JP4086551B2 - Method for producing tricobalt tetroxide and method for producing lithium cobaltate - Google Patents

Method for producing tricobalt tetroxide and method for producing lithium cobaltate Download PDF

Info

Publication number
JP4086551B2
JP4086551B2 JP2002162726A JP2002162726A JP4086551B2 JP 4086551 B2 JP4086551 B2 JP 4086551B2 JP 2002162726 A JP2002162726 A JP 2002162726A JP 2002162726 A JP2002162726 A JP 2002162726A JP 4086551 B2 JP4086551 B2 JP 4086551B2
Authority
JP
Japan
Prior art keywords
tricobalt tetroxide
precipitate
particle size
aqueous solution
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002162726A
Other languages
Japanese (ja)
Other versions
JP2004010375A (en
Inventor
知宏 番田
孝志 原
祐貴 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002162726A priority Critical patent/JP4086551B2/en
Publication of JP2004010375A publication Critical patent/JP2004010375A/en
Application granted granted Critical
Publication of JP4086551B2 publication Critical patent/JP4086551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特にリチウム二次電池の正極活物質として用いるコバルト酸リチウムの製造原料として有用な平均粒径が5〜30μmの四酸化三コバルトの製造方法およびこれを製造原料として用いたコバルト酸リチウムの製造方法に関するものである。
【0002】
【従来の技術】
近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアル リサーチブレティン」vol15,P783-789(1980)〕がなされて以来、コバルト酸リチウムに関する研究開発が活発に進められており、これまで多くの提案がなされている。
【0003】
従来、四酸化三コバルトは、主にこのコバルト酸リチウムの製造原料として用いられている。
こうしたリチウム二次電池用の四酸化三コバルトの製造方法としては、例えば、水酸化コバルトを焼成して四酸化三コバルトを得る方法、或いは炭酸コバルトを焼成して四酸化三コバルトを得る方法等が提案されている。
【0004】
水酸化コバルトを焼成して四酸化三コバルトを得る方法としては、例えば、コバルト塩の水溶液と、か性アルカリ溶液とを同一槽内に連続的に供給、攪拌し、供給塩濃度、供給塩流量、槽内温度を一定にして槽内のpH値を11.0〜13.5の範囲に制御した後、得られるコバルト水酸化物を空気中で熱処理して四酸化三コバルトを得る方法(特開平9−22692号公報)、硝酸コバルト水溶液に、水酸化ナトリウム水溶液を滴下して得られる水酸化コバルトを100〜900℃で加熱処理して四酸化三コバルト又は四酸化三コバルトと水酸化物との混合物からなる球状もしくは長円球状で平均粒径が1μm以下の一次粒子が、複数個連結した凝集塊からなるコバルト酸化物を得る方法(特開平5−54888号公報)等が提案されている。
【0005】
一方、炭酸コバルトを焼成して四酸化三コバルトを得る方法としては、例えば、硫酸コバルト水溶液と、その水溶液に含まれるコバルトイオンに対して当量以上の炭酸水素イオンを含む水溶液を反応させ、反応後さらにアンモニアを添加し、pHを7.0〜8.5に調製して、1時間以上攪拌後、得られた沈殿を固液分離、洗浄、乾燥させて、空気中等の酸素共存下で600〜700℃の温度で焼成して四酸化三コバルトを得る方法(特開平8−96809号公報)等が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、通常、水酸化コバルトを焼成して得られる四酸化三コバルトは、タップ密度が小さいため、例えば、工業的なコバルト酸リチウムの製造方法において、炭酸リチウムとの混合の際に炉での充填密度が小さくなり、コバルト酸リチウムの大量生産用には向かない。また、特開平5−54888号公報で得られる四酸化三コバルトは、タップ密度が大きいものが得られるが、四酸化三コバルト粒子中には、多量のNaとSO4が残存しやすく、特にNaを高濃度で含有する四酸化三コバルトをコバルト源として製造したコバルト酸リチウムは、Liサイトに置換されるNaが多くなるため層状構造が歪みLiの脱挿入が困難になり、このコバルト酸リチウムを正極活物質とするリチウム二次電池は、特にサイクル特性が悪くなる傾向にある。
【0007】
一方、特開平8−96809号公報の四酸化三コバルトの製造方法によれば、炭酸水素ナトリウム水溶液に、硫酸コバルト水溶液を添加し、さらにアンモニアを添加して得られる塩基性炭酸コバルトを600〜700℃で焼成して四酸化三コバルトを得ている。この製造方法で得られる四酸化三コバルトは、平均粒径が0.1〜0.5μmと小さく、また、製造過程で結晶中に取り込まれたNaやSO4は洗浄等を行っても、それらを十分に除去することができず、結果的にNa含有量が0.3重量%以上のものとなる。このうち、SO4の存在は、返って電池性能を向上させることができると言う報告(特開2000−21402号公報)があるように、ある意味では電池性能に好ましい効果を付与するが、一方、Naを0.3重量%以上も含有する四酸化三コバルトをコバルト源として製造されたコバルト酸リチウムを正極活物質として用いたリチウム二次電池は、上記したようにサイクル特性に問題がある。
【0008】
また、特開平4−321523号公報には、1リットル当たり200g以下の濃度でコバルトイオンを含むコバルト塩水溶液中に、その水溶液中に含まれるコバルトイオンに対して当量以上の炭酸水素イオンを含む水溶液を添加して70℃以下に維持しながら反応させ、得られた沈澱を洗浄乾燥したのち、空気中等の酸素共存下で350〜550℃の温度で焼成して四酸化三コバルトを得る方法が開示されている。しかしながら、特開平4−321523号公報の四酸化三コバルトの製造方法は、実際には、炭酸水素イオンを含む水溶液に、コバルトイオンを含むコバルト塩水溶液を添加しており、また、得られる四酸化三コバルトは平均粒径が0.2μm以下の微細なものである。
【0009】
通常、リチウム二次電池の正極活物質として用いるコバルト酸リチウムは、平均粒径が1〜20μmで、粒度分布がシャープなものが用いられている。この中、平均粒径が10〜20μmのコバルト酸リチウムを正極活物質として用いたリチウム二次電池は、特に安全性が優れたものとなることが知られている。
この平均粒径が10〜20μmのコバルト酸リチウムは、通常平均粒径が2μm以下の微細な四酸化三コバルトをコバルト源として、これと炭酸リチウムとをLi/Coのモル比で1.03以上で混合し、1000℃以上で焼成を行って粒子の成長を行わせて製造されているが、この際、過剰分の炭酸リチウムが残存し、その結果、電池性能を劣化させる傾向がある。
【0010】
従って、本発明の第1の目的は、特にリチウム二次電池の正極活物質として用いるコバルト酸リチウム、特に平均粒径が10μm以上のコバルト酸リチウムの製造原料として有用なNa含有量が0.1重量%以下で、且つタップ密度が大きく、粒度分布のシャープな平均粒径が5〜30μmの四酸化三コバルトの製造方法を提供することにある。
また、本発明の第2の目的は、リチウム二次電池の正極活物質として有用な平均粒径が10μm以上で、特に不純物としての炭酸リチウムの含有量が0.01重量%以下のコバルト酸リチウムの製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上記実情において鋭意研究を重ねた結果、硫酸コバルト水溶液に、炭酸水素ナトリウム水溶液を特定温度以上で添加し特定の条件下で熟成して生成される沈澱物を更に特定温度で焼成を行って得られる平均粒径が5〜30μmの四酸化三コバルトは、Na含有量が0.1重量%以下で、タップ密度が大きく、粒度分布がシャープなものとなること、及びこれと炭酸リチウムとを混合し焼成を行って得られる平均粒径が10μm以上のコバルト酸リチウムは、特に残存する炭酸リチウムが低減されたものとなり、また、これを正極活物質とするリチウム二次電池は、電池性能に優れたものとなることを見出し本発明を完成するに至った。
【0012】
即ち、本発明の第1の発明は、下記の(A1)〜(A2)工程を含むことを特徴とする平均粒径が5〜30μmの四酸化三コバルトの製造方法を提供する。
(A1)工程;硫酸コバルト水溶液に、炭酸水素ナトリウム水溶液を温度50℃以上で添加し、次いで反応液にアルカリを添加して反応系内のpHを8〜12に調製し沈澱物を生成させる工程。
(A2)工程;(A1)工程で生成した沈澱物を温度600〜1000℃で焼成を行って四酸化三コバルトを得る工程。
また、本発明の第2の発明は、前記で得られる四酸化三コバルトと炭酸リチウムとを混合し、焼成を行うことを特徴とするコバルト酸リチウムの製造方法を提供する。
【0013】
【発明の実施の形態】
(四酸化三コバルト)
(A1)工程は硫酸コバルト水溶液に、炭酸水素ナトリウム水溶液を温度50℃以上で添加し、次いで反応液にアルカリを添加して反応系内のpHを8〜12に調製し沈澱物を生成させる工程である。
【0014】
前記(A1)工程で用いる原料の硫酸コバルト水溶液は、硫酸コバルトを水に溶解した水溶液である。用いることができる硫酸コバルトは、工業的に入手できるものであれば特に制限はなく、含水物であっても無水物であってもよい。この中、工業的に入手が容易で安価であることから硫酸コバルト7水塩(CoSO4・7H2O)が特に好ましい。
