JP2003292309A - Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery - Google Patents

Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery

Info

Publication number
JP2003292309A
JP2003292309A JP2002379445A JP2002379445A JP2003292309A JP 2003292309 A JP2003292309 A JP 2003292309A JP 2002379445 A JP2002379445 A JP 2002379445A JP 2002379445 A JP2002379445 A JP 2002379445A JP 2003292309 A JP2003292309 A JP 2003292309A
Authority
JP
Japan
Prior art keywords
lithium
carbon composite
secondary battery
lithium iron
iron phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002379445A
Other languages
Japanese (ja)
Other versions
JP4187524B2 (en
Inventor
Katsuyuki Negishi
克幸 根岸
Nobuyuki Yamazaki
信幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002379445A priority Critical patent/JP4187524B2/en
Publication of JP2003292309A publication Critical patent/JP2003292309A/en
Application granted granted Critical
Publication of JP4187524B2 publication Critical patent/JP4187524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a carbon composite of lithium/iron/phosphorus-based complex oxide which is obtained from ferrous phosphate hydrate and lithium phosphate as the main reactants and gives a lithium secondary battery excellent particularly in discharge capacity when used as a positive poll activating material and to provide a production method therefor, the positive pole activating material for the lithium secondary battery and the battery using the material. <P>SOLUTION: The carbon composite is produced by covering, with a carbonaceous material, the particle surface of LiFePO<SB>4</SB>obtained from ferrous phosphate hydrate Fe<SB>3</SB>(PO<SB>4</SB>)<SB>2</SB>/8H<SB>2</SB>O, lithium phosphate Li<SB>3</SB>PO<SB>4</SB>and a carbonaceous material precursor. The carbon composite has an average particle size of 0.5 μm or less. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
の正極活物質として有用なオリビン構造を有するLiF
ePO4の粒子表面を炭素質物質で被覆したリチウム鉄
リン系複合酸化物炭素複合体、その製造方法。これを含
有するリチウム二次電池正極活物質及び特に放電容量の
優れたリチウム二次電池に関するものである。
TECHNICAL FIELD The present invention relates to LiF having an olivine structure which is useful as a positive electrode active material of a lithium secondary battery.
A lithium-iron-phosphorus-based composite oxide-carbon composite having ePO 4 particle surfaces coated with a carbonaceous material, and a method for producing the same. The present invention relates to a lithium secondary battery positive electrode active material containing the same, and particularly to a lithium secondary battery having an excellent discharge capacity.

【0002】[0002]

【従来の技術】近年、家庭電器においてポータブル化、
コードレス化が急速に進むに従い、ラップトップ型パソ
コン、携帯電話、ビデオカメラ等の小型電子機器の電源
としてリチウムイオン二次電池が実用化されている。こ
のリチウムイオン二次電池については、1980年に水
島等によりコバルト酸リチウムがリチウムイオン二次電
池の正極活物質として有用であるとの報告(「マテリア
ル リサーチブレティン」vol15,P783-789(1980))がな
されて以来、コバルト酸リチウムに関する研究開発が活
発に進められており、これまで多くの提案がなされてい
る。
2. Description of the Related Art In recent years, portable electric appliances have been made portable.
With the rapid progress of cordless technology, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium-ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for the lithium-ion secondary battery (“Material Research Bulletin” vol15, P783-789 (1980)). Since then, research and development on lithium cobalt oxide have been actively promoted, and many proposals have been made so far.

【0003】しかしながら、Coは地球上に偏在し、希
少な資源であるため、コバルト酸リチウムに代わる新た
な正極活物質として、例えば、LiNiO2、LiMn2
4、LiFeO2、LiFePO4等の開発が進められ
ている。
However, since Co is unevenly distributed on the earth and is a rare resource, as a new positive electrode active material replacing lithium cobalt oxide, for example, LiNiO 2 and LiMn 2 are used.
Development of O 4 , LiFeO 2 , LiFePO 4, etc. is underway.

【0004】中でもLiFePO4は、体積密度が3.
6g/cm3と大きく、3.4Vの高電位を発生し、理
論容量も170mAh/gと大きいという特徴を持つ。
そして,Feは資源が豊富で安価であることに加え、L
iFePO4は、初期状態で、電気化学的に脱ドープ可
能なLiを、Fe原子1個当たりに1個含んでいるの
で、コバルト酸リチウムに代わる新たなリチウム二次電
池の正極活物質としての期待は大きい。LiFePO4
又はこのFeの一部を他の金属で置換したLiFePO
4を正極活物質とするリチウム二次電池が提案されてい
る(例えば、特許文献1〜6参照。)。
Among them, LiFePO 4 has a volume density of 3.
It is characterized by a large value of 6 g / cm 3 and a high potential of 3.4 V, and a large theoretical capacity of 170 mAh / g.
Fe is rich in resources and inexpensive, and L
In the initial state, iFePO 4 contains one electrochemically dedoped Li atom per Fe atom, and therefore is expected as a positive electrode active material for a new lithium secondary battery in place of lithium cobalt oxide. Is big. LiFePO 4
Alternatively, LiFePO in which a part of this Fe is replaced with another metal
A lithium secondary battery using 4 as a positive electrode active material has been proposed (see, for example, Patent Documents 1 to 6).

【0005】一般的なLiFePO4の製造方法として
は、例えば、リン酸第一鉄含水塩を用いて、下記反応式
(1)
As a general method for producing LiFePO 4 , for example, a ferrous phosphate hydrate is used and the following reaction formula (1) is used.

【化1】 に従って製造する方法、シュウ酸鉄を用いて、下記反応
式(2)
[Chemical 1] According to the following reaction formula (2) using iron oxalate.

【化2】 に従って製造する方法、又は酢酸鉄を用いて、下記反応
式(3)
[Chemical 2] According to the following reaction formula (3)

【化3】 に従って製造する方法等が提案されている。この中、リ
ン酸第一鉄含水塩を用いる方法は、副生物が水のみであ
るため工業的に特に有利である。
[Chemical 3] A method of manufacturing according to the above has been proposed. Among these, the method using ferrous phosphate hydrate is industrially particularly advantageous because the only by-product is water.

【0006】特許文献5(特開2001−250555
号公報)には、リン酸リチウム(Li3PO4)とリン酸
鉄(Fe3(PO42)又はその水和物(Fe3(P
42・nH2O)とを、乳鉢等で混合して合成前駆体
とし、これを焼成するLiFePO4の製造方法が提案
されている。しかしながら、市販のリン酸第一鉄含水
塩、或いは従来法の2価の鉄イオンを含む水溶液にリン
酸水素アンモニウムやリン酸水素ナトリウムを添加して
製造されるリン酸第一鉄含水塩(非特許文献1参照。)
は、平均粒径が数μm〜数十μmで、その粒子は結晶が
発達し非常に硬く、反応性が悪い上、粉砕等の加工がし
にくいといった欠点がある。このため、特許文献5(特
開2001−250555号公報)のように、乳鉢で単
に粉砕を行っても、リン酸第一鉄含水塩の粉砕が十分に
行えないため平均粒径が数μm〜数十μmの粗大なリン
酸第一鉄含水塩粒子と微細なリン酸リチウムとの混合物
からなる合成前駆体となり、これを焼成して得られるL
iFePO4は、平均粒径が数μm以上で、且つ粒子レ
ベルで不均一な組成のものとなりやすい。この結果これ
を正極活物質として用いたリチウム二次電池は、低容量
になり易い傾向にある。
Japanese Patent Laid-Open No. 2001-250555
Gazette), lithium phosphate (Li 3 PO 4 ) and iron phosphate (Fe 3 (PO 4 ) 2 ) or its hydrate (Fe 3 (P 3
O 4 ) 2 · nH 2 O) is mixed in a mortar or the like to prepare a synthetic precursor, and a method for producing LiFePO 4 is proposed in which the synthetic precursor is baked. However, a commercially available ferrous phosphate hydrate or a conventional ferrous phosphate hydrate produced by adding ammonium hydrogenphosphate or sodium hydrogenphosphate to an aqueous solution containing a divalent iron ion according to the conventional method See Patent Document 1.)
Has an average particle diameter of several μm to several tens of μm, and the particles have the drawback that crystals develop and are very hard, the reactivity is poor, and processing such as crushing is difficult. Therefore, as in Patent Document 5 (Japanese Unexamined Patent Publication No. 2001-250555), even if simply crushed in a mortar, the ferrous phosphate hydrate cannot be sufficiently crushed, so that the average particle size is several μm L obtained by calcination of a synthetic precursor composed of a mixture of coarse ferrous phosphate hydrate particles of several tens μm and fine lithium phosphate.
iFePO 4 tends to have an average particle size of several μm or more and a non-uniform composition at the particle level. As a result, a lithium secondary battery using this as a positive electrode active material tends to have a low capacity.

【0007】このように、リン酸第一鉄含水塩とリン酸
リチウムとを反応原料としたリチウム鉄リン系複合酸化
物を正極活物質とするリチウム二次電池において、未だ
十分に満足できる放電容量を実現したものはない。
As described above, in a lithium secondary battery using a lithium iron phosphorus complex oxide prepared by using ferrous phosphate hydrous salt and lithium phosphate as reaction raw materials as a positive electrode active material, a sufficiently satisfactory discharge capacity is still available. There is no realization of.

【0008】[0008]

【特許文献1】特開平9−134724号公報[Patent Document 1] JP-A-9-134724

【特許文献2】特開平9−134725号公報[Patent Document 2] JP-A-9-134725

【特許文献3】特開平11−261394号公報[Patent Document 3] Japanese Patent Laid-Open No. 11-261394

【特許文献4】特開2001−110414号公報[Patent Document 4] Japanese Patent Laid-Open No. 2001-110414

【特許文献5】特開2001−250555号公報[Patent Document 5] Japanese Patent Laid-Open No. 2001-250555

【特許文献6】特開2000−294238号公報[Patent Document 6] Japanese Patent Laid-Open No. 2000-294238

【非特許文献1】「化学大辞典 9」、共立出版、19
93年、p.809〜810,リン酸鉄の欄参照。
[Non-Patent Document 1] "Chemical Dictionary 9", Kyoritsu Shuppan, 19
1993, p. 809-810, see the column of iron phosphate.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明の目的
は、リン酸第一鉄含水塩とリン酸リチウムを主たる反応
原料としてリチウム二次電池の正極活物質として用いた
ときに、特に放電容量の優れたリチウム二次電池とする
ことができるリチウム鉄リン系複合酸化物炭素複合体、
その製造方法、これを含有するリチウム二次電池正極活
物質および該正極活物質を用いるリチウム二次電池を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to obtain a discharge capacity especially when ferrous phosphate hydrate and lithium phosphate are used as a positive electrode active material of a lithium secondary battery as a main reaction raw material. A lithium iron phosphorus-based composite oxide-carbon composite, which can be an excellent lithium secondary battery of
It is to provide a manufacturing method thereof, a lithium secondary battery positive electrode active material containing the same, and a lithium secondary battery using the positive electrode active material.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため鋭意研究を重ねた結果、リン酸第一鉄含
水塩(Fe3(PO42・8H2O)とリン酸リチウム(Li3P
O4)及び炭素質物質前駆体とを含有する混合物を粉砕処
理を施して比容積を特定値以下とした反応前駆体を用い
て、これを焼成して得られるものは、単相のLiFeP
4の粒子表面を炭素質物質で均一に被覆した特定平均
粒径のリチウム鉄リン系複合酸化物炭素複合体となり、
これをリチウム二次電池の正極活物質として用いると、
特に放電容量が高いリチウム二次電池となることを見出
し本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have found that ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 .8H 2 O) and phosphorus. Lithium acid (Li 3 P
O 4 ) and a carbonaceous material precursor are pulverized to obtain a single precursor of a single-phase LiFeP using a reaction precursor having a specific volume of not more than a specific value.
A lithium iron phosphorus-based composite oxide-carbon composite having a specific average particle diameter, in which the surface of O 4 particles is uniformly coated with a carbonaceous material,
When this is used as the positive electrode active material of a lithium secondary battery,
In particular, they have found that the lithium secondary battery has a high discharge capacity and have completed the present invention.

【0011】即ち、本発明の第1の発明は、リン酸第一
鉄含水塩(Fe3(PO42・8H2O)とリン酸リチウム(Li
3PO4)及び炭素質物質前駆体から得られるLiFePO
4の粒子表面を炭素質物質で被覆してなるリチウム鉄リ
ン系複合酸化物炭素複合体であって、該炭素複合体は、
平均粒径が0.5μm以下の物性を有することを特徴と
するリチウム鉄リン系複合酸化物炭素複合体を提供する
ものである。また、前記リチウム鉄リン系複合酸化物炭
素複合体は、BET比表面積が10〜100m2/gで
あること、Na含有量が1重量%以下で、前記炭素質物
質の被覆量がLiFePO4に対するC原子の含有量で
0.1〜20重量%であることが好ましい。更に、前記
リチウム鉄リン系複合酸化物炭素複合体は水分含有量が
2000ppm以下であることが特に好ましい。
[0011] That is, the first invention of the present invention, ferrous phosphate hydrate (Fe 3 (PO 4) 2 · 8H 2 O) and lithium phosphate (Li
3 PO 4) and LiFePO obtained from carbonaceous material precursor
A lithium iron phosphorus-based composite oxide carbon composite obtained by coating the particle surface of 4 with a carbonaceous material, the carbon composite comprising:
Provided is a lithium-iron-phosphorus-based composite oxide-carbon composite having physical properties of an average particle diameter of 0.5 μm or less. In addition, the lithium iron phosphorus-based composite oxide-carbon composite has a BET specific surface area of 10 to 100 m 2 / g, a Na content of 1 wt% or less, and a coating amount of the carbonaceous material with respect to LiFePO 4 . The content of C atoms is preferably 0.1 to 20% by weight. Furthermore, it is particularly preferable that the lithium iron phosphorus-based composite oxide / carbon composite has a water content of 2000 ppm or less.

【0012】また、本発明の第2の発明は、リン酸第一
鉄含水塩(Fe3(PO42・8H2O)とリン酸リチウム(Li
3PO4)及び炭素質物質前駆体とを含有する比容積が1.
5ml/g以下の反応前駆体を得た後、該反応前駆体を
焼成してLiFePO4の粒子表面を炭素質物質で被覆
したリチウム鉄リン系複合酸化物炭素複合体を得ること
を特徴とするリチウム鉄リン系複合酸化物炭素複合体の
製造方法を提供するものである。かかるリチウム鉄リン
系複合酸化物炭素複合体の製造方法は、リン酸第一鉄含
水塩(Fe3(PO42・8H2O)とリン酸リチウム(Li3P
O4)及び炭素質物質前駆体とを乾式混合するか、又はリ
ン酸第一鉄含水塩(Fe3(PO42・8H2O)、リン酸リチ
ウム(Li3PO4)及び炭素質物質前駆体とを湿式混合した
後、溶媒を除去するかして混合物を得る第一工程、次い
で得られた混合物を粉砕処理して比容積が1.5ml/
g以下の反応前駆体を得る第二工程、次いで得られた反
応前駆体を焼成してLiFePO4の粒子表面を炭素質
物質で被覆したリチウム鉄リン系複合酸化物炭素複合体
を得る第三工程、次いで該リチウム鉄リン系複合酸化物
炭素複合体を粉砕処理する第四工程を含むことが好まし
い。また、前記第二工程後、得られる反応前駆体を加圧
成形する工程を設けることが好ましい。また、前記第三
工程の焼成は不活性ガス雰囲気中500〜700℃の温
度範囲で行うことが好ましい。また、前記第四工程後、
得られる炭素質物質で被覆してなるリチウム鉄リン系複
合酸化物を乾燥する工程を設けるか、又は第四工程の粉
砕処理を絶対湿度0.0025kg/kg以下の雰囲気
下に行うことが好ましい。
[0012] The second aspect of the present invention, ferrous phosphate hydrate (Fe 3 (PO 4) 2 · 8H 2 O) and lithium phosphate (Li
3 PO 4 ) and a carbonaceous material precursor have a specific volume of 1.
After obtaining a reaction precursor of 5 ml / g or less, the reaction precursor is fired to obtain a lithium iron phosphorus-based composite oxide-carbon composite in which LiFePO 4 particle surfaces are coated with a carbonaceous material. It is intended to provide a method for producing a lithium iron phosphorus-based composite oxide-carbon composite. Method for producing the lithium-iron-phosphorus compound oxide carbon composites, ferrous phosphate hydrate (Fe 3 (PO 4) 2 · 8H 2 O) and lithium phosphate (Li 3 P
O 4) and either dry mixing the carbonaceous material precursor, or phosphoric acid ferrous salt hydrate (Fe 3 (PO 4) 2 · 8H 2 O), lithium phosphate (Li 3 PO 4) and carbonaceous After wet mixing with the substance precursor, the first step of removing the solvent to obtain a mixture, and then pulverizing the obtained mixture to obtain a specific volume of 1.5 ml /
g, a second step of obtaining a reaction precursor of less than or equal to g, and a third step of firing the obtained reaction precursor to obtain a lithium iron phosphorus-based composite oxide-carbon composite in which LiFePO 4 particle surfaces are coated with a carbonaceous material. Then, it is preferable to include a fourth step of pulverizing the lithium iron phosphorus complex oxide-carbon composite. Further, it is preferable to provide a step of press-molding the obtained reaction precursor after the second step. Further, the firing in the third step is preferably performed in an inert gas atmosphere at a temperature range of 500 to 700 ° C. Also, after the fourth step,
It is preferable to provide a step of drying the lithium iron phosphorus complex oxide coated with the obtained carbonaceous material, or to carry out the pulverization treatment of the fourth step in an atmosphere having an absolute humidity of 0.0025 kg / kg or less.

【0013】また、本発明の第3の発明は、前記リチウ
ム鉄リン系複合酸化物炭素複合体を含むことを特徴とす
るリチウム二次電池正極活物質を提供するものである。
The third invention of the present invention is to provide a positive electrode active material for a lithium secondary battery, comprising the lithium iron phosphorus complex oxide-carbon composite.

【0014】また、本発明の第4の発明は前記リチウム
二次電池正極活物質を用いることを特徴とするリチウム
二次電池を提供するものである。
A fourth aspect of the present invention provides a lithium secondary battery characterized by using the positive electrode active material for the lithium secondary battery.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係るリチウム鉄リン系複合酸化物炭素複合体
は、リン酸第一鉄含水塩(Fe3(PO42・8H2O)とリン
酸リチウム(Li3PO4)及び炭素質物質前駆体から得られ
るLiFePO4の粒子表面を炭素質物質で被覆してな
るリチウム鉄リン系複合酸化物炭素複合体で、該炭素複
合体は走査型電子顕微鏡写真(SEM)から求められる
平均粒径が0.5μm以下、好ましくは0.05〜0.
5μmであることに特徴づけられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
Lithium-iron-phosphorus compound oxide carbon composite according to the present invention, ferrous salt hydrate phosphate (Fe 3 (PO 4) 2 · 8H 2 O) and lithium phosphate (Li 3 PO 4) and carbonaceous material LiFePO 4 particle surface obtained from the precursor is a lithium iron phosphorus-based composite oxide carbon composite obtained by coating a carbonaceous material, the carbon composite having an average particle size determined from a scanning electron micrograph (SEM). Is 0.5 μm or less, preferably 0.05 to 0.
It is characterized by being 5 μm.

【0016】ここで、炭素質物質前駆体とは、焼成によ
り炭素化可能な有機化合物であり、例えば、軟ピッチか
ら硬ピッチまでのコールタールピッチ,或いは乾留液化
油などの石炭系重質油、常圧残油、減圧残油の直流系重
質油、原油、ナフサなどの熱分解時に副生するエチレン
タール等分解系重質油の石油系重質油、更にアセナフチ
レン、デカシクレン、アントラセン、フェナントレンな
どの芳香族炭化水素、フェナジンやアクリジンなどのN
環化合物、チオフェン、ビチオフェンなどのS環化合
物、ビフェニル、テルフェニルなどのポリフェニレン、
ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブ
チラール、ポリエチレングリコール、これらのものの不
溶化処理品、含窒素性のポリアクリロニトリル、ポリピ
ロールなどの有機高分子、含硫黄性のポリチオフェン、
ポリスチレンなどの有機高分子、セルロース、リグニ
ン、マンナン、ポリガラクトウロン酸、キチン、キトサ
ン、サッカロースに代表される多糖類などの天然高分
子、ポリフェニレンサルファイド、ポリフェニレンオキ
シド等の熱可塑性樹脂、フルフリルアルコール樹脂、フ
ェノール−ホルムアルデヒド樹脂、イミド樹脂等の熱硬
化性樹脂から選ばれる1種又は2種以上が挙げられる。
Here, the carbonaceous material precursor is an organic compound which can be carbonized by firing, and examples thereof include coal tar pitch from soft pitch to hard pitch, or coal-based heavy oil such as carbonized liquefied oil, Normal pressure residual oil, direct current heavy oil of vacuum residual oil, crude oil, petroleum heavy oil of decomposition heavy oil such as ethylene tar produced by thermal decomposition of naphtha, acenaphthylene, decacyclene, anthracene, phenanthrene, etc. Aromatic hydrocarbons, N such as phenazine and acridine
Ring compounds, S ring compounds such as thiophene and bithiophene, polyphenylene such as biphenyl and terphenyl,
Polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, insolubilized products of these, nitrogen-containing polyacrylonitrile, organic polymers such as polypyrrole, sulfur-containing polythiophene,
Organic polymers such as polystyrene, natural polymers such as cellulose, lignin, mannan, polygalacturonic acid, chitin, chitosan and polysaccharides represented by saccharose, thermoplastic resins such as polyphenylene sulfide and polyphenylene oxide, furfuryl alcohol resin And one or more selected from thermosetting resins such as phenol-formaldehyde resin and imide resin.

【0017】また、LiFePO4の粒子表面を被覆す
る炭素質物質とは、前記の炭素質物質前駆体を500〜
700℃で2〜24時間焼成して得られる炭化物を言
う。この炭素質物質の被覆量は、LiFePO4に対す
るC原子の含有量で0.1〜20重量%、好ましくは5
〜12重量%であることが好ましい。この理由は、0.
1重量%未満では、LiFePO4に十分な導電性を付
与させることができなくなるため本発明のリチウム鉄リ
ン系複合酸化物炭素複合体を正極活物質とするリチウム
二次電池において内部抵抗が上昇し、一方、20重量%
を超えると逆に重量或いは体積当たりの放電容量が減少
するため好ましくない。
The carbonaceous substance which covers the surface of the LiFePO 4 particles is the above-mentioned carbonaceous substance precursor of 500 to
It refers to a carbide obtained by firing at 700 ° C. for 2 to 24 hours. The coating amount of this carbonaceous material is 0.1 to 20% by weight, preferably 5% by weight, based on the content of C atoms with respect to LiFePO 4 .
It is preferably ˜12% by weight. The reason for this is 0.
If it is less than 1% by weight, it becomes impossible to impart sufficient conductivity to LiFePO 4 , so that the internal resistance of the lithium secondary battery using the lithium iron phosphorus-based composite oxide / carbon composite of the present invention as a positive electrode active material increases. , On the other hand, 20% by weight
On the contrary, if it exceeds, the discharge capacity per weight or volume decreases, which is not preferable.

【0018】また、本発明にかかるリチウム鉄リン系複
合酸化物炭素複合体は、更に、上記物性に加えて、Na
含有量が1重量%以下、好ましくは0.8重量%以下で
あると、該リチウム鉄リン系複合酸化物炭素複合体を正
極活物質とするリチウム二次電池の放電容量を更に向上
させることができることから特に好ましい。
In addition to the above-mentioned physical properties, the lithium iron phosphorus-based composite oxide-carbon composite according to the present invention further comprises Na
When the content is 1% by weight or less, preferably 0.8% by weight or less, the discharge capacity of a lithium secondary battery using the lithium iron phosphorus-based composite oxide / carbon composite as a positive electrode active material can be further improved. It is particularly preferable because it is possible.

【0019】また、本発明のリチウム鉄リン系複合酸化
物炭素複合体は、前記した物性に加え、水分含有量が2
000ppm以下、好ましくは1500ppm以下まで
低減されたものであると、該リチウム鉄リン系複合酸化
物炭素複合体を正極活物質とするリチウム二次電池の充
放電特性を向上させることができことから特に好まし
い。
The lithium iron phosphorus complex oxide-carbon composite of the present invention has a water content of 2 in addition to the above-mentioned physical properties.
Particularly, when it is reduced to 000 ppm or less, preferably 1500 ppm or less, the charge / discharge characteristics of a lithium secondary battery using the lithium iron phosphorus-based composite oxide / carbon composite as a positive electrode active material can be improved. preferable.

【0020】本発明にかかるリチウム鉄リン系複合酸化
物炭素複合体の他の物性としては、平均粒径が上記範囲
であることに加え、更に、平均粒径0.05〜0.5μ
mの一次粒子が集合してなる平均粒径1〜75μmの一
次粒子集合体であると、リチウム鉄リン系複合酸化物炭
素複合体を正極活物質として用いるときに、Liの脱挿
入が速やかに行われるため好ましい。さらに、上記一次
集合体は全体積の70%以上、好ましくは80%以上が
粒径1〜20μmであると、均一な厚さの塗膜の形成が
可能となるためより望ましい。また、本発明に係るリチ
ウム鉄リン系複合酸化物炭素複合体は、BET比表面積
が10〜100m2/g、好ましくは30〜70m2/g
である。BET比表面積が該範囲内にあると、安全性が
良好であるため好ましい。
Other physical properties of the lithium iron phosphorus complex oxide-carbon composite according to the present invention include that the average particle size is in the above range, and further that the average particle size is 0.05 to 0.5 μm.
When the lithium iron phosphorus-based composite oxide / carbon composite is used as the positive electrode active material, the Li particles can be rapidly removed and inserted when the lithium / phosphorus-based composite oxide / carbon composite is used as the positive electrode active material. It is preferable because it is performed. Further, it is more preferable that 70% or more, preferably 80% or more of the total volume of the primary aggregate has a particle size of 1 to 20 μm because a coating film having a uniform thickness can be formed. The lithium iron phosphorus-based composite oxide / carbon composite according to the present invention has a BET specific surface area of 10 to 100 m 2 / g, preferably 30 to 70 m 2 / g.
Is. When the BET specific surface area is within this range, the safety is good, which is preferable.

【0021】上記物性を有するリチウム鉄リン系複合酸
化物炭素複合体は、リン酸第一鉄含水塩(Fe3(PO42
・8H2O)とリン酸リチウム(Li3PO4)及び炭素質物質
前駆体とを混合し、次いで得られる混合物を粉砕処理し
て比容積を特定値以下とした反応前駆体を調製し、これ
を焼成することにより製造することができる。
The lithium iron phosphorus complex oxide-carbon composite having the above physical properties is a ferrous phosphate hydrate (Fe 3 (PO 4 ) 2
8H 2 O), lithium phosphate (Li 3 PO 4 ) and a carbonaceous material precursor are mixed, and the resulting mixture is pulverized to prepare a reaction precursor having a specific volume of a specific value or less, It can be manufactured by firing this.

【0022】本発明のリチウム鉄リン系複合酸化物炭素
複合体の製造方法において、リン酸第一鉄含水塩(Fe3
(PO42・8H2O)とリン酸リチウム(Li3PO4)及び炭
素質物質前駆体とを乾式混合するか、又はリン酸第一鉄
含水塩(Fe3(PO42・8H2O)、リン酸リチウム(Li3P
O4)及び炭素質物質前駆体とを湿式混合した後、溶媒を
除去するかして混合物を得る第一工程、次いで得られた
混合物を粉砕処理して比容積が1.5ml/g以下の反
応前駆体を得る第二工程、次いで得られた反応前駆体を
焼成してLiFePO4の粒子表面を炭素質物質で被覆
したリチウム鉄リン系複合酸化物炭素複合体を得る第三
工程、次いで該リチウム鉄リン系複合酸化物炭素複合体
を粉砕処理する第四工程を含むことが好ましい。
In the method for producing a lithium iron phosphorus complex oxide-carbon composite of the present invention, ferrous phosphate hydrate (Fe 3
(PO 4) 2 · 8H 2 O) and lithium phosphate (Li 3 PO 4) and a carbonaceous material precursor and either dry mixing or ferrous phosphate hydrate (Fe 3 (PO 4) 2 · 8H 2 O), lithium phosphate (Li 3 P
O 4 ) and the carbonaceous material precursor are wet-mixed, and then the solvent is removed to obtain a mixture. The first step is pulverization to obtain a specific volume of 1.5 ml / g or less. The second step of obtaining a reaction precursor, then the third step of firing the obtained reaction precursor to obtain a lithium iron phosphorus-based composite oxide-carbon composite in which the particle surface of LiFePO 4 is coated with a carbonaceous material, It is preferable to include a fourth step of pulverizing the lithium iron phosphorus-based composite oxide-carbon composite.

【0023】用いることができる第1の原料のリン酸第
一鉄含水塩は、特に制限はないが、一般式;Fe3(P
42・8H2Oで表されるリン酸第一鉄含水塩で、レ
ーザー回折法により求められる平均粒径が5μm以下、
好ましくは1〜5μmで、更に線源としてCuKα線を
用いて該リン酸第一鉄含水塩をX線回折分析したときに
2θ=13.1近傍の回折ピーク(020面)の半値幅
が0.20°以上、好ましくは0.20〜0.40°で
ある結晶性が低く、粉砕等の加工性及び反応性に優れた
リン酸第一鉄含水塩を用いると後述する反応前駆体の比
容積を容易に1.5ml/g以下とすることができるこ
とから特に好ましい。
The ferrous phosphate hydrate which can be used as the first raw material is not particularly limited, but is represented by the general formula: Fe 3 (P
O 4) in phosphate represented by 2 · 8H 2 O ferrous salt hydrate, the average particle size is determined by laser diffraction 5μm or less,
It is preferably 1 to 5 μm, and when the ferrous phosphate hydrate is analyzed by X-ray diffraction using CuKα ray as a radiation source, the half value width of the diffraction peak (020 plane) near 2θ = 13.1 is 0. 20 ° or more, preferably 0.20 to 0.40 °, low crystallinity, and using ferrous phosphate hydrate having excellent processability such as pulverization and reactivity, the ratio of the reaction precursor described later. It is particularly preferable because the volume can be easily adjusted to 1.5 ml / g or less.

【0024】このような物性を有するリン酸第一鉄含水
塩(Fe3(PO42・8H2O)は、2価の鉄塩とリン酸を含
む水溶液に、アルカリを添加して反応を行うことにより
容易に製造することができる。用いることができる2価
の鉄塩としては、例えば、硫酸第一鉄、酢酸鉄、蓚酸鉄
等が挙げられ、これらは、含水物であっても無水物であ
ってもよい。この中、硫酸第一鉄7水和物(FeSO4
・7H2O)が安価で高純度のものが工業的に入手しや
すいことから特に好ましい。また、用いることができる
リン酸としては、工業的に入手できるものであれば特に
制限はない。また、用いることができるアルカリとして
は、特に制限はなく、例えば、アンモニアガス、アンモ
ニア水、苛性ソーダ、苛性カリ、NaHCO3、Na2
3、LiOH、K2CO3、KHCO3、Ca(OH)2
等の無機アルカリ、またはエタノールアミン等の有機ア
ルカリ等が挙げられ、これらのアルカリは1種又は2種
以上で用いることができる。この中、水酸化ナトリウム
が安価で工業的に入手しやすいことから特に好ましい。
これらの原料の2価の鉄塩、リン酸及びアルカリは、T
i、Mn、Zn、Cr、Ni、Cu、Coから選ばれる
遷移金属の含有量が少ないものを用いることが、高純度
のリン酸第一鉄含水塩を得る上で特に好ましい。具体的
な反応操作としては、まず、リン酸を2価の鉄塩中の鉄
原子に対するモル比で0.60〜0.75、好ましくは
0.65〜0.70となるように2価の鉄塩とリン酸を
溶解した水溶液を調製する。この場合水溶液の濃度は、
2価の鉄塩とリン酸を溶解できる濃度であれば特に制限
はないが、通常2価の鉄塩として0.1モル/L以上、
好ましくは0.5〜1.0モル/Lとすることが好まし
い。次いで、この水溶液にアルカリを添加し、リン酸第
一鉄を析出させる。リン酸第一鉄の析出反応は、このア
ルカリの添加により速やかに進行する。アルカリの添加
量は、2価の鉄塩に対するモル比で、1.8〜2.0、
好ましくは1.95〜2.0とすることが好ましい。こ
のアルカリの添加温度は、特に制限はなく、通常5〜8
0℃、好ましくは15〜35℃である。また、アルカリ
の滴下速度等は特に制限されるものではないが、安定し
た品質のものを得るため、一定の滴下速度で除々に反応
系内に導入することが好ましい。反応終了後、常法によ
り固液分離して、析出物を回収し、洗浄、乾燥して製品
とする。なお、洗浄は、特に、アルカリとして水酸化ナ
トリウムを用いた場合には、析出したリン酸第一鉄含水
塩のNa含有量が1重量%以下、好ましくは0.8重量
%以下となるまで水で十分に洗浄することが好ましい。
また、乾燥は、35℃未満では、乾燥に時間がかかり、
50℃を超えると2価の鉄の酸化や結晶水の脱離が起こ
るため35〜50℃で行うことが好ましい。かくして得
られるリン酸第一鉄含水塩は、レーザー回折法により求
められる平均粒径が5μm以下、好ましくは1〜5μm
で、X線回折分析から求められる格子面(020面)の
回折ピークの半値幅が0.20°以上、好ましくは0.
20〜0.40°であり、更に好ましい物性としては、
不純物としてのNa含有量が1重量%以下、好ましくは
0.8重量%以下であることが好ましい。
The ferrous phosphate hydrous salt (Fe 3 (PO 4 ) 2 .8H 2 O) having such physical properties is reacted by adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid. It can be easily manufactured by carrying out. Examples of the divalent iron salt that can be used include ferrous sulfate, iron acetate, iron oxalate and the like, and these may be hydrates or anhydrides. Among them, ferrous sulfate heptahydrate (FeSO 4
7H 2 O) is inexpensive and highly pure, and is particularly preferable because it is industrially easily available. The phosphoric acid that can be used is not particularly limited as long as it is industrially available. The alkali that can be used is not particularly limited, and examples thereof include ammonia gas, ammonia water, caustic soda, caustic potash, NaHCO 3 , Na 2 C.
O 3 , LiOH, K 2 CO 3 , KHCO 3 , Ca (OH) 2
And the like, organic alkalis such as ethanolamine, and the like, and these alkalis can be used alone or in combination of two or more. Among these, sodium hydroxide is particularly preferable because it is inexpensive and industrially easily available.
The divalent iron salt, phosphoric acid and alkali of these raw materials are T
It is particularly preferable to use a material having a low content of a transition metal selected from i, Mn, Zn, Cr, Ni, Cu and Co, in order to obtain a highly pure ferrous phosphate hydrate. As a specific reaction operation, first, the divalent phosphoric acid is adjusted to a molar ratio of 0.60 to 0.75, preferably 0.65 to 0.70, relative to the iron atoms in the divalent iron salt. An aqueous solution in which an iron salt and phosphoric acid are dissolved is prepared. In this case, the concentration of the aqueous solution is
There is no particular limitation as long as it is a concentration capable of dissolving the divalent iron salt and phosphoric acid, but usually 0.1 mol / L or more as the divalent iron salt,
It is preferably 0.5 to 1.0 mol / L. Then, an alkali is added to this aqueous solution to precipitate ferrous phosphate. The precipitation reaction of ferrous phosphate rapidly proceeds by the addition of this alkali. The amount of alkali added is 1.8 to 2.0 in terms of molar ratio to the divalent iron salt.
It is preferably 1.95 to 2.0. The addition temperature of the alkali is not particularly limited and is usually 5 to 8
It is 0 ° C, preferably 15 to 35 ° C. Further, the dropping rate of the alkali and the like are not particularly limited, but in order to obtain stable quality, it is preferable to gradually introduce the alkali into the reaction system at a constant dropping rate. After completion of the reaction, solid-liquid separation is carried out by an ordinary method, and the precipitate is collected, washed and dried to obtain a product. The washing is carried out with sodium hydroxide as an alkali until the Na content of the precipitated ferrous phosphate hydrate is 1% by weight or less, preferably 0.8% by weight or less. It is preferable to thoroughly wash with.
Further, if the temperature is lower than 35 ° C., it takes time to dry,
When the temperature exceeds 50 ° C, the oxidation of divalent iron and the desorption of crystal water occur, so that the temperature is preferably 35 to 50 ° C. The ferrous phosphate hydrate thus obtained has an average particle size of 5 μm or less, preferably 1 to 5 μm, as determined by a laser diffraction method.
And the half value width of the diffraction peak of the lattice plane (020 plane) obtained by X-ray diffraction analysis is 0.20 ° or more, preferably 0.
20 to 0.40 °, and more preferable physical properties include
It is preferable that the content of Na as an impurity is 1% by weight or less, preferably 0.8% by weight or less.

【0025】用いることができる第2の原料のリン酸リ
チウム(Li3PO4)は、工業的に入手できるものであ
れば特に制限はないが、レーザー回折法により求められ
る平均粒径が10μm以下、好ましくは5μmである
と、混合が十分に行われ反応性が良くなることから特に
好ましい。
The second raw material lithium phosphate (Li 3 PO 4 ) that can be used is not particularly limited as long as it is industrially available, but the average particle size determined by the laser diffraction method is 10 μm or less. It is particularly preferable that the thickness is 5 μm because the mixing is sufficiently performed and the reactivity is improved.

【0026】第3の原料の炭素質物質前駆体は、上記し
たとおり、例えば、軟ピッチから硬ピッチまでのコール
タールピッチ,或いは乾留液化油などの石炭系重質油、
常圧残油、減圧残油の直流系重質油、原油、ナフサなど
の熱分解時に副生するエチレンタール等分解系重質油の
石油系重質油、更にアセナフチレン、デカシクレン、ア
ントラセン、フェナントレンなどの芳香族炭化水素、フ
ェナジンやアクリジンなどのN環化合物、チオフェン、
ビチオフェンなどのS環化合物、ビフェニル、テルフェ
ニルなどのポリフェニレン、ポリ塩化ビニル、ポリビニ
ルアルコール、ポリビニルブチラール、ポリエチレング
リコール、これらのものの不溶化処理品、含窒素性のポ
リアクリロニトリル、ポリピロールなどの有機高分子、
含硫黄性のポリチオフェン、ポリスチレンなどの有機高
分子、セルロース、リグニン、マンナン、ポリガラクト
ウロン酸、キチン、キトサン、サッカロースに代表され
る多糖類などの天然高分子、ポリフェニレンサルファイ
ド、ポリフェニレンオキシド等の熱可塑性樹脂、フルフ
リルアルコール樹脂、フェノール−ホルムアルデヒド樹
脂、イミド樹脂等の熱硬化性樹脂等から選ばれる1種又
は2種以上が挙げられる。
As described above, the carbonaceous material precursor of the third raw material is, for example, coal tar pitch from soft pitch to hard pitch, or coal-based heavy oil such as carbonized liquefied oil,
Normal pressure residual oil, direct current heavy oil of vacuum residual oil, crude oil, petroleum heavy oil of decomposition heavy oil such as ethylene tar produced by thermal decomposition of naphtha, acenaphthylene, decacyclene, anthracene, phenanthrene, etc. Aromatic hydrocarbons, N-ring compounds such as phenazine and acridine, thiophene,
S-ring compounds such as bithiophene, polyphenylene such as biphenyl and terphenyl, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, insolubilized products of these, nitrogen-containing polyacrylonitrile, organic polymers such as polypyrrole,
Sulfur-containing polythiophene, organic polymers such as polystyrene, natural polymers such as cellulose, lignin, mannan, polygalacturonic acid, chitin, chitosan, polysaccharides represented by saccharose, thermoplastics such as polyphenylene sulfide, polyphenylene oxide, etc. One or more selected from thermosetting resins such as resins, furfuryl alcohol resins, phenol-formaldehyde resins, imide resins, and the like.

【0027】これらの炭素質物質前駆体の性状は、粉末
状又は液状であってもよく、特に乾式で後述する第一工
程を実施する場合は、粉末状の炭素質物質前駆体を用
い、その粉末状の炭素質物質前駆体の物性は走査型電子
顕微鏡写真(SEM)から求められる平均粒径が1μm
以下、好ましくは0.1μm以下、特に好ましくは0.
01〜0.1μmであるとLiFePO4の粒子表面に
高分散状態で炭素質物質前駆体を付着させることができ
ることから好ましい。なお、平均粒径が1μmを越える
ものは、予めミキサー等により粉砕処理して平均粒径が
当該範囲となるように調製して用いることが好ましい。
また、液状、粉末状の炭素質物質前駆体は、溶媒に溶解
し後述する第一工程において湿式混合用として用いるこ
とができる。
The properties of these carbonaceous material precursors may be powdery or liquid, and particularly when carrying out the first step to be described later in a dry process, a powdery carbonaceous material precursor is used. The physical properties of the powdery carbonaceous material precursor have an average particle size of 1 μm obtained from a scanning electron micrograph (SEM).
Or less, preferably 0.1 μm or less, particularly preferably 0.
It is preferable that it is from 01 to 0.1 μm because the carbonaceous material precursor can be attached to the particle surface of LiFePO 4 in a highly dispersed state. Those having an average particle diameter of more than 1 μm are preferably crushed by a mixer or the like in advance and prepared so that the average particle diameter falls within the range.
Further, the liquid or powdery carbonaceous material precursor can be dissolved in a solvent and used for wet mixing in the first step described later.

【0028】これらの第1〜第3の原料のリン酸第一鉄
含水塩(Fe3(PO42・8H2O)とリン酸リチウム(Li3P
O4)および炭素質物質前駆体は、高純度のものを用いる
ことが好ましく、特に、不純物としてのNaは、リチウ
ム二次電池の放電容量を低下させる一つ要因となる。通
常、かかる反応系において、これらの不純物は、原料の
リン酸第一鉄含水塩(Fe3(PO42・8H2O)とリン酸リ
チウム(Li3PO4)に由来するところが大きいが、第2の
原料のリン酸リチウム自体(Li3PO4)は、Na含有量が
0.3重量%以下、好ましくは0.1重量%以下のもの
が市販品として工業的に容易に入手できることから、第
1の原料のリン酸第一鉄含水塩(Fe3(PO42・8H2O)
は、不純物としてのNa含有量が1重量%以下、好まし
くは0.8重量%以下のものを用いることが特に好まし
い。
[0028] These first to third raw material iron phosphate hydrate of (Fe 3 (PO 4) 2 · 8H 2 O) and lithium phosphate (Li 3 P
It is preferable to use high-purity O 4 ) and the carbonaceous material precursor, and especially Na as an impurity is one factor that reduces the discharge capacity of the lithium secondary battery. Usually, in such a reaction system, these impurities largely come from ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 .8H 2 O) and lithium phosphate (Li 3 PO 4 ) which are raw materials. The lithium phosphate itself (Li 3 PO 4 ) as the second raw material has a Na content of 0.3% by weight or less, preferably 0.1% by weight or less, which is easily commercially available as a commercial product. from the first raw material iron phosphate hydrate of (Fe 3 (PO 4) 2 · 8H 2 O)
It is particularly preferable to use Na having an Na content as an impurity of 1% by weight or less, preferably 0.8% by weight or less.

【0029】第一工程の操作は、まず、第1〜第3の原
料のリン酸第一鉄含水塩(Fe3(PO42・8H2O)、リン
酸リチウム(Li3PO4)および炭素質物質前駆体を所定量
混合する。
[0029] Operation of the first step, first, the first to third raw material iron phosphate hydrate of (Fe 3 (PO 4) 2 · 8H 2 O), lithium phosphate (Li 3 PO 4) And a predetermined amount of carbonaceous material precursor.

【0030】混合方法としては、例えば、以下の2つの
方法を例示することができる。 リン酸第一鉄含水塩(Fe3(PO42・8H2O)とリン酸
リチウム(Li3PO4)及び炭素質物質前駆体とをブレンダ
ー等で乾式で十分に混合する方法。 リン酸第一鉄含水塩(Fe3(PO42・8H2O)、リン酸
リチウム(Li3PO4)及び炭素質物質前駆体を溶媒を介し
て湿式混合した後、溶媒を除去して混合する方法。
As the mixing method, for example, the following two methods can be exemplified. Method of mixing thoroughly dry the ferrous phosphate hydrate (Fe 3 (PO 4) 2 · 8H 2 O) and lithium phosphate (Li 3 PO 4) and a carbonaceous material precursor in a blender or the like. Ferrous phosphate hydrate (Fe 3 (PO 4) 2 · 8H 2 O), was wet-mixed lithium phosphate (Li 3 PO 4) and a carbonaceous material precursor through a solvent, the solvent removed How to mix.

【0031】前記の混合方法は、炭素質物質前駆体が
粉末状である場合に適用することができる方法であり、
一方、前記の混合方法は炭素質物質前駆体が粉末状、
液状の何れにおいても適用することができる方法であ
る。
The above-mentioned mixing method is a method that can be applied when the carbonaceous material precursor is in powder form,
On the other hand, in the above mixing method, the carbonaceous material precursor is in powder form,
This is a method that can be applied to any of liquid forms.

【0032】前記の混合方法は、具体的には、リン酸
第一鉄含水塩(Fe3(PO42・8H2O)とリン酸リチウム
(Li3PO4)を炭素質物質前駆体を溶解した溶媒に浸漬
し、次いで溶媒を除去することでリン酸第一鉄含水塩
(Fe3(PO42・8H2O)とリン酸リチウム(Li3PO4)を
含む混合物の粒子表面を炭素質物質前駆体で被覆して混
合する方法が好ましい。この場合、リン酸第一鉄含水塩
(Fe3(PO42・8H2O)とリン酸リチウム(Li3PO4
は、浸漬する前にブレンダー等で十分に混合されていて
もよく、溶液中でリン酸第一鉄含水塩(Fe3(PO42
8H2O)とリン酸リチウム(Li3PO4)を十分にブレンダ
ー等で混合処理を行ってもよい。前記の混合方法にお
いて、前記炭素質物質前駆体を溶解する溶媒としては、
例えば、水、テトラヒドロフラン、アセトン等のケトン
類、メタノール、エタノール等の各種アルコール類、ジ
メチルホルムアミド、ジメチルアセトアミド等のアミド
類、トルエン、キシレン、ベンゼン等の炭化水素類など
が挙げられ、これらは1種又は2種以上で用いられる。
混合に溶媒を用いた場合には、50〜150℃の温度
で、好ましくは減圧下で混合物を加熱するか又は噴霧乾
燥を行って、溶媒を除去して前記第1〜第3の原料から
なる混合物とすることが好ましい。
Specifically, the above-mentioned mixing method is carried out by using ferrous phosphate hydrous salt (Fe 3 (PO 4 ) 2 .8H 2 O) and lithium phosphate (Li 3 PO 4 ) as a carbonaceous material precursor. was immersed in a solvent containing dissolved, then particle mixture comprising iron phosphate salt hydrate by removing (Fe 3 (PO 4) 2 · 8H 2 O) and lithium phosphate (Li 3 PO 4) the solvent A method of coating the surface with the carbonaceous material precursor and mixing them is preferable. In this case, ferrous phosphate hydrate (Fe 3 (PO 4) 2 · 8H 2 O) and lithium phosphate (Li 3 PO 4)
May be thoroughly mixed with a blender or the like before immersion, and ferrous phosphate hydrate (Fe 3 (PO 4 ) 2
8H 2 O) and lithium phosphate (Li 3 PO 4 ) may be sufficiently mixed with a blender or the like. In the above mixing method, as the solvent for dissolving the carbonaceous material precursor,
Examples thereof include water, tetrahydrofuran, ketones such as acetone, various alcohols such as methanol and ethanol, amides such as dimethylformamide and dimethylacetamide, and hydrocarbons such as toluene, xylene and benzene. These are one kind. Or, it is used in two or more kinds.
When a solvent is used for mixing, the mixture is heated at a temperature of 50 to 150 ° C., preferably under reduced pressure, or spray-dried to remove the solvent to form the first to third raw materials. It is preferably a mixture.

【0033】また、上記〜の混合方法の他、リン酸
第一鉄含水塩(Fe3(PO42・8H2O)とリン酸リチウム
(Li3PO4)とを混合し、次いで後述する粉砕処理を施し
た後、この粉砕品を前記炭素質物質前駆体を溶解した溶
媒に浸漬後、50〜150℃の温度で、好ましくは減圧
下で混合物を加熱する方法や噴霧乾燥することにより、
溶媒を除去し、必要により分散処理したものを後述する
反応前駆体として用いてもよい。
In addition to the above mixing methods, ferrous phosphate hydrous salt (Fe 3 (PO 4 ) 2 .8H 2 O) and lithium phosphate (Li 3 PO 4 ) are mixed and then described later. By subjecting the crushed product to a solvent in which the carbonaceous substance precursor is dissolved, and then heating the mixture at a temperature of 50 to 150 ° C., preferably under reduced pressure, or by spray drying. ,
What removed the solvent and disperse | distributed as needed may be used as a reaction precursor mentioned later.

【0034】リン酸第一鉄含水塩とリン酸リチウムとの
配合割合は、リン酸第一鉄含水塩中のFe原子とリン酸
リチウム中のLi原子とのモル比(Li/Fe)で0.
9〜1.1、好ましくは1.00〜1.05であるとL
iFePO4の単相が得られる点で好ましく、このモル
比が0.9未満及び1.1を越えると未反応原料が残存
することから好ましくない。
The mixing ratio of the ferrous phosphate hydrous salt and lithium phosphate is 0 in terms of the molar ratio (Li / Fe) of Fe atoms in the ferrous phosphate hydrous salt and Li atoms in the lithium phosphate. .
L of 9 to 1.1, preferably 1.00 to 1.05
It is preferable in that a single phase of iFePO 4 can be obtained, and if this molar ratio is less than 0.9 or exceeds 1.1, unreacted raw materials remain, which is not preferable.

【0035】また、炭素質物質前駆体中に含まれるC原
子の量は、焼成前に比べて焼成後では若干ながら減少す
る傾向があることから、炭素質物質前駆体の配合量がリ
ン酸第一鉄含水塩とリン酸リチウムとの総量に対してC
原子として0.08〜15.5重量%、好ましくは3.
8〜9.5重量%であると、炭素質物質の被覆量は、L
iFePO4に対するC原子の含有量で0.1〜20重
量%、好ましくは5〜12重量%となる。この炭素質物
質前駆体を焼成して得られる炭素質物質の量がC原子と
して0.08重量%未満では上記したとおりリチウム鉄
リン系複合酸化物炭素複合体に十分な導電性を付与させ
ることができなくなるため得られるリチウム鉄リン系複
合酸化物炭素複合体を正極活物質とするリチウム二次電
池において内部抵抗が上昇し、一方、15.5重量%を
超えると逆に重量或いは体積当たりの放電容量が減少す
るため好ましくない。
Further, since the amount of C atoms contained in the carbonaceous material precursor tends to be slightly decreased after the firing as compared with that before the firing, the amount of the carbonaceous material precursor blended with the phosphoric acid C based on the total amount of monoiron hydrate and lithium phosphate
0.08 to 15.5% by weight as an atom, preferably 3.
When it is 8 to 9.5% by weight, the coating amount of the carbonaceous material is L
The content of C atoms with respect to iFePO 4 is 0.1 to 20% by weight, preferably 5 to 12% by weight. When the amount of the carbonaceous material obtained by firing the carbonaceous material precursor is less than 0.08% by weight as C atom, the lithium iron phosphorus-based composite oxide carbon composite should have sufficient conductivity as described above. Internal resistance increases in a lithium secondary battery using the obtained lithium iron phosphorus-based composite oxide-carbon composite as a positive electrode active material, and when it exceeds 15.5% by weight, conversely, It is not preferable because the discharge capacity decreases.

【0036】次に、これらの原料の混合物を粉砕機を用
いて乾式で比容積が1.5ml/g以下、好ましくは
1.0〜1.4ml/gとなるまで粉砕して反応前駆体
とする。ここで、前記反応前駆体とは、リン酸第一鉄含
水塩(Fe3(PO42・8H2O)とリン酸リチウム(Li3P
O4)及び炭素質物質前駆体を含有する混合物を後の焼成
に先だって反応性をよくするために、各原料を高分散さ
せると共に各原料間の粒子間距離を可能なかぎり近づ
け、各原料の接触面積を高めたものである。また、本発
明における比容積とはJIS−K−5101に記載され
た見掛け密度又は見掛け比容の方法に基づいて、タップ
法により50mlのメスシリンダーにサンプル10gを
いれ、500回タップし静置後、容積を読みとり、下記
式により求めたものである。
Next, the mixture of these raw materials is pulverized in a dry manner using a pulverizer until the specific volume becomes 1.5 ml / g or less, preferably 1.0 to 1.4 ml / g, to obtain a reaction precursor. To do. Herein, the reaction precursor, ferrous phosphate hydrate (Fe 3 (PO 4) 2 · 8H 2 O) and lithium phosphate (Li 3 P
In order to improve the reactivity of the mixture containing O 4 ) and the carbonaceous material precursor prior to the subsequent firing, each raw material is highly dispersed and the interparticle distances between the raw materials are made as close as possible to each other. The contact area is increased. Further, the specific volume in the present invention is based on the method of apparent density or apparent specific volume described in JIS-K-5101, 10 g of a sample is put into a 50 ml graduated cylinder by the tap method, and tapped 500 times, and after standing still. The volume is read and the volume is calculated by the following formula.

【数1】 (式中、F;受器内の処理した試料の質量(g)、V;
タップ後の試料の容量(ml)を示す。)
[Equation 1] (In the formula, F; mass (g) of the treated sample in the receiver, V;
The volume (ml) of the sample after tapping is shown. )

【0037】本発明のリチウム鉄リン系複合酸化物炭素
複合体の製造方法において、反応前駆体の比容積を当該
範囲とする理由は、1.5ml/gを越えると原料粒子
同士の接触が悪いため、後に行う焼成で反応を十分に行
うのに高温を必要とし、このため核粒子となるLiFe
PO4粒子の粒子成長がおこり、得られるリチウム鉄リ
ン系複合酸化物炭素複合体は、平均粒径が数μm以上
で、且つ被覆する炭素質物質が不均一に付着したものと
なる。このため該リチウム鉄リン系複合酸化物炭素複合
体を正極活物質として用いたリチウム二次電池はサイク
ル特性と放電容量の向上が見られなくなる。なお、反応
前駆体の比容積を当該範囲とすると、該反応前駆体自体
は、走査型電子顕微鏡写真(SEM)から求められる平
均粒径が0.5μm以下の粒度特性を有するものであ
る。
In the method for producing a lithium iron phosphorus-based composite oxide / carbon composite of the present invention, the reason why the specific volume of the reaction precursor is within this range is that the contact between the raw material particles is poor when it exceeds 1.5 ml / g. Therefore, a high temperature is required to sufficiently carry out the reaction in the firing to be performed later, and thus LiFe which becomes a core particle is required.
The particle growth of PO 4 particles occurs, and the obtained lithium iron phosphorus-based composite oxide / carbon composite has an average particle diameter of several μm or more and the carbonaceous material to be coated is nonuniformly attached. Therefore, the lithium secondary battery using the lithium iron phosphorus-based composite oxide / carbon composite as a positive electrode active material does not show improvement in cycle characteristics and discharge capacity. When the specific volume of the reaction precursor is within the above range, the reaction precursor itself has a particle size characteristic that the average particle size obtained from a scanning electron micrograph (SEM) is 0.5 μm or less.

【0038】更に、本発明のリチウム鉄リン系複合酸化
物の製造方法において、前記反応前駆体は、比容積が当
該範囲であることに加えて、該反応前駆体中に含まれる
原料のリン酸鉄含水塩(Fe3(PO42・8H2O)がほぼ非
晶質状態であると,リン酸鉄含水塩粒子が充分微細に粉
砕されており反応性が良くなることから特に好ましい。
Further, in the method for producing a lithium iron phosphorus complex oxide according to the present invention, in addition to the specific volume of the reaction precursor being within the range, the phosphoric acid which is a raw material contained in the reaction precursor. When iron salt hydrate (Fe 3 (PO 4) 2 · 8H 2 O) is almost amorphous, particularly preferred since the reactive iron phosphate hydrate particles are sufficiently finely ground is improved.

【0039】用いることができる粉砕機としては、強力
なせん断力を有する粉砕機が好ましく、このような強力
なせん断力を有する粉砕機としては、転動ボールミル、
振動ミル、遊星ミル、媒体攪拌ミル等を用いることが好
ましい。この種の粉砕機は、容器中にボール、ビーズ等
の粉砕媒体が入っており、主として媒体の剪断・摩擦作
用によって粉砕を行う粉砕機である。このような装置と
しては市販されているものを利用することができる。粉
砕媒体の粒径は1〜25mmであると粉砕が十分に行え
るため好ましい。この粉砕媒体の材質は、ジルコニア、
アルミナのセラミックビーズが、硬度が高く磨耗に強い
こと及び材料の金属汚染を防止することができることか
ら特に好ましい。また、前記粉砕媒体は、空間容積50
〜90%で容器内に粉砕媒体を収納し、流動媒体による
剪断力と摩擦力を適切に管理するため、粉砕機の運転条
件を適宜調整して粉砕処理することが好ましい。
As the crusher that can be used, a crusher having a strong shearing force is preferable, and as the crusher having such a strong shearing force, a rolling ball mill,
It is preferable to use a vibration mill, a planetary mill, a medium stirring mill, or the like. This type of crusher is a crusher in which a crushing medium such as balls and beads is contained in a container, and crushing is performed mainly by the shearing / friction action of the medium. As such a device, a commercially available device can be used. It is preferable that the particle size of the grinding medium is 1 to 25 mm because the grinding can be sufficiently performed. The material of this grinding medium is zirconia,
Alumina ceramic beads are particularly preferred because of their high hardness and wear resistance and the ability to prevent metal contamination of the material. Further, the grinding medium has a space volume of 50
In order to properly control the shearing force and the frictional force due to the fluidized medium, the pulverizing medium is preferably contained in a container at a content of 90% to 90%, and the pulverizing process is preferably performed by appropriately adjusting the operating conditions of the pulverizer.

【0040】また、本発明において、必要に応じて、上
記粉砕処理に加えて反応前駆体を加圧成形処理して、更
に各原料の接触面積を高めると、放電容量とサイクル特
性を更に向上させることができる。成形圧は、プレス
機、仕込み量等により異なり、特に限定されるものでは
ないが、通常5〜200MPaである。プレス成形機
は、ハンドプレス、打錠機、ブリケットマシン、ローラ
コンパクター等好適に使用できるがプレスできるもので
あればよく、特に制限はない。
In the present invention, the discharge capacity and the cycle characteristics are further improved by, if necessary, subjecting the reaction precursor to pressure molding treatment in addition to the above-mentioned pulverization treatment to further increase the contact area of each raw material. be able to. The molding pressure varies depending on the pressing machine, the charging amount, etc. and is not particularly limited, but is usually 5 to 200 MPa. The press molding machine is preferably a hand press, a tableting machine, a briquette machine, a roller compactor or the like, but is not particularly limited as long as it can be pressed.

