JPH0950810A - Electrode active material for non-aqueous electrolytic battery and manufacture thereof - Google Patents

Electrode active material for non-aqueous electrolytic battery and manufacture thereof

Info

Publication number
JPH0950810A
JPH0950810A JP7202286A JP20228695A JPH0950810A JP H0950810 A JPH0950810 A JP H0950810A JP 7202286 A JP7202286 A JP 7202286A JP 20228695 A JP20228695 A JP 20228695A JP H0950810 A JPH0950810 A JP H0950810A
Authority
JP
Japan
Prior art keywords
lithium
electrode active
active material
battery
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7202286A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Kurasawa
辰博 倉沢
Takao Tanaka
隆夫 田中
Akio Yoshikawa
明男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP7202286A priority Critical patent/JPH0950810A/en
Publication of JPH0950810A publication Critical patent/JPH0950810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To remarkably increase the discharge capacity of a battery in an initial stage and after 50 cycles by coating the surface of a specified lithium- nickel mixed oxide with a lithium-transition metal M mixed oxide. SOLUTION: To produce an electrode active material; compounds of transition metals M (M stands for Co, Mn, and/or Fe including metals partly containing Ni) and a lithium compound are dissolved or suspended in a solvent, a lithium- nickel mixed oxide having a general formula Lix Niy Nz O2 (N stands for elements except Li, Ni, and 0; 0.8<z<1.2; 0.8<y +z<1.2; 0<=z<0.2) is further added to give a slurry, and the slurry is dried and fired. The obtained electrode active material has high standing stability and even if left in atmosphere containing moisture, the material does not lower the capacity of a battery in the case the material is dried and then the battery is assembled using the material. Moreover, without causing trouble such as heat generation, the material keeps excellent safety and can be used for both cathode and anode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の非水電
解液電池の電極活物質に関する。
TECHNICAL FIELD The present invention relates to an electrode active material for a non-aqueous electrolyte battery of a secondary battery.

【0002】[0002]

【従来の技術】近年、携帯電話、ラップトップ型パソコ
ン、カメラ一体型VTR等のポータブル機器の需要が増
加している。これらの機器には、小型軽量の二次電池が
不可欠である。現在、二次電池としては、主にNi−C
d電池やNi水素電池が使われているが、これらの電池
は、小型軽量化の限界にきている。
2. Description of the Related Art In recent years, there has been an increasing demand for portable devices such as portable telephones, laptop personal computers, camera-integrated VTRs, and the like. For these devices, small and lightweight secondary batteries are indispensable. At present, as a secondary battery, Ni-C
Although d batteries and Ni hydrogen batteries are used, these batteries have reached the limit of miniaturization and weight reduction.

【0003】その一方で、負極に金属リチウムやリチウ
ムを吸蔵・脱離できる物質を用いる非水電解液二次電池
の開発が進められている。この電池は、これまでの小型
二次電池に比べて高電圧が得られるうえエネルギー密度
が高いという特徴があり、これまでの電池よりも小型軽
量な二次電池をつくることができる。
On the other hand, development of non-aqueous electrolyte secondary batteries using metallic lithium or a substance capable of occluding / desorbing lithium for the negative electrode has been promoted. This battery is characterized by a higher voltage and a higher energy density than conventional small secondary batteries, and can be made smaller and lighter than conventional batteries.

【0004】この電池の電極には、一般に、LiCoO
が用いられているが、Coは価格が高く、埋蔵量が少
ないなどの問題があるため、LiCoOに比べて安価
でしかも高充放電容量が得られるLiNiO等のリチ
ウム−ニッケル複合酸化物が新規電極活物質として注目
され研究が進められている。
The electrodes of this battery are generally made of LiCoO 2.
2 is used, but Co has a problem that it is expensive and has a small reserve. Therefore, lithium-nickel composite oxide such as LiNiO 2 is cheaper than LiCoO 2 and has a high charge / discharge capacity. Has attracted attention as a new electrode active material and is being researched.

【0005】リチウム−ニッケル複合酸化物の合成法は
J.Am.Chem.Soc.76,1499(195
4)、USP4,302,518号等により公知であ
り、一般にリチウム化合物とニッケル化合物とを混合
し、酸素雰囲気にて500〜900℃で焼成することに
より得られる。
A method for synthesizing a lithium-nickel composite oxide is described in J. Am. Chem. Soc. 76, 1499 (195
4), U.S. Pat. No. 4,302,518 and the like, and is generally obtained by mixing a lithium compound and a nickel compound and firing at 500 to 900 ° C. in an oxygen atmosphere.

【0006】また、最近ではLiNiOのNiの一部
を他の元素に置換したLiNi1ー (NはL
i,Ni,O以外の元素、0<t≦0.5)の電池性能
が優れていることが明らかになっている。例えば、特開
平6−215800の実施例においては、NとしてA
l、Ga、B、Sc、Fe、Cr、Mn、Ti等を用い
ており、この電極活物質を用いた電池の充放電エネルギ
ーや保存特性が優れていることが記述されている。
Further, recently, LiNi 1- t N t O 2 (N is L is obtained by substituting a part of Ni of LiNiO 2 with another element).
It has been clarified that the cell performance of elements other than i, Ni, and O, 0 <t ≦ 0.5) is excellent. For example, in the embodiment of Japanese Patent Laid-Open No. 6-215800, N is A
It is described that 1, 1, Ga, B, Sc, Fe, Cr, Mn, Ti, etc. are used, and that the battery using this electrode active material has excellent charge / discharge energy and storage characteristics.

【0007】[0007]

【発明が解決しようとする課題】LiNiOは価格、
充放電容量の面で優れた材料であるが、LiCoO
比べて保存安定性、特に水分に対する安定性に欠けると
いう問題がある。LiNiOを微粉にして電極活物質
として使用する場合、比表面積が大きくなるためとくに
水分の影響を受け易い。例えば、粉砕後に湿度の大きい
空気中に置いてあったLiNiOを用いて電池を組ん
だとき、初期放電容量が低下したり、充放電を繰り返し
たときに著しく放電容量が低下するという問題があり、
ときには電池内部で発熱が起きるなど、安全上の重大問
題が生じることもあった。
LiNiO 2 is expensive,
Although it is an excellent material in terms of charge / discharge capacity, it has a problem that it is less stable in storage, particularly in stability to moisture, as compared with LiCoO 2 . When LiNiO 2 is used in the form of fine powder as an electrode active material, it has a large specific surface area and is particularly susceptible to moisture. For example, when a battery is assembled using LiNiO 2 that has been placed in air with high humidity after crushing, there is a problem that the initial discharge capacity decreases, or the discharge capacity decreases significantly when charging and discharging are repeated. ,
Occasionally, a serious safety problem such as heat generation inside the battery occurred.

【0008】[0008]

【課題を解決するための手段】本発明の上記課題を解決
するために、鋭意検討した結果、一般式LiNi
(NはLi、Ni、O以外の元素、0.8<x<
1.2、0.8<y+z<1.2、0≦z<0.2)で
示されるリチウム−ニッケル複合酸化物の表面を、リチ
ウム−遷移金属M複合酸化物(MはCo、Mn、Feの
1種以上で、Niを一部含有したものを含む)によりコ
ーティングすることにより解決した。
In order to solve the above-mentioned problems of the present invention, as a result of extensive studies, the general formula Li x Ni y N
z O 2 (N is an element other than Li, Ni and O, 0.8 <x <
The surface of the lithium-nickel composite oxide represented by 1.2, 0.8 <y + z <1.2, 0 ≦ z <0.2) is replaced with a lithium-transition metal M composite oxide (M is Co, Mn, It was solved by coating with one or more kinds of Fe (including those containing a part of Ni).

【0009】即ち、本発明は一般式LiNi
(NはLi、Ni、O以外の元素、0.8<x<
1.2、0.8<y+z<1.2、0≦z<0.2)で
示されるリチウム−ニッケル複合酸化物の表面を、リチ
ウム−遷移金属M複合酸化物(MはCo、Mn、Feの
1種以上で、Niを一部含有したものを含む)でコーテ
ィングすることを特徴とする非水電解液電池の電極活物
質、遷移金属M(MはCo、Mn、Feの1種以上
で、Niを一部含有したものを含む)の化合物及びリチ
ウム化合物を溶媒に溶解または懸濁し、一般式Li
(NはLi、Ni、O以外の元素、0.8
<x<1.2、0.8<y+z<1.2、0≦z<0.
2)で示されるリチウム−ニッケル複合酸化物を加えス
ラリーとし、該スラリーを乾燥、焼成することを特徴と
する非水電解液電池の電極活物質の製造方法に関する。
That is, the present invention has the general formula Li x Ni y N z
O 2 (N is an element other than Li, Ni and O, 0.8 <x <
The surface of the lithium-nickel composite oxide represented by 1.2, 0.8 <y + z <1.2, 0 ≦ z <0.2) is replaced with a lithium-transition metal M composite oxide (M is Co, Mn, An electrode active material for a non-aqueous electrolyte battery, a transition metal M (M is one or more of Co, Mn, and Fe), characterized by being coated with one or more of Fe, including one that partially contains Ni. And a lithium compound are dissolved or suspended in a solvent to obtain a compound represented by the general formula Li x N
i y N z O 2 (N is an element other than Li, Ni and O, 0.8
<X <1.2, 0.8 <y + z <1.2, 0 ≦ z <0.
The present invention relates to a method for producing an electrode active material for a non-aqueous electrolyte battery, which comprises adding the lithium-nickel composite oxide represented by 2) to form a slurry, and drying and firing the slurry.

【0010】[0010]

【発明の実施の形態】一般式LiNi(N
はLi,Ni,O以外の元素、0.8<x<1.2、
0.8<y+z<1.2、0≦z<0.2)で示される
リチウム−ニッケル複合酸化物は、公知の合成法で得ら
れたもので十分であるが、それが水分の多い雰囲気に曝
されることなく電極活物質として電池に組み込まれたと
きに十分に電極活物質として作用するものである必要が
ある。含有している元素Nはとくに限定されない。
BEST MODE FOR CARRYING OUT THE INVENTION The general formula Li x Ni y N z O 2 (N
Is an element other than Li, Ni, O, 0.8 <x <1.2,
The lithium-nickel composite oxide represented by 0.8 <y + z <1.2, 0 ≦ z <0.2) may be obtained by a known synthesis method, but in an atmosphere with a large amount of water. It is necessary that it sufficiently acts as an electrode active material when incorporated into a battery as an electrode active material without being exposed to. The contained element N is not particularly limited.

【0011】本発明に用いるリチウム−ニッケル複合酸
化物としては、例えばLiNiO、LiNi0.9
0.1、LiNi0.9AI0.1、LiN
.9Mn0.1等が挙げられる。これの形状と
しては如何なる形状でも構わないが、特に球形に近いも
のが好ましい。
Examples of the lithium-nickel composite oxide used in the present invention include LiNiO 2 and LiNi 0.9 C.
o 0.1 O 2 , LiNi 0.9 AI 0.1 O 2 , LiN
i 0 . 9 Mn 0.1 O 2 and the like. Any shape may be used, but a shape close to a sphere is particularly preferable.

【0012】また、表面に形成されるリチウム−遷移金
属M複合酸化物は、それ自身電極活物質として作用する
ものであることが好ましい。具体例としては、リチウム
−コバルト複合酸化物、リチウム−マンガン複合酸化
物、ニッケルを一部含有するリチウム−コバルト複合酸
化物等が挙げられる。遷移金属Mの化合物及びリチウム
化合物は、硝酸塩、炭酸塩、酢酸塩、水酸化物、酸化
物、過酸化物、金属等が挙げられる。これらは用いられ
る溶媒に対して溶解あるいは懸濁するものであることが
好ましい。遷移金属Mの化合物及びリチウム化合物に用
いる溶媒としては、水またはアルコール、ベンゼン等の
有機溶媒、もしくはプロピレンカーボネート等のリチウ
ムイオン電池有機電解液に使用できるものを用いること
ができる。
Further, it is preferable that the lithium-transition metal M composite oxide formed on the surface itself acts as an electrode active material. Specific examples thereof include a lithium-cobalt composite oxide, a lithium-manganese composite oxide, and a lithium-cobalt composite oxide partially containing nickel. Examples of the compound of the transition metal M and the lithium compound include nitrates, carbonates, acetates, hydroxides, oxides, peroxides and metals. It is preferable that these are dissolved or suspended in the solvent used. As a solvent used for the compound of the transition metal M and the lithium compound, water or an organic solvent such as alcohol or benzene, or a solvent that can be used for a lithium ion battery organic electrolyte such as propylene carbonate can be used.

【0013】乾燥温度は、溶媒の沸点等により適宜選択
されるが、例えば水を用いた場合は、水分の除去を完全
にするために90℃以上の温度が好ましい。乾燥方法は
とくに限定しないが、スプレードライヤー等の噴霧乾燥
法を用いれば表面コーティングされる化合物がリチウム
−ニッケル複合酸化物粒子上に均一に分散されるので好
ましい。
The drying temperature is appropriately selected depending on the boiling point of the solvent and the like. When water is used, for example, a temperature of 90 ° C. or higher is preferable in order to completely remove water. The drying method is not particularly limited, but a spray drying method such as a spray dryer is preferably used because the compound to be surface-coated is uniformly dispersed on the lithium-nickel composite oxide particles.

【0014】焼成温度は、コーティング物質が電極活物
質として合成されるのに適した焼成温度で、かつリチウ
ム−ニッケル複合酸化物の基本構造を変化させない焼成
温度であることが好ましく、両者の量のバランスに応じ
て適宜選択される。焼成雰囲気は、酸化を促進する酸素
存在雰囲気であることが好ましく、さらには、分解生成
ガスを除去しながら焼成することが好ましい。
The calcination temperature is preferably a calcination temperature suitable for synthesizing the coating material as an electrode active material, and a calcination temperature that does not change the basic structure of the lithium-nickel composite oxide. It is appropriately selected according to the balance. The firing atmosphere is preferably an oxygen-existing atmosphere that promotes oxidation, and further, firing is preferably performed while removing the decomposition product gas.

【0015】電極活物質の平均粒子径は、電極活物質を
集電体に塗布することによって作られる電極の厚さが数
百ミクロン以下の厚さになる必要があるので、50ミク
ロン未満とすることが好ましい。また、電極活物質の平
均粒子径が小さすぎると集電体への塗着や導電材との混
合が困難となるため、電極活物質の平均粒子径は1ミク
ロンを超えることが好ましい。
The average particle diameter of the electrode active material is less than 50 microns because the thickness of the electrode formed by applying the electrode active material to the current collector needs to be several hundreds of microns or less. It is preferable. Further, if the average particle size of the electrode active material is too small, it becomes difficult to coat the current collector and mix with the conductive material, so that the average particle size of the electrode active material is preferably more than 1 micron.

【0016】リチウム−ニッケル複合酸化物表面のコー
ティング物質の厚さの実測は困難であるが、リチウム−
ニッケル複合酸化物の平均粒径とコーティング物質の添
加量、密度等から計算した平均厚さを0.001ミクロ
ン以上5ミクロン以下とすることが好ましい。コーティ
ングの厚さが5ミクロンを超えるとリチウム−ニッケル
複合酸化物の特徴である高容量という電池性能が引き出
せなくなるので好ましくない、また、コーティングの厚
さが0.001ミクロン未満ではコーティングの役目を
果たせなくなり本発明の目的が達成されないので好まし
くない。合成された電極活物質は水分に対する安定性を
持つが、電池を作製する際には、電池内部に水分が入る
と水の分解反応等が起きて安全上の問題が生じるため、
電池作製は電極活物質の乾燥後に行うことが好ましい。
Although it is difficult to measure the thickness of the coating material on the surface of the lithium-nickel composite oxide,
It is preferable that the average thickness calculated from the average particle size of the nickel composite oxide, the addition amount of the coating material, the density, etc. be 0.001 micron or more and 5 micron or less. If the thickness of the coating exceeds 5 μm, it is not preferable because the battery performance of high capacity, which is a feature of the lithium-nickel composite oxide, cannot be obtained, and if the thickness of the coating is less than 0.001 μm, the function of the coating can be fulfilled. It is not preferable because the object of the present invention cannot be achieved. Although the synthesized electrode active material has stability against moisture, when a battery is made, if water enters the battery, a decomposition reaction of water or the like occurs, which causes a safety problem.
It is preferable to manufacture the battery after drying the electrode active material.

【0017】上記、非水電解液電池の電極活物質を製造
する方法は、遷移金属M(MはCo、Mn、Feの1種
以上で、Niを一部含有したものを含む)の化合物及び
リチウムの化合物を溶媒中に溶解または懸濁し、一般式
LiNi(NはLi、Ni、O以外の元
素、0.8<x<1.2、0.8<y+z<1.2、0
≦z<0.2)で示されるリチウム−ニッケル複合酸化
物を加えスラリーとし、該スラリーを乾燥、焼成する方
法で得られる。
The above-mentioned method for producing an electrode active material for a non-aqueous electrolyte battery comprises a compound of a transition metal M (M is one or more of Co, Mn and Fe, including a portion of Ni), and A lithium compound is dissolved or suspended in a solvent to obtain a compound represented by the general formula: Li x Ni y N z O 2 (N is an element other than Li, Ni and O, 0.8 <x <1.2, 0.8 <y + z < 1.2, 0
A lithium-nickel composite oxide represented by ≦ z <0.2) is added to form a slurry, and the slurry is dried and calcined.

【0018】リチウム−遷移金属M複合酸化物の微粉を
直接リチウム−ニッケル化合物の粉体と混合し焼成する
ことによってコーティングを行う方法でも製造可能であ
るが、リチウム−遷移金属M複合酸化物がリチウム−ニ
ッケル複合酸化物粒子の表面上に均一に分散しないた
め、場合によっては安定性の向上がみられないことがあ
るので好ましくない。
The lithium-transition metal M composite oxide can also be manufactured by a method of coating by directly mixing fine powder of the lithium-transition metal M composite oxide with powder of the lithium-nickel compound and firing the mixture. -Since it is not uniformly dispersed on the surface of the nickel composite oxide particles, the stability may not be improved in some cases, which is not preferable.

【0019】上記の方法により得られた電極活物質は、
保存安定性に優れ、水分を含む雰囲気に置かれても、乾
燥後に電池の組み立てを行えば、組み立てた電池の容量
を低下させることがない。更に、発熱等の問題を生じる
ことがなく、安全性に優れたものが得られる。また、本
発明の非水電解液電池の電極活物質を正極または負極の
いずれに用いても構わない。
The electrode active material obtained by the above method is
Even if the battery is excellent in storage stability and placed in an atmosphere containing water, if the battery is assembled after drying, the capacity of the assembled battery will not be reduced. Furthermore, a product having excellent safety can be obtained without causing a problem such as heat generation. Further, the electrode active material of the non-aqueous electrolyte battery of the present invention may be used for either the positive electrode or the negative electrode.

【0020】[0020]

【実施例】以下、本発明の実施例を挙げて更に詳細に説
明する。 実施例1 水酸化リチウム一水和物83.9gと水酸化ニッケル1
85.4g(リチウムとニッケルの原子比Li/Ni
(モル比)=1.0)を秤量した後、ボールミルでよく
粉砕・混合し、150℃で12時間乾燥した。この乾燥
した物を酸素雰囲気にて750℃で5時間焼成した後、
窒素雰囲気にてボールミルで1時間粉砕し、平均粒径7
ミクロンのリチウム−ニッケル複合酸化物を得た。コー
ティング処理は以下の方法で行った。エタノール300
gに硝酸リチウム3.4gと硝酸コバルト六水和物1
4.6g(Li/Co(モル比)=1.0)を溶解し、
これに上記で得たリチウム−ニッケル複合酸化物92.
7g(Co/Ni(モル比)=0.05)を加えて分散
させた。この分散液をスプレードライヤーの出口温度が
約100℃となる条件で乾燥した後、電気炉を用いて酸
素雰囲気にて700℃で1時間焼成し、コーティングを
施した電極活物質を得た。電極活物質の安定性を調べる
ため、以下の処理及び電池性能試験を行った。まず、得
られた電極活物質を温度60℃、相対湿度90%の雰囲
気に1時間静置した後、120℃で1時間乾燥した。次
に、電極活物質、導電材であるアセチレンブラック、結
着材であるポリフッ化エチレンを所定重量比で混練し、
ペレット状に成型して電極とした。負極には金属リチウ
ムを用い、電解液は六フッ化リン酸リチウムを1mol
/L溶解したプロピレンカーボネート/ジエチルカーボ
ネート混合液を用いてボタン型電池を組み立てた。この
電池の性能を調べるために、0.5mA/cmの定電
流で4.2−3.0Vの電圧範囲で充放電させて初期及
び50サイクル後の放電容量を測定した。結果を表1に
示す。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 83.9 g of lithium hydroxide monohydrate and 1 of nickel hydroxide
85.4 g (atomic ratio of lithium to nickel Li / Ni
(Mole ratio) = 1.0), weighed and mixed well with a ball mill, and dried at 150 ° C for 12 hours. After firing the dried product in an oxygen atmosphere at 750 ° C. for 5 hours,
Grind for 1 hour in a ball mill in a nitrogen atmosphere, average particle size 7
A micron lithium-nickel composite oxide was obtained. The coating process was performed by the following method. Ethanol 300
Lithium nitrate 3.4 g and cobalt nitrate hexahydrate 1 g
4.6 g (Li / Co (molar ratio) = 1.0) was dissolved,
The lithium-nickel composite oxide 92.
7 g (Co / Ni (molar ratio) = 0.05) was added and dispersed. The dispersion was dried under the condition that the outlet temperature of the spray dryer was about 100 ° C., and then baked at 700 ° C. for 1 hour in an oxygen atmosphere using an electric furnace to obtain a coated electrode active material. In order to investigate the stability of the electrode active material, the following treatment and battery performance test were performed. First, the obtained electrode active material was allowed to stand in an atmosphere having a temperature of 60 ° C. and a relative humidity of 90% for 1 hour, and then dried at 120 ° C. for 1 hour. Next, an electrode active material, acetylene black which is a conductive material, and polyfluoroethylene which is a binder are kneaded at a predetermined weight ratio,
The electrode was formed into a pellet. Metallic lithium is used for the negative electrode, and the electrolyte is 1 mol of lithium hexafluorophosphate.
A button-type battery was assembled using a mixed solution of propylene carbonate / diethyl carbonate dissolved in / L. In order to investigate the performance of this battery, charge and discharge were performed at a constant current of 0.5 mA / cm 2 in a voltage range of 4.2 to 3.0 V, and the discharge capacities at the initial stage and after 50 cycles were measured. The results are shown in Table 1.

【0021】実施例2 硝酸リチウム137.9gと水酸化ニッケル185.4
g(リチウムとニッケルの原子比がLi/Ni(モル
比)=1.0)を秤量した後、ボールミルでよく粉砕・
混合し、150℃で12時間乾燥した。この乾燥した物
を酸素雰囲気にて700℃で10時間焼成した後に、窒
素雰囲気にてボールミルで1時間粉砕し、平均粒径12
ミクロンのリチウム−ニッケル複合酸化物を得た。コー
ティング処理は以下の方法で行った。エタノール300
gに水酸化リチウム一水和物2.1gと硝酸コバルト六
水和物14.6g(Li/Co(モル比)=1.0)を
溶解し、これに上記で得たリチウム−ニッケル複合酸化
物92.7g(Co/Ni(モル比)=0.05)を加
えて分散させた。この分散液をスプレードライヤーの出
口温度が約100℃となる条件で乾燥した後、実施例1
と同様に酸素雰囲気にて700℃で1時間焼成してコー
ティングを施した電極活物質を得た。この電極活物質の
安定性を調べるため、実施例1と同様の処理、電池性能
試験を行った。放電容量の結果を表1に示す。
Example 2 137.9 g of lithium nitrate and nickel hydroxide 185.4
After weighing g (the atomic ratio of lithium and nickel is Li / Ni (molar ratio) = 1.0), it is well crushed with a ball mill.
Mix and dry at 150 ° C. for 12 hours. The dried product was fired in an oxygen atmosphere at 700 ° C. for 10 hours and then crushed in a nitrogen atmosphere with a ball mill for 1 hour to obtain an average particle size of 12
A micron lithium-nickel composite oxide was obtained. The coating process was performed by the following method. Ethanol 300
2.1 g of lithium hydroxide monohydrate and 14.6 g of cobalt nitrate hexahydrate (Li / Co (molar ratio) = 1.0) were dissolved in g, and the lithium-nickel composite oxide obtained above was dissolved in this. 92.7 g (Co / Ni (molar ratio) = 0.05) of the product was added and dispersed. This dispersion was dried under the conditions that the outlet temperature of the spray dryer was about 100 ° C., and then, Example 1
Similarly to the above, the electrode active material coated was obtained by firing at 700 ° C. for 1 hour in an oxygen atmosphere. To investigate the stability of this electrode active material, the same treatment and battery performance test as in Example 1 were performed. The discharge capacity results are shown in Table 1.

【0022】実施例3 出発原料を水酸化リチウム一水和物83.9g、水酸化
ニッケル166.9g、水酸化アルミニウム15.6g
(混合比をLi/Ni/Al(モル比)=1.0/0.
9/0.1)に変更した以外は実施例1と同様の方法で
リチウム−ニッケル複合酸化物を得た。実施例1と同様
の方法でコーティングを行い、得られた電極活物質の安
定性を調べるため、実施例1と同様の処理、電池性能試
験を行った。放電容量の結果を表1に示す。
Example 3 83.9 g of lithium hydroxide monohydrate, 166.9 g of nickel hydroxide and 15.6 g of aluminum hydroxide were used as starting materials.
(The mixing ratio is Li / Ni / Al (molar ratio) = 1.0 / 0.
A lithium-nickel composite oxide was obtained in the same manner as in Example 1 except that the ratio was changed to 9 / 0.1). Coating was performed in the same manner as in Example 1, and the same treatment and battery performance test as in Example 1 were performed in order to investigate the stability of the obtained electrode active material. The discharge capacity results are shown in Table 1.

【0023】実施例4 出発原料を水酸化リチウム一水和物83.9g、水酸化
ニッケル166.9g、塩基性炭酸コバルト137.0
g(混合比をLi/Ni/Co(モル比)=1.0/
0.9/0.1)に変更した以外は実施例1と同様の方
法でリチウム−ニッケル複合酸化物を得た。実施例1と
同様の方法でコーティングを行い、得られた電極活物質
の安定性を調べるため、実施例1と同様の処理、電池性
能試験を行った。放電容量の結果を表1に示す。
Example 4 Starting materials were 83.9 g of lithium hydroxide monohydrate, 166.9 g of nickel hydroxide and 137.0 of basic cobalt carbonate.
g (mixing ratio Li / Ni / Co (molar ratio) = 1.0 /
A lithium-nickel composite oxide was obtained in the same manner as in Example 1 except that the ratio was changed to 0.9 / 0.1). Coating was performed in the same manner as in Example 1, and the same treatment and battery performance test as in Example 1 were performed in order to investigate the stability of the obtained electrode active material. The discharge capacity results are shown in Table 1.

【0024】実施例5 実施例1と同様の方法でリチウム−ニッケル複合酸化物
を得た。コーティングは、コーティング時の溶媒を水に
変更した以外は実施例1と同様に行った。この電極活物
質の安定性を調べるため、実施例1と同様の処理、電池
性能試験を行った。放電容量の結果を表1に示す。
Example 5 A lithium-nickel composite oxide was obtained in the same manner as in Example 1. The coating was performed in the same manner as in Example 1 except that the solvent used for coating was changed to water. To investigate the stability of this electrode active material, the same treatment and battery performance test as in Example 1 were performed. The discharge capacity results are shown in Table 1.

【0025】比較例1 実施例1で得られたリチウム−ニッケル複合酸化物を用
いてコーティング処理を行わない以外は実施例1と同様
の処理、電池性能試験を行った。放電容量の結果を表1
に示す。
Comparative Example 1 The same treatment and battery performance test as in Example 1 were carried out except that the lithium-nickel composite oxide obtained in Example 1 was not used for coating. The discharge capacity results are shown in Table 1.
Shown in

【0026】比較例2 実施例2で得られたリチウム−ニッケル複合酸化物を用
いてコーティング処理を行わない以外は実施例1と同様
の処理、電池性能試験を行った。放電容量の結果を表1
に示す。
Comparative Example 2 The same treatment and battery performance test as in Example 1 were performed except that the lithium-nickel composite oxide obtained in Example 2 was not used for coating. The discharge capacity results are shown in Table 1.
Shown in

【0027】比較例3 実施例3で得られたリチウム−ニッケル複合酸化物を用
いてコーティング処理を行わない以外は実施例1と同様
の処理、電池性能試験を行った。放電容量の結果を表1
に示す。
Comparative Example 3 The same treatment and battery performance test as in Example 1 were carried out except that the lithium-nickel composite oxide obtained in Example 3 was not used for coating. The discharge capacity results are shown in Table 1.
Shown in

【0028】比較例4 実施例4で得られたリチウム−ニッケル複合酸化物を用
いてコーティング処理を行わない以外は実施例1と同様
の処理、電池性能試験を行った。放電容量の結果を表1
に示す。
Comparative Example 4 The same treatment and battery performance test as in Example 1 were carried out except that the lithium-nickel composite oxide obtained in Example 4 was not used for coating. The discharge capacity results are shown in Table 1.
Shown in

【0029】[0029]

【表1】 60℃、相対湿度90%で1時間処理した後の電極活物
質の電池特性
[Table 1] Battery characteristics of electrode active material after 1 hour treatment at 60 ° C and 90% relative humidity

【0030】[0030]

【発明の効果】本発明の非水電解液電池の電極活物質
は、従来のリチウム−ニッケル複合酸化物に比べ、リチ
ウム−遷移金属M複合酸化物でコーティングすることに
より、電池の初期及び50サイクル後の放電容量を、飛
躍的に増大させることができる。また、従来技術では得
られなかった保存安定性及び水分に対する安定性に優れ
た安全な二次電池を得ることができる。
The electrode active material of the non-aqueous electrolyte battery of the present invention is coated with a lithium-transition metal M composite oxide as compared with the conventional lithium-nickel composite oxide, so that the initial and 50 cycles of the battery can be improved. The subsequent discharge capacity can be dramatically increased. Further, it is possible to obtain a safe secondary battery having excellent storage stability and stability against moisture, which cannot be obtained by the conventional technique.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式LiNi(NはL
i、Ni、O以外の元素、0.8<x<1.2、0.8
<y+z<1.2、0≦z<0.2)で示されるリチウ
ム−ニッケル複合酸化物の表面を、リチウム−遷移金属
M複合酸化物(MはCo、Mn、Feの1種以上で、N
iを一部含有したものを含む)でコーティングすること
を特徴とする非水電解液電池の電極活物質。
1. The general formula Li x Ni y N z O 2 (N is L
i, Ni, elements other than O, 0.8 <x <1.2, 0.8
<Y + z <1.2, 0 ≦ z <0.2), the surface of the lithium-nickel composite oxide is a lithium-transition metal M composite oxide (M is one or more of Co, Mn, and Fe, N
and an electrode active material for a non-aqueous electrolyte battery.
【請求項2】 遷移金属M(MはCo、Mn、Feの
1種以上で、Niを一部含有したものを含む)の化合物
及びリチウム化合物を溶媒に溶解または懸濁し、一般式
LiNi(NはLi、Ni、O以外の元
素、0.8<x<1.2、0.8<y+z<1.2、0
≦z<0.2)で示されるリチウム−ニッケル複合酸化
物を加えスラリーとし、該スラリーを乾燥、焼成するこ
とを特徴とする非水電解液電池の電極活物質の製造方
法。
2. A compound of a transition metal M (M is one or more of Co, Mn, and Fe, including a part of Ni) and a lithium compound are dissolved or suspended in a solvent to obtain a compound represented by the general formula Li x Ni. yN z O 2 (N is an element other than Li, Ni, and O, 0.8 <x <1.2, 0.8 <y + z <1.2, 0
A method for producing an electrode active material for a non-aqueous electrolyte battery, comprising adding a lithium-nickel composite oxide represented by ≦ z <0.2) to form a slurry, and drying and firing the slurry.
【請求項3】 請求項1記載の非水電解液電池の電極
活物質を正極または負極に用いた非水電解液電池。
3. A non-aqueous electrolyte battery using the electrode active material of the non-aqueous electrolyte battery according to claim 1 for a positive electrode or a negative electrode.
JP7202286A 1995-08-08 1995-08-08 Electrode active material for non-aqueous electrolytic battery and manufacture thereof Pending JPH0950810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7202286A JPH0950810A (en) 1995-08-08 1995-08-08 Electrode active material for non-aqueous electrolytic battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7202286A JPH0950810A (en) 1995-08-08 1995-08-08 Electrode active material for non-aqueous electrolytic battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0950810A true JPH0950810A (en) 1997-02-18

Family

ID=16455027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7202286A Pending JPH0950810A (en) 1995-08-08 1995-08-08 Electrode active material for non-aqueous electrolytic battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0950810A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955210A (en) * 1995-08-11 1997-02-25 Sony Corp Positive active material and nonaqueous electrolytic secondary battery using the same
WO1999005734A1 (en) * 1997-07-25 1999-02-04 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
JP2001006676A (en) * 1999-04-23 2001-01-12 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode and lithium secondary battery
JP2001291518A (en) * 2000-03-13 2001-10-19 Samsung Sdi Co Ltd Positive active material for lithium secondary battery
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
KR20020046658A (en) * 2000-12-15 2002-06-21 윤덕용 Method for Surface Treatment of Layered Structure Oxide for Positive Electrodes in the Lithium Secondary Batteries
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
JP2005190996A (en) * 2003-12-05 2005-07-14 Nissan Motor Co Ltd Positive electrode material for non-aqueous electrolyte lithium ion battery and battery using this
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
WO2005114768A1 (en) * 2004-05-21 2005-12-01 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
JP2006503789A (en) * 2002-10-31 2006-02-02 エルジー・ケム・リミテッド Lithium transition metal oxide with gradient in composition of metal components
KR100560534B1 (en) * 2000-09-25 2006-03-15 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a method of preparing the same
KR100696620B1 (en) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 A method of preparing a positive active material for a lithium secondary battery
KR100696619B1 (en) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 A positive actvive material for a lithium secondary battery and a method of preparing the same
KR100709177B1 (en) * 2001-02-15 2007-04-18 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and method of preparing same
JP2008521196A (en) * 2004-12-31 2008-06-19 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Positive electrode active material for lithium secondary battery having double layer structure, method for producing the same, and lithium secondary battery using the same
JP2008204806A (en) * 2007-02-20 2008-09-04 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
WO2008123011A1 (en) * 2007-03-05 2008-10-16 Toda Kogyo Corporation Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2008539536A (en) * 2005-04-28 2008-11-13 比▲亜▼迪股▲分▼有限公司 Battery positive electrode, lithium ion battery employing the battery positive electrode, and method for producing the same
JP2009193686A (en) * 2008-02-12 2009-08-27 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2009266433A (en) * 2008-04-22 2009-11-12 Sumitomo Metal Mining Co Ltd Positive electrode active substance for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using the same
US7740982B2 (en) * 2004-06-16 2010-06-22 Panasonic Corporation Active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery including the active material
JP2012084547A (en) * 2003-12-05 2012-04-26 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery and battery using the same
US8652577B2 (en) 2008-02-13 2014-02-18 Sony Corporation Method of manufacturing cathode active material
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
JP2016051503A (en) * 2014-08-28 2016-04-11 Csエナジーマテリアルズ株式会社 Positive electrode substance for lithium ion battery, and method for manufacturing the same
JP2018508943A (en) * 2015-01-23 2018-03-29 ユミコア Lithium metal oxide cathode powder for high voltage lithium ion batteries
CN114639824A (en) * 2022-05-19 2022-06-17 瑞浦兰钧能源股份有限公司 High-safety ternary cathode material and preparation method thereof

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955210A (en) * 1995-08-11 1997-02-25 Sony Corp Positive active material and nonaqueous electrolytic secondary battery using the same
WO1999005734A1 (en) * 1997-07-25 1999-02-04 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
US6458487B1 (en) 1997-07-25 2002-10-01 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
JP2001006676A (en) * 1999-04-23 2001-01-12 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode and lithium secondary battery
JP4706090B2 (en) * 1999-04-23 2011-06-22 三菱化学株式会社 Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery
JP2001291518A (en) * 2000-03-13 2001-10-19 Samsung Sdi Co Ltd Positive active material for lithium secondary battery
JP4574877B2 (en) * 2000-03-13 2010-11-04 三星エスディアイ株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
USRE43276E1 (en) 2000-03-13 2012-03-27 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
JP2002151081A (en) * 2000-08-29 2002-05-24 Santoku Corp Positive pole active material for non-aqueous electrolytic liquid secondary battery, its manufacturing method, and non-aqueous electrolytic liquid secondary battery
KR100696620B1 (en) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 A method of preparing a positive active material for a lithium secondary battery
KR100560534B1 (en) * 2000-09-25 2006-03-15 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a method of preparing the same
KR100696619B1 (en) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 A positive actvive material for a lithium secondary battery and a method of preparing the same
KR20020046658A (en) * 2000-12-15 2002-06-21 윤덕용 Method for Surface Treatment of Layered Structure Oxide for Positive Electrodes in the Lithium Secondary Batteries
KR100709177B1 (en) * 2001-02-15 2007-04-18 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and method of preparing same
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
JP2006503789A (en) * 2002-10-31 2006-02-02 エルジー・ケム・リミテッド Lithium transition metal oxide with gradient in composition of metal components
US7695649B2 (en) 2002-10-31 2010-04-13 Lg Chem, Ltd. Lithium transition metal oxide with gradient of metal composition
WO2005055344A3 (en) * 2003-12-05 2006-03-02 Nissan Motor Positive electrode material for non-aqueous electrolyte lithium ion battery and battery using the same
US8492028B2 (en) 2003-12-05 2013-07-23 Nissan Motor Co., Ltd. Positive electrode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP2012084547A (en) * 2003-12-05 2012-04-26 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery and battery using the same
JP2005190996A (en) * 2003-12-05 2005-07-14 Nissan Motor Co Ltd Positive electrode material for non-aqueous electrolyte lithium ion battery and battery using this
WO2005114768A1 (en) * 2004-05-21 2005-12-01 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
EA010779B1 (en) * 2004-05-21 2008-10-30 ТИЭКС ЭлЭлСи Composition based on lithium metal oxide (embodiments), method of preparing and use thereof
US7740982B2 (en) * 2004-06-16 2010-06-22 Panasonic Corporation Active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery including the active material
JP2008521196A (en) * 2004-12-31 2008-06-19 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Positive electrode active material for lithium secondary battery having double layer structure, method for producing the same, and lithium secondary battery using the same
US10454106B2 (en) 2004-12-31 2019-10-22 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials
US8026002B2 (en) 2005-04-28 2011-09-27 Byd Company Limited Battery cathode, a lithium ion battery using the same and processes for preparation thereof
JP2008539536A (en) * 2005-04-28 2008-11-13 比▲亜▼迪股▲分▼有限公司 Battery positive electrode, lithium ion battery employing the battery positive electrode, and method for producing the same
JP2008204806A (en) * 2007-02-20 2008-09-04 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
US8574765B2 (en) 2007-03-05 2013-11-05 Toda Kogyo Corporation Li-Ni composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
WO2008123011A1 (en) * 2007-03-05 2008-10-16 Toda Kogyo Corporation Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2008251532A (en) * 2007-03-05 2008-10-16 Toda Kogyo Corp Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2009117369A (en) * 2007-03-05 2009-05-28 Toda Kogyo Corp Li-ni compound oxide particle powder for nonaqueous electrolyte secondary battery, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
KR101403828B1 (en) * 2007-03-05 2014-06-03 도다 고교 가부시끼가이샤 Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2009193686A (en) * 2008-02-12 2009-08-27 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
US8652577B2 (en) 2008-02-13 2014-02-18 Sony Corporation Method of manufacturing cathode active material
JP2009266433A (en) * 2008-04-22 2009-11-12 Sumitomo Metal Mining Co Ltd Positive electrode active substance for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using the same
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
JP2016051503A (en) * 2014-08-28 2016-04-11 Csエナジーマテリアルズ株式会社 Positive electrode substance for lithium ion battery, and method for manufacturing the same
JP2018508943A (en) * 2015-01-23 2018-03-29 ユミコア Lithium metal oxide cathode powder for high voltage lithium ion batteries
CN114639824A (en) * 2022-05-19 2022-06-17 瑞浦兰钧能源股份有限公司 High-safety ternary cathode material and preparation method thereof
CN114639824B (en) * 2022-05-19 2022-08-12 瑞浦兰钧能源股份有限公司 High-safety ternary cathode material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0950810A (en) Electrode active material for non-aqueous electrolytic battery and manufacture thereof
US6756155B1 (en) Positive active material for rechargeable lithium batteries and method of preparing same
JP4949561B2 (en) Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same
KR101021991B1 (en) Positive electrode material for lithium secondary battery and process for producing the same
EP2581343B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
EP2104163A1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
EP1497876A1 (en) Complex lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof
JP2002151077A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing process
JPH10507031A (en) Method for synthesizing alkali metal intercalated manganese oxide material and electrode for electrochemical cell using this material
JPH1116573A (en) Lithium cobalt double oxide for lithium ion secondary battery and its manufacture
US20040076884A1 (en) Modified lithium cobalt oxide for lithium ion battery as cathode, preparation thereof, and lithium ion battery
JP2004311427A (en) Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP4626058B2 (en) Non-aqueous electrolyte secondary battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP4168609B2 (en) Positive electrode active material for lithium ion secondary battery
JPH1087332A (en) Production of spherical lithium-nickel complex oxide and nonaqueous electrolyte cell using the same as positive electrode
JPH09213330A (en) Manufacture of electrode active material for nonaqueous electrolyte battery
JPH11260368A (en) Positive electrode active material for lithium secondary battery
US7829223B1 (en) Process for preparing lithium ion cathode material
JP3610943B2 (en) Nonaqueous electrolyte secondary battery
JP2000311675A (en) Nonaqueous electrolyte secondary battery
JP4043000B2 (en) Method for producing lithium composite oxide
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
JP3695365B2 (en) Cathode active material for lithium ion secondary battery