水溶液中の硫酸コバルトの濃度は、特に制限はないが、硫酸コバルトの溶解度は溶解させる温度に強く依存することから、例えば、60℃の温度で溶解させるには硫酸コバルト(CoSO4)として8〜37重量%、好ましくは21〜31重量%とすることが好ましい。
【0015】
もう一方の原料の炭酸水素ナトリウム水溶液は、炭酸水素ナトリウムを水に溶解させた水溶液であり、用いることができる炭酸水素ナトリウムとしては、工業的に入手できるものであれば特に制限はなく用いることができる。
炭酸水素ナトリウム水溶液の濃度は、炭酸水素ナトリウムが溶解できる濃度であれば特に制限はないが通常5重量%以上、好ましくは8〜9重量%とすることが好ましい。
【0016】
具体的な(A1)工程の反応操作は、前記硫酸コバルト水溶液を温度50℃以上、好ましくは60〜90℃に加温する。次にこの硫酸コバルト水溶液に、前記炭酸水素ナトリウム水溶液を添加する。
【0017】
この(A1)工程において、炭酸水素ナトリウム水溶液を上記温度範囲で添加することにより粒度分布のシャープなものを得ることができ、一方、50℃未満では得られる沈澱物及び四酸化三コバルトの粒子径のバラツキが大きくなり、これを原料として製造されるコバルト酸リチウムは、粒子径のバラツキが大きいためリチウム二次電池の正極材に均一な厚さの塗膜を形成させることができなくなる。
炭酸水素ナトリウム水溶液の添加量は、硫酸コバルト水溶液中の硫酸コバルト(CoSO4)に対する炭酸水素ナトリウム水溶液中の炭酸水素ナトリウム(NaHCO3)とのモル比(NaHCO3/CoSO4)で1.0以上であれば、未反応の硫酸コバルトが残存しにくくなることから好ましいが、余りに多くなると実用的でないため1.0〜1.2とすることが好ましい。
【0018】
本発明の平均粒径が5〜30μmの四酸化三コバルトを得るには、この(A1)工程において、生成する沈澱物の平均粒径を10μm以上、好ましくは10〜40μmとする必要があり、生成する沈澱物の粒径は、添加する炭酸水素ナトリウム水溶液の添加時間に強く影響を受ける。この添加時間を長くすることにより得られる沈澱物の平均粒径は大きくなり、一方、この添加時間を短くすることにより小さいものが得られる。この(A1)工程において上記範囲の平均粒径の沈澱物を生成させるには、前記炭酸水素ナトリウム水溶液を、通常0.5時間以上、好ましくは0.5〜6時間で添加すればよく、また、安定した品質のものを得るため一定速度で添加することが好ましい。
【0019】
通常、炭酸水素ナトリウム水溶液を上記割合で添加すると反応系内のpHは6〜7となるが、本発明では、更に反応系内にアルカリを添加して、反応系内のpHを8〜12に調製し熟成反応を行う。
【0020】
本発明において、この熟成反応により未反応分の硫酸コバルトと、炭酸水素ナトリウム又は/及び新たに添加するアルカリとの反応を行わせて目的物の回収率を高めると、共に、沈澱物中に取り込まれたNaとSO4等の不純物を低減させることができる。
【0021】
用いることができるアルカリとしては、特に制限はなく、例えば、アンモニアガス、アンモニア水、苛性ソーダ、苛性カリ、Na2CO3、K2CO3等の無機アルカリ、またはエタノールアミン等の有機アルカリ等が挙げられ、これらのアルカリは1種又は2種以上で用いることができる。この中、水酸化ナトリウムが安価で工業的に入手が容易で、また、少ない添加量で容易にpH調製が行えることから特に好ましい。
【0022】
この熟成反応においてpHを上記範囲とする理由は、pHが8未満では、未反応分の硫酸コバルトが残存しやすくなるため目的物の回収率が悪くなり、一方、pHが12を超えるとNaを除去できなくなるため好ましくない。
【0023】
更に、この熟成反応は上記pH範囲で行うと共に、50℃以上、好ましくは60〜90℃で熟成を行うことにより効果的に、未反応の硫酸コバルトと、炭酸水素ナトリウム又は/及び新たに添加したアルカリとの反応を行わせることができると共に沈澱物中に取り込まれたNaとSO4等の不純物を効果的に低減させることができる。
【0024】
熟成反応の時間は特に制限されるものではないが、通常1時間以上、好ましくは3〜24時間とすることが好ましい。
【0025】
次に、常法により固液分離し、洗浄、乾燥して沈澱物を回収するが、本発明において、この洗浄は、得られた沈澱物の10%スラリーとした時の電気伝導度が100μs/cm以下、好ましくは40μs/cm以下となるまで水で十分に洗浄することが高純度の四酸化三コバルトを得る上で特に好ましい。
【0026】
かくして得られる沈澱物の物性としては、レーザー回折法から求められる平均粒径が10μm以上、好ましくは10〜40μmで、粒度分布がシャープなものである。また、かかる沈澱物の組成は、コバルト金属として40〜50重量%、好ましくは45〜49重量%の範囲で含有され、不純物としてのNa含有量が0.1重量%以下、好ましくは0.05重量%以下で、SO4含有量が5重量%以下、好ましくは1重量%以下である。
【0027】
次に、上記で得られた沈澱物を(A2)工程において、600〜1000℃、好ましくは800〜950℃で焼成を行って四酸化三コバルトを得る。
本発明において、焼成温度を上記範囲とする理由は、600℃未満では、本発明の目的の一つとするタップ密度が1g/cm3以上のものが得られなくなり、一方、1000℃を超えると四酸化三コバルトの粒子が溶融し粒成長するため、粗大で硬い粒子となるため好ましくない。
【0028】
焼成時間は、1〜10時間とすることが好ましい。焼成の雰囲気は、例えば、大気中又は酸素雰囲気中又は不活性雰囲気中のいずれで行ってもよく、特に制限されるものではなく、また、これらの焼成は必要により何度でも行ってもよい。
【0029】
焼成終了後、所望により粉砕し四酸化三コバルトを得る。かくして得られる四酸化三コバルトは凝集体であり、ここで凝集体とは、一次粒子が集合した一次粒子集合体(以下、「二次粒子」と略記する)を意味する。
【0030】
なお、得られた四酸化三コバルトが脆くブロック状の場合には、適宜粉砕を行って製品とするが、本発明にかかる四酸化三コバルトは、下記物性を有する四酸化三コバルトである。
即ち、走査型電子顕微鏡(SEM)から求められる一次粒子の粒径が0.05〜3μmで、好ましくは0.5〜2μmで、二次粒子の平均粒径が5〜30μm、好ましくは8〜20μmで、粒度分布がシャープなものであり、また、タップ密度が1g/cm3以上、好ましくは1〜2.5g/cm3で、BET比表面積が0.3〜10m2/g、好ましくは0.1〜3m2/gで、不純物としてNa含有量が0.1重量%以下で、好ましくは0.05重量%以下、SO4含有量が5重量%以下、好ましくは1重量%以下の諸物性を有するものである。
なお、本発明におけるタップ密度とは、JIS−K−5101に記載された見掛け密度又は見掛け比容の方法に基づいて、タップ法により50mlのメスシリンダーにサンプル10gをいれ、500回タップし静置後、容積を読みとり、下記式により求めたものである。
【数1】

Figure 0004086551
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(cm3)を示す。)
【0031】
このような諸物性を有する四酸化三コバルトは、リチウム二次電池の正極活物質のコバルト酸リチウム用の製造原料として有用であり、特に平均粒径が10μm以上のコバルト酸リチウムの製造原料として好的に用いることができる。
【0032】
(コバルト酸リチウム)
次に、本発明にかかるコバルト酸リチウムの製造方法について説明する。
本発明のコバルト酸リチウムの製造方法は、上記で得られた平均粒径が5〜30μmの四酸化三コバルトと炭酸リチウムとを混合し、焼成を行うことを特徴とするものである。
【0033】
用いることができる炭酸リチウムは、工業的に入手できるものであれば特に制限はないが、高純度のコバルト酸リチウムを製造するために、可及的に不純物含有量が少ないものであることが好ましい。
【0034】
具体的な反応操作は、まず、前記四酸化三コバルトと炭酸リチウムとを所定量混合する。混合は、乾式又は湿式のいずれの方法でもよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するようなブレンダーを用いることが好ましい。
【0035】
炭酸リチウムと四酸化三コバルトとの混合割合は、炭酸リチウムと四酸化三コバルト中のLi/Coのモル比で0.95〜1.05の間で適宜設定することができるが、残存する炭酸リチウムの含有量を少なくするためLi/Coのモル比で1〜1.01で反応を行うことが好ましい。
【0036】
次に、混合物を焼成する。焼成温度は600〜1100℃の間で行えばよいが、残存する炭酸リチウムの含有量を少なくするため800〜1000℃で、2〜24時間焼成を行うことが好ましい。
焼成の雰囲気は、例えば、大気中又は酸素雰囲気中又は不活性雰囲気中のいずれで行ってもよく、特に制限されるものではなく、また、これらの焼成は必要により何度でも行ってもよい。
【0037】
焼成後は、適宜冷却し、必要に応じ粉砕してコバルト酸リチウムを得る。なお、必要に応じて行われる粉砕は、焼成して得られるコバルト酸リチウムがもろく結合したブロック状のものである場合等に適宜行うが、コバルト酸リチウムの粒子自体は特定の平均粒径、BET比表面積を有するものである。即ち、得られるコバルト酸リチウムは、レーザー回折法から求められる平均粒径が10μm以上、好ましくは10〜20μmで、BET比表面積が0.1〜2.0m2/g、好ましくは0.2〜1.5m2/gであり、更に、好ましい物性としては、炭酸リチウム含有量が0.01重量%以下、好ましくは0.005重量%以下の諸物性を有するものである。
【0038】
このような諸物性を有するコバルト酸リチウムは、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなるリチウム二次電池の正極活物質として好適に用いることができる。
【0039】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
実施例1
(A1)工程
20L容量のステンレスタンクに、予め1.8mol/L(CoSOとして)の硫酸コバルト水溶液を4L張り、これを60℃に加温し、そこに1mol/Lの炭酸水素ナトリウム水溶液14.4Lを2時間かけて60℃に温度を維持しながら滴下した。なお、滴下終了後の反応系内のpHは6.7であった.
次いで滴下終了後、温度を60℃に維持したままpH8になるまで4mol/Lの水酸化ナトリウム溶液を加え、このpHと温度を維持しながら3時間の熟成を行った。
次いで、濾過に要する時間を確認しながら、固液分離後、回収した沈澱物を10%スラリーとした時の25℃における電気伝導度を電気伝導度計で確認しながら電気伝導度が100μs/cm以下となるまで十分に押水洗浄を行い、乾燥して沈澱物856.1gを得た(収率99.96%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO、Co含有量を測定した。その結果を表1に示した。また、得られた沈澱物の電子顕微鏡写真を図1に、粒度分布図を図2に示した。
なお、Na、SO含有量はICP発光分析法により、沈澱物中のCo含有量は電位差滴定法により求めた。また、沈澱物の平均粒径は走査型電子顕微鏡(SEM)により求め、粒度分布は、Microtrac粒度分析計9320−X100型(Leed&Northrup社製)を用いて測定した。
(A2)工程
次に、この沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が0.5〜2μmで、二次粒子の平均粒径が14.1μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO、Co含有量を測定した。その結果を表2に示した。また、電子顕微鏡写真を図3に、粒度分布図を図4に示した。
なお、Na、SO含有量はICP発光分析法により求め、四酸化三コバルト中のCo含有量は電位差滴定法により求めた。また、粒度分布は、Microtrac粒度分析計9320−X100型(Leed&Northrup社製)を用いて測定した。
また、タップ密度は、50mlのメスシリンダーにサンプル10gをいれ、ユアサアイオニクス株式会社製、DUALAUTOTAP装置にセットし、500回タップした後、容積を読みとり下記式によりタップ密度(g/cm)を求めた。
【数2】
Figure 0004086551
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(cm)を示す。)
【0040】
実施例2
(A1)工程
20L容量のステンレスタンクに、予め1.8mol/L(CoSO4として)
の硫酸コバルト水溶液を4L張り、これを60℃に加温し、そこに1mol/Lの炭酸水素ナトリウム溶液14.4Lを2時間かけて60℃に温度を維持しながら滴下した。なお、滴下終了後の反応系内のpHは6.8であった.次いで滴下終了後、温度を60℃に維持したままpH8になるまで4mol/Lの水酸化ナトリウム水溶液を加え、このpHと温度を維持しながら15時間の熟成を行った。
次いで、濾過に要する時間を確認しながら、固液分離後、回収した沈澱物を10%スラリーとした時の25℃における電気伝導度を電気伝導度計で確認しながら電気伝導度が100μs/cm以下となるまで十分に押水洗浄を行い、乾燥して沈澱物856.4gを得た(収率99.99%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表1に示した。
(A2)工程
次にこの沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が0.5〜2μmで、二次粒子の平均粒径が10.9μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO4、Co含有量を実施例1と同様な方法で測定した。その結果を表2に示した。
【0041】
比較例1
(A1)工程
実施例1の(A1)工程において、炭酸水素ナトリウム水溶液の添加温度を40℃とした以外は、実施例1と同じ操作で沈澱物855.3gを得た(収率99.87%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO、Co含有量を実施例1と同様な方法で測定した。その結果を表1に示した。また、得られた沈澱物の電子顕微鏡写真を図5に、粒度分布図を図6に示した。
(A2)工程
次にこの沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が1〜3μmで二次粒子の平均粒径が13.8μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO、Co含有量を実施例1と同様な方法で測定した。その結果を表2に示した。また、得られた四酸化三コバルトの電子顕微鏡写真を図7に、粒度分布図を図8に示した。
【0042】
比較例2
実施例1の(A1)工程において、炭酸水素ナトリウム水溶液添加後、アルカリを添加しないで、そのまま熟成反応を行った以外は、実施例1と同じ操作で沈澱物742.4gを得た(収率86.69%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO、Co含有量を実施例1と同様な方法で測定した。その結果を表1に示した。また、得られた沈澱物の電子顕微鏡写真を図9に、粒度分布図を図10に示した。
(A2)工程
次にこの沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が0.5〜2μmで二次粒子の平均粒径が12.2μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO、Co含有量を実施例1と同様な方法で測定した。その結果を表2に示した。また、得られた四酸化三コバルトの電子顕微鏡写真を図11に、粒度分布図を図12に示した。
【0043】
比較例3
(A1)工程
20L容量のステンレスタンクに、予め1mol/Lの炭酸水素ナトリウム水溶液を14.4L張り、これを60℃に加温し、そこに1.8mol/L(CoSOとして)の硫酸コバルト水溶液4Lを2時間かけて60℃に温度を維持しながら滴下した。なお、滴下終了後の反応系内のpHは6.4であった.次いで滴下終了後、温度を60℃に維持したままpH8になるまで4mol/Lの水酸化ナトリウム溶液を加え、このpHと温度を維持しながら3時間の熟成を行った。
次いで、濾過に要する時間を確認しながら、固液分離後、回収した沈澱物を10%スラリーとした時の25℃における電気伝導度を電気伝導度計で確認しながら電気伝導度が100μs/cmとなるまで十分な押水洗浄を行い、乾燥して沈澱物882.2gを得た(収率103.00%)。
得られた沈澱物について、平均粒径、BET比表面積、Na、SO、Co含有量を実施例1と同様な方法で測定した。その結果を表1に示した。また、得られた沈澱物の電子顕微鏡写真を図13に、粒度分布図を図14に示した。
(A2)工程
次にこの沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が0.2〜10μmで二次粒子の平均粒径が31.4μmであった。
また、得られた四酸化三コバルトのBET比表面積、タップ密度、Na、SO、Co含有量を実施例1と同様な方法で測定した。その結果を表2に示した。また、得られた四酸化三コバルトの電子顕微鏡写真を図15に、粒度分布図を図16に示した。
【0044】
【表1】
Figure 0004086551
表1の結果より、本発明の(A1)工程を行うことにより純度よく、高収率で目的とする沈澱物を回収することができ、また、図2によりこの沈澱物は粒度分布がシャープなものであることが分かる。これに対して、温度40℃で炭酸水素ナトリウム水溶液を添加したもの(比較例1)は、粒度分布がブロードであり(図6)、熟成反応でpH調製を行わないもの(比較例2)は収率が低下し、また炭酸水素ナトリウム水溶液に、硫酸コバルト水溶液を添加したもの(比較例3)は、残存するアルカリ分が多くなっていることが分かる。
【0045】
【表2】
Figure 0004086551
表2の結果より、本発明の製造方法で得られる四酸化三コバルトは、高純度で、タップ密度が大きく、また、図2より得られた四酸化三コバルトは粒度分布がシャープなものであることが分かる。これに対して、比較例1の四酸化三コバルトは、粒度分布が不規則にブロードしており(図8)、また比較例3の四酸化三コバルトはNa含有量が0.5重量%以上と高いことが分かる。
【0046】
実施例3〜4及び比較例4〜5
実施例1〜2及び比較例1と3で得られた四酸化三コバルトと炭酸リチウム(平均粒径12μm)とをLi/Coのモル比で1となるように秤量し、次に乾式で十分混合した後、900℃で5時間焼成した。該焼成物を粉砕、分級してコバルト酸リチウムを得た。得られたコバルト酸リチウムの平均粒径をレーザー回折法により求めた。また、残存炭酸リチウム量は、試料を硫酸によって分解し、生成したCO2を塩化バリウムと水酸化ナトリウムを含有する溶液中に導入して吸収させ、この溶液を塩酸標準溶液で滴定することによってCO2濃度を定量し、この定量値から換算した。
【0047】
比較例6
市販の四酸化三コバルト(平均粒径2μm)と炭酸リチウム(平均粒径12μm)とをLi/Coのモル比で1.03となるように秤量し、次に乾式で十分に混合した後1000℃で5時間焼成した。該焼成物を粉砕、分級してコバルト酸リチウムを得た。
得られたコバルト酸リチウムの平均粒径と残存炭酸リチウム量を実施例3〜4と同様に測定し、その結果を表3に示した。
【0048】
【表3】
Figure 0004086551
表3の結果より、市販の平均粒径が2μmの四酸化三コバルトから平均粒径が10μm以上のコバルト酸リチウムを合成した(比較例6)ものは炭酸リチウムを0.1重量%以上含有しているのに対して、本発明の四酸化三コバルトを製造原料として合成された平均粒径が10μm以上のコバルト酸リチウムには残存炭酸リチウムが0.001重量%で、残存炭酸リチウムが低減されていることが分かる。
【0049】
<電池性能試験>
(I)リチウム2電池の作製;
上記のように製造した実施例3〜4及び比較例〜6のコバルト酸リチウム91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF1モルを溶解したものを使用した。
【0050】
(II)電池の性能評価
作製したリチウム二次電池を室温で作動させ、初期放電容量および容量維持率を測定して電池性能を評価した。
なお容量維持率は、下記の式により算出した。
【数3】
Figure 0004086551
【表4】
Figure 0004086551
【0051】
【発明の効果】
上記したとおり、本発明の製造方法で得られる四酸化三コバルトは、Na含有量が0.1重量%以下で、且つタップ密度が大きく、粒度分布のシャープな平均粒径が5〜30μmの四酸化三コバルトであり、特にリチウム二次電池の正極活物質用のコバルト酸リチウムの製造原料として有用である。
また、該四酸化三コバルトを用いて製造された平均粒径10μm以上のコバルト酸リチウムは、残存炭酸リチウムが低減され、該コバルト酸リチウムを正極活物質とするリチウム2次電池は、電池性能の優れたものとなる。
【図面の簡単な説明】
【図1】 実施例1の(A1)工程で得られた沈澱物の電子顕微鏡写真(倍率3000)。
【図2】実施例1の(A1)工程で得られた沈澱物の粒度分布図。
【図3】実施例1で得られた四酸化三コバルトの電子顕微鏡写真(倍率1000)。
【図4】実施例1で得られた四酸化三コバルトの粒度分布図。
【図5】 比較例1の(A1)工程で得られた沈澱物の電子顕微鏡写真(倍率3000)。
【図6】比較例1の(A1)工程で得られた沈澱物の粒度分布図。
【図7】比較例1で得られた四酸化三コバルトの電子顕微鏡写真(倍率1000)。
【図8】比較例1で得られた四酸化三コバルトの粒度分布図。
【図9】 比較例2の(A1)工程で得られた沈澱物の電子顕微鏡写真(倍率3000)。
【図10】比較例2の(A1)工程で得られた沈澱物の粒度分布図。
【図11】比較例2で得られた四酸化三コバルトの電子顕微鏡写真(倍率1000)。
【図12】比較例2で得られた四酸化三コバルトの粒度分布図。
【図13】 比較例3の(A1)工程で得られた沈澱物の電子顕微鏡写真(倍率3000)。
【図14】比較例3の(A1)工程で得られた沈澱物の粒度分布図。
【図15】比較例3で得られた四酸化三コバルトの電子顕微鏡写真(倍率1000)。
【図16】比較例3で得られた四酸化三コバルトの粒度分布図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing tricobalt tetraoxide having an average particle size of 5 to 30 μm, which is particularly useful as a raw material for producing lithium cobaltate used as a positive electrode active material of a lithium secondary battery, and lithium cobaltate using the same as a raw material for production It is related with the manufacturing method.
[0002]
[Prior art]
In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries (“Material Research Bulletin” vol15, P783-789 (1980)). Since then, research and development on lithium cobaltate has been actively promoted, and many proposals have been made so far.
[0003]
Conventionally, tricobalt tetroxide is mainly used as a raw material for producing this lithium cobalt oxide.
Examples of the method for producing tricobalt tetroxide for lithium secondary batteries include a method of calcining cobalt hydroxide to obtain tricobalt tetroxide, or a method of calcining cobalt carbonate to obtain tricobalt tetroxide. Proposed.
[0004]
As a method for obtaining cobalt trioxide by calcining cobalt hydroxide, for example, an aqueous solution of cobalt salt and a caustic alkaline solution are continuously supplied and stirred in the same tank, and supplied salt concentration and supplied salt flow rate. A method of obtaining tricobalt tetroxide by heat-treating the obtained cobalt hydroxide in air after controlling the pH value in the tank to a range of 11.0 to 13.5 while keeping the temperature in the tank constant. (Kaihei 9-22692), cobalt hydroxide obtained by dropping a sodium hydroxide aqueous solution into a cobalt nitrate aqueous solution at 100 to 900 ° C. to obtain tricobalt tetroxide or tricobalt tetroxide and a hydroxide. Proposed is a method for obtaining a cobalt oxide composed of agglomerates in which a plurality of primary particles having a spherical or oval spherical shape and an average particle size of 1 μm or less are connected to each other (Japanese Patent Laid-Open No. 5-54888). .
[0005]
On the other hand, as a method of calcining cobalt carbonate to obtain tricobalt tetroxide, for example, an aqueous solution of cobalt sulfate and an aqueous solution containing hydrogen carbonate ions at an equivalent amount or more with respect to cobalt ions contained in the aqueous solution are reacted, Further, ammonia was added to adjust the pH to 7.0 to 8.5, and after stirring for 1 hour or longer, the resulting precipitate was subjected to solid-liquid separation, washing and drying, and 600 to 600- A method of obtaining tricobalt tetroxide by firing at a temperature of 700 ° C. (JP-A-8-96809) has been proposed.
[0006]
[Problems to be solved by the invention]
However, tricobalt tetroxide obtained by firing cobalt hydroxide usually has a small tap density. For example, in an industrial method for producing lithium cobaltate, it is filled in a furnace when mixed with lithium carbonate. The density is small and it is not suitable for mass production of lithium cobaltate. In addition, tricobalt tetroxide obtained in JP-A-5-54888 can be obtained with a large tap density, but in the tricobalt tetroxide particles, a large amount of Na and SO Four Lithium cobaltate produced using tricobalt tetroxide containing Na at a high concentration as a cobalt source is distorted and the layer structure is distorted, making it difficult to remove and insert Li. Therefore, the lithium secondary battery using this lithium cobaltate as the positive electrode active material tends to have poor cycle characteristics.
[0007]
On the other hand, according to the method for producing tricobalt tetroxide disclosed in JP-A-8-96809, a basic cobalt carbonate obtained by adding a cobalt sulfate aqueous solution to a sodium hydrogen carbonate aqueous solution and further adding ammonia is added in an amount of 600 to 700. It is calcined at ℃ to obtain tricobalt tetroxide. The tricobalt tetroxide obtained by this production method has an average particle size as small as 0.1 to 0.5 μm, and Na or SO incorporated into the crystal during the production process. Four Cannot be removed sufficiently even after washing or the like, and as a result, the Na content becomes 0.3% by weight or more. Of these, SO Four As described above, there is a report (Japanese Patent Laid-Open No. 2000-21402) that the battery performance can be improved by returning, but in a sense, it gives a favorable effect on the battery performance. As described above, the lithium secondary battery using lithium cobaltate produced by using tricobalt tetroxide containing 3% by weight or more as a cobalt source has a problem in cycle characteristics as described above.
[0008]
Japanese Patent Application Laid-Open No. 4-321523 discloses an aqueous solution containing bicarbonate ions equal to or higher than the cobalt ions contained in an aqueous solution of cobalt salt containing cobalt ions at a concentration of 200 g or less per liter. Is added, and the reaction is carried out while maintaining at 70 ° C. or lower, and the resulting precipitate is washed and dried, and then calcined at 350 to 550 ° C. in the presence of oxygen in the air or the like to obtain tricobalt tetroxide. Has been. However, in the method for producing tricobalt tetroxide disclosed in JP-A-4-321523, a cobalt salt aqueous solution containing cobalt ions is actually added to an aqueous solution containing hydrogen carbonate ions. Tricobalt is fine with an average particle size of 0.2 μm or less.
[0009]
Usually, lithium cobaltate used as a positive electrode active material of a lithium secondary battery has an average particle diameter of 1 to 20 μm and a sharp particle size distribution. Among these, it is known that a lithium secondary battery using lithium cobaltate having an average particle diameter of 10 to 20 μm as a positive electrode active material is particularly excellent in safety.
The lithium cobalt oxide having an average particle diameter of 10 to 20 μm is usually made of fine tricobalt tetroxide having an average particle diameter of 2 μm or less as a cobalt source, and this and lithium carbonate in a molar ratio of Li / Co of 1.03 or more. In this case, an excess amount of lithium carbonate remains, and as a result, the battery performance tends to be deteriorated.
[0010]
Accordingly, the first object of the present invention is to have a Na content of 0.1 which is useful as a raw material for producing lithium cobaltate, particularly used as a positive electrode active material for lithium secondary batteries, particularly lithium cobaltate having an average particle size of 10 μm or more. An object of the present invention is to provide a method for producing tricobalt tetroxide having an average particle diameter of 5 to 30 μm having a weight density of 5% or less and a large tap density and a sharp particle size distribution.
The second object of the present invention is a lithium cobalt oxide having an average particle diameter of 10 μm or more useful as a positive electrode active material of a lithium secondary battery, in particular, a content of lithium carbonate as an impurity of 0.01% by weight or less. It is in providing the manufacturing method of.
[0011]
[Means for Solving the Problems]
As a result of intensive research in the above circumstances, the present inventors have added a sodium hydrogen carbonate aqueous solution at a specific temperature or higher to a cobalt sulfate aqueous solution and ripened it under specific conditions at a specific temperature. Tricobalt tetroxide having an average particle size of 5 to 30 μm obtained by firing has a Na content of 0.1% by weight or less, a large tap density, and a sharp particle size distribution. Lithium cobaltate having an average particle size of 10 μm or more obtained by mixing and baking with lithium carbonate is particularly reduced in remaining lithium carbonate, and a lithium secondary battery using this as a positive electrode active material is The inventors have found that the battery performance is excellent and have completed the present invention.
[0012]
That is, 1st invention of this invention provides the manufacturing method of tricobalt tetroxide whose average particle diameter is 5-30 micrometers characterized by including the following (A1)-(A2) process.
Step (A1): A step of adding a sodium hydrogen carbonate aqueous solution to a cobalt sulfate aqueous solution at a temperature of 50 ° C. or higher and then adding an alkali to the reaction solution to adjust the pH in the reaction system to 8 to 12 to produce a precipitate. .
(A2) step; a step of obtaining tricobalt tetroxide by firing the precipitate produced in step (A1) at a temperature of 600 to 1000 ° C.
Moreover, 2nd invention of this invention provides the manufacturing method of lithium cobaltate characterized by mixing the tricobalt tetroxide obtained above and lithium carbonate, and performing baking.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
(Tricobalt tetraoxide)
Step (A1) is a step of adding a sodium hydrogen carbonate aqueous solution to a cobalt sulfate aqueous solution at a temperature of 50 ° C. or higher and then adding an alkali to the reaction solution to adjust the pH in the reaction system to 8 to 12 to produce a precipitate. It is.
[0014]
The raw material cobalt sulfate aqueous solution used in the step (A1) is an aqueous solution in which cobalt sulfate is dissolved in water. Cobalt sulfate that can be used is not particularly limited as long as it is industrially available, and may be a hydrate or an anhydride. Of these, cobalt sulfate heptahydrate (CoSO Four ・ 7H 2 O) is particularly preferred.
The concentration of cobalt sulfate in the aqueous solution is not particularly limited. However, since the solubility of cobalt sulfate strongly depends on the temperature at which it is dissolved, for example, cobalt sulfate (CoSO) is used for dissolution at a temperature of 60 ° C. Four 8) to 37% by weight, preferably 21 to 31% by weight.
[0015]
The other raw material, sodium bicarbonate aqueous solution is an aqueous solution in which sodium bicarbonate is dissolved in water, and any sodium bicarbonate that can be used is not particularly limited as long as it is industrially available. it can.
The concentration of the sodium bicarbonate aqueous solution is not particularly limited as long as it is a concentration capable of dissolving sodium bicarbonate, but it is usually 5% by weight or more, preferably 8-9% by weight.
[0016]
The specific reaction operation in the step (A1) heats the cobalt sulfate aqueous solution to a temperature of 50 ° C. or higher, preferably 60 to 90 ° C. Next, the sodium hydrogen carbonate aqueous solution is added to the cobalt sulfate aqueous solution.
[0017]
In this step (A1), by adding an aqueous sodium hydrogen carbonate solution within the above temperature range, a product having a sharp particle size distribution can be obtained. On the other hand, if it is less than 50 ° C., the resulting precipitate and the particle size of tricobalt tetraoxide are obtained. The lithium cobaltate produced using this as a raw material has a large particle size variation, and therefore it becomes impossible to form a coating film having a uniform thickness on the positive electrode material of the lithium secondary battery.
The amount of sodium hydrogen carbonate aqueous solution added was cobalt sulfate (CoSO Four ) In aqueous sodium bicarbonate solution (NaHCO 3) Three ) Molar ratio (NaHCO 3) Three / CoSO Four If it is 1.0 or more, it is preferable because unreacted cobalt sulfate hardly remains, but if it is too much, it is not practical, so 1.0 to 1.2 is preferable.
[0018]
In order to obtain tricobalt tetroxide having an average particle size of 5 to 30 μm according to the present invention, in this step (A1), it is necessary that the average particle size of the precipitate formed is 10 μm or more, preferably 10 to 40 μm. The particle size of the precipitate formed is strongly influenced by the addition time of the aqueous sodium hydrogen carbonate solution to be added. Increasing the addition time increases the average particle size of the precipitate, while reducing the addition time results in a smaller precipitate. In order to produce a precipitate having an average particle size in the above range in this step (A1), the aqueous sodium hydrogen carbonate solution is usually added for 0.5 hours or longer, preferably 0.5 to 6 hours. In order to obtain a stable quality, it is preferable to add at a constant rate.
[0019]
Usually, when a sodium hydrogen carbonate aqueous solution is added at the above ratio, the pH in the reaction system becomes 6 to 7. However, in the present invention, an alkali is further added to the reaction system so that the pH in the reaction system is 8 to 12. Prepare and ripen.
[0020]
In the present invention, this aging reaction causes the reaction of unreacted cobalt sulfate with sodium hydrogen carbonate and / or newly added alkali to increase the recovery rate of the target product, and both are incorporated into the precipitate. Na and SO Four Such impurities can be reduced.
[0021]
The alkali that can be used is not particularly limited. For example, ammonia gas, aqueous ammonia, caustic soda, caustic potash, Na 2 CO Three , K 2 CO Three An inorganic alkali such as ethanolamine or an organic alkali such as ethanolamine can be used. These alkalis can be used alone or in combination of two or more. Among these, sodium hydroxide is particularly preferable because it is inexpensive and easily available industrially, and pH can be easily adjusted with a small addition amount.
[0022]
The reason for setting the pH to the above range in this ripening reaction is that if the pH is less than 8, unreacted cobalt sulfate tends to remain, so that the recovery rate of the target product is deteriorated. This is not preferable because it cannot be removed.
[0023]
Further, this aging reaction is carried out in the above pH range, and by aging at 50 ° C. or more, preferably 60 to 90 ° C., unreacted cobalt sulfate and sodium bicarbonate or / and newly added are effectively added. The reaction with alkali can be carried out and Na and SO incorporated in the precipitate Four Such impurities can be effectively reduced.
[0024]
The time for the ripening reaction is not particularly limited, but is usually 1 hour or longer, preferably 3 to 24 hours.
[0025]
Next, solid-liquid separation is performed by a conventional method, and the precipitate is recovered by washing and drying. In the present invention, this washing has an electric conductivity of 100 μs / s when the obtained precipitate is made into a 10% slurry. In order to obtain high-purity tricobalt tetroxide, it is particularly preferable to thoroughly wash with water until it becomes cm or less, preferably 40 μs / cm or less.
[0026]
The physical properties of the precipitate thus obtained are those having an average particle size determined by a laser diffraction method of 10 μm or more, preferably 10 to 40 μm, and a sharp particle size distribution. The composition of the precipitate is 40 to 50% by weight, preferably 45 to 49% by weight as cobalt metal, and the Na content as an impurity is 0.1% by weight or less, preferably 0.05. Less than wt%, SO Four The content is 5% by weight or less, preferably 1% by weight or less.
[0027]
Next, in the step (A2), the precipitate obtained above is calcined at 600 to 1000 ° C., preferably 800 to 950 ° C., to obtain tricobalt tetroxide.
In the present invention, the reason for setting the firing temperature in the above range is that the tap density, which is one of the objects of the present invention, is less than 600 ° C. Three On the other hand, if the temperature exceeds 1000 ° C., the tricobalt tetroxide particles melt and grow, which is not preferable because they become coarse and hard particles.
[0028]
The firing time is preferably 1 to 10 hours. The firing atmosphere may be performed, for example, in the air, in an oxygen atmosphere, or in an inert atmosphere, and is not particularly limited, and these firings may be performed as many times as necessary.
[0029]
After completion of the firing, it is pulverized as desired to obtain tricobalt tetroxide. The tricobalt tetroxide thus obtained is an agglomerate, and the agglomerate here means a primary particle aggregate in which primary particles are aggregated (hereinafter abbreviated as “secondary particles”).
[0030]
In addition, when the obtained tricobalt tetroxide is brittle and is in a block shape, it is appropriately pulverized to obtain a product. The tricobalt tetroxide according to the present invention is tricobalt tetroxide having the following physical properties.
That is, the primary particle size obtained from a scanning electron microscope (SEM) is 0.05 to 3 μm, preferably 0.5 to 2 μm, and the average particle size of secondary particles is 5 to 30 μm, preferably 8 to. 20 μm, sharp particle size distribution, and tap density of 1 g / cm Three Or more, preferably 1 to 2.5 g / cm Three And the BET specific surface area is 0.3 to 10 m. 2 / G, preferably 0.1-3 m 2 / G, Na content as an impurity is 0.1 wt% or less, preferably 0.05 wt% or less, SO Four The content is 5% by weight or less, preferably 1% by weight or less.
The tap density in the present invention refers to a method of apparent density or apparent specific volume described in JIS-K-5101. A 10 g sample is placed in a 50 ml graduated cylinder by the tap method, and the sample is left tapped 500 times. After that, the volume was read and calculated by the following formula.
[Expression 1]
Figure 0004086551
(Where F is the mass of the treated sample in the receiver (g), V is the volume of the sample after tapping (cm Three ). )
[0031]
Tricobalt tetroxide having such physical properties is useful as a raw material for lithium cobaltate as a positive electrode active material of a lithium secondary battery, and is particularly preferable as a raw material for lithium cobaltate having an average particle size of 10 μm or more. Can be used.
[0032]
(Lithium cobaltate)
Next, the manufacturing method of the lithium cobalt oxide concerning this invention is demonstrated.
The method for producing lithium cobaltate of the present invention is characterized in that tricobalt tetroxide having an average particle diameter of 5 to 30 μm obtained above and lithium carbonate are mixed and fired.
[0033]
The lithium carbonate that can be used is not particularly limited as long as it is industrially available. However, in order to produce high purity lithium cobalt oxide, it is preferable that the content of impurities be as small as possible. .
[0034]
Specifically, first, a predetermined amount of the tricobalt tetroxide and lithium carbonate is mixed. The mixing may be either a dry method or a wet method, but a dry method is preferred because the production is easy. In the case of dry mixing, it is preferable to use a blender that mixes the raw materials uniformly.
[0035]
The mixing ratio of lithium carbonate and tricobalt tetroxide can be appropriately set between 0.95 and 1.05 in terms of the molar ratio of Li / Co in lithium carbonate and tricobalt tetroxide. In order to reduce the lithium content, the reaction is preferably carried out at a Li / Co molar ratio of 1 to 1.01.
[0036]
Next, the mixture is fired. The firing temperature may be between 600 and 1100 ° C., but it is preferable to carry out the firing at 800 to 1000 ° C. for 2 to 24 hours in order to reduce the content of the remaining lithium carbonate.
The firing atmosphere may be performed, for example, in the air, in an oxygen atmosphere, or in an inert atmosphere, and is not particularly limited, and these firings may be performed as many times as necessary.
[0037]
After firing, the mixture is appropriately cooled and pulverized as necessary to obtain lithium cobalt oxide. The pulverization performed as necessary is appropriately performed when, for example, the lithium cobaltate obtained by firing is in a brittle and bonded block form, but the lithium cobaltate particles themselves have a specific average particle size, BET It has a specific surface area. That is, the obtained lithium cobaltate has an average particle size determined by a laser diffraction method of 10 μm or more, preferably 10 to 20 μm, and a BET specific surface area of 0.1 to 2.0 m. 2 / G, preferably 0.2 to 1.5 m 2 Further, preferable physical properties are those having a lithium carbonate content of 0.01% by weight or less, preferably 0.005% by weight or less.
[0038]
Such lithium cobaltate having various physical properties can be suitably used as a positive electrode active material of a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.
[0039]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
Example 1
(A1) Process
In a 20 L stainless steel tank, 1.8 mol / L (CoSO 4 4) of cobalt sulfate aqueous solution was heated to 60 ° C., and 14.4 L of 1 mol / L sodium hydrogen carbonate aqueous solution was added dropwise thereto while maintaining the temperature at 60 ° C. over 2 hours. In addition, pH in the reaction system after completion | finish of dripping was 6.7.
Then, after completion of the dropwise addition, a 4 mol / L sodium hydroxide solution was added until the pH reached 8 while maintaining the temperature at 60 ° C., and aging was performed for 3 hours while maintaining this pH and temperature.
Next, while confirming the time required for filtration, after conducting the solid-liquid separation, the electrical conductivity is 100 μs / cm while confirming the electrical conductivity at 25 ° C. when the collected precipitate is made into 10% slurry with an electrical conductivity meter. Washing was sufficiently carried out until the following was reached, followed by drying to obtain 856.1 g of a precipitate (yield 99.96%).
About the obtained precipitate, average particle diameter, BET specific surface area, Na, SO 4 The Co content was measured. The results are shown in Table 1. Also, the resulting precipitate Electron micrograph Is shown in FIG. Particle size distribution chart Is shown in FIG.
Na, SO 4 The content was determined by ICP emission spectrometry, and the Co content in the precipitate was determined by potentiometric titration. The average particle size of the precipitate was determined by a scanning electron microscope (SEM), and the particle size distribution was measured using a Microtrac particle size analyzer 9320-X100 (Leed & Northrup).
(A2) Process
Next, this precipitate was baked in an electric furnace at 900 ° C. for 5 hours, cooled and pulverized, and confirmed by X-ray diffraction measurement to confirm that it was tricobalt tetroxide. Moreover, as a result of observing with a scanning electron microscope (SEM), the particle diameter of the primary particle was 0.5-2 micrometers, and the average particle diameter of the secondary particle was 14.1 micrometers.
Further, the obtained tricobalt tetroxide has a BET specific surface area, tap density, Na, SO 4 The Co content was measured. The results are shown in Table 2. Also, Electron micrograph Is shown in FIG. Particle size distribution chart Is shown in FIG.
Na, SO 4 The content was determined by ICP emission analysis, and the Co content in tricobalt tetroxide was determined by potentiometric titration. In addition, the particle size distribution was measured using a Microtrac particle size analyzer 9320-X100 (Leed & Northrup).
The tap density is 10 g in a 50 ml graduated cylinder, set in a DUALAAUTOTAP device manufactured by Yuasa Ionics Co., Ltd., tapped 500 times, the volume is read, and the tap density (g / cm 3 )
[Expression 2]
Figure 0004086551
(Where F is the mass of the treated sample in the receiver (g), V is the volume of the sample after tapping (cm 3 ). )
[0040]
Example 2
(A1) Process
In a 20 L stainless steel tank, 1.8 mol / L (CoSO Four As)
4 L of a cobalt sulfate aqueous solution was spread and heated to 60 ° C., and 14.4 L of a 1 mol / L sodium hydrogen carbonate solution was added dropwise thereto while maintaining the temperature at 60 ° C. over 2 hours. The pH in the reaction system after completion of the dropwise addition was 6.8. Then, after completion of the dropwise addition, a 4 mol / L sodium hydroxide aqueous solution was added until the pH reached 8 while maintaining the temperature at 60 ° C., and aging was performed for 15 hours while maintaining this pH and temperature.
Next, while confirming the time required for filtration, after conducting the solid-liquid separation, the electrical conductivity is 100 μs / cm while confirming the electrical conductivity at 25 ° C. when the collected precipitate is made into 10% slurry with an electrical conductivity meter. Washing was sufficiently carried out until the following was reached, followed by drying to obtain 856.4 g of a precipitate (yield 99.99%).
About the obtained precipitate, average particle diameter, BET specific surface area, Na, SO Four The Co content was measured by the same method as in Example 1. The results are shown in Table 1.
(A2) Process
Next, this precipitate was baked in an electric furnace at 900 ° C. for 5 hours, cooled and pulverized, and confirmed by X-ray diffraction measurement to confirm that it was tricobalt tetroxide. Moreover, as a result of observing with a scanning electron microscope (SEM), the particle diameter of the primary particle was 0.5-2 micrometers, and the average particle diameter of the secondary particle was 10.9 micrometers.
Further, the obtained tricobalt tetroxide has a BET specific surface area, tap density, Na, SO Four The Co content was measured by the same method as in Example 1. The results are shown in Table 2.
[0041]
Comparative Example 1
(A1) Process
In the step (A1) of Example 1, 855.3 g of a precipitate was obtained by the same operation as in Example 1 except that the addition temperature of the aqueous sodium hydrogen carbonate solution was 40 ° C. (yield 99.87%).
About the obtained precipitate, average particle diameter, BET specific surface area, Na, SO 4 The Co content was measured by the same method as in Example 1. The results are shown in Table 1. Also, the resulting precipitate Electron micrograph Is shown in FIG. Particle size distribution chart Is shown in FIG.
(A2) Process
Next, this precipitate was baked in an electric furnace at 900 ° C. for 5 hours, cooled and pulverized, and confirmed by X-ray diffraction measurement to confirm that it was tricobalt tetroxide. Further, as a result of observation with a scanning electron microscope (SEM), the primary particles had a particle size of 1 to 3 μm and the secondary particles had an average particle size of 13.8 μm.
Further, the obtained tricobalt tetroxide has a BET specific surface area, tap density, Na, SO 4 The Co content was measured by the same method as in Example 1. The results are shown in Table 2. Also, the obtained tricobalt tetroxide Electron micrograph In FIG. Particle size distribution chart Is shown in FIG.
[0042]
Comparative Example 2
In the step (A1) of Example 1, 742.4 g of a precipitate was obtained by the same operation as in Example 1 except that the aging reaction was carried out as it was without adding an alkali after addition of the aqueous sodium hydrogen carbonate solution (yield) 86.69%).
About the obtained precipitate, average particle diameter, BET specific surface area, Na, SO 4 The Co content was measured by the same method as in Example 1. The results are shown in Table 1. Also, the resulting precipitate Electron micrograph In FIG. Particle size distribution chart Is shown in FIG.
(A2) Process
Next, this precipitate was baked in an electric furnace at 900 ° C. for 5 hours, cooled and pulverized, and confirmed by X-ray diffraction measurement to confirm that it was tricobalt tetroxide. Moreover, as a result of observing with a scanning electron microscope (SEM), the particle diameter of the primary particle was 0.5-2 micrometers, and the average particle diameter of the secondary particle was 12.2 micrometers.
Further, the obtained tricobalt tetroxide has a BET specific surface area, tap density, Na, SO 4 The Co content was measured by the same method as in Example 1. The results are shown in Table 2. Also, the obtained tricobalt tetroxide Electron micrograph In FIG. Particle size distribution chart Is shown in FIG.
[0043]
Comparative Example 3
(A1) Process
In a 20 L capacity stainless steel tank, 14.4 L of 1 mol / L sodium hydrogen carbonate aqueous solution is preliminarily spread, and this is heated to 60 ° C., and 1.8 mol / L (CoSO 4 4) of an aqueous solution of cobalt sulfate was added dropwise over 2 hours while maintaining the temperature at 60 ° C. In addition, pH in the reaction system after completion | finish of dripping was 6.4. Then, after completion of the dropwise addition, a 4 mol / L sodium hydroxide solution was added until the pH reached 8 while maintaining the temperature at 60 ° C., and aging was performed for 3 hours while maintaining this pH and temperature.
Next, while confirming the time required for filtration, after conducting the solid-liquid separation, the electrical conductivity is 100 μs / cm while confirming the electrical conductivity at 25 ° C. when the collected precipitate is made into 10% slurry with an electrical conductivity meter. The product was sufficiently washed with water until it became, and dried to obtain 882.2 g of a precipitate (yield 103.00%).
About the obtained precipitate, average particle diameter, BET specific surface area, Na, SO 4 The Co content was measured by the same method as in Example 1. The results are shown in Table 1. Also, the resulting precipitate Electron micrograph Is shown in FIG. Particle size distribution chart Is shown in FIG.
(A2) Process
Next, this precipitate was baked in an electric furnace at 900 ° C. for 5 hours, cooled and pulverized, and confirmed by X-ray diffraction measurement to confirm that it was tricobalt tetroxide. Further, as a result of observation with a scanning electron microscope (SEM), the primary particles had a particle size of 0.2 to 10 μm and the secondary particles had an average particle size of 31.4 μm.
Further, the obtained tricobalt tetroxide has a BET specific surface area, tap density, Na, SO 4 The Co content was measured by the same method as in Example 1. The results are shown in Table 2. Also, the obtained tricobalt tetroxide Electron micrograph In FIG. Particle size distribution chart Is shown in FIG.
[0044]
[Table 1]
Figure 0004086551
From the results shown in Table 1, the target precipitate can be recovered with high purity and high yield by carrying out the step (A1) of the present invention, and the precipitate has a sharp particle size distribution as shown in FIG. It turns out that it is a thing. On the other hand, what added the sodium hydrogencarbonate aqueous solution at the temperature of 40 degreeC (comparative example 1) has a broad particle size distribution (FIG. 6), and does not adjust pH by an aging reaction (comparative example 2). It can be seen that the yield decreases, and the remaining alkali content of the solution obtained by adding the cobalt sulfate aqueous solution to the sodium hydrogen carbonate aqueous solution (Comparative Example 3) increases.
[0045]
[Table 2]
Figure 0004086551
From the results of Table 2, tricobalt tetroxide obtained by the production method of the present invention has high purity and a large tap density, and the tricobalt tetroxide obtained from FIG. 2 has a sharp particle size distribution. I understand that. On the other hand, the tricobalt tetroxide of Comparative Example 1 has an irregularly broad particle size distribution (FIG. 8), and the tricobalt tetroxide of Comparative Example 3 has an Na content of 0.5% by weight or more. I understand that it is expensive.
[0046]
Examples 3-4 and Comparative Examples 4-5
Weigh tricobalt tetroxide and lithium carbonate (average particle size 12 μm) obtained in Examples 1 and 2 and Comparative Examples 1 and 3 so that the molar ratio of Li / Co is 1, and then dry enough After mixing, baking was performed at 900 ° C. for 5 hours. The fired product was pulverized and classified to obtain lithium cobalt oxide. The average particle diameter of the obtained lithium cobaltate was determined by a laser diffraction method. In addition, the amount of residual lithium carbonate is determined by decomposing the sample with sulfuric acid, 2 Is absorbed by introduction into a solution containing barium chloride and sodium hydroxide, and the solution is titrated with a hydrochloric acid standard solution. 2 The concentration was quantified and converted from this quantified value.
[0047]
Comparative Example 6
Commercially available tricobalt tetroxide (average particle size 2 μm) and lithium carbonate (average particle size 12 μm) are weighed so that the molar ratio of Li / Co is 1.03, and then mixed thoroughly in a dry process. Baked at 5 ° C. for 5 hours. The fired product was pulverized and classified to obtain lithium cobalt oxide.
The average particle diameter of the obtained lithium cobaltate and the amount of residual lithium carbonate were measured in the same manner as in Examples 3 to 4, and the results are shown in Table 3.
[0048]
[Table 3]
Figure 0004086551
From the results in Table 3, a product obtained by synthesizing lithium cobaltate having an average particle size of 10 μm or more from commercially available tricobalt tetraoxide having an average particle size of 2 μm (Comparative Example 6) contains 0.1% by weight or more of lithium carbonate. In contrast, lithium cobaltate synthesized using the tricobalt tetroxide of the present invention as the raw material has an average particle size of 10 μm or more, the residual lithium carbonate is 0.001% by weight, and the residual lithium carbonate is reduced. I understand that
[0049]
<Battery performance test>
(I) Production of lithium 2 battery;
Examples 3 to 4 and comparative examples produced as described above 4 ~ 6% lithium cobaltate (91% by weight), graphite powder (6% by weight) and polyvinylidene fluoride (3% by weight) were mixed to prepare a positive electrode agent, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil is used for the negative electrode, and 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate is used as the electrolyte. 6 What melt | dissolved 1 mol was used.
[0050]
(II) Battery performance evaluation
The fabricated lithium secondary battery was operated at room temperature, and the initial discharge capacity and capacity retention rate were measured to evaluate the battery performance.
The capacity retention rate was calculated by the following formula.
[Equation 3]
Figure 0004086551
[Table 4]
Figure 0004086551
[0051]
【The invention's effect】
As described above, tricobalt tetroxide obtained by the production method of the present invention has a Na content of 0.1% by weight or less, a large tap density, and a sharp average particle size of 5 to 30 μm. Tricobalt oxide, which is particularly useful as a raw material for producing lithium cobaltate for a positive electrode active material of a lithium secondary battery.
In addition, lithium cobaltate having an average particle size of 10 μm or more manufactured using the tricobalt tetroxide has reduced residual lithium carbonate, and a lithium secondary battery using the lithium cobaltate as a positive electrode active material has battery performance. It will be excellent.
[Brief description of the drawings]
FIG. 1 is an electron micrograph (magnification 3000) of a precipitate obtained in step (A1) of Example 1.
FIG. 2 is a particle size distribution diagram of the precipitate obtained in the step (A1) of Example 1.
3 is an electron micrograph (magnification 1000) of tricobalt tetroxide obtained in Example 1. FIG.
4 is a particle size distribution diagram of tricobalt tetroxide obtained in Example 1. FIG.
FIG. 5 is an electron micrograph (magnification 3000) of the precipitate obtained in the step (A1) of Comparative Example 1.
6 is a particle size distribution diagram of a precipitate obtained in the step (A1) of Comparative Example 1. FIG.
7 is an electron micrograph (magnification 1000) of tricobalt tetroxide obtained in Comparative Example 1. FIG.
8 is a particle size distribution diagram of tricobalt tetroxide obtained in Comparative Example 1. FIG.
FIG. 9 is an electron micrograph (magnification: 3000) of the precipitate obtained in the step (A1) of Comparative Example 2.
10 is a particle size distribution diagram of a precipitate obtained in the step (A1) of Comparative Example 2. FIG.
11 is an electron micrograph (magnification 1000) of tricobalt tetroxide obtained in Comparative Example 2. FIG.
12 is a particle size distribution diagram of tricobalt tetroxide obtained in Comparative Example 2. FIG.
13 is an electron micrograph (magnification 3000) of the precipitate obtained in the step (A1) of Comparative Example 3. FIG.
14 is a particle size distribution diagram of a precipitate obtained in the step (A1) of Comparative Example 3. FIG.
15 is an electron micrograph (magnification 1000) of tricobalt tetroxide obtained in Comparative Example 3. FIG.
16 is a particle size distribution diagram of tricobalt tetroxide obtained in Comparative Example 3. FIG.

Claims (5)

下記の(A1)〜(A2)工程を含むことを特徴とする平均粒径が5〜30μmの四酸化三コバルトの製造方法。
(A1)工程;硫酸コバルト水溶液に、炭酸水素ナトリウム水溶液を温度50℃以上で添加し、次いで反応液にアルカリを添加して反応系内のpHを8〜12に調製し沈澱物を生成させる工程。
(A2)工程;(A1)工程で生成した沈澱物を温度600〜1000℃で焼成を行って四酸化三コバルトを得る工程。
A method for producing tricobalt tetraoxide having an average particle size of 5 to 30 μm, comprising the following steps (A1) to (A2):
Step (A1): A step of adding a sodium hydrogen carbonate aqueous solution to a cobalt sulfate aqueous solution at a temperature of 50 ° C. or higher and then adding an alkali to the reaction solution to adjust the pH in the reaction system to 8 to 12 to produce a precipitate. .
(A2) step; a step of obtaining tricobalt tetroxide by firing the precipitate produced in step (A1) at a temperature of 600 to 1000 ° C.
前記(A1)工程における炭酸水素ナトリウム水溶液の添加量は、硫酸コバルト水溶液中の硫酸コバルト(CoSO4)に対する炭酸水素ナトリウム水溶液中の炭酸水素ナトリウム(NaHCO3)とのモル比(NaHCO3/CoSO4)で1.0以上である請求項1記載の四酸化三コバルトの製造方法。The amount of sodium hydrogen carbonate aqueous solution added in the step (A1) is the molar ratio of sodium hydrogen carbonate (NaHCO 3 ) in the sodium hydrogen carbonate aqueous solution to cobalt sulfate (CoSO 4 ) in the cobalt sulfate aqueous solution (NaHCO 3 / CoSO 4 The method for producing tricobalt tetroxide according to claim 1, which is 1.0 or more. 前記(A1)工程で用いるアルカリは、水酸化ナトリウムである請求項1又は2記載の四酸化三コバルトの製造方法。The method for producing tricobalt tetraoxide according to claim 1 or 2, wherein the alkali used in the step (A1) is sodium hydroxide. 前記(A1)工程で得られた沈澱物を10%スラリーとした時の電気伝導度が100μs/cm以下となるまで洗浄処理し、次いで前記(A2)工程を行う請求項1乃至3記載の四酸化三コバルトの製造方法。4. The process according to claim 1, wherein the precipitate obtained in the step (A1) is washed until the electric conductivity when the precipitate is made into a 10% slurry is 100 μs / cm or less, and then the step (A2) is performed. Method for producing tricobalt oxide. 前記請求項1乃至4記載の何れか1項に記載の製造方法で得られる四酸化三コバルトと炭酸リチウムとを混合し、焼成を行うことを特徴とするコバルト酸リチウムの製造方法。A method for producing lithium cobaltate, comprising mixing and calcining tricobalt tetroxide obtained by the production method according to any one of claims 1 to 4.
JP2002162726A 2002-06-04 2002-06-04 Method for producing tricobalt tetroxide and method for producing lithium cobaltate Expired - Fee Related JP4086551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162726A JP4086551B2 (en) 2002-06-04 2002-06-04 Method for producing tricobalt tetroxide and method for producing lithium cobaltate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162726A JP4086551B2 (en) 2002-06-04 2002-06-04 Method for producing tricobalt tetroxide and method for producing lithium cobaltate

Publications (2)

Publication Number Publication Date
JP2004010375A JP2004010375A (en) 2004-01-15
JP4086551B2 true JP4086551B2 (en) 2008-05-14

Family

ID=30431392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162726A Expired - Fee Related JP4086551B2 (en) 2002-06-04 2002-06-04 Method for producing tricobalt tetroxide and method for producing lithium cobaltate

Country Status (1)

Country Link
JP (1) JP4086551B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271488B2 (en) * 2003-05-19 2009-06-03 日本化学工業株式会社 Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4694799B2 (en) * 2004-07-07 2011-06-08 パナソニック株式会社 Method for producing tricobalt tetroxide for active material of non-aqueous electrolyte battery
CN112850801B (en) * 2019-11-28 2023-10-31 荆门市格林美新材料有限公司 Preparation method of large-particle cobaltosic oxide
CN114249355B (en) * 2021-12-20 2023-09-22 厦门厦钨新能源材料股份有限公司 Layered cobaltosic oxide material and preparation method and application thereof
CN114349066B (en) * 2021-12-28 2023-11-24 荆门市格林美新材料有限公司 Preparation method of magnesium-aluminum co-doped lithium cobaltate precursor
CN114735757B (en) * 2022-04-25 2024-01-05 广东邦普循环科技有限公司 Method for preparing lithium cobaltate precursor by template growth and application thereof
CN115417457B (en) * 2022-08-12 2024-08-13 广东邦普循环科技有限公司 Manganese doped cobalt carbonate and preparation method and application thereof
CN115571924B (en) * 2022-09-28 2024-05-10 广东邦普循环科技有限公司 Aluminum fluorine co-doped cobaltosic oxide and preparation method and application thereof
CN115924985A (en) * 2022-10-22 2023-04-07 哈尔滨理工大学 Template-free preparation method and application of lamellar cobaltosic oxide
CN116143184B (en) * 2023-02-09 2024-10-18 广东邦普循环科技有限公司 Preparation method of aluminum-doped lithium cobalt oxide precursor

Also Published As

Publication number Publication date
JP2004010375A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP6582824B2 (en) Nickel-manganese-containing composite hydroxide and method for producing the same
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP6241349B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
JP4915488B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5316726B2 (en) Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4180363B2 (en) Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
JP5323410B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP5678482B2 (en) Manganese oxide and method for producing the same
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
KR20140008445A (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2012029729A1 (en) Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
JP6599249B2 (en) Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US20090028772A1 (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
JP5678685B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
JP2015162322A (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP4086551B2 (en) Method for producing tricobalt tetroxide and method for producing lithium cobaltate
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
JP2001354428A (en) Cobalt oxide powder, method for manufacturing the same and lithium cobaltate
JP2013170099A (en) Method for producing cobalt hydroxide, method for producing cobalt oxide and method for producing lithium cobaltate
JP2021160970A (en) Spinel lithium manganate and method for producing the same and applications thereof
JP2021134100A (en) Spinel-type lithium manganate and method for producing the same, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4086551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees