JPH11260368A - Positive electrode active material for lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery

Info

Publication number
JPH11260368A
JPH11260368A JP10063587A JP6358798A JPH11260368A JP H11260368 A JPH11260368 A JP H11260368A JP 10063587 A JP10063587 A JP 10063587A JP 6358798 A JP6358798 A JP 6358798A JP H11260368 A JPH11260368 A JP H11260368A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
powder
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10063587A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tateishi
和幸 立石
Shigenori Sukeya
重徳 祐谷
Itaru Mishiyo
至 御書
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP10063587A priority Critical patent/JPH11260368A/en
Publication of JPH11260368A publication Critical patent/JPH11260368A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the charge/discharge cycle characteristic by using a Li-Ni group composite oxide powder having a specific surface area in a specific range and a specific content of grain with a specific size as a principal constituent. SOLUTION: As a Li-Ni group composite oxide, a compound represented by the general formula: LiANi1- XMeXO2 is preferable, where A is 0.05-1.5 and X is 0-0.5. Me is an element such as Zr belonging to groups III to X in the new periodic table or an element such as B belonging to groups XIII to XV. A specific surface area of the powder of the composite oxide is in the range of 0.05-0.5 m<2> /g, and a content of grain with a grain size <=0.5 μm is <=1 wt.%. The desirable mean grain size of the powder in the range of 5-50 μm. The powder is prepared by mixing oxide, hydroxide or the like of an element included in the general formula together so that the ratio of the number of atoms conforms to that of the general formula, burning the mixture in the atmosphere at 500-1,000 deg.C for 1-50 hours, crushing it after cooling, and classifying it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Li・Ni系複合
酸化物を主成分とするリチウム二次電池用の正極活物質
に関する。
TECHNICAL FIELD The present invention relates to a positive electrode active material for a lithium secondary battery containing a Li / Ni-based composite oxide as a main component.

【0002】[0002]

【従来の技術】リチウム二次電池は、起電力並びにエネ
ルギー密度の点で優れているので一般的に益々注目され
つつあり、斯界では一層実用性の高い製品を開発する目
的で各種の改善研究が鋭意なされている。正極活物質の
改善研究もその重要な一つであって、高起電力が得られ
るリチウム遷移金属系複合酸化物、例えばLiCo
2、LiNiO2 などが特に注目されている。また該
複合酸化物を正極活物質とするリチウム二次電池の放電
容量や充放電サイクル特性を改善するために種々の提案
もなされている。
2. Description of the Related Art Lithium secondary batteries are generally receiving more and more attention because they are superior in terms of electromotive force and energy density. In the art, various improvements have been studied in order to develop more practical products. Has been keen. Research on improvement of the positive electrode active material is also one of the important issues, and lithium transition metal-based composite oxides such as LiCo
O 2 , LiNiO 2, and the like have received particular attention. Various proposals have also been made to improve the discharge capacity and charge / discharge cycle characteristics of a lithium secondary battery using the composite oxide as a positive electrode active material.

【0003】例えば特開平4−56064号公報には、
LiCoO2 を正極活物質とする電池の低放電容量の問
題を改善するために、LiCoO2 の製造の際に用いた
Li 2 CO3 の残存量が10重量%以下で且つ比表面積
が2m2 /g以下のLiCoO2 を用いる提案がなされ
ている。
For example, Japanese Patent Laid-Open No. 4-56064 discloses that
LiCoOTwoOf low discharge capacity of battery using lithium as positive electrode active material
LiCoO to improve the titleTwoUsed in the manufacture of
Li TwoCOThreeIs less than 10% by weight and specific surface area
Is 2mTwo/ G or less of LiCoOTwoA proposal was made to use
ing.

【0004】特開平4−249073号公報には、リチ
ウム二次電池の充放電サイクル特性を改善するために比
表面積が0.01〜0.30m2 /gのLix MO
2 (0.05≦x≦1.10、Mは遷移金属)を用いる
提案がなされている。
Japanese Patent Application Laid-Open No. Hei 4-249073 discloses a Li x MO having a specific surface area of 0.01 to 0.30 m 2 / g in order to improve the charge / discharge cycle characteristics of a lithium secondary battery.
2 (0.05 ≦ x ≦ 1.10, M is a transition metal) has been proposed.

【0005】さらに特許第2615854号公報には、
電池の低放電容量の問題を改善するために、平均粒径が
10〜150μmで且つ5μm以下の粒子が30容量%
未満のLix MO2 (0.05≦x≦1.10、Mは遷
移金属)を用いる提案がなされている。
Further, Japanese Patent No. 2615854 discloses that
In order to improve the problem of low discharge capacity of the battery, 30% by volume of particles having an average particle size of 10 to 150 μm and 5 μm or less are used.
It has been proposed to use less than Li x MO 2 (0.05 ≦ x ≦ 1.10, M is a transition metal).

【0006】ところで上記した種々の改良技術が提案さ
れているにも拘らず、Li・Ni系複合酸化物を正極活
物質とするリチウム二次電池は、充放電サイクル特性に
問題があって、充放電を繰り返すと電池の放電容量が漸
次大きく低下する。本発明者らはLi・Ni系複合酸化
物について行った研究から、この問題を解決する鍵とな
り得るつぎの新知見を得た。
[0006] In spite of the proposals for the various improved techniques described above, lithium secondary batteries using a Li / Ni-based composite oxide as a positive electrode active material have problems in charge / discharge cycle characteristics. When discharge is repeated, the discharge capacity of the battery gradually decreases. The present inventors have obtained the following new findings that can be a key to solving this problem from studies performed on Li—Ni-based composite oxides.

【0007】Li・Ni系複合酸化物などのリチウム遷
移金属系複合酸化物は、一般的に、該リチウム遷移金属
系複合酸化物を構成する各元素(但し酸素を除く)の酸
化物、水酸化物、炭酸塩、あるいは硝酸塩などの混合物
を大気中で500〜1000℃で1〜50時間加熱焼成
して製造される。かく焼成し冷却して得られる生成物は
大きな塊状物であるが、その破断面を顕微鏡観察する
と、該塊状物は互いに凝集し合った比較的大きな粒子の
集合体であって、しかも個々の該粒子自体は互いに凝集
し合った一層小さな粒子の集合体であること、換言する
と、該塊状物は二重の粒子構造を呈していることが判
る。斯界では、上記の比較的大きな粒子を二次粒子と称
し、二次粒子を構成する一層小さな粒子を一次粒子と称
している。よって二次粒子は、複数の一次粒子からなっ
ていることになる。
Lithium transition metal-based composite oxides such as Li / Ni-based composite oxides generally include oxides of each element (excluding oxygen) constituting the lithium transition metal-based composite oxide, It is manufactured by heating and calcining a mixture of substances, carbonates, nitrates and the like at 500 to 1000 ° C. for 1 to 50 hours in the atmosphere. The product obtained by calcining and cooling is a large lump, and when the fracture surface is observed with a microscope, the lump is an aggregate of relatively large particles agglomerated with each other, and furthermore, the individual lump It can be seen that the particles themselves are aggregates of smaller particles agglomerated with each other, in other words, the agglomerates have a double particle structure. In the art, the above relatively large particles are referred to as secondary particles, and smaller particles constituting the secondary particles are referred to as primary particles. Therefore, the secondary particles are composed of a plurality of primary particles.

【0008】上記の焼成物を冷却して得られる塊状物
は、機械的に粉末状に粉砕して実用に供される。ところ
で、この粉砕の際に二次粒子間の凝集力が破れて二次粒
子単位の粉末が生じるが、二次粒子間の凝集力は破れず
に二個以上の二次粒子が凝集したままの粗大粒子も生じ
ることがある。一方、上記の粉砕の際に一部の二次粒子
が粉砕されて、それを構成していた一次粒子を放出す
る。
[0008] The lump obtained by cooling the above calcined product is mechanically pulverized into a powder form and put to practical use. By the way, at the time of this pulverization, the cohesive force between the secondary particles is broken and a powder in units of secondary particles is generated, but the cohesive force between the secondary particles is not broken and two or more secondary particles remain aggregated. Coarse particles may also form. On the other hand, at the time of the above-mentioned pulverization, some of the secondary particles are pulverized, and the primary particles constituting the secondary particles are released.

【0009】以上の粉砕の機構のために、得られた粉末
には、通常、二次粒子、二個以上の二次粒子が凝集した
ままの粗大二次粒子、並びに二次粒子の粉砕にて放出さ
れた一次粒子(独立一次粒子)などが含まれている。
Due to the above-described pulverizing mechanism, the obtained powder usually contains secondary particles, coarse secondary particles in which two or more secondary particles are still aggregated, and secondary particles. Released primary particles (independent primary particles) and the like are included.

【0010】独立一次粒子の粒径は、一般的に区々であ
ってLi・Ni系複合酸化物の場合、0.1μm以下の
微細なものから数μm程度の大粒のものまでの高範囲に
亘っている。一方、二次粒子の粒径は、粗大二次粒子が
存在する場合にはそれらの粒径と量によって左右される
が、通常は数μm〜数十μm程度である。
The particle size of the independent primary particles generally varies, and in the case of a Li / Ni-based composite oxide, it ranges from a fine particle of 0.1 μm or less to a large particle of about several μm. Spans. On the other hand, the particle size of the secondary particles depends on the particle size and amount when coarse secondary particles are present, but is usually about several μm to several tens μm.

【0011】ところで本発明者らの研究によれば、Li
・Ni系複合酸化物を正極活物質とするリチウム二次電
池において、Li・Ni系複合酸化物粉末の比表面積と
該粉末中に含まれる微細な粒子(それらは主として独立
一次粒子である)の存在とが、後記する通り、該二次電
池の充放電サイクル特性に大きく影響することが判明し
た。
According to the study of the present inventors, Li
-In a lithium secondary battery using a Ni-based composite oxide as a positive electrode active material, the specific surface area of the Li-Ni-based composite oxide powder and the fine particles contained in the powder (these are mainly independent primary particles) It has been found that the presence greatly affects the charge / discharge cycle characteristics of the secondary battery as described later.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記の新知
見に基づき、充放電サイクル特性の改善されたLi・N
i系複合酸化物を主成分とするリチウム二次電池用の正
極活物質を提案することを課題とする。
SUMMARY OF THE INVENTION The present invention provides a Li.N.
It is an object to propose a positive electrode active material for a lithium secondary battery containing an i-based composite oxide as a main component.

【0013】[0013]

【課題を解決するための手段】上記の課題は、つぎの正
極活物質により解決することができる。 (1) 比表面積が0.05〜0.5m2 /gであり、粒径
0.5μm以下の粒子の含有量が1重量%以下であるL
i・Ni系複合酸化物の粉末を主成分とすることを特徴
とするリチウム二次電池用の正極活物質。 (2) Li・Ni系複合酸化物が、下記の一般式にて示さ
れるものである上記(1)記載のリチウム二次電池用の正
極活物質。LiA Ni1-X Mex 2 (ここに、Aは0.05〜1.5、Xは0〜0.5であ
り、Meは新周期率表の3〜10族元素、および/また
は13〜15族元素である。) (3) 比表面積が0.1〜0.3m2 /gであり、粒径
0.5μm以下の粒子の含有量が0.5重量%以下であ
る上記(1) または(2) 記載のリチウム二次電池用の正極
活物質。 (4) Li・Ni系複合酸化物の粉末の平均粒径が、5〜
50μmである上記(1)〜(3) のいずれかに記載のリチ
ウム二次電池用の正極活物質。
The above-mentioned problems can be solved by the following positive electrode active material. (1) L having a specific surface area of 0.05 to 0.5 m 2 / g and a content of particles having a particle size of 0.5 μm or less of 1% by weight or less.
A positive electrode active material for a lithium secondary battery, comprising a powder of an i · Ni-based composite oxide as a main component. (2) The positive electrode active material for a lithium secondary battery according to the above (1), wherein the Li / Ni-based composite oxide is represented by the following general formula. Li A Ni 1-x Me x O 2 (where A is 0.05 to 1.5, X is 0 to 0.5, and Me is an element belonging to Group 3 to 10 of the new periodic table, and / or (3) Specific surface area is 0.1 to 0.3 m 2 / g, and the content of particles having a particle size of 0.5 μm or less is 0.5% by weight or less. The positive electrode active material for a lithium secondary battery according to 1) or 2). (4) The average particle size of the powder of the Li / Ni-based composite oxide is 5 to 5.
The positive electrode active material for a lithium secondary battery according to any one of the above (1) to (3), which has a thickness of 50 μm.

【0014】[0014]

【作用】Li・Ni系複合酸化物として、比表面積が
0.05〜0.5m2 /gであり、粒径0.5μm以
下の粒子(以下、該粒子を「微細粒子」と称する。)の
含有量が1重量%以下である粉末を主成分とする正極活
物質により上記の課題を解決することができる。
The Li / Ni-based composite oxide has a specific surface area of 0.05 to 0.5 m 2 / g and a particle size of 0.5 μm or less (hereinafter, the particles are referred to as “fine particles”). The above problem can be solved by a positive electrode active material containing a powder having a content of 1% by weight or less as a main component.

【0015】[0015]

【発明の実施の形態】Li・Ni系複合酸化物として、
Niを他の元素で置換しないもの、Niの一部を他の元
素で置換したもの、さらにNiを他の元素で置換したも
ののうちでも二種以上の元素で置換したものなどを対象
とし得、例えば下記の一般式(1)にて示されるものを
例示することができる。 LiA Ni1-X Mex 2 (1) 一般式(1)において、Aは0.05〜1.5、好まし
くは0.1〜1.1であり、Xは0〜0.5である。X
が0の場合は、Niを他の元素で置換しないものを意味
する。一方、Xが0でない場合はNiを元素Meで置換
したものを意味し、その際にはXは0.01〜0.5、
特に0.02〜0.2であることが好ましい。元素Me
としては、新周期率表の3〜10族元素、例えばZr、
V、Cr、Mo、Mn、Fe、Coなど、または13〜
15族元素、例えばB、Al、Ge、Pb、Sn、Sb
などである。それらの元素の二種以上でNiを置換する
Li・Ni系複合酸化物にあっては、二種以上の元素の
合計量が上記Xの範囲内であればよい。
BEST MODE FOR CARRYING OUT THE INVENTION As a Li / Ni-based composite oxide,
Ni may not be replaced by other elements, Ni may be partially replaced by other elements, and Ni may be replaced by other elements, and may be replaced by two or more elements. For example, those represented by the following general formula (1) can be exemplified. Li A Ni in 1-X Me x O 2 ( 1) Formula (1), A is 0.05 to 1.5, preferably 0.1 to 1.1, X is 0 to 0.5 is there. X
Is 0, it means that Ni is not replaced by another element. On the other hand, when X is not 0, it means that Ni is replaced with the element Me. In this case, X is 0.01 to 0.5,
It is particularly preferably 0.02 to 0.2. Element Me
As elements of Group 3 to 10 of the new periodic table, for example, Zr,
V, Cr, Mo, Mn, Fe, Co, etc., or 13 to
Group 15 element, for example, B, Al, Ge, Pb, Sn, Sb
And so on. In the case of a Li / Ni-based composite oxide in which Ni is substituted by two or more of these elements, the total amount of the two or more elements may be within the above range of X.

【0016】Li・Ni系複合酸化物の粉末の比表面積
は、吸着ガスとして窒素ガスを用いるBET法の定圧1
点法(例えば、荒井康夫著「粉体の材料化学」第178
頁〜184頁、培風館(東京)、1995年参照)にて
測定された値である。被検粉末が、粗大二次粒子、二次
粒子、および独立一次粒子を含有する場合には、それら
全ての粒子が比表面積の測定に関与することになる。
The specific surface area of the powder of the Li / Ni-based composite oxide is a constant pressure of 1 according to the BET method using nitrogen gas as an adsorption gas.
Point method (for example, Yasuo Arai, "Material Chemistry of Powder", No. 178)
Page to page 184, Baifukan (Tokyo), 1995). When the test powder contains coarse secondary particles, secondary particles, and independent primary particles, all of the particles participate in the measurement of the specific surface area.

【0017】微細粒子の含有量V(重量%)は、つぎの
方法にて測定される。被検粉末についてこれをよく混合
して均一な試料を採取し、これを周知のマイクロトラッ
ク粒度分析計を用いてレーザー光の散乱により視野内に
存在する粒子の個々の粒子の粒径(D1 、D2 、D3
・・)、および各粒径毎の存在頻度(個数N)(N1
2 、N3 ・・・)を計測する。その際、個々の粒子の
粒径(D)は、マイクロトラック粒度分析計によれば種
々の形状の粒子毎に球相当径が自動的に測定される。つ
いで各粒径(D)毎に、その存在頻度(個数N)と粒径
(D)とから存在頻度(体積%)を求め、各粒径(横
軸)に対する存在頻度(体積%)(縦軸)をグラフ上で
点綴し、図1に示す曲線Cを描く。なお曲線Cは、特定
の化学種の、換言すると、同じ密度の粒子に就いてのも
のであるので、存在頻度(体積)は存在頻度(重量)と
言い換えてもよい。よって図1における縦軸は、存在頻
度(重量)で表示されている。かくすると被検粉末が微
細粒子を含有する場合には、図1に示すように、被検粉
末の平均粒径に該当するあたりに生じる大きなピークP
1の他に、小粒径領域にピークP2が生じる。このピー
クP2は、主として微細粒子の存在に起因して生じたも
のである。いま、横軸Xと曲線Cとで囲まれた総面積
(梨地で示す面積)をS1とし、横軸X上の目盛り0.
5μmにおける垂線Yと横軸Xと曲線Cとで囲まれた面
積(梨地の上に斜線を施した面積)をS2とすると、S
1は視野内に存在する粒子の総重量に該当し、S2は粒
径0.5μm以下の微細粒子の総重量に該当する。よっ
て微細粒子の含有量V(重量%)は、下式(2)にて算
出することができる。 V(重量%)=(S2/S1)×100 (2)
The content V (% by weight) of the fine particles is measured by the following method. The test powder was mixed well to obtain a uniform sample, which was then scattered with laser light using a well-known Microtrac particle size analyzer to determine the particle size (D 1) of the individual particles present in the visual field. , D 2 , D 3.
..) and the frequency of occurrence (number N) for each particle size (N 1 ,
N 2 , N 3 ...) Are measured. At this time, the equivalent particle diameter (D) of each particle is automatically measured by a Microtrac particle size analyzer for each particle of various shapes. Next, for each particle size (D), the presence frequency (volume%) is determined from the presence frequency (number N) and the particle size (D), and the presence frequency (volume%) (vertical Axis) on the graph to draw a curve C shown in FIG. Since the curve C is for particles of a specific chemical species, in other words, particles having the same density, the frequency of occurrence (volume) may be referred to as the frequency of occurrence (weight). Therefore, the vertical axis in FIG. 1 is represented by the presence frequency (weight). Thus, when the test powder contains fine particles, as shown in FIG. 1, a large peak P occurring around the average particle size of the test powder is obtained.
In addition to 1, a peak P2 occurs in the small particle size region. This peak P2 mainly occurs due to the presence of fine particles. Now, the total area (the area shown by the satin finish) surrounded by the horizontal axis X and the curve C is set to S1, and the scale 0.
Assuming that the area surrounded by the perpendicular Y, the horizontal axis X, and the curve C at 5 μm (the area shaded on the satin finish) is S2,
1 corresponds to the total weight of the particles present in the visual field, and S2 corresponds to the total weight of the fine particles having a particle size of 0.5 μm or less. Therefore, the content V (% by weight) of the fine particles can be calculated by the following equation (2). V (% by weight) = (S2 / S1) × 100 (2)

【0018】参考までに被検粉末の平均粒径W(μm)
は、視野内に存在する粒子の個数(N)と粒径(D)と
から下式(3)にて算出することができる。 W(μm)= (ΣND3 /ΣN) 1/3 (3) 算出される値は、平均体積径、あるいは体積加重平均粒
径である。
For reference, the average particle size W (μm) of the test powder
Can be calculated by the following equation (3) from the number (N) and the particle diameter (D) of the particles present in the visual field. W (μm) = (ΣND 3 / ΣN) 1/3 (3) The calculated value is an average volume diameter or a volume-weighted average particle diameter.

【0019】本発明のLi・Ni系複合酸化物がニチウ
ム二次電池用の正極活物質として機能する際には、電解
液との反応性が適度であることが必要である。一般的
に、反応性が過大であると正極活物質と電解液との劣化
が早くて電池寿命を縮め、逆に反応性が過小であると各
種の電池性能を低下せしめる傾向にある。特に比表面積
が0.5m2 /gより大きいもの、あるいは微細粒子の
含有量が1重量%より多いものを用いると、かかる粒子
は電解液との反応性が大きく、このために該微細粒子と
電解液との副反応が大きくなって両者の劣化が早く、電
池の充放電サイクル特性が低下し易い。一方、比表面積
が0.05m2 /gより小さいものを用いると、電解液
との反応面積が小さいために高負荷時の電池特性に問題
が生じる。
When the Li / Ni-based composite oxide of the present invention functions as a positive electrode active material for a nidium secondary battery, it is necessary that the reactivity with an electrolytic solution is appropriate. In general, if the reactivity is excessive, the deterioration of the positive electrode active material and the electrolytic solution is quick, and the battery life is shortened. Conversely, if the reactivity is too small, various battery performances tend to decrease. In particular, when the specific surface area is larger than 0.5 m 2 / g or the fine particle content is more than 1% by weight, such particles have high reactivity with the electrolytic solution. The side reaction with the electrolytic solution is increased, and both are quickly deteriorated, and the charge / discharge cycle characteristics of the battery are likely to be deteriorated. On the other hand, if the specific surface area is smaller than 0.05 m 2 / g, there is a problem in the battery characteristics under a high load because the reaction area with the electrolyte is small.

【0020】しかしてLi・Ni系複合酸化物として、
比表面積が0.1〜0.3m2 /g、特に0.15〜
0.3m2 /gであり、微細粒子の含有量が0.5重量
%以下、特に0.1重量%以下である粉末が好ましい。
なおLi・Ni系複合酸化物の粉末の平均粒径は、5〜
50μm程度、特に10〜30μm程度が好ましい。
As a Li / Ni-based composite oxide,
The specific surface area is 0.1 to 0.3 m 2 / g, especially 0.15 to
A powder having a particle size of 0.3 m 2 / g and a content of fine particles of 0.5% by weight or less, particularly 0.1% by weight or less is preferred.
The average particle size of the powder of the Li / Ni-based composite oxide is 5 to 5.
It is preferably about 50 μm, particularly about 10 to 30 μm.

【0021】本発明で用いるLi・Ni系複合酸化物、
例えば上記一般式(1)にて示されるものは、該一般式
中に含まれる元素(但し酸素を除く)の酸化物、水酸化
物、炭酸塩、あるいは硝酸塩などを各元素の原子数比が
一般式(1)で示される割合となるように混合し、得ら
れた混合物を大気中で500〜1000℃で1〜50時
間加熱焼成し、冷却後に粉砕し、分級することにより得
ることができる。さらに分級の条件を種々調節すること
により、比表面積、平均粒径、微細粒子の含有量などを
所望の数値範囲内とすることができる。
The Li / Ni-based composite oxide used in the present invention,
For example, the compound represented by the above general formula (1) is an element (excluding oxygen) contained in the above general formula, except for an oxide, a hydroxide, a carbonate, or a nitrate, in which the atomic ratio of each element is It can be obtained by mixing so as to have a ratio represented by the general formula (1), heating and calcining the obtained mixture at 500 to 1000 ° C. for 1 to 50 hours in the atmosphere, pulverizing after cooling, and classifying. . Further, by adjusting the classification conditions in various ways, the specific surface area, the average particle diameter, the content of the fine particles, and the like can be set within desired numerical ranges.

【0022】本発明の正極活物質は、従来のLi・Ni
系複合酸化物を正極活物質とする非水電解質リチウム二
次電池や固体電解質リチウム二次電池などの分野で従来
から知られている方法と同じ方法にて実用することがで
きる。以下に、その代表的乃至好ましい実用方法の若干
例を説明する。
The positive electrode active material of the present invention is a conventional Li.Ni
It can be put to practical use by the same method as conventionally known in the field of a non-aqueous electrolyte lithium secondary battery and a solid electrolyte lithium secondary battery using a system composite oxide as a positive electrode active material. Hereinafter, some examples of typical or preferable practical methods will be described.

【0023】正極活物質の結着剤としては、ポリテトラ
フルオロエチレン、ポリビニリデンフルオリド、ポリエ
チレン、エチレン−プロピレン−ジエン系ポリマーなど
が例示され、導電剤としては、各種導電性黒鉛や導電性
カーボンブラックなどが例示される。
Examples of the binder for the positive electrode active material include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and ethylene-propylene-diene-based polymers. Examples of the conductive agent include various types of conductive graphite and conductive carbon. Black is exemplified.

【0024】正極活物質の使用量は、正極活物質、結着
剤、および導電剤の合計量100重量部あたり80〜9
5重量部程度であり、結着剤の使用量は正極活物質10
0重量部あたり1〜10重量部程度であり、また導電剤
の使用量は正極活物質100重量部あたり3〜15重量
部程度である。
The amount of the positive electrode active material used is from 80 to 9 per 100 parts by weight of the total amount of the positive electrode active material, the binder, and the conductive agent.
It is about 5 parts by weight, and the amount of the binder used is 10
The amount is about 1 to 10 parts by weight per 0 parts by weight, and the amount of the conductive agent is about 3 to 15 parts by weight per 100 parts by weight of the positive electrode active material.

【0025】正極シートは、正極集電体の片面または両
面に正極活物質、結着剤、および導電剤からなる混合組
成物を塗布し、充分に乾燥後、圧延して形成することが
でき、片面または両面に厚さ20〜500μm程度、特
に50〜200μm程度の正極活物質層を有するものが
例示される。
The positive electrode sheet can be formed by applying a mixed composition comprising a positive electrode active material, a binder, and a conductive agent to one or both surfaces of a positive electrode current collector, sufficiently drying and rolling, and One having a positive electrode active material layer having a thickness of about 20 to 500 μm, particularly about 50 to 200 μm on one or both sides is exemplified.

【0026】本発明の正極活物質と共用される負極活物
質として好ましい例を挙げると、各種の天然黒鉛や人造
黒鉛、例えば繊維状黒鉛、鱗片状黒鉛、球状黒鉛などの
黒鉛類であり、その結着剤としては、ポリテトラフルオ
ロエチレン、ポリビニリデンフルオリド、ポリエチレ
ン、エチレン−プロピレン−ジエン系ポリマーなどであ
る。負極活物質の使用量は、負極活物質と結着剤との合
計量100重量部あたり80〜96重量部程度である。
Preferred examples of the negative electrode active material used in common with the positive electrode active material of the present invention include various natural graphites and artificial graphites, for example, graphites such as fibrous graphite, flaky graphite and spherical graphite. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and an ethylene-propylene-diene-based polymer. The amount of the negative electrode active material used is about 80 to 96 parts by weight per 100 parts by weight of the total amount of the negative electrode active material and the binder.

【0027】正極集電体としては、アルミニウム、アル
ミニウム合金、チタンなどの導電性金属の、厚さ10〜
100μm程度、特に15〜50μm程度の箔や穴あき
箔、厚さ25〜300μm程度、特に30〜150μm
程度のエキスパンドメタルなどが好ましい。
As the positive electrode current collector, a conductive metal such as aluminum, aluminum alloy,
About 100 μm, especially about 15 to 50 μm foil or perforated foil, about 25 to 300 μm thickness, especially about 30 to 150 μm
A certain degree of expanded metal is preferred.

【0028】負極集電体としては、銅、ニッケル、銀、
SUSなどの導電性金属の、厚さ5〜100μm程度、
特に8〜50μm程度の箔や穴あき箔、厚さ20〜30
0μm程度、特に25〜100μm程度のエキスパンド
メタルなどが好ましい。
As the negative electrode current collector, copper, nickel, silver,
About 5-100 μm in thickness of conductive metal such as SUS,
Especially about 8 to 50 μm foil or perforated foil, thickness 20 to 30
Expanded metal having a thickness of about 0 μm, particularly about 25 to 100 μm is preferable.

【0029】非水電解質としては、塩類を有機溶媒に溶
解させた電解液が例示される。該塩類としては、LiC
lO4 、LiBF4 、LiPF6 、LiAsF6 、Li
AlCl4 、Li(CF3 SO2 2 Nなどが例示さ
れ、それらの一種または二種以上の混合物が使用され
る。
Examples of the non-aqueous electrolyte include an electrolyte in which salts are dissolved in an organic solvent. The salts include LiC
10 4 , LiBF 4 , LiPF 6 , LiAsF 6 , Li
Examples thereof include AlCl 4 and Li (CF 3 SO 2 ) 2 N, and one or a mixture of two or more thereof is used.

【0030】有機溶媒としては、エチレンカーボネー
ト、プロピレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、エチルメチルカーボネート、ジ
メチルスルホキシド、スルホラン、γ−ブチロラクト
ン、1,2−ジメトキシエタン、N,N−ジメチルホル
ムアミド、テトラヒドロフラン、1,3−ジオキソラ
ン、2−メチルテトラヒドロフラン、ジエチルエーテル
などが例示され、それらの一種または二種以上の混合物
が使用される。また電解液中における上記塩類の濃度
は、0.1〜3モル/リットル程度が適当である。
As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate,
Diethyl carbonate, ethyl methyl carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolan, 2-methyltetrahydrofuran, diethyl ether, and the like, One or a mixture of two or more thereof is used. The concentration of the above salts in the electrolyte is suitably about 0.1 to 3 mol / l.

【0031】[0031]

【実施例】以下、実施例により本発明を一層詳細に説明
するとともに、比較例をも挙げて本発明の顕著な効果を
示す。
EXAMPLES The present invention will be described in more detail with reference to the following examples, and comparative examples will also be described to show the remarkable effects of the present invention.

【0032】実施例1〜3、比較例1〜4 LiOH・H2 OとNi(OH)2 との均一な混合物を
約800℃で約12時間焼成し、ついで粉砕してLiN
iO2 の化学式を有する粉末を得た。かくして得た粉末
を日本ニューマチック社製のMDS−1型気流分級機に
かけて種々の条件にて分級し、粉末の比表面積、平均粒
径、並びに微細粒子の含有量が表1に示す通りである実
施例1〜3と比較例1〜4の7種類の正極活物質として
のLi・Ni系複合酸化物を得た。
Examples 1 to 3 and Comparative Examples 1 to 4 A homogeneous mixture of LiOH.H 2 O and Ni (OH) 2 was calcined at about 800 ° C. for about 12 hours, and then pulverized to obtain LiN.
A powder having a chemical formula of iO 2 was obtained. The powder thus obtained was classified under various conditions using an MDS-1 airflow classifier manufactured by Nippon Pneumatic Co., Ltd., and the specific surface area, average particle size, and content of fine particles of the powder are as shown in Table 1. Li / Ni-based composite oxides as seven types of positive electrode active materials of Examples 1 to 3 and Comparative Examples 1 to 4 were obtained.

【0033】実施例4〜5 LiOH・H2 O、Ni(OH)2 、Co2 3 、およ
びAl(OH)3 との均一な混合物を約800℃で約1
2時間焼成し、ついで粉砕してLiNi1.9OCo0.05
0.054 の化学式を有する粉末を得た。かくして得た
粉末を日本ニューマチック社製のMDS−1型気流分級
機にかけて種々の条件にて分級し、粉末の比表面積、平
均粒径、並びに微細粒子の含有量が表1に示す通りであ
る実施例4〜5の2種類の正極活物質としてのLi・N
i系複合酸化物を得た。
Examples 4-5 A homogeneous mixture of LiOH.H 2 O, Ni (OH) 2 , Co 2 O 3 , and Al (OH) 3 was prepared at about 800 ° C. for about 1 hour.
Bake for 2 hours, then pulverize to obtain LiNi 1.9O Co 0.05 A
A powder having a chemical formula of l 0.05 O 4 was obtained. The powder thus obtained was classified under various conditions using an MDS-1 airflow classifier manufactured by Nippon Pneumatic Co., Ltd., and the specific surface area, average particle size, and content of fine particles of the powder are as shown in Table 1. Li · N as Two Types of Positive Electrode Active Materials of Examples 4 and 5
An i-based composite oxide was obtained.

【0034】なお上記の実施例および比較例の各Li・
Ni系複合酸化物の平均粒径と微細粒子の含有量の測定
には、島津製作所製のマイクロトラック粒度分析計SA
LD−3000Jを用いた。
Each of the Li ·
For measuring the average particle size and the content of fine particles of the Ni-based composite oxide, a microtrack particle size analyzer SA manufactured by Shimadzu Corporation was used.
LD-3000J was used.

【0035】実施例1〜5および比較例1〜4の各正極
活物質を使用し、正極活物質92重量部、アセチレンブ
ラック3重量部、ポリフッ化ビニリデン5重量部、およ
びN−メチル2ピロリドン70重量部を混合してスラリ
ーとした。このスラリーをアルミニウム箔上に塗布し乾
燥して、20mg/cm2 の正極活物質を有する正極シ
ートを作製した。かくして得た各正極シートとLi箔と
を多孔質ポリエチレンセパレータを介して密着対向さ
せ、エチレンカーボネートとエチルメチルカーボネート
との混合溶媒(混合体積比率は1:1)1リットルあた
り1モルのLiPF6 を溶解してなる溶液を電解液とし
て使用して、これを上記正極シートとLi箔との間に含
浸して密閉コイン型のリチウム二次電池を作製した。各
リチウム二次電池につき、下記に示す試験方法にて充放
電サイクル特性を測定した。
Using the positive electrode active materials of Examples 1 to 5 and Comparative Examples 1 to 4, 92 parts by weight of the positive electrode active material, 3 parts by weight of acetylene black, 5 parts by weight of polyvinylidene fluoride, and 70 parts by weight of N-methyl-2-pyrrolidone 70 Parts by weight were mixed to form a slurry. This slurry was applied on an aluminum foil and dried to prepare a positive electrode sheet having a positive electrode active material of 20 mg / cm 2 . Each positive electrode sheet thus obtained and the Li foil were closely adhered to each other via a porous polyethylene separator, and 1 mol of LiPF 6 per liter of a mixed solvent of ethylene carbonate and ethyl methyl carbonate (mixing volume ratio was 1: 1) was added. The dissolved solution was used as an electrolytic solution, which was impregnated between the positive electrode sheet and the Li foil to produce a sealed coin-type lithium secondary battery. The charge / discharge cycle characteristics of each lithium secondary battery were measured by the test method described below.

【0036】〔充放電サイクル特性の試験方法〕正極シ
ートの面積1cm2 あたり1mAの定電流および4.3
Vの定電圧下で5時間充電し、ついで正極シートの面積
1cm2 あたり0.4mAの定電流のもとで端子電圧が
3Vとなる時点まで放電させ、この後1時間充放電を休
止する。以上の充放電並びに休止を1サイクルとして5
00回繰り返すが、初回のみ室温(20℃)下で行い、
2サイクル目以降は60℃で行う。各サイクルにおける
放電容量は、放電電流値と放電時間から電気量(mA・
H)を算出し、リチウム二次電池中に含まれている正極
活物質の重量(g)から放電容量(mA・H/g)を得
る。表1には、初回の放電容量に対する500サイクル
目の放電容量の割合、即ち放電容量維持率(%)を示し
た。
[Test Method for Charging / Discharging Cycle Characteristics] A constant current of 1 mA per 1 cm 2 of area of the positive electrode sheet and 4.3
The battery is charged at a constant voltage of V for 5 hours, and then discharged under a constant current of 0.4 mA per 1 cm 2 of the area of the positive electrode sheet until the terminal voltage becomes 3 V, after which charging and discharging are stopped for 1 hour. The above charge / discharge and pause are considered as one cycle and 5
Repeat 00 times, but only for the first time at room temperature (20 ° C)
The second and subsequent cycles are performed at 60 ° C. The discharge capacity in each cycle is calculated from the discharge current value and the discharge time based on the electric quantity (mA
H) is calculated, and the discharge capacity (mA · H / g) is obtained from the weight (g) of the positive electrode active material contained in the lithium secondary battery. Table 1 shows the ratio of the discharge capacity at the 500th cycle to the initial discharge capacity, that is, the discharge capacity maintenance ratio (%).

【0037】表1より、実施例1〜5の各正極活物質を
使用した各電池は、いずれも60℃下での充放電サイク
ル特性に良好な性能を示しているのに対して、比較例1
〜4の各正極活物質を使用した各電池は、いずれも上記
特性に劣ることが判る。
From Table 1, it can be seen that each of the batteries using each of the positive electrode active materials of Examples 1 to 5 showed good performance in the charge / discharge cycle characteristics at 60 ° C. 1
It can be seen that each of the batteries using the positive electrode active materials of Nos. To 4 is inferior in the above characteristics.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明の正極活物質は、高起電力にして
充放電サイクル特性に優れているので、各種の電気機器
とりわけ携帯用品用の長寿命リチウム二次電池の製造に
好適である。
The positive electrode active material of the present invention has a high electromotive force and excellent charge / discharge cycle characteristics, and thus is suitable for the manufacture of a long-life lithium secondary battery for various electric devices, especially portable products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】マイクロトラック粒度分析計を用いて計測され
た粉末中の個々の粒子の粒径と各粒径毎の存在頻度(重
量)との関係を示す概念的な曲線である。
FIG. 1 is a conceptual curve showing the relationship between the particle size of individual particles in a powder measured using a Microtrac particle size analyzer and the frequency of occurrence (weight) of each particle size.

【符号の説明】 C 概念的な曲線 P1 曲線Cのピーク P2 曲線Cの別のピーク S1 横軸Xと曲線Cとで囲まれた総面積 S2 垂線Yと横軸Xと曲線Cとで囲まれた面積[Description of Signs] C Conceptual curve P1 Peak of curve C P2 Another peak of curve C S1 Total area surrounded by horizontal axis X and curve C S2 Total area surrounded by vertical line Y, horizontal axis X and curve C Area

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 比表面積が0.05〜0.5m2 /gで
あり、粒径0.5μm以下の粒子の含有量が1重量%以
下であるLi・Ni系複合酸化物の粉末を主成分とする
ことを特徴とするリチウム二次電池用の正極活物質。
1. A Li / Ni-based composite oxide powder having a specific surface area of 0.05 to 0.5 m 2 / g and a content of particles having a particle size of 0.5 μm or less of 1% by weight or less is mainly used. A positive electrode active material for a lithium secondary battery, characterized by being a component.
【請求項2】 Li・Ni系複合酸化物が、下記の一般
式にて示されるものである請求項1記載のリチウム二次
電池用の正極活物質。 LiA Ni1-X Mex 2 (ここに、Aは0.05〜1.5、Xは0〜0.5であ
り、Meは新周期率表の3〜10族元素、および/また
は13〜15族元素である。)
2. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the Li / Ni-based composite oxide is represented by the following general formula. Li A Ni 1-x Me x O 2 (where A is 0.05 to 1.5, X is 0 to 0.5, and Me is an element belonging to Group 3 to 10 of the new periodic table, and / or It is a group 13-15 element.)
【請求項3】 比表面積が0.1〜0.3m2 /gであ
り、粒径0.5μm以下の粒子の含有量が0.5重量%
以下である請求項1または2記載のリチウム二次電池用
の正極活物質。
3. The specific surface area is 0.1 to 0.3 m 2 / g, and the content of particles having a particle size of 0.5 μm or less is 0.5% by weight.
The positive electrode active material for a lithium secondary battery according to claim 1, wherein:
【請求項4】 Li・Ni系複合酸化物の粉末の平均粒
径が、5〜50μmである請求項1〜3のいずれかに記
載のリチウム二次電池用の正極活物質。
4. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the average particle diameter of the powder of the Li.Ni-based composite oxide is 5 to 50 μm.
JP10063587A 1998-03-13 1998-03-13 Positive electrode active material for lithium secondary battery Pending JPH11260368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10063587A JPH11260368A (en) 1998-03-13 1998-03-13 Positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10063587A JPH11260368A (en) 1998-03-13 1998-03-13 Positive electrode active material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH11260368A true JPH11260368A (en) 1999-09-24

Family

ID=13233558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10063587A Pending JPH11260368A (en) 1998-03-13 1998-03-13 Positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH11260368A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237301A (en) * 2001-02-07 2002-08-23 Denso Corp Nonaqueous electrolytic solution secondary battery
FR2824668A1 (en) * 2001-05-11 2002-11-15 Denso Corp Lithium secondary battery for mobile telephone, has anode comprising binder and lithium nitrite group compound having preset specific surface area, as active material coated on surface with water soluble polymer
JP2005302507A (en) * 2004-04-12 2005-10-27 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008108574A (en) * 2006-10-25 2008-05-08 Nippon Chem Ind Co Ltd Positive electrode active material for lithium-ion secondary battery, and its manufacturing method
US7563539B2 (en) 2000-04-04 2009-07-21 Sony Corporation Non-aqueous electrolyte secondary battery
JP2009205950A (en) * 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2013175478A (en) * 2013-05-09 2013-09-05 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563539B2 (en) 2000-04-04 2009-07-21 Sony Corporation Non-aqueous electrolyte secondary battery
EP3101715A1 (en) * 2000-04-04 2016-12-07 Sony Corporation Non-aqueous electrolyte secondary battery
JP2002237301A (en) * 2001-02-07 2002-08-23 Denso Corp Nonaqueous electrolytic solution secondary battery
FR2824668A1 (en) * 2001-05-11 2002-11-15 Denso Corp Lithium secondary battery for mobile telephone, has anode comprising binder and lithium nitrite group compound having preset specific surface area, as active material coated on surface with water soluble polymer
JP2005302507A (en) * 2004-04-12 2005-10-27 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008108574A (en) * 2006-10-25 2008-05-08 Nippon Chem Ind Co Ltd Positive electrode active material for lithium-ion secondary battery, and its manufacturing method
JP2009205950A (en) * 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2013175478A (en) * 2013-05-09 2013-09-05 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
TW565961B (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2009205950A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2003221236A (en) Composite oxide containing lithium and nonaqueous secondary battery using it
JPH09129230A (en) Nonaqueous electrolytic battery and manufacture of positive active material
WO2014097569A1 (en) Positive electrode material for lithium secondary batteries
JP4177574B2 (en) Lithium secondary battery
JPH11219706A (en) Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JP2004006094A (en) Nonaqueous electrolyte secondary battery
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2000149950A (en) Nonaqueous electrolyte secondary battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP3308232B2 (en) Li-Co-based composite oxide and method for producing the same
JP2008235157A (en) Positive electrode active material for lithium secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP2006286336A (en) Nonaqueous electrolyte secondary battery and its charging method
JP4096094B2 (en) Method for producing layered rock salt type lithium nickelate powder
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPH11260368A (en) Positive electrode active material for lithium secondary battery