【0041】第三工程では、第二工程で得られた反応前
駆体をそのまま焼成する。焼成温度は500〜700
℃、好ましくは550〜650℃である。本発明におい
て、この焼成温度を当該範囲とすると得られるリチウム
鉄リン系複合酸化物炭素複合体を正極活物質とするリチ
ウム二次電池は、放電容量及び充電サイクル特性を向上
させることができる。焼成温度が500℃未満では、反
応が十分に進行しないため未反応原料が残存し、一方、
700℃を越えると上記したとおり焼結が進行して粒子
成長が起こるため好ましくない。焼成時間は、2〜20
時間、好ましくは5〜10時間とすることが好ましい。
焼成は、窒素、アルゴン等の不活性ガス雰囲気中又は水
素や一酸化炭素等の還元雰囲気中のいずれで行ってもよ
く、特に制限されるものではないが、操作時の安全性の
面で窒素、アルゴンガス等の不活性ガス雰囲気中で行う
ことが好ましい。また、これらの焼成は必要により何度
でも行うことができる。
In the third step, the reaction precursor obtained in the second step is baked as it is. Firing temperature is 500-700
C., preferably 550 to 650.degree. In the present invention, the lithium secondary battery using the lithium iron phosphorus-based composite oxide / carbon composite obtained by setting the firing temperature in the range as the positive electrode active material can have improved discharge capacity and charge cycle characteristics. If the firing temperature is lower than 500 ° C., the reaction does not proceed sufficiently, so that unreacted raw materials remain.
If it exceeds 700 ° C., sintering proceeds as described above and particle growth occurs, which is not preferable. The firing time is 2 to 20
It is preferable to set the time, preferably 5 to 10 hours.
The calcination may be performed in an atmosphere of an inert gas such as nitrogen or argon or in a reducing atmosphere such as hydrogen or carbon monoxide, and is not particularly limited, but nitrogen is used in terms of safety during operation. It is preferable to carry out in an inert gas atmosphere such as argon gas. Further, these firings can be repeated as many times as necessary.

【0042】焼成後は、適宜冷却を行うが、Feの酸化
を防止するため,冷却中は反応系内を窒素、アルゴン等
の不活性ガス雰囲気又は水素や一酸化炭素等の還元雰囲
気として行うことが好ましい。
After firing, cooling is appropriately performed, but in order to prevent oxidation of Fe, the reaction system should be kept in an inert gas atmosphere such as nitrogen or argon or a reducing atmosphere such as hydrogen or carbon monoxide during cooling. Is preferred.

【0043】かくしてLiFePO4の粒子表面を炭素
質物質で被覆したリチウム鉄リン系複合酸化物炭素複合
体が得られるが、冷却後の該リチウム鉄リン系複合酸化
物炭素複合体は、各粒子同士が結合した不均一な大きさ
のブロック状のものである。なお、このブロック状のリ
チウム鉄リン系複合酸化物炭素複合体の粒子自体は、上
記特定の平均粒径を有するものである。
Thus, a lithium iron phosphorus-based composite oxide / carbon composite in which the particle surface of LiFePO 4 is coated with a carbonaceous material can be obtained. It is a block-shaped object having a non-uniform size and combined with each other. The particles themselves of the block-shaped lithium iron phosphorus-based composite oxide-carbon composite have the above-mentioned specific average particle diameter.

【0044】第四工程は、冷却後のブロック状のリチウ
ム鉄リン系複合酸化物炭素複合体を粉砕処理して所望の
粒度のリチウム鉄リン系複合酸化物炭素複合体を得る工
程である。用いることができる粉砕機は、該リチウム鉄
リン系複合酸化物炭素複合体を粉砕処理できるものであ
れば特に制限されるものではなく、常用の乾式のビーズ
ミルやボールミル等を用いることができる。
The fourth step is a step of pulverizing the cooled block-shaped lithium iron phosphorus complex oxide-carbon composite to obtain a lithium iron phosphorus complex oxide carbon complex having a desired particle size. The crusher that can be used is not particularly limited as long as it can crush the lithium iron phosphorus-based composite oxide-carbon composite, and a conventional dry bead mill, ball mill, or the like can be used.

【0045】粉砕処理後、必要により分級して製品とす
る。かくして得られるリチウム鉄リン系複合酸化物炭素
複合体は、走査型電子顕微鏡写真(SEM)から求めら
れる平均粒径が0.5μm以下、好ましくは0.05〜
0.5μmであり、BET比表面積が10〜100m2
/g、好ましくは30〜70m2/gである。
After the crushing treatment, the product is classified if necessary. The lithium iron phosphorus-based composite oxide-carbon composite thus obtained has an average particle size of 0.5 μm or less, preferably 0.05 to 0.5, as determined from a scanning electron micrograph (SEM).
0.5 μm, BET specific surface area of 10 to 100 m 2
/ G, preferably 30 to 70 m 2 / g.

【0046】本発明にかかるリチウム鉄リン系複合酸化
物炭素複合体は、平均粒径が0.5μm以下の微細な粒
子であるため、焼成後の一連の工程を大気中で行うと水
分を取りこみ該リチウム鉄リン系複合酸化物炭素複合体
の水分量が3000ppm以上に増加し、この水分はリ
チウム二次電池のリチウムと電解液と反応し、充放電特
性を劣化させる原因となる。このため本発明のリチウム
鉄リン系複合酸化物炭素複合体の製造方法において、水
分を低減させるため第四工程後に乾燥を行うか、又は第
四工程の粉砕処理を絶対湿度0.0025kg/kg以
下の雰囲気下で行うかして、該リチウム鉄リン系複合酸
化物炭素複合体に含まれる水分含有量を2000ppm
以下、好ましくは1500ppm以下とすることが好ま
しい。なお、乾燥により水分を除去する方法としては、
特に制限されるものではなく、例えば、真空乾燥等の手
段により行うことができる。一方、当該範囲の絶対湿度
下で粉砕処理を行う方法としては、当該範囲の絶対湿度
の空気を粉砕機に吹き込み粉砕処理を行う方法や、予め
当該範囲の絶対湿度に調製したドライルーム又は不活性
ガス雰囲気中で粉砕処理を行えばよい。
Since the lithium iron phosphorus complex oxide-carbon composite according to the present invention is a fine particle having an average particle size of 0.5 μm or less, if a series of steps after firing is carried out in the atmosphere, water will be taken in. The water content of the lithium iron phosphorus-based composite oxide / carbon composite increases to 3000 ppm or more, and this water reacts with lithium of the lithium secondary battery and the electrolytic solution to cause deterioration of charge / discharge characteristics. Therefore, in the method for producing a lithium iron phosphorus-based composite oxide / carbon composite of the present invention, drying is performed after the fourth step in order to reduce water content, or pulverization treatment in the fourth step is performed at an absolute humidity of 0.0025 kg / kg or less. Or the moisture content in the lithium iron phosphorus-based composite oxide-carbon composite is 2000 ppm.
Hereafter, it is preferably 1500 ppm or less. In addition, as a method of removing water by drying,
It is not particularly limited, and for example, it can be performed by means such as vacuum drying. On the other hand, as a method of performing pulverization treatment under the absolute humidity of the range, a method of performing pulverization treatment by blowing air having an absolute humidity of the range into a pulverizer, or a dry room or an inert gas prepared in advance to the absolute humidity of the range. The crushing treatment may be performed in a gas atmosphere.

【0047】また、本発明のリチウム鉄リン系複合酸化
物炭素複合体の製造方法において必要により行う分級処
理も工業化レベルでは絶対湿度0.0025kg/kg
以下の雰囲気下で行うことが好ましい。
Further, the classification treatment, which is carried out as necessary in the method for producing the lithium iron phosphorus complex oxide-carbon composite of the present invention, is 0.0025 kg / kg in absolute humidity at the industrial level.
It is preferable to carry out under the following atmosphere.

【0048】なお、本発明の製造方法において、水分を
低減させる方法として前記乾燥処理や前記粉砕処理を適
宜組み合わせて用いることができることは言うまでもな
い。
In the production method of the present invention, it goes without saying that the drying treatment and the pulverization treatment can be appropriately combined and used as a method for reducing water content.

【0049】このようにして得られる本発明のリチウム
鉄リン系複合酸化物炭素複合体は、正極、負極、セパレ
ータ、及びリチウム塩を含有する非水電解質からなるリ
チウム二次電池の正極活物質として好適に用いることが
できる。
The lithium iron phosphorus complex oxide-carbon composite of the present invention thus obtained is used as a positive electrode active material for a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt. It can be preferably used.

【0050】本発明に係るリチウム二次電池正極活物質
は、上記リチウム鉄リン系複合酸化物炭素複合体が用い
られる。正極活物質は、後述するリチウム二次電池の正
極合剤、すなわち、正極活物質、導電剤、結着剤、及び
必要に応じてフィラー等とからなる混合物の一原料であ
る。本発明に係るリチウム二次電池正極活物質は、上記
リチウム鉄リン系複合酸化物炭素複合体で、上述したよ
うな好ましい特性を有するものを用いることにより、他
の原料と共に混合して正極合剤を調製する際に混練が容
易であり、また、得られた正極合剤を正極集電体に塗布
する際の塗工性が容易になる。更に、本発明に係るリチ
ウム二次電池正極活物質は,従来のリチウム二次電池の
安全性を更に向上させるため電池性能を損なわない範囲
で、リチウムコバルト系複合酸化物、リチウムニッケル
複合酸化物又はリチウムマンガン系複合酸化物と併用し
て用いることができる。この場合、併用するリチウムコ
バルト系複合酸化物、リチウムニッケル複合酸化物又は
リチウムマンガン系複合酸化物の物性等は特に制限され
るものではないが、平均粒径が1.0〜20μm、好ま
しくは1.0〜15μm、さらに好ましくは2.0〜1
0μmで、BET比表面積が0.1〜2.0m2/g、
好ましくは0.2〜1.5m2/g、さらに好ましくは
0.3〜1.0m2/gであるものが好ましい。
As the lithium secondary battery positive electrode active material according to the present invention, the above lithium iron phosphorus-based composite oxide / carbon composite is used. The positive electrode active material is a positive electrode mixture of a lithium secondary battery described below, that is, one raw material of a mixture of a positive electrode active material, a conductive agent, a binder, and optionally a filler. The lithium secondary battery positive electrode active material according to the present invention is a positive electrode material mixture prepared by mixing with other raw materials by using the lithium iron phosphorus-based composite oxide / carbon composite having the above-mentioned preferable characteristics. The mixture can be easily kneaded when preparing (1), and the coatability when the obtained positive electrode mixture is applied to the positive electrode current collector becomes easy. Furthermore, the lithium secondary battery positive electrode active material according to the present invention is a lithium cobalt-based composite oxide, a lithium nickel composite oxide, or a lithium nickel composite oxide within a range that does not impair battery performance in order to further improve the safety of conventional lithium secondary batteries. It can be used in combination with a lithium manganese-based composite oxide. In this case, the physical properties of the lithium cobalt-based composite oxide, lithium nickel composite oxide, or lithium manganese-based composite oxide used in combination are not particularly limited, but the average particle diameter is 1.0 to 20 μm, preferably 1 0.0 to 15 μm, more preferably 2.0 to 1
0 μm, BET specific surface area of 0.1 to 2.0 m 2 / g,
It is preferably 0.2 to 1.5 m 2 / g, more preferably 0.3 to 1.0 m 2 / g.

【0051】本発明に係るリチウム二次電池は、上記リ
チウム二次電池正極活物質を用いるものであり、正極、
負極、セパレータ、及びリチウム塩を含有する非水電解
質からなる。正極は、例えば、正極集電体上に正極合剤
を塗布乾燥等して形成されるものであり、正極合剤は正
極活物質、導電剤、結着剤、及び必要により添加される
フィラー等からなる。本発明に係るリチウム二次電池
は、正極に正極活物質である前記のリチウム鉄リン系複
合酸化物複合体が均一に塗布されている。
A lithium secondary battery according to the present invention uses the above-mentioned lithium secondary battery positive electrode active material,
It is composed of a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt. The positive electrode is formed by, for example, applying and drying a positive electrode mixture on a positive electrode current collector, and the positive electrode mixture is a positive electrode active material, a conductive agent, a binder, and a filler added as necessary. Consists of. In the lithium secondary battery according to the present invention, the positive electrode is uniformly coated with the above-mentioned lithium iron phosphorus complex oxide composite, which is the positive electrode active material.

【0052】正極集電体としては、構成された電池にお
いて化学変化を起こさない電子伝導体であれば特に制限
されるものでないが、例えば、ステンレス鋼、ニッケ
ル、アルミニウム、チタン、焼成炭素、アルミニウムや
ステンレス鋼の表面にカーボン、ニッケル、チタン、銀
を表面処理させたもの等が挙げられる。これらの材料の
表面を酸化して用いてもよく、表面処理により集電体表
面に凹凸を付けて用いてもよい。また、集電体の形態と
しては、例えば、フォイル、フィルム、シート、ネッ
ト、パンチングされたもの、ラス体、多孔質体、発砲
体、繊維群、不織布の成形体などが挙げられる。集電体
の厚さは特に制限されないが、1〜500μmとするこ
とが好ましい。
The positive electrode current collector is not particularly limited as long as it is an electron conductor that does not cause a chemical change in the constructed battery, and examples thereof include stainless steel, nickel, aluminum, titanium, calcined carbon, aluminum and the like. Examples include stainless steel whose surface is treated with carbon, nickel, titanium, or silver. The surface of these materials may be oxidized and used, or the surface of the current collector may be made uneven by surface treatment. Examples of the form of the current collector include a foil, a film, a sheet, a net, a punched product, a lath body, a porous body, a foam body, a fiber group, and a non-woven fabric molded body. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

【0053】導電剤としては、構成された電池において
化学変化を起こさない電子伝導材料であれば特に限定は
ない。例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボ
ンブラック、アセチレンブラック、ケッチェンブラッ
ク、チャンネルブラック、ファーネスブラック、ランプ
ブラック、サーマルブラック等のカーボンブラック類、
炭素繊維や金属繊維等の導電性繊維類、フッ化カーボ
ン、アルミニウム、ニッケル粉等の金属粉末類、酸化亜
鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チ
タン等の導電性金属酸化物、或いはポリフェニレン誘導
体等の導電性材料が挙げられ、天然黒鉛としては、例え
ば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられ
る。これらは、1種又は2種以上組み合わせて用いるこ
とができる。導電剤の配合比率は、正極合剤中1〜50
重量%、好ましくは2〜30重量%である。
The conductive agent is not particularly limited as long as it is an electron conductive material that does not chemically change in the constructed battery. For example, graphite such as natural graphite and artificial graphite, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, carbon black such as thermal black,
Conductive fibers such as carbon fibers and metal fibers, metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, or A conductive material such as a polyphenylene derivative may be used, and examples of natural graphite include scaly graphite, scaly graphite, and earthy graphite. These can be used alone or in combination of two or more. The compounding ratio of the conductive agent is 1 to 50 in the positive electrode mixture.
%, Preferably 2 to 30% by weight.

【0054】結着剤としては、例えば、デンプン、ポリ
フッ化ビニリデン、ポリビニルアルコール、カルボキシ
メチルセルロース、ヒドロキシプロピルセルロース、再
生セルロース、ジアセチルセルロース、ポリビニルピロ
リドン、テトラフロオロエチレン、ポリエチレン、ポリ
プロピレン、エチレン−プロピレン−ジエンターポリマ
ー(EPDM)、スルホン化EPDM、スチレンブタジ
エンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキ
サフルオロエチレン共重合体、テトラフルオロエチレン
−ヘキサフルオロプロピレン共重合体、テトラフルオロ
エチレン−パーフルオロアルキルビニルエーテル共重合
体、フッ化ビニリデン−ヘキサフルオロプロピレン共重
合体、フッ化ビニリデン−クロロトリフルオロエチレン
共重合体、エチレン−テトラフルオロエチレン共重合
体、ポリクロロトリフルオロエチレン、フッ化ビニリデ
ン−ペンタフルオロプロピレン共重合体、プロピレン−
テトラフルオロエチレン共重合体、エチレン−クロロト
リフルオロエチレン共重合体、フッ化ビニリデン−ヘキ
サフルオロプロピレン−テトラフルオロエチレン共重合
体、フッ化ビニリデン−パーフルオロメチルビニルエー
テル−テトラフルオロエチレン共重合体、エチレン−ア
クリル酸共重合体またはその(Na+)イオン架橋体、
エチレン−メタクリル酸共重合体またはその(Na+)
イオン架橋体、エチレン−アクリル酸メチル共重合体ま
たはその(Na+)イオン架橋体、エチレン−メタクリ
ル酸メチル共重合体またはその(Na+)イオン架橋
体、ポリエチレンオキシドなどの多糖類、熱可塑性樹
脂、ゴム弾性を有するポリマー等が挙げられ、これらは
1種または2種以上組み合わせて用いることができる。
なお、多糖類のようにリチウムと反応するような官能基
を含む化合物を用いるときは、例えば、イソシアネート
基のような化合物を添加してその官能基を失活させるこ
とが好ましい。結着剤の配合比率は、正極合剤中1〜5
0重量%、好ましくは5〜15重量%である。
Examples of the binder include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene. Enter polymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluororubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer , Vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene - tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride - pentafluoro propylene copolymer, a propylene -
Tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene- Acrylic acid copolymer or its (Na +) ion cross-linked product,
Ethylene-methacrylic acid copolymer or its (Na +)
Ion cross-linked product, ethylene-methyl acrylate copolymer or its (Na +) ion cross-linked product, ethylene-methyl methacrylate copolymer or its (Na +) ion cross-linked product, polysaccharides such as polyethylene oxide, thermoplastic resin, rubber Examples thereof include polymers having elasticity, and these can be used alone or in combination of two or more.
When a compound containing a functional group that reacts with lithium, such as a polysaccharide, is used, it is preferable to add a compound such as an isocyanate group to deactivate the functional group. The compounding ratio of the binder is 1 to 5 in the positive electrode mixture.
It is 0% by weight, preferably 5 to 15% by weight.

【0055】フィラーは正極合剤において正極の体積膨
張等を抑制するものであり、必要により添加される。フ
ィラーとしては、構成された電池において化学変化を起
こさない繊維状材料であれば何でも用いることができる
が、例えば、ポリプロピレン、ポリエチレン等のオレフ
ィン系ポリマー、ガラス、炭素等の繊維が用いられる。
フィラーの添加量は特に限定されないが、正極合剤中0
〜30重量%が好ましい。
The filler suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added if necessary. As the filler, any fibrous material that does not cause a chemical change in the constructed battery can be used. For example, olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon are used.
The amount of the filler added is not particularly limited, but is 0 in the positive electrode mixture.
-30% by weight is preferred.

【0056】負極は、負極集電体上に負極材料を塗布乾
燥等して形成される。負極集電体としては、構成された
電池において化学変化を起こさない電子伝導体であれは
特に制限されるものでないが、例えば、ステンレス鋼、
ニッケル、銅、チタン、アルミニウム、焼成炭素、銅や
ステンレス鋼の表面にカーボン、ニッケル、チタン、銀
を表面処理させたもの、及び、アルミニウム−カドミウ
ム合金等が挙げられる。また、これらの材料の表面を酸
化して用いてもよく、表面処理により集電体表面に凹凸
を付けて用いてもよい。また、集電体の形態としては、
例えば、フォイル、フィルム、シート、ネット、パンチ
ングされたもの、ラス体、多孔質体、発砲体、繊維群、
不織布の成形体などが挙げられる。集電体の厚さは特に
制限されないが、1〜500μmとすることが好まし
い。
The negative electrode is formed by applying a negative electrode material on the negative electrode current collector and drying it. The negative electrode current collector is not particularly limited as long as it is an electron conductor that does not undergo a chemical change in the constructed battery, but, for example, stainless steel,
Examples thereof include nickel, copper, titanium, aluminum, calcined carbon, copper or stainless steel whose surface is treated with carbon, nickel, titanium and silver, and an aluminum-cadmium alloy. Further, the surface of these materials may be used after being oxidized, or the surface of the current collector may be made uneven by surface treatment. In addition, as the form of the current collector,
For example, foil, film, sheet, net, punched material, lath, porous body, foam, fiber group,
Examples include non-woven fabric moldings. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

【0057】負極材料としては、特に制限されるもので
はないが、例えば、炭素質材料、金属複合酸化物、リチ
ウム金属、リチウム合金、ケイ素系合金、錫系合金、金
属酸化物、導電性高分子、カルコゲン化合物、Li−C
o−Ni系材料等が挙げられる。炭素質材料としては、
例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げら
れる。金属複合酸化物としては、例えば、Snp M1
−pM2 q Or (式中、M1 はMn、Fe、Pb及び
Geから選ばれる1種以上の元素を示し、M2はAl、
B、P、Si、周期律表第1族、第2族、第3族及びハ
ロゲン元素から選ばれる1種以上の元素を示し、0<p
≦1、1≦q≦3、1≦r≦8を示す。)、LixFe
23 (0≦x≦1)、LixWO2(0≦x≦1)等の
化合物が挙げられる。金属酸化物としては、GeO、G
eO2、SnO、SnO2、PbO、PbO2、Pb
23、Pb34、Sb23、Sb24、Sb25、Bi
23、Bi24、Bi25等が挙げられる。導電性高分
子としては、ポリアセチレン、ポリ−p−フェニレン等
が挙げられる。
The negative electrode material is not particularly limited, but examples thereof include carbonaceous materials, metal composite oxides, lithium metal, lithium alloys, silicon alloys, tin alloys, metal oxides, and conductive polymers. , Chalcogen compounds, Li-C
Examples include o-Ni-based materials. As a carbonaceous material,
For example, a non-graphitizable carbon material, a graphite-based carbon material and the like can be mentioned. As the metal complex oxide, for example, Snp M 1 1
-PM 2 q Or (In the formula, M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, M 2 represents Al,
B, P, Si, one or more kinds of elements selected from Group 1, Group 2 and Group 3 of the periodic table and a halogen element, and 0 <p
≦ 1, 1 ≦ q ≦ 3, 1 ≦ r ≦ 8 are shown. ), LixFe
Examples thereof include compounds such as 2 O 3 (0 ≦ x ≦ 1) and LixWO 2 (0 ≦ x ≦ 1). As the metal oxide, GeO, G
eO 2 , SnO, SnO 2 , PbO, PbO 2 , Pb
2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi
2 O 3, Bi 2 O 4 , Bi 2 O 5 and the like. Examples of the conductive polymer include polyacetylene and poly-p-phenylene.

【0058】セパレータとしては、大きなイオン透過度
を持ち、所定の機械的強度を持った絶縁性の薄膜が用い
られる。耐有機溶剤性と疎水性からポリプロピレンなど
のオレフィン系ポリマーあるいはガラス繊維あるいはポ
リエチレンなどからつくられたシートや不織布が用いら
れる。セパレーターの孔径としては、一般的に電池用と
して有用な範囲であればよく、例えば、0.01〜10
μm である。セパレターの厚みとしては、一般的な電池
用の範囲であればよく、例えば5〜300μmである。
なお、後述する電解質としてポリマーなどの固体電解質
が用いられる場合には、固体電解質がセパレーターを兼
ねるようなものであってもよい。
As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. A sheet or non-woven fabric made of an olefin polymer such as polypropylene or glass fiber or polyethylene is used because of its resistance to organic solvents and hydrophobicity. The pore size of the separator may be in a range generally useful for batteries, and for example, 0.01 to 10
μm. The thickness of the separator may be in the range for general batteries, and is, for example, 5 to 300 μm.
When a solid electrolyte such as a polymer is used as the electrolyte described below, the solid electrolyte may also serve as the separator.

【0059】リチウム塩を含有する非水電解質は、非水
電解質とリチウム塩とからなるものである。非水電解質
としては、非水電解液、有機固体電解質、無機固体電解
質が用いられる。非水電解液としては、例えば、N−メ
チル−2−ピロリジノン、プロピレンカーボネート、エ
チレンカーボネート、ブチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、γ−ブチロラク
トン、1,2−ジメトキシエタン、テトラヒドロキシフ
ラン、2−メチルテトラヒドロフラン、ジメチルスルフ
ォキシド、1,3−ジオキソラン、ホルムアミド、ジメ
チルホルムアミド、ジオキソラン、アセトニトリル、ニ
トロメタン、蟻酸メチル、酢酸メチル、リン酸トリエス
テル、トリメトキシメタン、ジオキソラン誘導体、スル
ホラン、メチルスルホラン、3−メチル−2−オキサゾ
リジノン、1,3−ジメチル−2−イミダゾリジノン、
プロピレンカーボネート誘導体、テトラヒドロフラン誘
導体、ジエチルエーテル、1,3−プロパンサルトン、
プロピオン酸メチル、プロピオン酸エチル等の非プロト
ン性有機溶媒の1種または2種以上を混合した溶媒が挙
げられる。
The non-aqueous electrolyte containing a lithium salt is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolytic solution, an organic solid electrolyte, or an inorganic solid electrolyte is used. Examples of the non-aqueous electrolytic solution include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran and 2-methyl. Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 3-methyl -2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone,
Propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3-propane sultone,
An aprotic organic solvent such as methyl propionate or ethyl propionate may be used, or a mixture of two or more aprotic organic solvents may be mentioned.

【0060】有機固体電解質としては、例えば、ポリエ
チレン誘導体、ポリエチレンオキサイド誘導体又はこれ
を含むポリマー、ポリプロピレンオキサイド誘導体又は
これを含むポリマー、リン酸エステルポリマー、ポリホ
スファゼン、ポリアジリジン、ポリエチレンスルフィ
ド、ポリビニルアルコール、ポリフッ化ビニリデン、ポ
リヘキサフルオロプロピレン等のイオン性解離基を含む
ポリマー、イオン性解離基を含むポリマーと上記非水電
解液の混合物等が挙げられる。
Examples of the organic solid electrolyte include polyethylene derivatives, polyethylene oxide derivatives or polymers containing the same, polypropylene oxide derivatives or polymers containing the same, phosphate ester polymers, polyphosphazenes, polyaziridines, polyethylene sulfides, polyvinyl alcohols, polyfluorides. Examples thereof include polymers containing an ionic dissociative group such as vinylidene chloride and polyhexafluoropropylene, and a mixture of the polymer containing an ionic dissociative group and the above non-aqueous electrolyte.

【0061】無機固体電解質としては、Liの窒化物、
ハロゲン化物、酸素酸塩等を用いることができ、例え
ば、Li3N、LiI、Li5NI2、Li3N−LiI−
LiOH、LiSiO4、LiSiO4−LiI−LiO
H、Li2SiS3、Li4SiO4、Li4SiO4−Li
I−LiOH、Li3PO4−Li2S−SiS2、硫化リ
ン化合物等が挙げられる。
As the inorganic solid electrolyte, Li nitride,
Can be used a halide, salt oxygen acid, for example, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-
LiOH, LiSiO 4 , LiSiO 4 -LiI-LiO
H, Li 2 SiS 3, Li 4 SiO 4, Li 4 SiO 4 -Li
I-LiOH, Li 3 PO 4 -Li 2 S-SiS 2, and the like phosphorus sulfide compound.

【0062】リチウム塩としては、上記非水電解質に溶
解するものが用いられ、例えば、LiCl、LiBr、
LiI、LiClO4 、LiBF6 、LiB10Cl10
LiPF6 、LiCF3 SO3 、LiCF3 CO2 、L
iAsF6 、LiSbF6 、LiB10Cl10、LiAl
Cl4 、CH3SO3Li、CF3SO3Li、(CF3
22NLi、クロロボランリチウム、低級脂肪族カル
ボン酸リチウム、四フェニルホウ酸リチウム、イミド類
等の1種または2種以上を混合した塩が挙げられる。
As the lithium salt, one which is soluble in the above non-aqueous electrolyte is used, and examples thereof include LiCl, LiBr,
LiI, LiClO 4 , LiBF 6 , LiB 10 Cl 10 ,
LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , L
iAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAl
Cl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 S
O 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carboxylate, lithium tetraphenylborate, imides, and the like, and salts of one kind or a mixture of two or more kinds thereof may be mentioned.

【0063】また、非水電解質には、放電、充電特性、
難燃性を改良する目的で、以下に示す化合物を添加する
ことができる。例えば、ピリジン、トリエチルホスファ
イト、トリエタノールアミン、環状エーテル、エチレン
ジアミン、n−グライム、ヘキサリン酸トリアミド、ニ
トロベンゼン誘導体、硫黄、キノンイミン染料、N−置
換オキサゾリジノンとN,N−置換イミダゾリジン、エ
チレングリコールジアルキルエーテル、アンモニウム
塩、ポリエチレングルコール、ピロール、2−メトキシ
エタノール、三塩化アルミニウム、導電性ポリマー電極
活物質のモノマー、トリエチレンホスホンアミド、トリ
アルキルホスフィン、モルフォリン、カルボニル基を持
つアリール化合物、ヘキサメチルホスホリックトリアミ
ドと4−アルキルモルフォリン、二環性の三級アミン、
オイル、ホスホニウム塩及び三級スルホニウム塩、ホス
ファゼン、炭酸エステル等が挙げられる。また、電解液
を不燃性にするために含ハロゲン溶媒、例えば、四塩化
炭素、三弗化エチレンを電解液に含ませることができ
る。また、高温保存に適性を持たせるために電解液に炭
酸ガスを含ませることができる。
In addition, the non-aqueous electrolyte contains discharge, charge characteristics,
The following compounds can be added for the purpose of improving flame retardancy. For example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether. , Ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compound having carbonyl group, hexamethylphosphine Holic triamide and 4-alkylmorpholine, bicyclic tertiary amine,
Examples thereof include oils, phosphonium salts and tertiary sulfonium salts, phosphazenes, carbonates and the like. Further, in order to make the electrolytic solution nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride can be contained in the electrolytic solution. Further, the electrolytic solution may contain carbon dioxide gas in order to have suitability for high temperature storage.

【0064】本発明に係るリチウム二次電池は、電池性
能、特に負荷特性、サイクル特性の優れたリチウム二次
電池となる。電池の形状はボタン、シート、シリンダ
ー、角、コイン型等いずれの形状であってもよい。
The lithium secondary battery according to the present invention is a lithium secondary battery having excellent battery performance, particularly load characteristics and cycle characteristics. The shape of the battery may be any shape such as a button, a sheet, a cylinder, a corner, or a coin shape.

【0065】本発明にかかるリチウム鉄リン系複合酸化
物複合体は、特に粉砕等の加工性及び反応性に優れたリ
ン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)とリン酸
リチウム(Li3PO4)及び炭素質物質前駆体とを含有する
混合物を強力なせん断力を有する粉砕装置で粉砕処理を
施して比容積が1.5ml/g以下、好ましくは1.0
〜1.4ml/gとした反応前駆体を用いて、これを焼
成することにより、単相のLiFePO4の粒子表面を
炭素質物質で均一に被覆し、リン酸第一鉄含水塩とリン
酸リチウムとを主たる反応原料とする系において、従来
になく、微細な平均粒径が0.5μm以下、好ましくは
0.05〜0.5μmのリチウム鉄リン系複合酸化物炭
素複合体とすることができる。本発明のリチウム鉄リン
系複合酸化物炭素複合体は、このような粒度特性を有す
るためLiFePO4粒子内でリチウムイオンの移動距
離が短く、電池内部の抵抗を低くすることができ、ま
た、リチウムイオンを脱挿入することができる粒子表面
の面積が増加することから、これをリチウム二次電池の
正極活物質として用いることによりリチウム二次電池の
性能、特に放電容量、更にはサイクル特性、負荷特性に
優れた二次電池とすることができる。また、該リチウム
鉄リン系複合酸化物炭素複合体は、核粒子のLiFeP
4の粒子表面を炭素質物質により均一に被覆されてい
るためLiFePO4粒子から正極集電体への電子の移
動が速やかに行えるようになり、正極全体としての導電
性を高めることができる。更に、該リチウム鉄リン系複
合酸化物炭素複合体の水分含有量を2000ppm以
下、好ましくは1500ppm以下とすることにより、
水分による電解液の分解等を抑制し、リチウム二次電池
の充放電特性を向上させることができる。
The lithium iron phosphorus complex oxide composite according to the present invention is a ferrous phosphate hydrate crystal (Fe 3 (PO 4 ) 2 .8H 2 O) which is particularly excellent in workability and reactivity such as pulverization. ), Lithium phosphate (Li 3 PO 4 ) and a carbonaceous material precursor are pulverized by a pulverizer having a strong shearing force to have a specific volume of 1.5 ml / g or less, preferably 1 .0
By using a reaction precursor of about 1.4 ml / g and calcining the same, the surface of the single-phase LiFePO 4 particles is uniformly coated with the carbonaceous material, and the ferrous phosphate hydrate and the phosphoric acid are used. In a system using lithium as a main reaction raw material, a lithium iron phosphorus-based composite oxide-carbon composite having a fine average particle size of 0.5 μm or less, preferably 0.05 to 0.5 μm, which is unprecedented, can be obtained. it can. Since the lithium iron phosphorus-based composite oxide-carbon composite of the present invention has such particle size characteristics, the migration distance of lithium ions in the LiFePO 4 particles is short, and the internal resistance of the battery can be lowered. Since the area of the particle surface where ions can be de-inserted increases, using this as the positive electrode active material of a lithium secondary battery improves the performance of the lithium secondary battery, especially the discharge capacity, and further the cycle characteristics and load characteristics. The secondary battery can be excellent. Further, the lithium iron phosphorus-based composite oxide-carbon composite has a core particle of LiFeP.
Since the surface of the particles of O 4 is uniformly covered with the carbonaceous substance, the electrons can be quickly transferred from the LiFePO 4 particles to the positive electrode current collector, and the conductivity of the entire positive electrode can be increased. Furthermore, by setting the water content of the lithium iron phosphorus-based composite oxide-carbon composite to 2000 ppm or less, preferably 1500 ppm or less,
It is possible to suppress decomposition of the electrolytic solution due to water and improve the charge / discharge characteristics of the lithium secondary battery.

【0066】本発明に係るリチウム二次電池の用途は、
特に限定されないが、例えば、ノートパソコン、ラップ
トップパソコン、ポケットワープロ、携帯電話、コード
レス子機、ポータブルCDプレーヤー、ラジオ、液晶テ
レビ、バックアップ電源、電気シェーバー、メモリーカ
ード、ビデオムービー等の電子機器、自動車、電動車
両、ゲーム機器等の民生用電子機器が挙げられる。
The use of the lithium secondary battery according to the present invention is as follows.
For example, a laptop computer, a laptop computer, a pocket word processor, a mobile phone, a cordless handset, a portable CD player, a radio, an LCD TV, a backup power supply, an electric shaver, a memory card, an electronic device such as a video movie, an automobile, etc. , Electric vehicles, game machines, and other consumer electronic devices.

【0067】[0067]

【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はこれらに限定されるものではない。 <リン酸第一鉄含水塩の合成>Na含有量13ppm、Ti含有
量1200ppm、Mn3900ppm、Zn96ppm、Co29ppm、Cr4ppm、Ni
18ppm、Cu1ppm以下を含有する硫酸第一鉄7水和物(FeS
O4・7H2O)907g(3モル)と75%リン酸(H3PO4)261g
(2モル)を,水3Lに溶解させ,混合溶液を作成した
(温度17℃、pH1.6).この混合溶液に,16 %水酸化
ナトリウム(NaOH)水溶液1500 ml(6 モル)を83 m
l/minの滴下速度で18分で滴下し、リン酸第一鉄を
析出させた(温度31℃、pH6.7)。次に、ろ過してリ
ン酸第一鉄を回収し、この回収したリン酸第一鉄を水4.
5Lで入念に洗浄した。次いで、洗浄後のリン酸第一鉄
を温度50℃で23時間乾燥し、乾燥品490gを得た。得ら
れた乾燥品をX線回折で分析したところJCPDSカー
ド番号30−662と回折パターンが一致していること
から、この乾燥品はFe3(PO42・8H2Oであるこ
とを確認した(収率98%)。得られたFe3(PO4
2・8H2Oの諸物性値を表1に示す。また、得られたF
3(PO42・8H2Oを線源としてCuKα線を用いて
X線回折分析を行い2θ=13.1°近傍のピーク(020
面)の半値幅を測定した。なお、Na、Ti、Mn、Z
n、Cr、Ni、Cu、Coの含有量は、ICP分光法に
より求めた。また、SO4含有量はICP分光法によるS原
子濃度測定結果を換算して求め、該乾燥品のP含有量を
吸光光度法により求めた。また、平均粒径はレーザー回
折法により求めた。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. <Synthesis of ferrous phosphate hydrous salt> Na content 13ppm, Ti content 1200ppm, Mn3900ppm, Zn96ppm, Co29ppm, Cr4ppm, Ni
Ferrous sulfate heptahydrate containing 18ppm, Cu 1ppm or less (FeS
O 4 · 7H 2 O) 907g (3 moles) of 75% phosphoric acid (H 3 PO 4) 261g
(2 mol) was dissolved in 3 L of water to prepare a mixed solution (temperature 17 ° C, pH 1.6). To this mixed solution, 1500 ml (6 mol) of 16% aqueous sodium hydroxide (NaOH) solution (83 m) was added.
The solution was added dropwise at a dropping rate of 1 / min for 18 minutes to precipitate ferrous phosphate (temperature 31 ° C., pH 6.7). Next, the ferrous phosphate was recovered by filtration, and the recovered ferrous phosphate was mixed with water 4.
It was thoroughly washed with 5 L. Then, the washed ferrous phosphate was dried at a temperature of 50 ° C. for 23 hours to obtain 490 g of a dried product. The resulting dried product from that JCPDS card No. 30-662 and diffraction pattern was analyzed by X-ray diffraction are consistent, confirm that this dry product is Fe 3 (PO 4) is 2 · 8H 2 O (Yield 98%). Obtained Fe 3 (PO 4 )
Various physical properties of the 2 · 8H 2 O shown in Table 1. Also, the obtained F
An X-ray diffraction analysis was carried out using CuKα rays with e 3 (PO 4 ) 2 8H 2 O as a radiation source, and a peak (020
The full width at half maximum of the (surface) was measured. In addition, Na, Ti, Mn, Z
The contents of n, Cr, Ni, Cu and Co were obtained by ICP spectroscopy. Further, the SO 4 content was determined by converting the S atom concentration measurement result by ICP spectroscopy, and the P content of the dried product was determined by the absorptiometry method. The average particle size was determined by the laser diffraction method.

【表1】 [Table 1]

【0068】<リン酸リチウム>市販のリン酸リチウム
(Li3PO4)(FMC社製)を用いた。その品位を表
2に示す。なお、Na、Ti、Mn、Zn、Cr、N
i、Cu、Coの含有量は、ICP分光法により求めた。
また、平均粒径はレーザー回折法により求めた。
<Lithium Phosphate> Commercially available lithium phosphate (Li 3 PO 4 ) (manufactured by FMC) was used. The quality is shown in Table 2. In addition, Na, Ti, Mn, Zn, Cr, N
The contents of i, Cu and Co were determined by ICP spectroscopy.
The average particle size was determined by the laser diffraction method.

【表2】 [Table 2]

【0069】<ポリエチレングリコール>平均分子量1
900〜2100のポリエチレングリコール(三洋化成
工業社製;商品名 PEG2000)をミキサーで粉砕
し走査型電子顕微鏡写真(SEM)から求められる平均
粒径が0.1μmのものを調製した。
<Polyethylene glycol> Average molecular weight 1
900-2100 polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd .; trade name PEG2000) was crushed with a mixer to prepare a particle having an average particle size of 0.1 μm obtained from a scanning electron micrograph (SEM).

【0070】実施例1 前記で調製したリン酸第一鉄含水塩試料(Fe3(P
42・8H2O)10kgと前記のリン酸リチウム
(Li3PO4)2.4kg及び前記のポリエチレングリ
コール3kgをヘンシェルミキサーにより十分混合し
た。次いで、この混合物を乾式ビーズミル装置を用いて
粉砕処理し、反応前駆体を得た。得られた反応前駆体の
比容積を求めその結果を表3に示した。また、乾式ビー
ズミル装置の条件は以下のとおりである。 ・流動媒体;アルミナビーズ(平均粒径5mm) ・空間容積;64% ・周速度;5.2m/s ・サンプルの装置への供給速度;5.0kg/h 次いで、反応前駆体を窒素雰囲気下に600℃で5時間
焼成し、冷却後、粉砕、分級して炭素質物質を被覆した
LiFePO4を得た。得られた炭素質物質を被覆した
LiFePO4の主物性値を表4に示す。なお、Na、
Ti、Mn、Zn、Cr、Ni、Cu、Coの含有量
は、ICP分光法により求めた。また、SO4含有量はICP
分光法によるS原子濃度測定結果を換算して求めた。平
均粒径は、走査型電子顕微鏡写真(SEM)により求め
た。また、リチウム鉄リン系複合酸化物炭素複合体中の
C原子の量を全有機体炭素計(島津製作所社製、TOC−
5000A)により測定した。また、水分含有量はカー
ルフィッシャー滴定法により250℃水分気化法で求め
た。また、反応前駆体の比容積は、50mlのメスシリ
ンダーにサンプル10gをいれ、ユアサアイオニクス
(株)製、DUAL AUTOTAP装置にセットし、
500回タップした後、容積を読みとり下記式により比
容積を求めた。
Example 1 Ferrous phosphate hydrate salt sample (Fe 3 (P
O 4) was thoroughly mixed by 2 · 8H 2 O) 10kg and the lithium phosphate (Li 3 PO 4) 2.4kg and Henschel mixer the polyethylene glycol 3kg of. Next, this mixture was pulverized using a dry bead mill to obtain a reaction precursor. The specific volume of the obtained reaction precursor was determined and the results are shown in Table 3. The conditions of the dry bead mill are as follows. -Fluid medium; Alumina beads (average particle size: 5 mm) -Space volume: 64% -Peripheral velocity: 5.2 m / s-Supply rate of sample to the apparatus: 5.0 kg / h Then, the reaction precursor under nitrogen atmosphere Then, it was baked at 600 ° C. for 5 hours, cooled, pulverized and classified to obtain LiFePO 4 coated with a carbonaceous material. Table 4 shows main physical property values of LiFePO 4 coated with the obtained carbonaceous material. In addition, Na,
The contents of Ti, Mn, Zn, Cr, Ni, Cu and Co were determined by ICP spectroscopy. Also, SO 4 content is ICP
It was determined by converting the S atom concentration measurement result by spectroscopy. The average particle size was determined by scanning electron micrograph (SEM). In addition, the amount of C atoms in the lithium iron phosphorus-based composite oxide-carbon composite was measured by a total organic carbon meter (manufactured by Shimadzu Corporation, TOC-
5000A). The water content was determined by the Karl Fischer titration method at 250 ° C. water vaporization method. Further, the specific volume of the reaction precursor was set in a Dual Auto Tap device manufactured by Yuasa Ionics Co., Ltd. by putting 10 g of the sample in a 50 ml graduated cylinder.
After tapping 500 times, the volume was read and the specific volume was obtained by the following formula.

【数2】 (式中、F;受器内の処理した試料の質量(g)、V;
タップ後の試料の容量(ml)を示す。)
[Equation 2] (In the formula, F; mass (g) of the treated sample in the receiver, V;
The volume (ml) of the sample after tapping is shown. )

【0071】実施例2 前記で調製したリン酸第一鉄含水塩(Fe3(PO42
・8H2O)10kgと前記のリン酸リチウム(Li3
4)2.4kg及び前記のポリエチレングリコール3
kgをヘンシェルミキサーにより十分混合した。次い
で、この混合物を乾式ビーズミル装置を用いて粉砕処理
し、反応前駆体を得た。得られた反応前駆体を実施例1
と同じ手法で比容積を求めその結果を表3に示した。ま
た、乾式ビーズミル装置の条件は以下のとおりである。 ・流動媒体;アルミナビーズ(平均粒径8mm) ・空間容積;75% ・周速度;5.2m/s ・サンプルの装置への供給速度;2.1kg/h 次に、この反応前駆体10kgをハンドプレスにより4
4MPaでプレス成形した。次いで、このプレス成形品
を窒素雰囲気下に600℃で5時間焼成し、冷却後、粉
砕、分級して炭素質物質を被覆したLiFePO4を得
た。得られたリチウム鉄リン系複合酸化物炭素複合体の
平均粒径、BET比表面積、Na、Ti、Mn、Zn、
Cr、Ni、Cu、Co、SO4、C原子の含有量及び
水分含有量を実施例1と同様な手法で求めその結果を表
4に示す。
Example 2 Ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 prepared above
・ 8H 2 O) 10 kg and the above lithium phosphate (Li 3 P)
O 4 ) 2.4 kg and the above polyethylene glycol 3
kg was thoroughly mixed with a Henschel mixer. Next, this mixture was pulverized using a dry bead mill to obtain a reaction precursor. The obtained reaction precursor was used in Example 1.
Specific volume was determined by the same method as in Table 3 and the results are shown in Table 3. The conditions of the dry bead mill are as follows. -Fluid medium; Alumina beads (average particle size 8 mm) -Space volume; 75% -Peripheral velocity; 5.2 m / s-Supply rate of sample to device; 2.1 kg / h Next, 10 kg of this reaction precursor 4 by hand press
Press molding was performed at 4 MPa. Next, this press-molded product was fired at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, pulverized and classified to obtain LiFePO 4 coated with a carbonaceous substance. The average particle diameter, BET specific surface area, Na, Ti, Mn, Zn of the obtained lithium iron phosphorus-based composite oxide-carbon composite,
The contents of Cr, Ni, Cu, Co, SO 4 , and C atoms and the water content were determined by the same method as in Example 1, and the results are shown in Table 4.

【0072】実施例3 前記リン酸第一鉄含水塩試料A(Fe3(PO42・8
2O)10kgと前記のリン酸リチウム(Li3
4)2.4kgをヘンシェルミキサーにより十分混合
した。次いで、この混合品を水10Lに前記のポリエチ
レングリコール3kgを溶解した溶液に攪拌下に1時間
浸漬し、次いで、減圧下に乾燥して溶媒を除去した。次
いで、この混合物を乾式ビーズミル装置を用いて粉砕処
理した。得られた反応前駆体を実施例1と同じ手法で比
容積を求めその結果を表3に示した。また、乾式ビーズ
ミル装置の条件は以下のとおりである。 ・流動媒体;アルミナビーズ(平均粒径8mm) ・空間容積;75% ・周速度;4.7m/s ・サンプルの装置への供給速度;2.7kg/h 次に、この反応前駆体10kgをハンドプレスにより4
4MPaでプレス成形した。次いで、このプレス成形品
を窒素雰囲気下に600℃で5時間焼成し、冷却後、粉
砕、分級して炭素質物質を被覆したLiFePO4を得
た。得られたリチウム鉄リン系複合酸化物炭素複合体の
平均粒径、BET比表面積、Na、Ti、Mn、Zn、
Cr、Ni、Cu、Co、SO4、C原子の含有量及び
水分含有量を実施例1と同様な手法で求めその結果を表
4に示す。
[0072] Example 3 the ferrous phosphate hydrate Sample A (Fe 3 (PO 4) 2 · 8
H 2 O) 10 kg and the above-mentioned lithium phosphate (Li 3 P
2.4 kg of O 4 ) was thoroughly mixed with a Henschel mixer. Next, this mixed product was immersed in a solution prepared by dissolving 3 kg of the polyethylene glycol in 10 L of water under stirring for 1 hour, and then dried under reduced pressure to remove the solvent. Then, this mixture was pulverized using a dry bead mill device. The specific volume of the obtained reaction precursor was determined by the same method as in Example 1, and the results are shown in Table 3. The conditions of the dry bead mill are as follows. -Fluid medium; Alumina beads (average particle size 8 mm) -Space volume; 75% -Peripheral velocity; 4.7 m / s-Supply speed of sample to device; 2.7 kg / h Next, 10 kg of this reaction precursor 4 by hand press
Press molding was performed at 4 MPa. Next, this press-molded product was fired at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, pulverized and classified to obtain LiFePO 4 coated with a carbonaceous substance. The average particle diameter, BET specific surface area, Na, Ti, Mn, Zn of the obtained lithium iron phosphorus-based composite oxide-carbon composite,
The contents of Cr, Ni, Cu, Co, SO 4 , and C atoms and the water content were determined by the same method as in Example 1, and the results are shown in Table 4.

【0073】比較例1 実施例1において、乾式ビーズミル装置の条件を ・流動媒体;アルミナビーズ(平均粒径10mm) ・空間容積;75% ・周速度;4.2m/s ・装置へのサンプルの供給速度;8.0kg/h とした以外は実施例1と同じ条件にてリチウム鉄リン系
複合酸化物炭素複合体を得た。また、得られた反応前駆
体の比容積を求めその結果を表3に示した。リチウム鉄
リン系複合酸化物炭素複合体の平均粒径、BET比表面
積、Na、Ti、Mn、Zn、Cr、Ni、Cu、C
o、SO4、C原子の含有量及び水分含有量を実施例1
と同様な手法で求めその結果を表3、表4に示す。
Comparative Example 1 In Example 1, the conditions of the dry bead mill were as follows: Fluid medium: Alumina beads (average particle size 10 mm) Space volume: 75% Peripheral velocity: 4.2 m / s A lithium iron phosphorus complex oxide-carbon composite was obtained under the same conditions as in Example 1 except that the supply rate was 8.0 kg / h. Further, the specific volume of the obtained reaction precursor was determined and the results are shown in Table 3. Average particle size, BET specific surface area, Na, Ti, Mn, Zn, Cr, Ni, Cu, C of lithium iron phosphorus-based composite oxide-carbon composite
o, SO 4 , the content of C atoms and the water content in Example 1
Table 3 and Table 4 show the results obtained by the same method as above.

【0074】比較例2 実施例2において、乾式ビーズミル装置の条件を ・流動媒体;アルミナビーズ(平均粒径8mm) ・空間容積;66% ・周速度;5.2m/s ・装置へのサンプルの供給速度;5.0kg/h とした以外は実施例2と同じ条件にてリチウム鉄リン系
複合酸化物炭素複合体を得た。また、得られた反応前駆
体の比容積を求めその結果を表3に示した。リチウム鉄
リン系複合酸化物炭素複合体の平均粒径、BET比表面
積、Na、Ti、Mn、Zn、Cr、Ni、Cu、C
o、SO4、C原子の含有量及び水分含有量を実施例1
と同様な手法で求めその結果を表3、表4に示す。
Comparative Example 2 The conditions of the dry bead mill apparatus in Example 2 were: -Fluid medium; Alumina beads (average particle size 8 mm) -Space volume; 66% -Peripheral velocity: 5.2 m / s-Sample to the apparatus A lithium iron phosphorus complex oxide-carbon composite was obtained under the same conditions as in Example 2 except that the supply rate was 5.0 kg / h. Further, the specific volume of the obtained reaction precursor was determined and the results are shown in Table 3. Average particle size, BET specific surface area, Na, Ti, Mn, Zn, Cr, Ni, Cu, C of lithium iron phosphorus-based composite oxide-carbon composite
o, SO 4 , the content of C atoms and the water content in Example 1
Table 3 and Table 4 show the results obtained by the same method as above.

【0075】[0075]

【表3】 [Table 3]

【0076】[0076]

【表4】 注)表中のC原子の含有量は、LiFePO4に対するC原子の
量を示す。
[Table 4] Note) The content of C atoms in the table indicates the amount of C atoms with respect to LiFePO 4 .

【0077】<電池性能試験> (I)リチウム二次電池の作製;上記のように製造した
実施例1〜3及び比較例1〜2のリチウム鉄リン系複合
酸化物炭素複合体を91重量%、黒鉛粉末6重量%、ポ
リフッ化ビニリデン3重量%を混合して正極剤とし、こ
れをN−メチル−2−ピロリジノンに分散させて混練ペ
ーストを調製した。該混練ペーストをアルミ箔に塗布し
たのち乾燥、プレスして直径15mmの円盤に打ち抜い
て正極板を得た。この正極板を用いて、セパレーター、
負極、正極、集電板、取り付け金具、外部端子、電解液
等の各部材を使用してリチウム二次電池を製作した。こ
のうち、負極は金属リチウム箔を用い、電解液にはエチ
レンカーボネートとメチルエチルカーボネートの1:1
混練液1リットルにLiPF6 1モルを溶解したものを
使用した。 (II)電池の性能評価 作製したリチウム二次電池を室温で作動させ、初期放電
容量および10サイクル後の放電容量を測定した。ま
た、LiFePO4の理論放電容量(170mAh/
g)に対する比を下記の式により算出した。
<Battery Performance Test> (I) Preparation of Lithium Secondary Battery: 91% by weight of the lithium iron phosphorus complex oxide-carbon composite of Examples 1 to 3 and Comparative Examples 1 and 2 manufactured as described above. Then, 6% by weight of graphite powder and 3% by weight of polyvinylidene fluoride were mixed to obtain a positive electrode agent, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneading paste. The kneading paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate. Using this positive electrode plate, a separator,
A lithium secondary battery was manufactured using each member such as the negative electrode, the positive electrode, the current collector, the mounting metal fitting, the external terminal, and the electrolytic solution. Of these, a metal lithium foil was used for the negative electrode, and the electrolytic solution was 1: 1 of ethylene carbonate and methyl ethyl carbonate.
Using a solution obtained by dissolving LiPF 6 1 mol kneading 1 liter. (II) Battery Performance Evaluation The manufactured lithium secondary battery was operated at room temperature, and the initial discharge capacity and the discharge capacity after 10 cycles were measured. Also, the theoretical discharge capacity of LiFePO 4 (170 mAh /
The ratio to g) was calculated by the following formula.

【数3】 [Equation 3]

【0078】[0078]

【表5】 表5の結果より、本発明のリチウム鉄リン系複合酸化物
炭素複合体を正極活物質とするリチウム二次電池は、Li
FePO4の理論放電容量に近い値を示し、極めて高放電容
量のリチウム二次電池であることが分かる。
[Table 5] From the results of Table 5, the lithium secondary battery using the lithium iron phosphorus complex oxide-carbon composite of the present invention as the positive electrode active material is
The value is close to the theoretical discharge capacity of FePO 4 , indicating that the lithium secondary battery has an extremely high discharge capacity.

【0079】実施例1〜3及び比較例1〜2で得られた
リチウム鉄リン系複合酸化物炭素炭素複合体を80℃で
24時間真空乾燥し、水分含有量を低減したリチウム鉄
リン系複合酸化物炭素複合体を調製し、その水分含有量
をカールフィッシャー滴定法により250℃水分気化法
で求めた。その結果を表6に示す。更に、上記と同様に
リチウム二次電池を作製し、作製したリチウム二次電池
を室温で作動させ、初期放電容量および10サイクル後
の放電容量を測定した。また、LiFePO4の理論放
電容量(170mAh/g)に対する比を算出し、その
結果を表7に示す。
The lithium iron phosphorus-based composite oxide carbon-carbon composites obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were vacuum dried at 80 ° C. for 24 hours to reduce the water content. An oxide-carbon composite was prepared, and its water content was determined by the Karl Fischer titration method by the water vaporization method at 250 ° C. The results are shown in Table 6. Further, a lithium secondary battery was manufactured in the same manner as above, the manufactured lithium secondary battery was operated at room temperature, and the initial discharge capacity and the discharge capacity after 10 cycles were measured. Further, the ratio of LiFePO 4 to the theoretical discharge capacity (170 mAh / g) was calculated, and the results are shown in Table 7.

【0080】[0080]

【表6】 [Table 6]

【0081】[0081]

【表7】 表5及び表7の結果より、水分を低減することにより、
更に放電容量が向上することが分かる。
[Table 7] From the results of Table 5 and Table 7, by reducing the water content,
It can be seen that the discharge capacity is further improved.

【0082】[0082]

【発明の効果】上記したとおり、本発明のリチウム鉄リ
ン系複合酸化物炭素複合体は、リチウム二次電池の正極
活物質として有用であり、また、本発明のリチウム鉄リ
ン系複合酸化物炭素複合体を正極活物質とするリチウム
二次電池は、特に放電容量に優れたリチウム二次電池と
なる。
As described above, the lithium iron phosphorus complex oxide carbon composite of the present invention is useful as a positive electrode active material of a lithium secondary battery, and the lithium iron phosphorus complex oxide carbon of the present invention. A lithium secondary battery using the composite as a positive electrode active material is a lithium secondary battery having particularly excellent discharge capacity.

フロントページの続き Fターム(参考) 5H029 AJ03 AJ14 AK03 AK18 AL02 AL03 AL04 AL06 AL07 AL11 AL12 AL16 AM03 AM04 AM05 AM07 AM12 AM16 CJ02 CJ03 CJ06 CJ08 CJ12 CJ22 CJ28 DJ16 HJ00 HJ01 HJ02 HJ05 HJ07 HJ14 5H050 AA08 AA19 BA17 CA07 CA29 CB02 CB03 CB05 CB07 CB08 CB11 CB12 CB20 DA09 EA08 FA17 FA18 GA02 GA03 GA05 GA08 GA10 GA12 GA22 GA26 GA27 HA00 HA01 HA02 HA05 HA07 HA14 Continued front page    F term (reference) 5H029 AJ03 AJ14 AK03 AK18 AL02                       AL03 AL04 AL06 AL07 AL11                       AL12 AL16 AM03 AM04 AM05                       AM07 AM12 AM16 CJ02 CJ03                       CJ06 CJ08 CJ12 CJ22 CJ28                       DJ16 HJ00 HJ01 HJ02 HJ05                       HJ07 HJ14                 5H050 AA08 AA19 BA17 CA07 CA29                       CB02 CB03 CB05 CB07 CB08                       CB11 CB12 CB20 DA09 EA08                       FA17 FA18 GA02 GA03 GA05                       GA08 GA10 GA12 GA22 GA26                       GA27 HA00 HA01 HA02 HA05                       HA07 HA14

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 リン酸第一鉄含水塩(Fe3(PO42・8H
2O)とリン酸リチウム(Li3PO4)及び炭素質物質前駆体
から得られるLiFePO4の粒子表面を炭素質物質で
被覆してなるリチウム鉄リン系複合酸化物炭素複合体で
あって、該炭素複合体は、平均粒径が0.5μm以下の
物性を有することを特徴とするリチウム鉄リン系複合酸
化物炭素複合体。
1. A phosphoric acid ferrous salt hydrate (Fe 3 (PO 4) 2 · 8H
2 O), lithium phosphate (Li 3 PO 4 ) and a LiFePO 4 particle surface obtained from a carbonaceous material precursor are coated with a carbonaceous material, which is a lithium iron phosphorus-based composite oxide-carbon composite, The carbon composite has a physical property of an average particle diameter of 0.5 μm or less.
【請求項2】 BET比表面積が10〜100m2/g
である請求項1記載のリチウム鉄リン系複合酸化物炭素
複合体。
2. A BET specific surface area of 10 to 100 m 2 / g
The lithium iron phosphorus-based composite oxide-carbon composite according to claim 1, which is
【請求項3】 Na含有量が1重量%以下である請求項
1又は2記載のリチウム鉄リン系複合酸化物炭素複合
体。
3. The lithium iron phosphorus-based composite oxide-carbon composite according to claim 1, wherein the Na content is 1% by weight or less.
【請求項4】 前記炭素質物質の被覆量がLiFePO
4に対するC原子の含有量で0.1〜20重量%である
請求項1乃至3記載のリチウム鉄リン系複合酸化物炭素
複合体。
4. The coating amount of the carbonaceous material is LiFePO 4.
The lithium-iron-phosphorus-based composite oxide-carbon composite according to claim 1, wherein the content of C atom relative to 4 is 0.1 to 20% by weight.
【請求項5】 水分含有量が2000ppm以下である
請求項1乃至4記載のリチウム鉄リン系複合酸化物炭素
複合体。
5. The lithium iron phosphorus complex oxide-carbon composite according to claim 1, which has a water content of 2000 ppm or less.
【請求項6】 リン酸第一鉄含水塩(Fe3(PO42・8H
2O)とリン酸リチウム(Li3PO4)及び炭素質物質前駆体
とを含有する比容積が1.5ml/g以下の反応前駆体
を得た後、該反応前駆体を焼成してLiFePO4の粒
子表面を炭素質物質で被覆したリチウム鉄リン系複合酸
化物炭素複合体を得ることを特徴とするリチウム鉄リン
系複合酸化物炭素複合体の製造方法。
6. A phosphoric acid ferrous salt hydrate (Fe 3 (PO 4) 2 · 8H
2 O), lithium phosphate (Li 3 PO 4 ) and a carbonaceous material precursor having a specific volume of 1.5 ml / g or less, and then the reaction precursor is fired to obtain LiFePO 4. 4. A method for producing a lithium iron phosphorus-based composite oxide-carbon composite, which comprises obtaining a lithium iron phosphorus-based composite oxide-carbon composite having the particle surface of 4 coated with a carbonaceous material.
【請求項7】 リン酸第一鉄含水塩(Fe3(PO42・8H
2O)とリン酸リチウム(Li3PO4)及び炭素質物質前駆体
とを乾式混合するか、又はリン酸第一鉄含水塩(Fe3(P
O42・8H2O)、リン酸リチウム(Li3PO4)及び炭素質
物質前駆体とを湿式混合した後、溶媒を除去するかして
混合物を得る第一工程、次いで得られた混合物を粉砕処
理して比容積が1.5ml/g以下の反応前駆体を得る
第二工程、次いで得られた反応前駆体を焼成してLiF
ePO4の粒子表面を炭素質物質で被覆したリチウム鉄
リン系複合酸化物炭素複合体を得る第三工程、次いで該
リチウム鉄リン系複合酸化物炭素複合体を粉砕処理する
第四工程を含む請求項6記載のリチウム鉄リン系複合酸
化物炭素複合体の製造方法。
7. A ferrous phosphate hydrate (Fe 3 (PO 4) 2 · 8H
2 O) and lithium phosphate (Li 3 PO 4 ) and carbonaceous material precursor are dry-mixed, or ferrous phosphate hydrate (Fe 3 (P 3
O 4) 2 · 8H 2 O ), after a lithium phosphate (Li 3 PO 4) and a carbonaceous material precursor to wet mixing, the first step of obtaining a mixture by either removing the solvent, then the resulting The second step of pulverizing the mixture to obtain a reaction precursor having a specific volume of 1.5 ml / g or less, and then firing the obtained reaction precursor to obtain LiF.
A third step of obtaining a lithium iron phosphorus-based composite oxide-carbon composite having ePO 4 particle surfaces coated with a carbonaceous material, and a fourth step of pulverizing the lithium iron phosphorus-based composite oxide-carbon composite. Item 7. A method for producing a lithium iron phosphorus complex oxide-carbon composite according to Item 6.
【請求項8】 前記第二工程後、得られる反応前駆体を
加圧成形する工程を設ける請求項7記載のリチウム鉄リ
ン系複合酸化物炭素複合体の製造方法。
8. The method for producing a lithium iron phosphorus-based composite oxide / carbon composite according to claim 7, further comprising a step of press-molding the obtained reaction precursor after the second step.
【請求項9】 前記第三工程の焼成は不活性ガス雰囲気
中500〜700℃の温度範囲で行う請求項7又は8記
載のリチウム鉄リン系複合酸化物炭素複合体の製造方
法。
9. The method for producing a lithium iron phosphorus composite oxide-carbon composite according to claim 7, wherein the firing in the third step is performed in an inert gas atmosphere at a temperature range of 500 to 700 ° C.
【請求項10】 前記第四工程後、得られる炭素質物質
で被覆してなるリチウム鉄リン系複合酸化物炭素複合体
を乾燥する工程を設けるか、又は第四工程の粉砕処理を
絶対湿度0.0025kg/kg以下の雰囲気下に行う
請求項7乃至9記載のリチウム鉄リン系複合酸化物炭素
複合体の製造方法。
10. After the fourth step, there is provided a step of drying the lithium iron phosphorus complex oxide-carbon composite obtained by coating with the carbonaceous material obtained, or the pulverization treatment of the fourth step is performed at an absolute humidity of 0. The method for producing a lithium iron phosphorus-based composite oxide-carbon composite according to claim 7, which is carried out in an atmosphere of 0.0025 kg / kg or less.
【請求項11】 請求項1乃至5のいずれか1項記載の
リチウム鉄リン系複合酸化物炭素複合体を含むことを特
徴とするリチウム二次電池正極活物質。
11. A positive electrode active material for a lithium secondary battery, comprising the lithium-iron-phosphorus-based composite oxide-carbon composite according to any one of claims 1 to 5.
【請求項12】 請求項11記載のリチウム二次電池正
極活物質を用いることを特徴とするリチウム二次電池。
12. A lithium secondary battery using the lithium secondary battery positive electrode active material according to claim 11.
JP2002379445A 2002-01-31 2002-12-27 Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery Expired - Fee Related JP4187524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379445A JP4187524B2 (en) 2002-01-31 2002-12-27 Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002-23985 2002-01-31
JP2002023996 2002-01-31
JP2002023985 2002-01-31
JP2002-23996 2002-01-31
JP2002379445A JP4187524B2 (en) 2002-01-31 2002-12-27 Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2003292309A true JP2003292309A (en) 2003-10-15
JP4187524B2 JP4187524B2 (en) 2008-11-26

Family

ID=29255083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379445A Expired - Fee Related JP4187524B2 (en) 2002-01-31 2002-12-27 Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4187524B2 (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251554A (en) * 2004-03-04 2005-09-15 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and battery using positive electrode
WO2005095273A1 (en) * 2004-03-30 2005-10-13 Seimi Chemical Co., Ltd. Method for producing lithium-iron composite oxide
JP2006056754A (en) * 2004-08-20 2006-03-02 Mitsui Mining Co Ltd Method for manufacturing ammonium iron phosphate and positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2006073259A (en) * 2004-08-31 2006-03-16 Toyota Central Res & Dev Lab Inc Positive electrode active material and water dissolving lithium secondary battery
WO2006038652A1 (en) * 2004-10-06 2006-04-13 Zeon Corporation Electrode composition, electrode and battery
JP2006107958A (en) * 2004-10-06 2006-04-20 Nippon Zeon Co Ltd Electrode composition, electrode, and battery
JP2006261061A (en) * 2005-03-18 2006-09-28 Sumitomo Osaka Cement Co Ltd Electrode material, electrode and lithium cell using the same, and manufacturing method for electrode material
JP2006278239A (en) * 2005-03-30 2006-10-12 Sharp Corp Lithium secondary battery, cathode plate for lithium secondary battery, and manufacturing method of those
JP2006347805A (en) * 2005-06-15 2006-12-28 Seimi Chem Co Ltd Method for producing lithium iron multiple oxide
CN1305147C (en) * 2004-12-30 2007-03-14 清华大学 Method for preparing high-density spherical ferric lithium phosphate as anode material of lithium-ion battery
JP2007134274A (en) * 2005-11-14 2007-05-31 Sumitomo Osaka Cement Co Ltd Electrode material, electrode, and lithium ion battery
JP2007522620A (en) * 2004-02-06 2007-08-09 エイ 123 システムズ,インク. Lithium secondary battery with fast charge / discharge performance
KR100762799B1 (en) 2006-09-28 2007-10-04 한국전기연구원 Carbon-coated composite material, manufacturing method thereof, positive active material, and lithium secondary battery comprising the same
JP2007294461A (en) * 2006-04-25 2007-11-08 Aquire Energy Co Ltd Cathode material for manufacturing rechargeable battery
WO2008001792A1 (en) 2006-06-27 2008-01-03 Kao Corporation Method for producing composite material for positive electrode of lithium battery
JP2008528437A (en) * 2005-02-03 2008-07-31 ティ/ジェイ テクノロジーズ インコーポレイテッド Electrode materials with enhanced ion transport properties
JP2008546629A (en) * 2005-06-29 2008-12-25 ユミコア Crystalline nanometer LiFePO4
JP2009004371A (en) * 2007-05-21 2009-01-08 Toda Kogyo Corp Olivine type composite oxide for nonaqueous electrolyte secondary battery and its manufacturing method therefor, and secondary battery
JP2009026741A (en) * 2007-06-18 2009-02-05 Advanced Lithium Eletrochemistry Co Ltd Novel eutectic metal compound and electrochemical oxidation-reduction active material using same compound
CN100461507C (en) * 2006-12-27 2009-02-11 中国科学院上海微系统与信息技术研究所 Making method for nano LiFePO4-carbon composite cathode material
JP2009029670A (en) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd Olivine-type lithium iron phosphate compound and method for producing the same, positive electrode active substance, and non-aqueous electrolyte battery using olivine-type lithium iron phosphate compound
JP2009152188A (en) * 2007-11-30 2009-07-09 Sony Corp Cathode active material, cathode and nonaqueous electrolyte secondary battery
WO2009116688A1 (en) * 2008-03-19 2009-09-24 住友化学株式会社 Electrode and battery having the same
JP2009245762A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Carbon coating method of particle used for electrode material and secondary battery
WO2010016545A1 (en) * 2008-08-06 2010-02-11 独立行政法人産業技術総合研究所 Method for manufacturing electrode material precursor and method for manufacturing electrode material using the obtained electrode material precursor
JP2010508234A (en) * 2006-10-30 2010-03-18 フォステック リチウム インコーポレイテッド Carbon treatment composite oxide and method for producing the same
JP2010086777A (en) * 2008-09-30 2010-04-15 Tdk Corp Active material, and method for manufacturing active material
WO2010047334A1 (en) 2008-10-20 2010-04-29 古河電池株式会社 Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP2010517238A (en) * 2007-01-24 2010-05-20 エルジー・ケム・リミテッド Secondary battery with excellent safety
JPWO2008105490A1 (en) * 2007-02-28 2010-06-03 株式会社三徳 Particles containing compound having olivine structure, method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
WO2010073634A1 (en) * 2008-12-26 2010-07-01 戸田工業株式会社 Polyanionic positive electrode active material for non-aqueous electrolyte secondary battery, process for producing same, and non-aqueous electrolyte secondary battery
KR100969236B1 (en) 2008-04-14 2010-07-09 한국기초과학지원연구원 manufacturing method of active electrode materials nano carbon coated with humic acid for lithium batteries
JP2010161076A (en) * 2009-01-07 2010-07-22 Qinghua Univ Anode material for lithium ion secondary battery, and fabricating method thereof
WO2010107039A1 (en) * 2009-03-17 2010-09-23 日本化学工業株式会社 Lithium phosphorus complex oxide-carbon composite, method for producing same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010218830A (en) * 2009-03-16 2010-09-30 Tdk Corp Active material, electrode containing the active material, lithium-ion secondary battery including the electrode, and method for manufacturing the active material
WO2011039921A1 (en) * 2009-09-30 2011-04-07 日立ビークルエナジー株式会社 Lithium secondary battery, and cathode for use in a lithium secondary battery
WO2011039890A1 (en) * 2009-10-02 2011-04-07 トヨタ自動車株式会社 Lithium secondary battery and positive electrode for said battery
JP2011513900A (en) * 2008-02-28 2011-04-28 ハイドロ−ケベック Composite electrode material
WO2011065337A1 (en) 2009-11-24 2011-06-03 旭硝子株式会社 Process for production of phosphoric acid compound, and process for production of secondary battery
WO2011111628A1 (en) 2010-03-09 2011-09-15 旭硝子株式会社 Phosphate compound, positive electrode for secondary battery and method for producing secondary battery
JP2011210376A (en) * 2010-03-28 2011-10-20 Niigata Univ POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li ION BATTERY, AND ITS MANUFACTURING METHOD
JP2012099469A (en) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd Electrode material, electrical storage device, and electronic apparatus
WO2012081621A1 (en) * 2010-12-17 2012-06-21 エリーパワー株式会社 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
JP2012133894A (en) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd Positive electrode for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell and battery module
JP2012134114A (en) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd Nonaqueous electrolyte secondary battery and battery module
JP2012204150A (en) * 2011-03-25 2012-10-22 Sumitomo Osaka Cement Co Ltd Method of producing electrode active material and electrode active material, electrode, and battery
CN102760879A (en) * 2012-08-01 2012-10-31 东北师范大学 Method for preparing nanometer lithium iron phosphate/carbon compound with stable low temperature performance
JP2012528451A (en) * 2009-05-27 2012-11-12 エルジー・ケム・リミテッド Positive electrode active material, positive electrode including the same, and lithium secondary battery
JP2013073829A (en) * 2011-09-28 2013-04-22 Sumitomo Chemical Co Ltd Production method of micro positive electrode material powder for lithium secondary battery
JP2013525976A (en) * 2010-04-21 2013-06-20 エルジー・ケム・リミテッド Lithium iron phosphate containing sulfur compound having sulfide bond, and lithium secondary battery using the same
US8475956B2 (en) 2007-01-25 2013-07-02 Nec Corporation Polyradical compound-conductive material composite, method for producing the same, and battery using the same
JP2013527829A (en) * 2010-04-21 2013-07-04 エルジー・ケム・リミテッド Lithium iron phosphate having olivine type crystal structure and lithium secondary battery using the same
JP2013528557A (en) * 2010-04-21 2013-07-11 エルジー・ケム・リミテッド Lithium iron phosphate having olivine crystal structure coated with carbon and lithium secondary battery using the same
EP2615671A1 (en) * 2010-09-10 2013-07-17 Ocean's King Lighting Science&Technology Co., Ltd. Lithium salt-graphene-containing composite material and preparation method thereof
US8541136B2 (en) 2008-01-17 2013-09-24 A123 Systems Llc Mixed metal olivine electrode materials for lithium ion batteries
US8647777B2 (en) 2005-10-14 2014-02-11 Gs Yuasa International Ltd. Mixed material of lithium iron phosphate and carbon, electrode containing same, battery comprising such electrode, method for producing such mixed material, and method for producing battery
JP2014504436A (en) * 2010-12-31 2014-02-20 深▲セン▼大学 For producing positive electrode material for lithium ion battery containing graphene oxide
JP2014512639A (en) * 2011-03-16 2014-05-22 台湾立凱電能科技股▲ふん▼有限公司 Cathode material having two-layer carbon coating and method for producing the same
KR101414939B1 (en) * 2010-12-20 2014-07-04 닛산 지도우샤 가부시키가이샤 Producing method for slurry for positive electrode and producing apparatus for the same
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
JP2014203816A (en) * 2013-04-10 2014-10-27 株式会社豊田自動織機 Positive electrode active material for sodium ion secondary battery, positive electrode, and sodium ion secondary battery
WO2014174952A1 (en) * 2013-04-24 2014-10-30 住友大阪セメント株式会社 Electrode material, electrode and lithium ion battery
US8932762B2 (en) 2008-09-30 2015-01-13 Tdk Corporation Active material and positive electrode and lithium-ion second battery using same
US20150118574A1 (en) * 2013-10-31 2015-04-30 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20150080113A (en) 2013-12-30 2015-07-09 삼성정밀화학 주식회사 Lithium transition metal phosphates, preparing method thereof and lithium secondary battery manufactured using the same
JP2015526860A (en) * 2012-08-14 2015-09-10 クラリアント・インターナシヨナル・リミテツド Mixed sulfate-containing lithium manganese metal phosphate
US9174846B2 (en) 2009-09-18 2015-11-03 A123 Systems Llc Ferric phosphate and methods of preparation thereof
US9178215B2 (en) 2009-08-25 2015-11-03 A123 Systems Llc Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
JP2016054158A (en) * 2010-10-08 2016-04-14 株式会社半導体エネルギー研究所 Material for electrode, and power storage device
US9559359B2 (en) 2009-10-02 2017-01-31 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and positive electrode for the battery
JP6079848B1 (en) * 2015-09-30 2017-02-15 住友大阪セメント株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY
US9608292B2 (en) 2004-02-06 2017-03-28 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
KR20170129722A (en) 2015-03-24 2017-11-27 다이헤이요 세멘토 가부시키가이샤 Cathode active material for secondary battery and manufacturing method thereof
KR20170131406A (en) 2015-03-26 2017-11-29 다이헤이요 세멘토 가부시키가이샤 Cathode active material for secondary battery and manufacturing method thereof
JP2018018828A (en) * 2010-04-28 2018-02-01 株式会社半導体エネルギー研究所 Electrode for secondary battery
US9899668B2 (en) 2012-10-05 2018-02-20 Samsung Sdi Co., Ltd. Method of preparing positive active material for rechargeable lithium battery, positive active material for rechargeable lithium battery prepared by method, and rechargeable lithium battery including same
JP2019040684A (en) * 2017-08-23 2019-03-14 トヨタ自動車株式会社 Nonaqueous secondary battery
US10270099B2 (en) 2015-03-04 2019-04-23 Kabushiki Kaisha Toyota Jidoshokki Positive electrode for lithium-ion secondary battery, production process for the same, and lithium-ion secondary battery
US10601042B2 (en) 2015-03-24 2020-03-24 Taiheiyo Cement Corporation Secondary battery positive electrode active material and method for producing same
KR20210029850A (en) 2015-03-09 2021-03-16 다이헤이요 세멘토 가부시키가이샤 Positive electrode active substance for secondary cell and method for producing same
US10964950B2 (en) 2015-03-26 2021-03-30 Taiheiyo Cement Corporation Secondary battery positive-electrode active material and method for producing same
CN112723333A (en) * 2020-12-11 2021-04-30 江苏锂源电池材料有限公司 Method for improving low-temperature performance and compaction density of lithium iron phosphate
CN114014293A (en) * 2021-11-05 2022-02-08 四川龙蟒磷化工有限公司 Preparation method of sodium ion battery material
WO2022088543A1 (en) * 2020-10-30 2022-05-05 安普瑞斯(南京)有限公司 Negative electrode active material used for battery and method for fabrication thereof, and battery negative electrode and battery
CN114597376A (en) * 2022-03-22 2022-06-07 湖北融通高科先进材料有限公司 Method for preparing carbon-coated lithium iron phosphate material from ferrous phosphate

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078510A (en) * 2004-02-06 2014-05-01 A123 Systems Inc Lithium secondary battery having high speed charge-discharge performance
US9608292B2 (en) 2004-02-06 2017-03-28 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth
JP2007522620A (en) * 2004-02-06 2007-08-09 エイ 123 システムズ,インク. Lithium secondary battery with fast charge / discharge performance
JP2005251554A (en) * 2004-03-04 2005-09-15 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and battery using positive electrode
WO2005095273A1 (en) * 2004-03-30 2005-10-13 Seimi Chemical Co., Ltd. Method for producing lithium-iron composite oxide
JP2006056754A (en) * 2004-08-20 2006-03-02 Mitsui Mining Co Ltd Method for manufacturing ammonium iron phosphate and positive electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2006073259A (en) * 2004-08-31 2006-03-16 Toyota Central Res & Dev Lab Inc Positive electrode active material and water dissolving lithium secondary battery
WO2006038652A1 (en) * 2004-10-06 2006-04-13 Zeon Corporation Electrode composition, electrode and battery
JP2006107958A (en) * 2004-10-06 2006-04-20 Nippon Zeon Co Ltd Electrode composition, electrode, and battery
KR101245064B1 (en) 2004-10-06 2013-03-18 니폰 제온 가부시키가이샤 Electrode composition, electrode and battery
US8802289B2 (en) 2004-10-06 2014-08-12 Zeon Corporation Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
CN1305147C (en) * 2004-12-30 2007-03-14 清华大学 Method for preparing high-density spherical ferric lithium phosphate as anode material of lithium-ion battery
KR101315310B1 (en) 2005-02-03 2013-10-04 에이일이삼 시스템즈 인코포레이티드 Electrode material with enhanced ionic transport properties
JP2008528437A (en) * 2005-02-03 2008-07-31 ティ/ジェイ テクノロジーズ インコーポレイテッド Electrode materials with enhanced ion transport properties
US8187753B2 (en) 2005-02-03 2012-05-29 A123 Systems, Inc. Electrode material with enhanced ionic transport properties
US8435678B2 (en) 2005-02-03 2013-05-07 A123 Systems, LLC Electrode material with enhanced ionic transport properties
JP2006261061A (en) * 2005-03-18 2006-09-28 Sumitomo Osaka Cement Co Ltd Electrode material, electrode and lithium cell using the same, and manufacturing method for electrode material
JP4550640B2 (en) * 2005-03-30 2010-09-22 シャープ株式会社 Lithium secondary battery, positive electrode plate for lithium secondary battery, and production method thereof
JP2006278239A (en) * 2005-03-30 2006-10-12 Sharp Corp Lithium secondary battery, cathode plate for lithium secondary battery, and manufacturing method of those
JP2006347805A (en) * 2005-06-15 2006-12-28 Seimi Chem Co Ltd Method for producing lithium iron multiple oxide
JP2008546629A (en) * 2005-06-29 2008-12-25 ユミコア Crystalline nanometer LiFePO4
JP2010001214A (en) * 2005-06-29 2010-01-07 Umicore Crystalline nanometric lifepo4
US8647777B2 (en) 2005-10-14 2014-02-11 Gs Yuasa International Ltd. Mixed material of lithium iron phosphate and carbon, electrode containing same, battery comprising such electrode, method for producing such mixed material, and method for producing battery
JP2007134274A (en) * 2005-11-14 2007-05-31 Sumitomo Osaka Cement Co Ltd Electrode material, electrode, and lithium ion battery
JP2007294461A (en) * 2006-04-25 2007-11-08 Aquire Energy Co Ltd Cathode material for manufacturing rechargeable battery
US8241525B2 (en) 2006-06-27 2012-08-14 Kao Corporation Method for producing composite material for positive electrode of lithium battery
WO2008001792A1 (en) 2006-06-27 2008-01-03 Kao Corporation Method for producing composite material for positive electrode of lithium battery
KR100762799B1 (en) 2006-09-28 2007-10-04 한국전기연구원 Carbon-coated composite material, manufacturing method thereof, positive active material, and lithium secondary battery comprising the same
EP2387090B1 (en) * 2006-10-30 2019-04-24 Johnson Matthey Public Limited Company Complex carbon oxides, method for preparing same
JP2014239036A (en) * 2006-10-30 2014-12-18 フォステック リチウム インコーポレイテッドPhostech Lithium Inc. Carbonated complex oxide and method for producing the same
JP2010508234A (en) * 2006-10-30 2010-03-18 フォステック リチウム インコーポレイテッド Carbon treatment composite oxide and method for producing the same
KR101472410B1 (en) * 2006-10-30 2014-12-15 포스테크 리디움 인코포레이션 Carbonated complex oxides and method for making the same
CN103943853A (en) * 2006-10-30 2014-07-23 克拉瑞特(加拿大)有限公司 Carbonated complex oxides and method for making the same
JP2017041455A (en) * 2006-10-30 2017-02-23 クラリアント・(カナダ)・インコーポレイテッド Method of producing electrode material
US20160126539A1 (en) * 2006-10-30 2016-05-05 Johnson Matthey Public Limited Company Carbon-treated complex oxides and method for making the same
CN100461507C (en) * 2006-12-27 2009-02-11 中国科学院上海微系统与信息技术研究所 Making method for nano LiFePO4-carbon composite cathode material
JP2010517238A (en) * 2007-01-24 2010-05-20 エルジー・ケム・リミテッド Secondary battery with excellent safety
US8475956B2 (en) 2007-01-25 2013-07-02 Nec Corporation Polyradical compound-conductive material composite, method for producing the same, and battery using the same
JPWO2008105490A1 (en) * 2007-02-28 2010-06-03 株式会社三徳 Particles containing compound having olivine structure, method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2009004371A (en) * 2007-05-21 2009-01-08 Toda Kogyo Corp Olivine type composite oxide for nonaqueous electrolyte secondary battery and its manufacturing method therefor, and secondary battery
JP2009026741A (en) * 2007-06-18 2009-02-05 Advanced Lithium Eletrochemistry Co Ltd Novel eutectic metal compound and electrochemical oxidation-reduction active material using same compound
JP2009029670A (en) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd Olivine-type lithium iron phosphate compound and method for producing the same, positive electrode active substance, and non-aqueous electrolyte battery using olivine-type lithium iron phosphate compound
KR101608527B1 (en) * 2007-11-30 2016-04-01 소니 주식회사 Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP4605287B2 (en) * 2007-11-30 2011-01-05 ソニー株式会社 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
KR101730762B1 (en) * 2007-11-30 2017-05-11 소니 주식회사 Cathode active material, cathode, and nonaqueous electrolyte secondary battery
EP2472654B1 (en) * 2007-11-30 2019-05-01 Murata Manufacturing Co., Ltd. Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP2009152188A (en) * 2007-11-30 2009-07-09 Sony Corp Cathode active material, cathode and nonaqueous electrolyte secondary battery
JP2009277661A (en) * 2007-11-30 2009-11-26 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
US9017875B2 (en) 2007-11-30 2015-04-28 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte secondary battery
EP2472654A1 (en) 2007-11-30 2012-07-04 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte secondary battery
US8541136B2 (en) 2008-01-17 2013-09-24 A123 Systems Llc Mixed metal olivine electrode materials for lithium ion batteries
JP2011513900A (en) * 2008-02-28 2011-04-28 ハイドロ−ケベック Composite electrode material
US8652361B2 (en) 2008-02-28 2014-02-18 Hydro-Quebec Composite electrode material
US9905839B2 (en) 2008-02-28 2018-02-27 Hydro-Quebec Composite electrode material
JP2016225305A (en) * 2008-02-28 2016-12-28 ハイドロ−ケベック Composite electrode material
JP2014179339A (en) * 2008-02-28 2014-09-25 Hydro Quebec Composite electrode material
WO2009116688A1 (en) * 2008-03-19 2009-09-24 住友化学株式会社 Electrode and battery having the same
JP2009245762A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Carbon coating method of particle used for electrode material and secondary battery
KR100969236B1 (en) 2008-04-14 2010-07-09 한국기초과학지원연구원 manufacturing method of active electrode materials nano carbon coated with humic acid for lithium batteries
WO2010016545A1 (en) * 2008-08-06 2010-02-11 独立行政法人産業技術総合研究所 Method for manufacturing electrode material precursor and method for manufacturing electrode material using the obtained electrode material precursor
JP2010040357A (en) * 2008-08-06 2010-02-18 National Institute Of Advanced Industrial & Technology Method for manufacturing electrode material precursor, and method for manufacturing electrode material using the same
KR101194623B1 (en) 2008-08-06 2012-10-29 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Method for manufacturing electrode material precursor and method for manufacturing electrode material using the obtained electrode material precursor
CN102113152A (en) * 2008-08-06 2011-06-29 独立行政法人产业技术综合研究所 Method for manufacturing electrode material precursor and method for manufacturing electrode material using the obtained electrode material precursor
US8568617B2 (en) 2008-08-06 2013-10-29 National Institute Of Advanced Industrial Science And Technology Method of producing electrode material precursor and electrode material using the electrode material precursor
JP2010086777A (en) * 2008-09-30 2010-04-15 Tdk Corp Active material, and method for manufacturing active material
US8932762B2 (en) 2008-09-30 2015-01-13 Tdk Corporation Active material and positive electrode and lithium-ion second battery using same
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
US8936871B2 (en) 2008-09-30 2015-01-20 Tdk Corporation Active material and positive electrode and lithium-ion second battery using same
US9337488B2 (en) 2008-10-20 2016-05-10 The Furukawa Battery Co., Ltd. Method of manufacturing a multicomponent system lithium phosphate compound particle having an olivine structure
US8841023B2 (en) 2008-10-20 2014-09-23 The Furukawa Battery Co., Ltd. Multi-component-system lithium phosphate compound particle having an olivine structure and lithium secondary battery employing the lithium phosphate compound particle as a positive electrode material
WO2010047334A1 (en) 2008-10-20 2010-04-29 古河電池株式会社 Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
WO2010073634A1 (en) * 2008-12-26 2010-07-01 戸田工業株式会社 Polyanionic positive electrode active material for non-aqueous electrolyte secondary battery, process for producing same, and non-aqueous electrolyte secondary battery
JP2010157405A (en) * 2008-12-26 2010-07-15 Toda Kogyo Corp Polyanionic positive electrode active material for nonaqueous electrolyte secondary battery, producing process thereof, and nonaqueous electrolyte secondary battery
JP2010161076A (en) * 2009-01-07 2010-07-22 Qinghua Univ Anode material for lithium ion secondary battery, and fabricating method thereof
JP2010218830A (en) * 2009-03-16 2010-09-30 Tdk Corp Active material, electrode containing the active material, lithium-ion secondary battery including the electrode, and method for manufacturing the active material
WO2010107039A1 (en) * 2009-03-17 2010-09-23 日本化学工業株式会社 Lithium phosphorus complex oxide-carbon composite, method for producing same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010218884A (en) * 2009-03-17 2010-09-30 Nippon Chem Ind Co Ltd Lithium phosphorous complex oxide-carbon composite and method of manufacturing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2012528451A (en) * 2009-05-27 2012-11-12 エルジー・ケム・リミテッド Positive electrode active material, positive electrode including the same, and lithium secondary battery
US9178215B2 (en) 2009-08-25 2015-11-03 A123 Systems Llc Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
US10522833B2 (en) 2009-09-18 2019-12-31 A123 Systems, LLC High power electrode materials
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
US9174846B2 (en) 2009-09-18 2015-11-03 A123 Systems Llc Ferric phosphate and methods of preparation thereof
US9954228B2 (en) 2009-09-18 2018-04-24 A123 Systems, LLC High power electrode materials
US11652207B2 (en) 2009-09-18 2023-05-16 A123 Systems Llc High power electrode materials
WO2011039921A1 (en) * 2009-09-30 2011-04-07 日立ビークルエナジー株式会社 Lithium secondary battery, and cathode for use in a lithium secondary battery
US9559359B2 (en) 2009-10-02 2017-01-31 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and positive electrode for the battery
US9362554B2 (en) 2009-10-02 2016-06-07 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a positive electrode with a condensation reaction initiated by heating and reduced pressure
WO2011039890A1 (en) * 2009-10-02 2011-04-07 トヨタ自動車株式会社 Lithium secondary battery and positive electrode for said battery
WO2011065337A1 (en) 2009-11-24 2011-06-03 旭硝子株式会社 Process for production of phosphoric acid compound, and process for production of secondary battery
WO2011111628A1 (en) 2010-03-09 2011-09-15 旭硝子株式会社 Phosphate compound, positive electrode for secondary battery and method for producing secondary battery
JP2011210376A (en) * 2010-03-28 2011-10-20 Niigata Univ POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li ION BATTERY, AND ITS MANUFACTURING METHOD
US8906552B2 (en) 2010-04-21 2014-12-09 Lg Chem, Ltd. Lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
US9812707B2 (en) 2010-04-21 2017-11-07 Lg Chem, Ltd. Carbon-coated lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
JP2013525976A (en) * 2010-04-21 2013-06-20 エルジー・ケム・リミテッド Lithium iron phosphate containing sulfur compound having sulfide bond, and lithium secondary battery using the same
JP2013527829A (en) * 2010-04-21 2013-07-04 エルジー・ケム・リミテッド Lithium iron phosphate having olivine type crystal structure and lithium secondary battery using the same
JP2013528557A (en) * 2010-04-21 2013-07-11 エルジー・ケム・リミテッド Lithium iron phosphate having olivine crystal structure coated with carbon and lithium secondary battery using the same
JP2016006800A (en) * 2010-04-21 2016-01-14 エルジー・ケム・リミテッド Lithium iron phosphate containing sulfur compound having sulfide bond and lithium secondary battery using the same
KR101400099B1 (en) 2010-04-21 2014-05-29 주식회사 엘지화학 Lithium Iron Phosphate of Olivine Crystal Structure and Lithium Secondary Battery Using the Same
JP2018018828A (en) * 2010-04-28 2018-02-01 株式会社半導体エネルギー研究所 Electrode for secondary battery
US10224548B2 (en) 2010-04-28 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
US10916774B2 (en) 2010-04-28 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
JP2013542903A (en) * 2010-09-10 2013-11-28 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Lithium-containing salt-graphene composite material and preparation method thereof
EP2615671A4 (en) * 2010-09-10 2017-05-10 Ocean's King Lighting Science&Technology Co., Ltd. Lithium salt-graphene-containing composite material and preparation method thereof
EP2615671A1 (en) * 2010-09-10 2013-07-17 Ocean's King Lighting Science&Technology Co., Ltd. Lithium salt-graphene-containing composite material and preparation method thereof
US10135069B2 (en) 2010-10-08 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for manufacturing power storage device
JP2019094259A (en) * 2010-10-08 2019-06-20 株式会社半導体エネルギー研究所 Method for preparing manganese lithium phosphate
JP2016054158A (en) * 2010-10-08 2016-04-14 株式会社半導体エネルギー研究所 Material for electrode, and power storage device
JP2018008877A (en) * 2010-10-08 2018-01-18 株式会社半導体エネルギー研究所 Method for manufacturing lithium iron phosphate
JP2012099469A (en) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd Electrode material, electrical storage device, and electronic apparatus
JP2021077655A (en) * 2010-10-08 2021-05-20 株式会社半導体エネルギー研究所 Electrode material
JP2012133894A (en) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd Positive electrode for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell and battery module
JP2012134114A (en) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd Nonaqueous electrolyte secondary battery and battery module
US9960416B2 (en) 2010-12-17 2018-05-01 Sumitomo Osaka Cement Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
JP2012133895A (en) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd Nonaqueous electrolyte secondary battery and battery module
WO2012081621A1 (en) * 2010-12-17 2012-06-21 エリーパワー株式会社 Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
EP2654108A1 (en) 2010-12-17 2013-10-23 Eliiy Power Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
KR101414939B1 (en) * 2010-12-20 2014-07-04 닛산 지도우샤 가부시키가이샤 Producing method for slurry for positive electrode and producing apparatus for the same
JP2014504436A (en) * 2010-12-31 2014-02-20 深▲セン▼大学 For producing positive electrode material for lithium ion battery containing graphene oxide
JP2014512639A (en) * 2011-03-16 2014-05-22 台湾立凱電能科技股▲ふん▼有限公司 Cathode material having two-layer carbon coating and method for producing the same
JP2012204150A (en) * 2011-03-25 2012-10-22 Sumitomo Osaka Cement Co Ltd Method of producing electrode active material and electrode active material, electrode, and battery
JP2013073829A (en) * 2011-09-28 2013-04-22 Sumitomo Chemical Co Ltd Production method of micro positive electrode material powder for lithium secondary battery
CN102760879A (en) * 2012-08-01 2012-10-31 东北师范大学 Method for preparing nanometer lithium iron phosphate/carbon compound with stable low temperature performance
JP2015526860A (en) * 2012-08-14 2015-09-10 クラリアント・インターナシヨナル・リミテツド Mixed sulfate-containing lithium manganese metal phosphate
US9899668B2 (en) 2012-10-05 2018-02-20 Samsung Sdi Co., Ltd. Method of preparing positive active material for rechargeable lithium battery, positive active material for rechargeable lithium battery prepared by method, and rechargeable lithium battery including same
JP2014203816A (en) * 2013-04-10 2014-10-27 株式会社豊田自動織機 Positive electrode active material for sodium ion secondary battery, positive electrode, and sodium ion secondary battery
US9583765B2 (en) 2013-04-10 2017-02-28 Kabushiki Kaisha Toyota Jidoshokki Positive electrode active material for sodium ion secondary battery, positive electrode, and sodium ion secondary battery
WO2014174952A1 (en) * 2013-04-24 2014-10-30 住友大阪セメント株式会社 Electrode material, electrode and lithium ion battery
CN105144440A (en) * 2013-04-24 2015-12-09 住友大阪水泥股份有限公司 Electrode material, electrode and lithium ion battery
US9853323B2 (en) * 2013-10-31 2017-12-26 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
US20150118574A1 (en) * 2013-10-31 2015-04-30 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20150080113A (en) 2013-12-30 2015-07-09 삼성정밀화학 주식회사 Lithium transition metal phosphates, preparing method thereof and lithium secondary battery manufactured using the same
US10270099B2 (en) 2015-03-04 2019-04-23 Kabushiki Kaisha Toyota Jidoshokki Positive electrode for lithium-ion secondary battery, production process for the same, and lithium-ion secondary battery
US11646405B2 (en) 2015-03-09 2023-05-09 Taiheiyo Cement Corporation Positive electrode active substance for secondary cell and method for producing same
KR20210029850A (en) 2015-03-09 2021-03-16 다이헤이요 세멘토 가부시키가이샤 Positive electrode active substance for secondary cell and method for producing same
KR20170129722A (en) 2015-03-24 2017-11-27 다이헤이요 세멘토 가부시키가이샤 Cathode active material for secondary battery and manufacturing method thereof
US10601042B2 (en) 2015-03-24 2020-03-24 Taiheiyo Cement Corporation Secondary battery positive electrode active material and method for producing same
US10964950B2 (en) 2015-03-26 2021-03-30 Taiheiyo Cement Corporation Secondary battery positive-electrode active material and method for producing same
KR20170131406A (en) 2015-03-26 2017-11-29 다이헤이요 세멘토 가부시키가이샤 Cathode active material for secondary battery and manufacturing method thereof
JP2017069029A (en) * 2015-09-30 2017-04-06 住友大阪セメント株式会社 Electrode material for lithium ion secondary battery, method for manufacturing the same, electrode for lithium ion secondary battery, and lithium ion secondary battery
US10074853B2 (en) 2015-09-30 2018-09-11 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion rechargeable battery, electrode for lithium-ion rechargeable battery, and lithium-ion rechargeable battery
JP6079848B1 (en) * 2015-09-30 2017-02-15 住友大阪セメント株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY
JP2019040684A (en) * 2017-08-23 2019-03-14 トヨタ自動車株式会社 Nonaqueous secondary battery
WO2022088543A1 (en) * 2020-10-30 2022-05-05 安普瑞斯(南京)有限公司 Negative electrode active material used for battery and method for fabrication thereof, and battery negative electrode and battery
CN112723333A (en) * 2020-12-11 2021-04-30 江苏锂源电池材料有限公司 Method for improving low-temperature performance and compaction density of lithium iron phosphate
CN114014293A (en) * 2021-11-05 2022-02-08 四川龙蟒磷化工有限公司 Preparation method of sodium ion battery material
CN114014293B (en) * 2021-11-05 2023-09-19 四川龙蟒磷化工有限公司 Preparation method of sodium ion battery material
CN114597376A (en) * 2022-03-22 2022-06-07 湖北融通高科先进材料有限公司 Method for preparing carbon-coated lithium iron phosphate material from ferrous phosphate
CN114597376B (en) * 2022-03-22 2023-08-22 湖北融通高科先进材料集团股份有限公司 Method for preparing carbon-coated lithium iron phosphate material from ferrous phosphate
EP4250385A1 (en) * 2022-03-22 2023-09-27 Hubei RT Advanced Materials Co., Ltd. Method for preparing carbon-coated lithium iron phosphate material from ferrous phosphate

Also Published As

Publication number Publication date
JP4187524B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP4187524B2 (en) Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4187523B2 (en) Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5436896B2 (en) Lithium phosphorus composite oxide carbon composite, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5225708B2 (en) Lithium nickel manganese cobalt composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery
JP4180363B2 (en) Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide
KR101478861B1 (en) Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery
KR101184851B1 (en) Positive Electrode Active Material of Lithium Secondary Battery, Process for Preparing the Same and Lithium Secondary Battery
US20080241693A1 (en) Lithium transition metal complex oxide for lithium ion secondary battery cathode active material and method for producing the same, lithium ion secondary battery cathode active material, and lithium ion secondary battery
US20120319034A1 (en) Lithium secondary battery active material and lithium secondary battery using the same
KR101309150B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101487468B1 (en) Spinel type lithium-manganese-nickel-containing composite oxide
KR20120114232A (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP2013182757A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
KR20090009720A (en) Cathod active material for lithium ion secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
KR100854241B1 (en) Lithium-Cobalt Based Combination Oxide, Process for Preparing the Same, Positive Electrode Active Material of Lithium Secondary Cell, and Lithium Secondary Cell
JP2001080920A (en) Aggregated granular lithium multiple oxide, its production and lithium secondary battery
JP2003020229A (en) Lithium cobalt composite oxide, method for preparing the same, positive pole active substance of lithium secondary cell, and lithium secondary cell
JP4156358B2 (en) Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery
JP6935380B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP4114918B2 (en) Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
JP2004339032A (en) Lithium cobalt-based multiple oxide, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP6855427B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
KR20210088494A (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP4846195B2 (en) Lithium cobalt composite oxide, method for producing the same, and nonaqueous electrolyte secondary battery
WO2021246215A1 (en) Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080702

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Ref document number: 4187524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees