery. In the lithium secondary battery using the obtained lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms as the positive electrode active material, the internal resistance tends to increase. On the other hand, if it exceeds 5% by weight, the discharge capacity per unit weight or volume tends to decrease.

なお、第一工程において、後述する第二工程を実施するに当り予め各原料が均一に混合するようにブレンダー等を用いて乾式で十分に混合しておくことが好ましい。   In the first step, it is preferable that the raw material is sufficiently mixed in a dry manner using a blender or the like so that the raw materials are uniformly mixed in advance in performing the second step described later.

第二工程は、これらの第1〜第4の原料混合物を、更に反応性をよくするため粉砕機を用いて乾式で十分に混合及び粉砕処理して反応前駆体を得る工程である。   The second step is a step of obtaining a reaction precursor by sufficiently mixing and pulverizing these first to fourth raw material mixtures in a dry manner using a pulverizer in order to further improve the reactivity.

この第二工程では、前記原料混合物を後述する比容積の範囲となるまで十分に乾式で混合及び粉砕処理することが重要な要件となる。   In this second step, it is an important requirement that the raw material mixture is sufficiently dry-mixed and pulverized until it reaches the specific volume range described below.

ここで前記反応前駆体とは前記第1〜第4の原料のリン酸第一鉄、リン酸リチウム、リン酸マンガン及び導電性炭素材料を含有する混合物を後の焼成に先だって反応性をよくするために、各原料を高分散させると共に各原料間の粒子間距離を可能なかぎり近づけ、各原料の接触面積を高めたものである。   Here, the reaction precursor improves the reactivity of the mixture containing the first to fourth raw materials of ferrous phosphate, lithium phosphate, manganese phosphate and a conductive carbon material prior to subsequent firing. Therefore, each raw material is highly dispersed and the interparticle distance between the raw materials is made as close as possible to increase the contact area of each raw material.

本発明においてこの粉砕処理後の混合物は比容積が1.5ml/g以下、好ましくは1.0〜1.4ml/gであると500〜700℃の低温の焼成温度で焼結による粒成長もなく、走査型電子顕微鏡写真から求められる平均粒径が0.5μm以下で、X線回折分析において単相のMn原子を含有するリチウム鉄リン系複合酸化物の粒子表面を導電性炭素材料で均一に被覆したMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体が得られることから、当該範囲の比容積の原料混合物を反応前駆体とする。   In the present invention, the mixture after the pulverization treatment has a specific volume of 1.5 ml / g or less, preferably 1.0 to 1.4 ml / g. In addition, the average particle size obtained from a scanning electron micrograph is 0.5 μm or less, and the surface of lithium iron phosphorus composite oxide particles containing a single-phase Mn atom in X-ray diffraction analysis is uniformly made of a conductive carbon material. Since a lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms coated on is obtained, a raw material mixture having a specific volume within this range is used as a reaction precursor.

なお、本発明における比容積とはJIS−K−5101に記載された見掛け密度又は見掛け比容の方法に基づいて、タップ法により50mlのメスシリンダーにサンプル10gをいれ、500回タップし静置後、容積を読みとり、下記式により求めたものである。

Figure 0004225859
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(ml)を示す。) The specific volume in the present invention is based on the method of apparent density or apparent specific volume described in JIS-K-5101, 10 g of sample is put into a 50 ml graduated cylinder by the tap method, and after tapping 500 times, left standing. The volume is read and obtained by the following formula.
Figure 0004225859
(Wherein, F represents the mass (g) of the processed sample in the receiver, and V represents the volume (ml) of the sample after tapping.)

更に、本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法において、前記反応前駆体は、比容積が当該範囲であることに加えて、該反応前駆体中に含まれる原料のリン酸第一鉄の結晶がほぼ非晶質状態であると,粒子径の成長を抑制する目的で500〜700℃の低温で焼成した場合においても反応が完全に進行しMn原子を含有するリチウム鉄リン系複合酸化物の単相が得られることから特に好ましい。   Furthermore, in the method for producing a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms of the present invention, the reaction precursor is included in the reaction precursor in addition to the specific volume being in the range. When the raw material ferrous phosphate crystals are in an almost amorphous state, the reaction proceeds completely even when baked at a low temperature of 500 to 700 ° C. for the purpose of suppressing the growth of the particle diameter, and Mn atoms are It is particularly preferable because a single phase of the lithium iron phosphorus composite oxide is obtained.

用いることができる乾式粉砕機としては、強力なせん断力を有する粉砕機が好ましく、このような強力なせん断力を有する粉砕機としては、転動ボールミル、振動ミル、遊星ミル、媒体攪拌ミル等を用いることが好ましい。この種の粉砕機は、容器中にボール、ビーズ等の粉砕媒体が入っており、主として媒体の剪断・摩擦作用によって粉砕を行う粉砕機である。このような装置としては市販されているものを利用することができる。   As the dry pulverizer that can be used, a pulverizer having a strong shearing force is preferable. Examples of the pulverizer having such a strong shearing force include a rolling ball mill, a vibration mill, a planetary mill, and a medium agitating mill. It is preferable to use it. This type of pulverizer is a pulverizer in which a pulverization medium such as balls and beads is contained in a container and pulverization is performed mainly by the shearing and frictional action of the medium. A commercially available apparatus can be used as such an apparatus.

粒状媒体の粒径は1〜25mmであると粉砕が十分に行えるため好ましい。この粒状媒体の材質は、ジルコニア、アルミナのセラミックビーズが、硬度が高く磨耗に強いこと及び材料の金属汚染を防止することができることから特に好ましい。
また、前記粒状媒体は、空間容積50〜90%で容器内に収納し、流動媒体による剪断力と摩擦力を適切に管理するため、粉砕機の運転条件を適宜調整して粉砕処理することが好ましい。
The particle size of the granular medium is preferably 1 to 25 mm because pulverization can be sufficiently performed. As the material of the granular medium, zirconia and alumina ceramic beads are particularly preferable since they have high hardness and resistance to wear and can prevent metal contamination of the material.
In addition, the granular medium is stored in a container with a space volume of 50 to 90%, and the shearing force and frictional force due to the fluid medium are appropriately managed. preferable.

また、本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法において、必要に応じて、上記粉砕処理に加えて該反応前駆体を加圧成形処理して、更に各原料の接触面積を高めると、より完全に反応を進行させることができる。この場合、成形圧は、プレス機、仕込み量等により異なり、特に限定されるものではないが、通常5〜200MPaである。プレス成形機は、打錠機、ブリケットマシン、ローラコンパクター等好適に使用できるがプレスできるものであればよく、特に制限はない。   Further, in the method for producing a lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms of the present invention, if necessary, the reaction precursor is subjected to pressure molding treatment in addition to the above pulverization treatment, Increasing the contact area of the raw material allows the reaction to proceed more completely. In this case, the molding pressure varies depending on the press, the amount charged, etc., and is not particularly limited, but is usually 5 to 200 MPa. The press molding machine can be suitably used such as a tableting machine, a briquette machine, a roller compactor, etc., but may be any press as long as it can be pressed, and is not particularly limited.

次いで、第三工程において、第二工程で得られた反応前駆体を焼成する。
焼成温度は500〜700℃、好ましくは550〜650℃である。本発明において、この焼成温度を当該範囲とする理由は、焼成温度が500℃未満では、反応が十分に進行しないため未反応原料が残存し、一方、700℃を越えると上記したとおり焼結が進行して粒子成長が起こるためリチウム二次電池の正極活物質の用途に適しない特性を有するようになるため好ましくない。
焼成時間は、2〜20時間、好ましくは5〜10時間とすることが好ましい。
焼成は、Fe及びMn元素の酸化を防止するため窒素、アルゴン等の不活性ガス雰囲気中又は水素や一酸化炭素等の還元雰囲気中で行うことが好ましい。また、これらの焼成は必要により何度でも行うことができる。
Next, in the third step, the reaction precursor obtained in the second step is baked.
The firing temperature is 500 to 700 ° C, preferably 550 to 650 ° C. In the present invention, the reason for setting the firing temperature in this range is that when the firing temperature is less than 500 ° C., the reaction does not proceed sufficiently, so that the unreacted raw material remains. Since it progresses and particle growth occurs, it is not preferable because it has characteristics that are not suitable for the use of the positive electrode active material of the lithium secondary battery.
The firing time is 2 to 20 hours, preferably 5 to 10 hours.
Firing is preferably performed in an inert gas atmosphere such as nitrogen or argon or in a reducing atmosphere such as hydrogen or carbon monoxide in order to prevent oxidation of Fe and Mn elements. Moreover, these baking can be performed as many times as necessary.

焼成後は、適宜冷却し、必要に応じ粉砕又は分級してMn原子を含有するリチウム鉄リン系複合酸化物の粒子表面を導電性炭素材料で均一に被覆したMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得る。なお、FeおよびMn元素の酸化を防止するため、冷却中は反応系内を窒素、アルゴン等の不活性ガス雰囲気又は水素や一酸化炭素等の還元雰囲気として行うことが好ましい。また、必要に応じて行われる粉砕は、焼成して得られるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体がもろく結合したブロック状のものである場合等に適宜行うが、本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の好ましい実施形態の製造方法によれば、該Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の粒子自体は下記の特定の平均粒径、BET比表面積を有するものである。即ち、得られるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体は、走査型電子顕微鏡写真(SEM)から求められる平均粒径が0.5μm以下、好ましくは0.05〜0.5μmであり、BET比表面積が10〜100m2/g、好ましくは30〜70m2/gである。 After firing, it is cooled appropriately, and pulverized or classified as necessary, and the lithium iron phosphorus-based composite oxide containing Mn atoms in which the particle surface of the lithium iron-phosphorus composite oxide containing Mn atoms is uniformly coated with a conductive carbon material. A composite oxide carbon composite is obtained. In order to prevent oxidation of Fe and Mn elements, it is preferable to perform the reaction system in an inert gas atmosphere such as nitrogen or argon or a reducing atmosphere such as hydrogen or carbon monoxide during cooling. In addition, the pulverization performed as necessary is appropriately performed when the lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms obtained by firing is in a brittlely bonded block form. According to the production method of a preferred embodiment of the lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms, the particles of the lithium iron phosphorus composite oxide-carbon composite containing Mn atoms are specified as follows. Having an average particle size of BET and a BET specific surface area. That is, the obtained lithium iron phosphorus composite oxide-carbon composite containing Mn atoms has an average particle size of 0.5 μm or less, preferably 0.05 to 0.5 μm, as determined from a scanning electron micrograph (SEM). The BET specific surface area is 10 to 100 m 2 / g, preferably 30 to 70 m 2 / g.

本発明に係るMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法によれば、リン酸第一鉄、リン酸リチウム、リン酸マンガン及び導電性炭素材料を反応原料とし、リン酸第一鉄、リン酸リチウム及びリン酸マンガンの反応は下記反応式(2)

Figure 0004225859
に示すが如く、製造時に副生するのは水のみで、また、本発明は基本的に3つの原料系で固溶反応を行うため従来の4つの原料系の反応と比べて容易に所望のLi、Fe、Mn、Pの組成調整を行うことができる。更に、本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法において、第一工程で前記第1〜第4の原料混合物を得、第二工程で得られた原料混合物を乾式粉砕処理して当該範囲内の比容積の反応前駆体を調製することで、第三工程の焼成温度を粒子成長が起こらないような低温での焼成を行ってもX線回折分析からみて単相のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得ることができる。 According to the method for producing a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms according to the present invention, ferrous phosphate, lithium phosphate, manganese phosphate and a conductive carbon material are used as reaction raw materials, phosphorus Reaction of ferrous acid, lithium phosphate and manganese phosphate is represented by the following reaction formula (2)
Figure 0004225859
As shown in FIG. 5, only water is produced as a by-product during production, and the present invention basically performs a solid solution reaction with three raw material systems, so that it can be easily obtained as compared with the conventional four raw material system reactions. The composition of Li, Fe, Mn, and P can be adjusted. Furthermore, in the method for producing a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms of the present invention, the first to fourth raw material mixtures are obtained in the first step, and the raw material mixture obtained in the second step As a result of X-ray diffraction analysis, even if the firing temperature in the third step is low-temperature so that particle growth does not occur, the reaction precursor having a specific volume within the above range is prepared by dry pulverization. A lithium iron phosphorus composite oxide-carbon composite containing a single-phase Mn atom can be obtained.

このような微細でX線回折分析からみて単相のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体は、特にリチウム二次電池の正極活物質としての用途に期待できる。この場合、その形態は、平均粒径0.05μm以上0.5μm以下の一次粒子が集合してなる平均粒径1μm以上75μmの一次粒子集合体であってもよい。更に、上記一次集合体において全体積の70%以上、好ましくは80%以上が粒径1μm以上20μm以下であることが好ましく、また、該Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体は大気中で粉砕等を行うと得られる該リチウム鉄リン系複合酸化物炭素複合体には、3000ppm以上の水分が含有されているため、正極活物質として用いる前に真空乾燥等の操作を施して該リチウム鉄リン系複合酸化物炭素複合体の水分含有量を2000ppm以下、好ましくは1500ppm以下として用いることが好ましい。   In view of such fine X-ray diffraction analysis, the lithium iron-phosphorus-based composite oxide-carbon composite containing a single-phase Mn atom can be expected particularly for use as a positive electrode active material of a lithium secondary battery. In this case, the form may be a primary particle aggregate having an average particle diameter of 1 μm or more and 75 μm formed by aggregating primary particles having an average particle diameter of 0.05 μm or more and 0.5 μm or less. Furthermore, it is preferable that 70% or more, preferably 80% or more of the total volume in the primary aggregate is a particle size of 1 μm or more and 20 μm or less, and the lithium iron phosphorus composite oxide carbon composite containing the Mn atom. Since the lithium iron phosphorus-based composite oxide carbon composite obtained by pulverizing in the atmosphere contains 3000 ppm or more of water, an operation such as vacuum drying is performed before using as a positive electrode active material. Thus, it is preferable to use the lithium iron phosphorus composite oxide-carbon composite at a moisture content of 2000 ppm or less, preferably 1500 ppm or less.

以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
[合成例1];リン酸第一鉄の合成
硫酸第一鉄7水和物(FeSO4・7H2O)907g(3モル)と75%リン酸(H3PO4)261g(2モル)を水3Lに溶解させ、混合溶液を作成した(温度17℃、pH1.6)。この混合溶液に、16 %水酸化ナトリウム(NaOH)水溶液1500mL(6 モル)を83 mL/minの滴下速度で18分で滴下し、リン酸第一鉄を析出させた(温度31℃、pH6.7)。
次に、ろ過してリン酸第一鉄を回収し、この回収したリン酸第一鉄を水4.5Lで入念に洗浄した。
次いで、洗浄後のリン酸第一鉄を温度50℃で23時間乾燥し、乾燥品490gを得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号30−662と回折パターンが一致していることから、この乾燥品はFe3(PO42・8H2Oであることを確認した(収率98%)。
得られたFe3(PO42・8H2Oの諸物性値を表1に示す。
また、得られたFe3(PO42・8H2Oを線源としてCuKα線を用いてX線回折分析を行い2θ=13.1°近傍のピーク(020)面の半値幅を測定した。
なお、Na、Si、Al、Ca、Ti、Mn、Zn、Cr、Ni、Cu、Coの含有量は、ICP分光法により求めた。また、SO4含有量はICP分光法によるS原子濃度測定結果を換算して求め、該乾燥品のP含有量を吸光光度法により求めた。また、平均粒径はレーザー回折法により求めた。

Figure 0004225859
注)表1中の「N.D.」は検出限界1ppm以下を示す。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
[Synthesis Example 1]: Synthesis of ferrous phosphate Ferrous sulfate heptahydrate (FeSO 4 .7H 2 O) 907 g (3 mol) and 75% phosphoric acid (H 3 PO 4 ) 261 g (2 mol) Was dissolved in 3 L of water to prepare a mixed solution (temperature 17 ° C., pH 1.6). To this mixed solution, 1500 mL (6 mol) of a 16% sodium hydroxide (NaOH) aqueous solution was added dropwise at a dropping rate of 83 mL / min over 18 minutes to precipitate ferrous phosphate (temperature 31 ° C., pH 6. 7).
Next, the ferrous phosphate was recovered by filtration, and the recovered ferrous phosphate was carefully washed with 4.5 L of water.
Next, the washed ferrous phosphate was dried at a temperature of 50 ° C. for 23 hours to obtain 490 g of a dried product. When the obtained dried product was analyzed by X-ray diffraction, it was confirmed that this dried product was Fe 3 (PO 4 ) 2 · 8H 2 O because the diffraction pattern was in agreement with JCPDS card number 30-662. (Yield 98%).
Table 1 shows various physical properties of the obtained Fe 3 (PO 4 ) 2 · 8H 2 O.
In addition, X-ray diffraction analysis was performed using the obtained Fe 3 (PO 4 ) 2 · 8H 2 O as a radiation source using CuKα rays, and the half width of the peak (020) plane near 2θ = 13.1 ° was measured. .
The contents of Na, Si, Al, Ca, Ti, Mn, Zn, Cr, Ni, Cu, and Co were obtained by ICP spectroscopy. The SO 4 content was obtained by converting the S atom concentration measurement result by ICP spectroscopy, and the P content of the dried product was obtained by absorptiometry. The average particle size was determined by a laser diffraction method.
Figure 0004225859
Note) “ND” in Table 1 indicates a detection limit of 1 ppm or less.

[合成例2];リン酸マンガンの合成
硫酸マンガン1水和物(MnSO4・H2O)1352 g(8モル)と75%リン酸(H3PO4)697 g(5.3モル)を水25 Lに溶解させ、混合溶液を作成した(pH 1.3)。この混合溶液に、4重量%水酸化ナトリウム(NaOH)水溶液16 L(16モル)を161mL/minの滴下速度で約100分で滴下し、リン酸マンガンを析出させた(pH6.5)。
次に、濾過してリン酸マンガンを回収し、この回収したリン酸マンガンを水40Lで入念に洗浄した。
次いで、洗浄後のリン酸マンガンを温度50℃で23時間乾燥し、乾燥品1241gを得た。得られた乾燥品をX線回折で分析したところ、文献(RUSS.J.Inorg.Chem.23、341、1978)記載のデータと面間隔および回折強度が一致していること、およびMn含有量が34.8重量%、PO4含有量が40.2重量%であることからこの乾燥品はMn3(PO42・6H2Oであることを確認した(収率98%)。
得られたMn3(PO42・6H2Oの諸物性値を合成例1と同様に求め,表2に示す。

Figure 0004225859
注)表2中の「N.D.」は検出限界1ppm以下を示す。 [Synthesis Example 2]: Synthesis of manganese phosphate Manganese sulfate monohydrate (MnSO 4 · H 2 O) 1352 g (8 mol) and 75% phosphoric acid (H 3 PO 4 ) 697 g (5.3 mol) Was dissolved in 25 L of water to prepare a mixed solution (pH 1.3). To this mixed solution, 16 L (16 mol) of a 4 wt% sodium hydroxide (NaOH) aqueous solution was dropped at a dropping rate of 161 mL / min in about 100 minutes to precipitate manganese phosphate (pH 6.5).
Next, filtration was performed to recover manganese phosphate, and the recovered manganese phosphate was carefully washed with 40 L of water.
Next, the washed manganese phosphate was dried at a temperature of 50 ° C. for 23 hours to obtain 1241 g of a dried product. When the obtained dried product was analyzed by X-ray diffraction, the data described in the literature (RUSS. J. Inorg. Chem. 23, 341, 1978) was in agreement with the surface spacing and diffraction intensity, and the Mn content Was 34.8% by weight and the PO 4 content was 40.2% by weight, it was confirmed that this dried product was Mn 3 (PO 4 ) 2 · 6H 2 O (yield 98%).
Various physical properties of the obtained Mn 3 (PO 4 ) 2 · 6H 2 O were determined in the same manner as in Synthesis Example 1 and are shown in Table 2.
Figure 0004225859
Note) “ND” in Table 2 indicates a detection limit of 1 ppm or less.

[合成例3];リン酸リチウムの合成
水酸化リチウムは、市販の水酸化リチウム1水塩を下記の精製操作を施したものを使用しリン酸リチウムの合成原料とした。
この市販の水酸化リチウム試料中の主な不純物含有量を表3に示す。
なお、この不純物含有量は、ICP質量分析法及び比濁法によって求めた値である。

Figure 0004225859
上記した粗製水酸化リチウム1水塩1062gを純水5000gに50℃で溶解し水溶液を調製した。
次いで、上記で調製した粗製水酸化リチウムを溶解した水溶液を40℃で孔径0.5μmのPTFE製メンブランフィルターを使用して濾過を行った。
次いで、95℃に加温し、減圧下に水分を抑留しながら4時間晶析を行った。なお、回収した水分は3300gであった。冷却後、常法により固液分離して析出した水酸化リチウムを回収し、次いで、減圧下に乾燥を行って精製水酸化リチウム試料とした。また、得られた精製水酸化リチウム(LiOH・H2O)試料中の主な不純物含有量を表4に示した。
Figure 0004225859
上記で調製した精製水酸化リチウム1水塩126gを純水に溶解し1500gとし、4.8重量%水酸化リチウム水溶液を調製した(pH 11.6)。
次いでこの反応容器にリン酸を9.8重量%含むリン酸水溶液1000gを83mL/分の速度で反応系の温度を40℃以下に維持しながら全量を約12分間かけて滴下しリン酸リチウムを析出させた(pH 10.5)。
次に、ろ過してリン酸リチウムを回収した。
次いで、回収したリン酸リチウムを温度110℃で20時間乾燥し、微細な一次粒子が集合した集合体の乾燥品を得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号(25−1030)と回折パターンが一致していることから、この乾燥品はLi3PO4であることを確認した。
得られたLi3PO4の諸物性値を合成例1と同様に求め,合わせて安息角を測定し、その結果を表5に示す。
また、得られたLi3PO4を線源としてCuKα線を用いてX線回折分析を行い2θ=16.8近傍の回折ピーク(010)面の半値幅を測定した。また、一次粒子と一次粒子の集合体の粒径は走査型電子顕微鏡写真(SEM)により求めた。
Figure 0004225859
注)表5中の「N.D.」は検出限界1ppm以下を示す。 [Synthesis Example 3]; Synthesis of Lithium Phosphate Lithium hydroxide was obtained by subjecting a commercially available lithium hydroxide monohydrate to the following purification operation and was used as a raw material for the synthesis of lithium phosphate.
Table 3 shows the main impurity contents in this commercially available lithium hydroxide sample.
The impurity content is a value obtained by ICP mass spectrometry and turbidimetry.
Figure 0004225859
The above-mentioned crude lithium hydroxide monohydrate 1062 g was dissolved in pure water 5000 g at 50 ° C. to prepare an aqueous solution.
Next, the aqueous solution in which the crude lithium hydroxide prepared above was dissolved was filtered at 40 ° C. using a PTFE membrane filter having a pore size of 0.5 μm.
Next, the mixture was heated to 95 ° C. and crystallized for 4 hours while retaining moisture under reduced pressure. The recovered water was 3300 g. After cooling, the precipitated lithium hydroxide was recovered by solid-liquid separation by a conventional method, and then dried under reduced pressure to obtain a purified lithium hydroxide sample. Table 4 shows the main impurity contents in the obtained purified lithium hydroxide (LiOH.H 2 O) sample.
Figure 0004225859
126 g of the purified lithium hydroxide monohydrate prepared above was dissolved in pure water to 1500 g to prepare a 4.8 wt% lithium hydroxide aqueous solution (pH 11.6).
Next, 1000 g of an aqueous phosphoric acid solution containing 9.8% by weight of phosphoric acid was added dropwise to the reaction vessel at a rate of 83 mL / min over a period of about 12 minutes while maintaining the temperature of the reaction system at 40 ° C. or less. Precipitated (pH 10.5).
Next, it filtered and lithium phosphate was collect | recovered.
Next, the recovered lithium phosphate was dried at a temperature of 110 ° C. for 20 hours to obtain a dried product of aggregates in which fine primary particles were aggregated. When the obtained dried product was analyzed by X-ray diffraction, the diffraction pattern was in agreement with the JCPDS card number (25-1030), and it was confirmed that this dried product was Li 3 PO 4 .
Various physical properties of the obtained Li 3 PO 4 were determined in the same manner as in Synthesis Example 1, and the angle of repose was measured together. Table 5 shows the results.
Further, X-ray diffraction analysis was performed using the obtained Li 3 PO 4 as a radiation source using CuKα rays, and the half width of the diffraction peak (010) plane in the vicinity of 2θ = 16.8 was measured. Moreover, the particle diameter of the aggregate | assembly of a primary particle and a primary particle was calculated | required by the scanning electron micrograph (SEM).
Figure 0004225859
Note) “ND” in Table 5 indicates a detection limit of 1 ppm or less.

実施例1〜3及び参考例1〜2
上記で合成したリン酸第一鉄,リン酸マンガン,リン酸リチウム及び平均粒径が0.05μmのケッチェンブラック(ケッチェンブラックインターナショナル社製、商品名ECP)を表6に示したように,鉄とマンガンの総量に対するマンガンのモル比 x(=Mn/(Fe+Mn))が0,0.25,0.5,0.75,1.0となるように所定量秤量し,ミキサーで混合した。この混合物を振動ミルを用いて粉砕処理し,反応前駆体を得た。また、振動ミル粉砕品の比容積は、50mLのメスシリンダーにサンプル10gを入れ、ユアサアイオニクス(株)製、DUAL AUTOTAP装置にセットし、500回タップした後、容積を読みとり下記式により求めた。

Figure 0004225859
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(mL)を示す。)
なお、振動ミルの運転条件は以下の通りである。
・振動数;1000Hz
・処理時間;3分
・原料の仕込量;12g Examples 1-3 and Reference Examples 1-2
As shown in Table 6, ferrous phosphate, manganese phosphate, lithium phosphate and Ketjen Black (trade name ECP, manufactured by Ketjen Black International Co., Ltd.) having an average particle diameter of 0.05 μm were synthesized. A predetermined amount was weighed so that the molar ratio x (= Mn / (Fe + Mn)) of manganese to the total amount of iron and manganese was 0, 0.25, 0.5, 0.75, and 1.0, and mixed with a mixer. This mixture was pulverized using a vibration mill to obtain a reaction precursor. Further, the specific volume of the vibration mill pulverized product was obtained by putting 10 g of a sample in a 50 mL measuring cylinder, setting it on a Yuasa Ionics Co., Ltd., DUAL AUTOTAP device, tapping 500 times, reading the volume, and obtaining the following formula. .
Figure 0004225859
(Wherein, F represents the mass (g) of the processed sample in the receiver, and V represents the volume (mL) of the sample after tapping.)
The operating conditions of the vibration mill are as follows.
・ Frequency: 1000Hz
・ Processing time: 3 minutes ・ Material charge: 12 g

得られた反応前駆体の主物性を表6に示す。
次に、反応前駆体10gをハンドプレスにより44MPaでプレス成形した。次いで、得られた粉砕品を窒素雰囲気下に600℃で5時間焼成し,冷却後,粉砕した。得られた粉体の平均粒径を走査型電子顕微鏡写真(SEM)で求めた以外は主物性を合成例1と同様に求め,表6に示す。また,得られた粉体に対して,線源としてCuKα線を用いてX線回折分析を行い,得られたXRDパターンを図1に示す。
Table 6 shows the main physical properties of the obtained reaction precursor.
Next, 10 g of the reaction precursor was press-molded at 44 MPa by hand press. Subsequently, the obtained pulverized product was fired at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled and pulverized. Main physical properties were determined in the same manner as in Synthesis Example 1 except that the average particle size of the obtained powder was determined by scanning electron micrograph (SEM), and are shown in Table 6. The obtained powder was subjected to X-ray diffraction analysis using CuKα rays as a radiation source, and the obtained XRD pattern is shown in FIG.

図1よりXRDパターンはオリビン構造を有する単相であることが分かった。XRDパターンの(200)面のピーク位置を詳細に見ると,xの値が0から1に向かって変化するにつれ,ピーク位置がリン酸鉄リチウムのピーク位置である29. 7°からリン酸マンガンリチウムのピーク位置である29.2°に向かって連続的に変化していることが分かった(図1参照)。これらのことから,得られた粉体は,鉄とマンガンが固溶したオリビン構造単相を示し,組成式LiFe1-xMnxPO4で表されるリチウム鉄リン系複合酸化物であるといえる。 1 that the XRD pattern is a single phase having an olivine structure. Looking at the peak position on the (200) plane of the XRD pattern in detail, as the value of x changes from 0 to 1, the peak position is 29.7 °, which is the peak position of lithium iron phosphate, and manganese phosphate. It was found that it continuously changed toward 29.2 ° which is the peak position of lithium (see FIG. 1). From these, the obtained powder shows a single phase of olivine structure in which iron and manganese are dissolved, and is a lithium iron phosphorus-based composite oxide represented by the composition formula LiFe 1-x Mn x PO 4. I can say that.

Figure 0004225859
注)表6中の注1)xは原料仕込み量から求められるMn/(Fe+Mn)のモル比、注2)xは焼成品をICP質量分析法して求めたMn/(Fe+Mn)の実測値を示す。
Figure 0004225859
Note) Note 1 ) in Table 6 x ) M is the molar ratio of Mn / (Fe + Mn) obtained from the raw material charge, and Note 2) x is the actual value of Mn / (Fe + Mn) obtained by ICP mass spectrometry of the fired product. Indicates.

表6の結果より、本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法によれば原料仕込み量から求められる理論的なMn/(Fe+Mn)のモル比と焼成品(Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体)の実測値から求められるMn/(Fe+Mn)のモル比がほぼ一致していることから、Li、Fe、Mn、Pの組成調整が容易であることが分かる。また、図1及び表6の結果より、本発明の製造方法で得られるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体は、何れも平均粒径が0.5μm以下の微細な粒子で、また、X線回折分析からみて単相のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体であることが分かる。   From the results of Table 6, the theoretical Mn / (Fe + Mn) molar ratio determined from the raw material charge and the calcined product according to the method for producing a lithium iron phosphorus composite oxide-carbon composite containing Mn atoms of the present invention Since the molar ratio of Mn / (Fe + Mn) obtained from the actual measurement value of (lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms) is almost the same, the composition adjustment of Li, Fe, Mn, and P Is easy to understand. From the results shown in FIG. 1 and Table 6, the lithium iron phosphorus composite oxide-carbon composite containing Mn atoms obtained by the production method of the present invention is a fine particle having an average particle size of 0.5 μm or less. From the X-ray diffraction analysis, it can be seen that the lithium iron phosphorus composite oxide-carbon composite contains a single-phase Mn atom.

実施例1〜3及び参考例1〜2で得られたリチウム鉄リン系複合酸化物炭素複合体のX線回折図。The X-ray-diffraction figure of the lithium iron phosphorus type complex oxide carbon composite obtained in Examples 1-3 and Reference Examples 1-2.

Claims (4)

リン酸第一鉄、リン酸リチウム、リン酸マンガン及び導電性炭素質材料を混合する第一工程、次いで、得られる混合物を乾式で粉砕処理して比容積が1.5mL/g以下の反応前駆体を得る第二工程、次いで、該反応前駆体を500〜700℃で焼成する第三工程を含み、該第一工程のリン酸リチウムが、平均粒径が10μm以下且つ格子面(010)面の半値幅が0.2°以上のリン酸リチウムであることを特徴とするMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法。 The first step of mixing ferrous phosphate, lithium phosphate, manganese phosphate and conductive carbonaceous material, and then the resulting mixture is dry pulverized to give a reaction precursor having a specific volume of 1.5 mL / g or less a second step of obtaining a body, then the reaction seen including a third step of the precursor is calcined at 500 to 700 ° C., lithium phosphate of the first step, an average particle diameter of 10μm or less and the lattice plane (010) A method for producing a lithium iron-phosphorus-based composite oxide-carbon composite containing Mn atoms, wherein the surface is a lithium phosphate having a half-width of 0.2 ° or more . 前記第二工程後、得られる反応前駆体を加圧成形する工程を設ける請求項1記載のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法。   The method for producing a lithium iron-phosphorus-based composite oxide-carbon composite containing Mn atoms according to claim 1, wherein a step of pressure-molding the obtained reaction precursor is provided after the second step. 前記第一工程のリン酸第一鉄は、平均粒径が5μm以下で、格子面(020)面の半値幅が0.20°以上のリン酸第一鉄含水塩(Fe3(PO42・8H2O)を用いる請求項1又は2記載のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法。 The ferrous phosphate in the first step has an average particle size of 5 μm or less and a ferrous phosphate hydrate (Fe 3 (PO 4 )) having a lattice plane (020) plane half width of 0.20 ° or more. The method for producing a lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms according to claim 1 or 2, wherein 2 · 8H 2 O) is used. 前記第一工程のリン酸マンガンは、平均粒径が10μm以下のものを用いる請求項1乃至記載のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法。 The manganese phosphate in the first step, the manufacturing method according to claim 1 or lithium-iron-phosphorus compound oxide carbon complex containing Mn atoms of 3, wherein an average particle diameter used as the 10μm or less.
JP2003281562A 2003-07-29 2003-07-29 Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom Expired - Fee Related JP4225859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281562A JP4225859B2 (en) 2003-07-29 2003-07-29 Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281562A JP4225859B2 (en) 2003-07-29 2003-07-29 Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom

Publications (2)

Publication Number Publication Date
JP2005050684A JP2005050684A (en) 2005-02-24
JP4225859B2 true JP4225859B2 (en) 2009-02-18

Family

ID=34267027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281562A Expired - Fee Related JP4225859B2 (en) 2003-07-29 2003-07-29 Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom

Country Status (1)

Country Link
JP (1) JP4225859B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344452B2 (en) * 2005-09-21 2013-11-20 関東電化工業株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte battery having a positive electrode containing the positive electrode active material
CN100413781C (en) * 2006-03-24 2008-08-27 山东科技大学 Process for synthesizing LiFePO4 as positive electrode materials of lithium ion cell
JP4767798B2 (en) * 2006-09-05 2011-09-07 住友大阪セメント株式会社 Electrode material manufacturing method, lithium recovery method, positive electrode material, electrode and battery
JP5245084B2 (en) * 2007-01-29 2013-07-24 国立大学法人九州大学 Olivine-type compound ultrafine particles and method for producing the same
WO2008126823A1 (en) * 2007-04-09 2008-10-23 Kao Corporation Process for producing active material for positive electrode for battery
JP5415012B2 (en) * 2007-04-09 2014-02-12 花王株式会社 Positive electrode active material sintered body for battery
JP4843582B2 (en) * 2007-08-17 2011-12-21 株式会社アルバック Method for producing lithium phosphate sintered body and sputtering target
WO2009127901A1 (en) * 2008-04-14 2009-10-22 High Power Lithium S.A. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
JP5376894B2 (en) * 2008-10-20 2013-12-25 古河電池株式会社 Multi-component phosphoric acid lithium compound particles having an olivine structure, a method for producing the same, and a lithium secondary battery using the same as a positive electrode material
JP5381115B2 (en) * 2009-01-20 2014-01-08 住友大阪セメント株式会社 Lithium phosphate powder and lithium phosphate-containing slurry, method for producing electrode active material, and lithium ion battery
KR101775492B1 (en) 2009-06-01 2017-09-07 위니베르시떼 두 꿰벡 아 몬트리올 Process to induce polymerization of an organic electronically conductive polymer
CA2691265A1 (en) * 2010-01-28 2011-07-28 Phostech Lithium Inc. Optimized cathode material for a lithium-metal-polymer battery
DE102010006083B4 (en) * 2010-01-28 2014-12-11 Süd-Chemie Ip Gmbh & Co. Kg Substituted lithium manganese metal phosphate
US9269950B2 (en) 2010-01-28 2016-02-23 Johnson Matthey Public Limited Company Procedure to optimize materials for cathodes and cathode material having enhanced electrochemical properties
FR2955573B1 (en) * 2010-01-28 2012-05-18 Phostech Lithium Inc OPTIMIZED CATHODE MATERIAL FOR A LITHIUM METAL POLYMER TECHNOLOGY BATTERY
WO2011118350A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Power storage device
WO2011158948A1 (en) 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing power storage device
JP5917027B2 (en) 2010-06-30 2016-05-11 株式会社半導体エネルギー研究所 Method for producing electrode material
DE102011056812A1 (en) * 2011-12-21 2013-06-27 Chemische Fabrik Budenheim Kg Metal phosphates and process for their preparation
JP2014203589A (en) * 2013-04-02 2014-10-27 旭化成株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN108306003B (en) * 2018-01-29 2020-03-27 蒋央芳 Preparation method of ferromanganese phosphate

Also Published As

Publication number Publication date
JP2005050684A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4180363B2 (en) Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP4260572B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
JP4225859B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
JP4620378B2 (en) Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
EP2492243B1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
EP2277828B1 (en) Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
JP5678685B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
JP5959953B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery active material manufacturing method, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP5776573B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, precursor of the positive electrode active material and method for producing the same, and lithium secondary battery using the positive electrode active material
JP5323410B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
US7879266B2 (en) Composite carbonate and method for producing the same
JP5004413B2 (en) Method for producing positive electrode material for ammonium iron phosphate and lithium ion secondary battery, and lithium ion secondary battery
TWI576312B (en) Manganese-bearing metal phosphates and process for the production thereof
WO2012060085A1 (en) Lithium silicate compound and method for producing same
JP2003292309A (en) Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
KR20120017004A (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
EP2407426A1 (en) Process for producing lithium borate compound
KR20090012162A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosphorus
JP5252064B2 (en) Lithium silicate compound and method for producing the same
JP6458542B2 (en) Nickel hydroxide particle powder and manufacturing method thereof, positive electrode active material particle powder and manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP6362033B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5121625B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
KR20060122450A (en) Manganese oxides, spinel type cathode active material for lithium secondary batteries using thereby and preparation of the same
KR20090010940A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosporus
JP2009091193A (en) Lithium-cobalt oxide and its preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees