JPH1167209A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH1167209A
JPH1167209A JP9247779A JP24777997A JPH1167209A JP H1167209 A JPH1167209 A JP H1167209A JP 9247779 A JP9247779 A JP 9247779A JP 24777997 A JP24777997 A JP 24777997A JP H1167209 A JPH1167209 A JP H1167209A
Authority
JP
Japan
Prior art keywords
composite oxide
formula
positive electrode
coating layer
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9247779A
Other languages
Japanese (ja)
Inventor
Takuya Sunakawa
拓也 砂川
Ryuji Oshita
竜司 大下
Hiroshi Watanabe
浩志 渡辺
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9247779A priority Critical patent/JPH1167209A/en
Publication of JPH1167209A publication Critical patent/JPH1167209A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide excellent charge/discharge cycle characteristics and high storage characteristics by arranging a positive electrode using composite particles comprising a base particle and its covering layer as a positive electrode active material, a negative electrode using a material capable of electrochemically absorbing/releasing lithium ions or a lithium metal as a negative electrode active material, and a nonaqueous electrolyte, and forming the base particle and the covering layer each with the specified composite oxide. SOLUTION: A base particle is a composite oxide represented by formula, Lia Cob Mnc M<1> d Ni1-(b+c+d) , [wherein M<1> is at least one element selected from the group comprising B, Al, Si, Fe, V, Cr, Cu, Zn, Ga, and W, 0<a<1.2, 0.1<=b<0.5, 0.05<=c<0.4, 0<=d<0.4, 0.15<=b+c+d<0.7]. The covering layer is a composite oxide represented by formula, Lie Co1-f M<2> f O2 , [wherein M<2> is at least one element selected from the group comprising Mn, B, Al, Si, Fe, V, Cr, Cu, Zn, Ga, and W, 0<e<1.2, 0<=f<0.5].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、正極と、リチウム
イオンを電気化学的に吸蔵及び放出することが可能な物
質又はリチウム金属を有する負極と、非水電解質とを備
えるリチウム二次電池に係わり、詳しくは充放電サイク
ル特性が良く、しかも充電状態での保存特性が良いリチ
ウム二次電池を提供することを目的とした、正極活物質
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery comprising a positive electrode, a negative electrode containing a substance or lithium metal capable of electrochemically occluding and releasing lithium ions, and a non-aqueous electrolyte. More specifically, the present invention relates to improvement of a positive electrode active material for the purpose of providing a lithium secondary battery having good charge / discharge cycle characteristics and good storage characteristics in a charged state.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
高エネルギー密度型のリチウム二次電池の正極活物質と
して、高い放電電位を有するリチウムと遷移元素との複
合酸化物が注目されている。
2. Description of the Related Art In recent years,
As a positive electrode active material of a high energy density type lithium secondary battery, a composite oxide of lithium having a high discharge potential and a transition element has attracted attention.

【0003】例えば、リチウムと遷移元素の複合酸化物
として、LiCoO2 (コバルト酸リチウム)又はLi
NiO2 (ニッケル酸リチウム)を使用すれば、放電電
圧が4V級の高エネルギー密度電池を得ることが可能で
ある。LiCoO2 は、3.8〜3.9V(vs. Li/
Li+ )という特に高い放電電位を有することから、既
に実用されている正極活物質である。
For example, as a composite oxide of lithium and a transition element, LiCoO 2 (lithium cobaltate) or LiCoO 2
If NiO 2 (lithium nickelate) is used, a high energy density battery with a discharge voltage of 4V class can be obtained. LiCoO 2 is 3.8 to 3.9 V (vs. Li /
Li + ), which has a particularly high discharge potential, is a positive electrode active material that is already in practical use.

【0004】しかしながら、LiCoO2 は、コバルト
原料が資源的に稀少で高価であるため、高価である。こ
のため、比較的安価なニッケル原料を用いて作製するこ
とができ、LiCoO2 の放電電位に近い3.6V(v
s. Li/Li+ )程度の放電電位を有するLiNiO
2 が見直されつつある。
[0004] However, LiCoO 2 is expensive because the cobalt raw material is scarce and expensive as a resource. Thus, it can be produced using a relatively inexpensive nickel material, close to the discharge potential of LiCoO 2 3.6V (v
s. LiNiO having a discharge potential of about Li / Li + )
2 is being reviewed.

【0005】しかしながら、LiNiO2 には、充放電
時のリチウムイオンの脱離・挿入に伴い結晶構造が崩壊
し易いことに起因して、充放電を繰り返すと短サイクル
裡に放電容量が減少するという問題がある。
However, in LiNiO 2 , the discharge capacity is reduced in a short cycle when charge and discharge are repeated due to the fact that the crystal structure is easily collapsed due to the desorption and insertion of lithium ions during charge and discharge. There's a problem.

【0006】LiNiO2 が有する上記の問題を解決す
るべく、最近、式Lix Mny Coz Ni1-(y+z) 2
(但し、0.9<x≦1.2、0.9<x≦1.2、
0.0<y<0.5、0.0≦z<0.5、0<y+z
≦0.5である。)で表される複合酸化物を正極活物質
として使用することが提案されている(特開平8−37
007号公報参照)。LiNiO2 中のニッケル原子の
一部をコバルト原子及びマンガン原子で置換することに
より、充放電サイクル特性の向上を企図したものであ
る。
[0006] In order to solve the above problems LiNiO 2 has recently formula Li x Mn y Co z Ni 1- (y + z) O 2
(However, 0.9 <x ≦ 1.2, 0.9 <x ≦ 1.2,
0.0 <y <0.5, 0.0 ≦ z <0.5, 0 <y + z
≦ 0.5. ) Has been proposed to be used as a positive electrode active material (JP-A-8-37).
007). By replacing a part of nickel atoms in LiNiO 2 with cobalt atoms and manganese atoms, it is intended to improve charge / discharge cycle characteristics.

【0007】しかしながら、本発明者らが検討した結
果、この複合酸化物を正極活物質として使用した電池に
は、充電状態で保存すると、放電容量が大きく低下する
という問題があることが分かった。これは、保存中に、
電解液が正極活物質中のニッケルの触媒作用により正極
の表面で分解するためと考えられる。
[0007] However, as a result of investigations by the present inventors, it has been found that a battery using this composite oxide as a positive electrode active material has a problem that when stored in a charged state, the discharge capacity is greatly reduced. This means that during the save,
It is considered that the electrolytic solution is decomposed on the surface of the positive electrode by the catalytic action of nickel in the positive electrode active material.

【0008】本発明は、以上の事情に鑑みなされたもの
であって、充放電サイクル特性が良く、しかも充電状態
での保存特性が良いリチウム二次電池を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lithium secondary battery having good charge / discharge cycle characteristics and good storage characteristics in a charged state.

【0009】[0009]

【課題を解決するための手段】本発明に係るリチウム二
次電池(本発明電池)は、基体粒子(A)と当該基体粒
子(A)の表面を被覆する被覆層(B)とからなる複合
体粒子を正極活物質として有する正極と、リチウムイオ
ンを電気化学的に吸蔵及び放出することが可能な物質又
はリチウム金属を負極活物質として有する負極と、非水
電解質とを備え、前記基体粒子(A)が、式Lia Co
b Mnc 1 d Ni1-(b+C+d) 2 〔但し、M1 はB、
Al、Si、Fe、V、Cr、Cu、Zn、Ga及びW
よりなる群から選ばれた少なくとも一種の元素、0<a
<1.2、0.1≦b<0.5、0.05≦c<0.
4、0≦d<0.4、0.15≦b+c+d<0.7で
ある。〕で表される複合酸化物 (i)からなり、前記被覆
層(B)が、式Lie Co1-f 2 f 2 〔但し、M2
はMn、B、Al、Si、Fe、V、Cr、Cu、Z
n、Ga及びWよりなる群から選ばれた少なくとも一種
の元素、0<e<1.2、0≦f<0.5である。〕で
表される複合酸化物 (ii) からなる。
Means for Solving the Problems A lithium secondary battery (battery of the present invention) according to the present invention is a composite comprising a base particle (A) and a coating layer (B) covering the surface of the base particle (A). A positive electrode having body particles as a positive electrode active material, a negative electrode having a substance capable of electrochemically occluding and releasing lithium ions or lithium metal as a negative electrode active material, and a non-aqueous electrolyte; A) is of the formula Li a Co
b Mn c M 1 d Ni 1- (b + C + d) O 2 [where, M 1 is B,
Al, Si, Fe, V, Cr, Cu, Zn, Ga and W
At least one element selected from the group consisting of: 0 <a
<1.2, 0.1 ≦ b <0.5, 0.05 ≦ c <0.
4, 0 ≦ d <0.4, 0.15 ≦ b + c + d <0.7. And the coating layer (B) is represented by the formula Li e Co 1-f M 2 f O 2 [where M 2
Is Mn, B, Al, Si, Fe, V, Cr, Cu, Z
At least one element selected from the group consisting of n, Ga and W, where 0 <e <1.2 and 0 ≦ f <0.5. ] (Ii).

【0010】被覆層(B)としては、式Lix CoO2
〔但し、0<x<1.2である。〕で表される複合酸化
物からなる被覆層が、充電保存特性を向上させる上で最
も好ましい。
The coating layer (B) has the formula Li x CoO 2
[However, 0 <x <1.2. ] Is most preferable from the viewpoint of improving the charge storage characteristics.

【0011】被覆層(B)の厚みは、2μm以下が好ま
しい。被覆層(B)の厚みが2μmを越えると、充放電
サイクル特性が低下する。
The thickness of the coating layer (B) is preferably 2 μm or less. If the thickness of the coating layer (B) exceeds 2 μm, the charge / discharge cycle characteristics deteriorate.

【0012】本発明電池における負極は、リチウムイオ
ンを電気化学的に吸蔵及び放出することが可能な物質又
はリチウム金属を有する。リチウムイオンを電気化学的
に吸蔵及び放出することが可能な物質としては、黒鉛、
コークス、有機物焼成体等の炭素材料;リチウム−アル
ミニウム合金、リチウム−マグネシウム合金、リチウム
−インジウム合金、リチウム−錫合金、リチウム−タリ
ウム合金、リチウム−鉛合金、リチウム−ビスマス合金
等のリチウム合金;及び錫、チタン、鉄、モリブデン、
ニオブ、バナジウム及び亜鉛の一種又は二種以上を含
む、金属酸化物及び金属硫化物が例示される。
The negative electrode of the battery of the present invention has a substance capable of electrochemically absorbing and releasing lithium ions or lithium metal. Materials that can electrochemically store and release lithium ions include graphite,
Carbon materials such as coke and organic fired bodies; lithium alloys such as lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, lithium-tin alloy, lithium-thallium alloy, lithium-lead alloy, lithium-bismuth alloy; Tin, titanium, iron, molybdenum,
Metal oxides and metal sulfides containing one or more of niobium, vanadium and zinc are exemplified.

【0013】本発明電池における非水電解質の溶媒とし
ては、エチレンカーボネート(EC)、プロピレンカー
ボネート(PC)、ビニレンカーボネート(VC)、ブ
チレンカーボネート(BC)等の環状炭酸エステル、及
び、環状炭酸エステルとジメチルカーボネート(DM
C)、ジエチルカーボネート(DEC)、メチルエチル
カーボネート(MEC)、1,2−ジメトキシエタン
(DME)、1,2−ジエトキシエタン(DEE)、エ
トキシメトキシエタン(EME)等の低沸点溶媒との混
合溶媒が例示される。また、非水電解質の溶質(電解質
塩)としては、LiPF6 、LiPF6 、LiAs
6 、LiSbF6 、LiBF4 、LIClO4が例示
される。液状の非水電解質に代えて、ゲル状非水電解質
又は固体電解質を用いることも可能である。
As the solvent for the non-aqueous electrolyte in the battery of the present invention, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC) and butylene carbonate (BC), and cyclic carbonates are used. Dimethyl carbonate (DM
C), low boiling point solvents such as diethyl carbonate (DEC), methyl ethyl carbonate (MEC), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE) and ethoxymethoxyethane (EME). A mixed solvent is exemplified. The non-aqueous electrolyte solutes (electrolyte salts) include LiPF 6 , LiPF 6 , and LiAs.
F 6 , LiSbF 6 , LiBF 4 and LICLO 4 are exemplified. Instead of a liquid non-aqueous electrolyte, a gel non-aqueous electrolyte or a solid electrolyte can be used.

【0014】本発明電池の正極は、特定の組成の複合酸
化物 (i)からなる基体粒子(A)と、当該基体粒子
(A)の表面を被覆する別の組成の複合酸化物 (ii) か
らなる被覆層(B)とからなる複合体粒子を正極活物質
として有する。基体粒子(A)により、良好な充放電サ
イクル特性が得られるとともに、被覆層(B)を基体粒
子(A)の上に形成したことにより、良好な充電保存特
性が得られる。良好な充放電サイクル特性が得られるの
は、基体粒子(A)を構成する複合酸化物 (i)が充放電
サイクルにおいて安定な複合酸化物であるからである。
また、良好な充電保存特性が得られるのは、被覆層
(B)を構成するニッケルを含まない複合酸化物(ii)
には、リチウム・ニッケル系複合酸化物の如く電解液の
分解を促進する触媒作用が無いためと考えられる。
The positive electrode of the battery of the present invention comprises a base particle (A) composed of a composite oxide (i) having a specific composition, and a composite oxide (ii) having a different composition covering the surface of the base particle (A). As a positive electrode active material. With the base particles (A), good charge / discharge cycle characteristics can be obtained, and by forming the coating layer (B) on the base particles (A), good charge storage characteristics can be obtained. Good charge / discharge cycle characteristics are obtained because the composite oxide (i) constituting the base particles (A) is a stable composite oxide in a charge / discharge cycle.
Also, good charge storage characteristics can be obtained because the nickel-free composite oxide (ii) constituting the coating layer (B)
This is considered to be because there is no catalytic action to promote the decomposition of the electrolytic solution unlike the lithium-nickel composite oxide.

【0015】[0015]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples and can be carried out by appropriately changing the scope of the invention without changing its gist. It is something.

【0016】(実施例1〜6)下記の如く正極、負極及
び非水電解液を作製し、これらを用いて扁平形のリチウ
ム二次電池A1〜A6(本発明電池)を作製した。正極
と負極の容量比を1:1.1とした。セパレータにはポ
リプロピレン製の微多孔膜を用いた。
Examples 1 to 6 A positive electrode, a negative electrode and a non-aqueous electrolyte were prepared as described below, and flat lithium secondary batteries A1 to A6 (the batteries of the present invention) were prepared using these. The capacity ratio between the positive electrode and the negative electrode was 1: 1.1. A polypropylene microporous membrane was used as the separator.

【0017】〔正極の作製〕乳鉢中にて、LiOHと、
Ni(OH)2 と、Co(OH)2 と、Mn2 3と、
Al(OH)3 とを、Li:Ni:Co:Mn:Alの
原子比換算1.0:0.6:0.2:0.1:0.1で
混合した後、乾燥空気雰囲気下にて、750°Cで20
時間加熱処理して、式LiNi0.6 Co0.2 Mn0.1
0.1 2 で表される複合酸化物 (i)を得た。次いで、
これらの複合酸化物 (i)を、ジェットミルを用いて粉砕
して、粒子のメジアン径(頻度曲線上の頻度50%にお
ける粒径)が約10μmの2種の基体粒子(A)用粉末
を得た。
[Preparation of positive electrode] In a mortar, LiOH
Ni (OH) 2 , Co (OH) 2 , Mn 2 O 3 ,
After mixing Al (OH) 3 with Li: Ni: Co: Mn: Al at an atomic ratio of 1.0: 0.6: 0.2: 0.1: 0.1, the mixture is dried under an atmosphere of dry air. At 750 ° C
After heating for a time, the formula LiNi 0.6 Co 0.2 Mn 0.1 A
Thus, a composite oxide (i) represented by l 0.1 O 2 was obtained. Then
These composite oxides (i) are pulverized using a jet mill to obtain two types of powder for base particles (A) having a median diameter (particle diameter at a frequency of 50% on a frequency curve) of about 10 μm. Obtained.

【0018】また、乳鉢中にて、LiOHとCoCO3
とを、Li:Coの原子比換算1.0:1.0(実施例
1、4〜6)又はLiOHとCoCO3 とMn2 3
を、Li:Co:Mnの原子比換算1.0:0.9:
0.1(実施例2)又は1.0:0.6:0.4(実施
例3)で混合した後、乾燥空気雰囲気下にて、750°
Cで20時間加熱処理して、式LiCoO2 (実施例
1、4〜6)、式LiCo0.9 Mn0.1 2 (実施例
2)又は式LiCo0.6 Mn0.4 2 (実施例3)で表
される3種の複合酸化物 (ii) を得た。次いで、これら
の複合酸化物 (ii) を、ジェットミルを用いて粉砕し
て、粒子のメジアン径が約0.1μmの3種の被覆層
(B)用粉末を得た。
In a mortar, LiOH and CoCO 3
And Li: Co in atomic ratio of 1.0: 1.0 (Examples 1, 4 to 6) or LiOH, CoCO 3 and Mn 2 O 3 , and Li: Co: Mn in atomic ratio of 1. 0: 0.9:
After mixing at 0.1 (Example 2) or 1.0: 0.6: 0.4 (Example 3), 750 ° in a dry air atmosphere.
Heat treatment with C for 20 hours is represented by the formula LiCoO 2 (Examples 1, 4 to 6), the formula LiCo 0.9 Mn 0.1 O 2 (Example 2) or the formula LiCo 0.6 Mn 0.4 O 2 (Example 3). Thus, three types of composite oxides (ii) were obtained. Next, these composite oxides (ii) were pulverized using a jet mill to obtain three kinds of powders for the coating layer (B) having a median particle diameter of about 0.1 μm.

【0019】上記の基体粒子(A)用粉末と被覆層
(B)用粉末とを、石川式らいかい乳鉢中で、モル比1
0:1(実施例1〜3)、モル比10:0.5(実施例
4)、モル比10:3(実施例5)又はモル比10:5
(実施例6)で混合し、500°Cで2時間加熱処理し
た後、篩にて粒径2μm以下の粒子を除去して、基体粒
子(A)と当該基体粒子(A)を被覆する被覆層(B)
とからなる複合体粒子からなる正極活物質粉末を得た。
これらの正極活物質粉末のメジアン径及び被覆層の厚み
を、樹脂に封入した粒子を研磨して断面を得、この断面
について、走査型電子顕微鏡(SEM;Scanning Elect
ron Microscope) 及び電子プローブ微小分析法(EPM
A;Electron Probe Microanalyser) を用いて求めた。
5個の粒子について、各粒子の断面の任意に選んだ3点
での被覆層の厚みを計測し、各粒子についてのそれら3
箇所の被覆層の厚みの平均値t1 、t2 、t3 、t4
5 を算出し、これらの平均値t1 〜t5 の平均値tを
算出して、これを被覆層の厚みとした。
The powder for the base particles (A) and the powder for the coating layer (B) are mixed in a mortar with a molar ratio of 1 in an Ishikawa-type mortar.
0: 1 (Examples 1-3), molar ratio 10: 0.5 (Example 4), molar ratio 10: 3 (Example 5) or molar ratio 10: 5.
After mixing in (Example 6) and heat-treating at 500 ° C. for 2 hours, particles having a particle size of 2 μm or less are removed with a sieve, and the base particles (A) and the coating covering the base particles (A) are removed. Layer (B)
A positive electrode active material powder composed of composite particles consisting of the following was obtained.
The median diameter of these positive electrode active material powders and the thickness of the coating layer were determined by polishing particles encapsulated in a resin to obtain a cross section, and the cross section of the cross section was measured with a scanning electron microscope (SEM).
ron Microscope) and electron probe microanalysis (EPM)
A: Determined using an Electron Probe Microanalyser).
With respect to the five particles, the thickness of the coating layer at three randomly selected points on the cross section of each particle was measured.
The average values t 1 , t 2 , t 3 , t 4 ,
calculating a t 5, to calculate the average value t of these mean values t 1 ~t 5, which was used as a thickness of the coating layer.

【0020】上記の各正極活物質粉末と、導電剤として
のアセチレンブラックと、結着剤としてのポリフッ化ビ
ニリデンとを、重量比90:6:4で混練し、2トン/
cm2 の圧力で直径20mmの円盤状に加圧成型した
後、250°Cで2時間真空乾燥して、正極を作製し
た。
Each of the positive electrode active material powder, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are kneaded at a weight ratio of 90: 6: 4, and 2 tons / ton.
After press-molding into a disc having a diameter of 20 mm at a pressure of 2 cm 2 , it was vacuum-dried at 250 ° C for 2 hours to produce a positive electrode.

【0021】〔負極の作製〕リチウム・アルミニウム合
金の圧延板を直径20mmの円盤状に打ち抜いて、負極
を作製した。
[Preparation of Negative Electrode] A rolled sheet of a lithium-aluminum alloy was punched into a disk shape having a diameter of 20 mm to prepare a negative electrode.

【0022】〔非水電解液の調製〕エチレンカーボネー
トとジメチルカーボネートとの体積比1:1の混合溶媒
に、LiPF6 を1モル/リットル溶かして非水電解液
を調製した。
[Preparation of Nonaqueous Electrolyte] A nonaqueous electrolyte was prepared by dissolving 1 mol / l of LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1.

【0023】(比較例1)乳鉢中にて、LiOHとCo
CO3 とMn2 3 とを、Li:Co:Mnの原子比換
算1.0:0.5:0.5で混合した後、乾燥空気雰囲
気下にて、750°Cで20時間加熱処理して、式Li
Co0.5 Mn0.5 2 で表される複合酸化物を得た。次
いで、この複合酸化物を、ジェットミルを用いて粉砕し
て、粒子のメジアン径が約0.1μmの被覆層(B)用
粉末を得た。正極の作製において、この被覆層(B)用
粉末を、式LiCoO2 で表される複合酸化物 (ii) か
らなる被覆層(B)用粉末に代えて、用いたこと以外は
実施例1と同様にして、比較電池B1を作製した。
Comparative Example 1 LiOH and Co in a mortar
After mixing CO 3 and Mn 2 O 3 at an atomic ratio of Li: Co: Mn of 1.0: 0.5: 0.5, the mixture is heated at 750 ° C. for 20 hours in a dry air atmosphere. And the formula Li
A composite oxide represented by Co 0.5 Mn 0.5 O 2 was obtained. Next, the composite oxide was pulverized using a jet mill to obtain a powder for a coating layer (B) having a median particle diameter of about 0.1 μm. Example 1 was repeated except that the powder for the coating layer (B) was used instead of the powder for the coating layer (B) comprising the composite oxide (ii) represented by the formula LiCoO 2 in the preparation of the positive electrode. Similarly, a comparative battery B1 was produced.

【0024】(比較例2)正極の作製において、式Li
Ni0.6 Co0.2 Mn0.1 Al0.1 2 で表される複合
酸化物 (i)からなる基体粒子(A)用粉末を、そのまま
正極活物質として使用したこと以外は実施例1と同様に
して、比較電池B2を作製した。
Comparative Example 2 In the production of the positive electrode, the formula Li
A comparison was made in the same manner as in Example 1 except that the powder for the base particles (A) composed of the composite oxide (i) represented by Ni 0.6 Co 0.2 Mn 0.1 Al 0.1 O 2 was used as it was as the positive electrode active material. Battery B2 was made.

【0025】(比較例3)乳鉢中にて、LiOHとNi
(OH)2 とを、Li:Niの原子比換算1.0:1.
0で混合した後、乾燥空気雰囲気下にて、750°Cで
20時間加熱処理して、式LiNiO2 で表される複合
酸化物を得た。次いで、この複合酸化物を、ジェットミ
ルを用いて粉砕して、粒子のメジアン径が約10μmの
基体粒子(A)用粉末を得た。正極の作製において、こ
の基体粒子(A)用粉末を、式LiNi0.6 Co0.2
0.1 Al0.1 2 で表される複合酸化物 (i)からなる
基体粒子(A)用粉末に代えて、用いたこと以外は実施
例1と同様にして、比較電池B3を作製した。
Comparative Example 3 LiOH and Ni in a mortar
(OH) 2 was converted to an atomic ratio of Li: Ni of 1.0: 1.
After mixing at 0 ° C, the mixture was heated at 750 ° C for 20 hours in a dry air atmosphere to obtain a composite oxide represented by the formula LiNiO 2 . Next, the composite oxide was pulverized using a jet mill to obtain a powder for base particles (A) having a median diameter of about 10 μm. In the preparation of the positive electrode, the powder for the base particles (A) was converted to the formula LiNi 0.6 Co 0.2 M
A comparative battery B3 was produced in the same manner as in Example 1, except that the powder for the base particles (A) comprising the composite oxide (i) represented by n 0.1 Al 0.1 O 2 was used instead.

【0026】(比較例4)正極の作製において、比較例
3で作製した式LiNiO2 で表される複合酸化物から
なる基体粒子(A)用粉末を、そのまま正極活物質とし
て使用したこと以外は実施例1と同様にして、比較電池
B4を作製した。
(Comparative Example 4) In the preparation of the positive electrode, except that the powder for the base particles (A) comprising the composite oxide represented by the formula LiNiO 2 prepared in Comparative Example 3 was used as a positive electrode active material as it was. In the same manner as in Example 1, a comparative battery B4 was produced.

【0027】〈各電池の充放電サイクル特性及び充電保
存特性〉各電池について、0.5mA/cm2 で4.2
5Vまで充電した後、0.5mA/cm2 で2.75V
まで放電する工程を1サイクルとする充放電サイクル試
験を行い、各電池の充放電サイクル特性を調べた。充放
電サイクル特性は、放電容量が1サイクル目の放電容量
の90%未満になる充放電サイクル(回)で評価した。
また、各電池を、0.5mA/cm2 で4.25Vまで
充電し、60°Cで10日間保存した後、0.5mA/
cm2 で2.75Vまで放電して、各電池の充電保存特
性を調べた。充電保存特性は、保存しない場合の放電容
量に対する保存した場合の放電容量の比率、すなわち容
量残存率(%)で評価した。結果を表1に示す。表1に
は、各電池に使用した正極活物質の基体粒子及び被覆層
の組成並びに被覆層の厚みも示してある。
<Charge-discharge cycle characteristics and charge storage characteristics of each battery> For each battery, 4.2 at 0.5 mA / cm 2 .
After charging to 5 V, 2.75 V at 0.5 mA / cm 2
A charge-discharge cycle test was performed in which the process of discharging to one cycle was one cycle, and the charge-discharge cycle characteristics of each battery were examined. The charge / discharge cycle characteristics were evaluated in charge / discharge cycles (times) in which the discharge capacity was less than 90% of the discharge capacity in the first cycle.
Further, each battery was charged to 4.25 V at 0.5 mA / cm 2 and stored at 60 ° C. for 10 days.
The battery was discharged to 2.75 V at cm 2 , and the charge storage characteristics of each battery were examined. The charge storage characteristics were evaluated by the ratio of the discharge capacity when stored to the discharge capacity when not stored, that is, the remaining capacity ratio (%). Table 1 shows the results. Table 1 also shows the composition of the base particles and the coating layer of the positive electrode active material used in each battery and the thickness of the coating layer.

【0028】[0028]

【表1】 [Table 1]

【0029】本発明電池A1と比較電池B3の比較か
ら、基体粒子として、LiNiO2 に代えてニッケル原
子の一部をコバルト原子などの他の元素で置換すること
により充放電サイクル特性が向上することが分かる。本
発明電池A1と比較電池B2の比較から、基体粒子
(A)の表面を被覆層(B)で被覆することにより、充
電保存特性が大きく向上することが分かる。本発明電池
A1〜A6と比較電池B1の比較から、被覆層を形成す
る複合酸化物中のコバルト原子の50%以上をマンガン
原子で置換すると、充放電サイクル特性が低下すること
が分かる。これは、置換量が多くなり過ぎると、LiC
oO2 の結晶構造が大きく変化して構造安定性が低下し
てしまうためと推察される。本発明電池A1、A4〜A
6と本発明電池A2,A3の比較から、充電保存特性を
向上させる上で、被覆層(B)を形成する複合酸化物
(ii) としては、LiCoO2 が最も好ましいことが分
かる。本発明電池A1,A4,A5と本発明電池A6の
比較から、被覆層(B)の厚みが2μmを越えると充放
電サイクル特性が低下するので、被覆層(B)の厚みは
2μm以下が好ましいことが分かる。
From the comparison between the battery A1 of the present invention and the comparative battery B3, it was found that the charge / discharge cycle characteristics were improved by substituting a part of nickel atoms with other elements such as cobalt atoms instead of LiNiO 2 as the base particles. I understand. From the comparison between the battery A1 of the present invention and the comparative battery B2, it is found that the charge storage characteristics are greatly improved by coating the surface of the base particles (A) with the coating layer (B). From a comparison between the batteries A1 to A6 of the present invention and the comparative battery B1, it is understood that when 50% or more of the cobalt atoms in the composite oxide forming the coating layer are replaced with manganese atoms, the charge / discharge cycle characteristics are reduced. This is because if the substitution amount becomes too large, LiC
This is presumed to be because the crystal structure of oO 2 changes significantly and the structural stability decreases. Inventive batteries A1, A4 to A
6 and the batteries A2 and A3 of the present invention, the composite oxide forming the coating layer (B) was found to improve the charge storage characteristics.
As (ii), it can be seen that LiCoO 2 is most preferable. From the comparison between the batteries A1, A4, A5 of the present invention and the battery A6 of the present invention, if the thickness of the coating layer (B) exceeds 2 μm, the charge / discharge cycle characteristics deteriorate. Therefore, the thickness of the coating layer (B) is preferably 2 μm or less. You can see that.

【0030】(実施例7〜16)乳鉢中にて、LiOH
とCoCO3 と元素M(MはB、Al、Si、Fe、
V、Cr、Cu、Zn、Ga又はW)の酸化物又は水酸
化物とを、Li:Co:Mの原子比換算1.0:0.
9:0.1で混合した後、乾燥空気雰囲気下にて、75
0°Cで20時間加熱処理して、式LiCo0.9 0.1
2 で表される複合酸化物 (ii) を得た。次いで、これ
らの複合酸化物 (ii) を、ジェットミルを用いて粉砕し
て、粒子のメジアン径が約0.1μmの10種の被覆層
(B)用粉末を得た。正極の作製において、これらの各
被覆層(B)用粉末を、式LiCoO2表される複合酸
化物 (ii) からなる被覆層(B)用粉末に代えて、用い
たこと以外は実施例1と同様にして、本発明電池A7〜
A16を作製した。
Examples 7 to 16 LiOH in a mortar
, CoCO 3 and the element M (M is B, Al, Si, Fe,
V, Cr, Cu, Zn, Ga or W) and an oxide or hydroxide of Li: Co: M at an atomic ratio of 1.0: 0.
9: 0.1, and then mixed in a dry air atmosphere at 75
Heat treatment at 0 ° C. for 20 hours to obtain the formula LiCo 0.9 M 0.1
A composite oxide (ii) represented by O 2 was obtained. Next, these composite oxides (ii) were pulverized using a jet mill to obtain ten kinds of powders for the coating layer (B) having a median particle diameter of about 0.1 μm. Example 1 was repeated except that the powder for the coating layer (B) was replaced with the powder for the coating layer (B) comprising the composite oxide (ii) represented by the formula LiCoO 2 in the preparation of the positive electrode. In the same manner as in the above, the batteries A7 to
A16 was produced.

【0031】次いで、これらの各電池について、先と同
じ条件の充放電サイクル試験及び充電保存特性試験を行
い、各電池の充放電サイクル特性及び充電保存特性を調
べた。結果を表2に示す。
Next, a charge / discharge cycle test and a charge storage characteristic test were performed on each of these batteries under the same conditions as above, and the charge / discharge cycle characteristics and charge storage characteristics of each battery were examined. Table 2 shows the results.

【0032】[0032]

【表2】 [Table 2]

【0033】表2より、被覆層(B)を構成する複合酸
化物 (ii) 中のコバルト原子の置換元素として、Mn以
外に、B、Al、Si、Fe、V、Cr、Cu、Zn、
Ga及びWを使用することが可能なことが分かる。これ
らの置換元素についても、被覆層を形成する複合酸化物
中のコバルト原子の50%以上を他の元素で置換する
と、充放電サイクル特性が低下することを、別途確認し
た。
From Table 2, it can be seen that B, Al, Si, Fe, V, Cr, Cu, Zn, B, Al, Si, Fe, V, and C are substituted elements of cobalt in the composite oxide (ii) constituting the coating layer (B).
It can be seen that Ga and W can be used. Regarding these substitution elements, it was separately confirmed that when 50% or more of the cobalt atoms in the composite oxide forming the coating layer were substituted with other elements, the charge / discharge cycle characteristics deteriorated.

【0034】上記の実施例では、正極活物質を作製する
際の原料として、酸化物又は水酸化物を使用したが、L
iNO3 、Ni(NO3 2 、Co(NO3 2 、Mn
(NO3 2 、Al(NO3 3 、Fe(NO3 3
Cr(NO3 3 、Cu(NO3 2 、Zn(NO3
2 、Ga(NO3 3 等の硝酸塩、Li2 CO3 、Ni
CO3 、CoCO3 、MnCO3 、CuCO3 、ZnC
3 等の炭酸塩、Li2 SO4 、NiSO4 、CoSO
4 、MnSO4 、Al2 (SO4 3 、FeSO4 、C
2 (SO4 3 、CuSO4 、ZnSO4 、Ga
2 (SO4 3 等の硫酸塩、CH3 COOLi、Ni
(CH3 COO)2 、Co(CH3 COO)2、Mn
(CH3 COO)2 、Mn(CH3 COO)3 、Fe
(OH)(CH3 COO)2 、Cr(CH3 CO
O)3 、Cu(CH3 COO)2 、Zn(CH3 CO
O)2 等の酢酸塩、Li2 2 4 、NiC2 4 、C
oC2 4 、MnC24 、Al2 (C2 4 3 、F
eC2 4 、CuC2 4 、ZnC2 4 等のシュウ酸
塩などを用いてもよい。
In the above embodiment, an oxide or a hydroxide was used as a raw material for producing a positive electrode active material.
iNO 3 , Ni (NO 3 ) 2 , Co (NO 3 ) 2 , Mn
(NO 3 ) 2 , Al (NO 3 ) 3 , Fe (NO 3 ) 3 ,
Cr (NO 3 ) 3 , Cu (NO 3 ) 2 , Zn (NO 3 )
2 , nitrates such as Ga (NO 3 ) 3 , Li 2 CO 3 , Ni
CO 3 , CoCO 3 , MnCO 3 , CuCO 3 , ZnC
Carbonates such as O 3 , Li 2 SO 4 , NiSO 4 , CoSO
4 , MnSO 4 , Al 2 (SO 4 ) 3 , FeSO 4 , C
r 2 (SO 4 ) 3 , CuSO 4 , ZnSO 4 , Ga
2 (SO 4 ) 3 and other sulfates, CH 3 COOLi, Ni
(CH 3 COO) 2 , Co (CH 3 COO) 2 , Mn
(CH 3 COO) 2 , Mn (CH 3 COO) 3 , Fe
(OH) (CH 3 COO) 2 , Cr (CH 3 CO
O) 3 , Cu (CH 3 COO) 2 , Zn (CH 3 CO
O) acetates such as 2 , Li 2 C 2 O 4 , NiC 2 O 4 , C
oC 2 O 4 , MnC 2 O 4 , Al 2 (C 2 O 4 ) 3 , F
Oxalates such as eC 2 O 4 , CuC 2 O 4 and ZnC 2 O 4 may be used.

【0035】また、上記の実施例では、混合により基体
粒子(A)を被覆層(B)で被覆したが、CVD(Chem
ical Vapor Deposition)による堆積法、焼成による析出
法、化学反応による沈殿法などを用いてもよい。
In the above embodiment, the base particles (A) are coated with the coating layer (B) by mixing.
A deposition method by ical vapor deposition, a deposition method by firing, a precipitation method by a chemical reaction, or the like may be used.

【0036】[0036]

【発明の効果】充放電サイクル特性が良く、しかも充電
状態での保存特性が良いリチウム二次電池が提供され
る。
The present invention provides a lithium secondary battery having good charge / discharge cycle characteristics and good storage characteristics in a charged state.

フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka No. Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基体粒子(A)と当該基体粒子(A)を被
覆する被覆層(B)とからなる複合体粒子を正極活物質
として有する正極と、リチウムイオンを電気化学的に吸
蔵及び放出することが可能な物質又はリチウム金属を負
極活物質として有する負極と、非水電解質とを備えるリ
チウム二次電池であって、前記基体粒子(A)が、式L
a Cob Mnc 1 d Ni1-(b+C+d) 2 〔但し、M
1 はB、Al、Si、Fe、V、Cr、Cu、Zn、G
a及びWよりなる群から選ばれた少なくとも一種の元
素、0<a<1.2、0.1≦b<0.5、0.05≦
c<0.4、0≦d<0.4、0.15≦b+c+d<
0.7である。〕で表される複合酸化物 (i)からなり、
前記被覆層(B)が、式Lie Co1-f 2 f 2 〔但
し、M2 はMn、B、Al、Si、Fe、V、Cr、C
u、Zn、Ga及びWよりなる群から選ばれた少なくと
も一種の元素、0<e<1.2、0≦f<0.5であ
る。〕で表される複合酸化物 (ii) からなることを特徴
とするリチウム二次電池。
1. A positive electrode having a composite particle comprising a base particle (A) and a coating layer (B) covering the base particle (A) as a positive electrode active material, and electrochemically storing and releasing lithium ions. And a non-aqueous electrolyte comprising a negative electrode having a negative electrode active material or a lithium metal as a negative electrode active material, wherein the base particles (A) have the formula L
i a Co b Mn c M 1 d Ni 1- (b + C + d) O 2 [where, M
1 is B, Al, Si, Fe, V, Cr, Cu, Zn, G
at least one element selected from the group consisting of a and W, 0 <a <1.2, 0.1 ≦ b <0.5, 0.05 ≦
c <0.4, 0 ≦ d <0.4, 0.15 ≦ b + c + d <
0.7. A composite oxide (i) represented by the formula:
The coating layer (B) has the formula Li e Co 1-f M 2 f O 2 [where M 2 is Mn, B, Al, Si, Fe, V, Cr, C
At least one element selected from the group consisting of u, Zn, Ga and W, where 0 <e <1.2 and 0 ≦ f <0.5. ] A lithium secondary battery comprising the composite oxide (ii) represented by the formula:
【請求項2】前記被覆層(B)が、式Lix CoO
2 〔但し、0<x<1.2である。〕で表される複合酸
化物からなる請求項1記載のリチウム二次電池。
2. The method according to claim 1, wherein said coating layer (B) has the formula Li x CoO
2 [where 0 <x <1.2. The lithium secondary battery according to claim 1, comprising a composite oxide represented by the following formula:
【請求項3】前記被覆層(B)の厚みが、2μm以下で
ある請求項1記載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the thickness of the coating layer (B) is 2 μm or less.
JP9247779A 1997-08-27 1997-08-27 Lithium secondary battery Pending JPH1167209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9247779A JPH1167209A (en) 1997-08-27 1997-08-27 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9247779A JPH1167209A (en) 1997-08-27 1997-08-27 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH1167209A true JPH1167209A (en) 1999-03-09

Family

ID=17168534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9247779A Pending JPH1167209A (en) 1997-08-27 1997-08-27 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH1167209A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028265A (en) * 1999-06-17 2001-01-30 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery and manufacture thereof
JP2002319398A (en) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2002103824A3 (en) * 2001-06-15 2004-04-22 Kureha Chemical Ind Co Ltd Gradient cathode material for lithium rechargeable batteries
KR100432649B1 (en) * 2002-01-17 2004-05-22 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same
US6756154B2 (en) * 2000-11-29 2004-06-29 Toda Kogyo Corporation Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
KR100441516B1 (en) * 2002-03-20 2004-07-23 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a method of preparing same
WO2003009407A3 (en) * 2001-07-14 2004-10-28 Univ St Andrews Managanese oxide material for electrochemical cells
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
WO2005114768A1 (en) * 2004-05-21 2005-12-01 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
JP2006073482A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method
US7056486B2 (en) 2000-02-16 2006-06-06 Lg Chemical Co., Ltd. Method for preparing lithium manganese spinel complex oxide having improved electrochemical performance
JP2006244805A (en) * 2005-03-02 2006-09-14 Hitachi Maxell Ltd Electrode of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008016234A (en) * 2006-07-03 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JP2008147199A (en) * 2008-01-28 2008-06-26 Canon Inc Suitability judging method of positive electrode active material
US7462422B2 (en) 2004-02-16 2008-12-09 Sony Corporation Positive electrode active material and non-aqueous electrolyte secondary cell
WO2009063613A1 (en) 2007-11-12 2009-05-22 Toda Kogyo Corporation Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
KR100932256B1 (en) * 2006-03-20 2009-12-16 주식회사 엘지화학 High-performance cathode material for lithium secondary battery
KR100959115B1 (en) * 2002-03-08 2010-05-25 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and lithium secondary battery comprising the same
JP2011086603A (en) * 2009-10-16 2011-04-28 ▲ショウ▼▲ゲン▼科技股▲ふん▼有限公司 Composite electrode active material for lithium battery and method of manufacturing the same
CN102088084A (en) * 2009-12-03 2011-06-08 剩沅科技股份有限公司 Lithium battery compound electrode active material and preparation method thereof
WO2011136035A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8062794B2 (en) 2003-04-11 2011-11-22 Sony Corporation Positive active material and nonaqueous electrolyte secondary battery produced using the same
JP2012018827A (en) * 2010-07-08 2012-01-26 Sony Corp Positive electrode active material, nonaqueous electrolyte battery and manufacturing method of positive electrode active material
US8597830B2 (en) 2010-05-28 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
US8932480B2 (en) 2006-03-20 2015-01-13 Lg Chem, Ltd. Stoichiometric lithium cobalt oxide and method for preparation of the same
US10153485B2 (en) 2003-04-11 2018-12-11 Murata Manufacturing Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2019096612A (en) * 2017-11-22 2019-06-20 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Cathode active material for lithium secondary battery
JP2022534939A (en) * 2019-05-28 2022-08-04 ビーワイディー カンパニー リミテッド Cathode materials for composite lithium-ion batteries, lithium-ion batteries and automobiles
US20240038973A1 (en) * 2020-11-02 2024-02-01 L&F Co., Ltd. Novel one-body particle for cathode active material

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028265A (en) * 1999-06-17 2001-01-30 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery and manufacture thereof
US7056486B2 (en) 2000-02-16 2006-06-06 Lg Chemical Co., Ltd. Method for preparing lithium manganese spinel complex oxide having improved electrochemical performance
US6756154B2 (en) * 2000-11-29 2004-06-29 Toda Kogyo Corporation Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JP2002319398A (en) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2002103824A3 (en) * 2001-06-15 2004-04-22 Kureha Chemical Ind Co Ltd Gradient cathode material for lithium rechargeable batteries
JP2004533104A (en) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 Graded positive electrode material for lithium secondary batteries
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
WO2003009407A3 (en) * 2001-07-14 2004-10-28 Univ St Andrews Managanese oxide material for electrochemical cells
KR100432649B1 (en) * 2002-01-17 2004-05-22 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same
KR100959115B1 (en) * 2002-03-08 2010-05-25 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and lithium secondary battery comprising the same
KR100441516B1 (en) * 2002-03-20 2004-07-23 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a method of preparing same
US8062794B2 (en) 2003-04-11 2011-11-22 Sony Corporation Positive active material and nonaqueous electrolyte secondary battery produced using the same
US10153485B2 (en) 2003-04-11 2018-12-11 Murata Manufacturing Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7462422B2 (en) 2004-02-16 2008-12-09 Sony Corporation Positive electrode active material and non-aqueous electrolyte secondary cell
WO2005114768A1 (en) * 2004-05-21 2005-12-01 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
EA010779B1 (en) * 2004-05-21 2008-10-30 ТИЭКС ЭлЭлСи Composition based on lithium metal oxide (embodiments), method of preparing and use thereof
JP2008500259A (en) * 2004-05-21 2008-01-10 タイアックス エルエルシー Lithium metal oxide material, synthesis method and use
WO2006027925A3 (en) * 2004-09-06 2006-11-30 Nissan Motor Positive electrode material for non-aqueous electrolyte lithium-ion secondary battery and method for production thereof
JP2006073482A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method
JP2006244805A (en) * 2005-03-02 2006-09-14 Hitachi Maxell Ltd Electrode of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR100932256B1 (en) * 2006-03-20 2009-12-16 주식회사 엘지화학 High-performance cathode material for lithium secondary battery
US9567240B2 (en) 2006-03-20 2017-02-14 Lg Chem, Ltd. Cathode materials for lithium battery having higher performance
US9564636B2 (en) 2006-03-20 2017-02-07 Lg Chem, Ltd. Stoichiometric lithium cobalt oxide and method for preparation of the same
US8951435B2 (en) 2006-03-20 2015-02-10 Lg Chem, Ltd. Cathode materials for lithium battery having higher performance
US8932480B2 (en) 2006-03-20 2015-01-13 Lg Chem, Ltd. Stoichiometric lithium cobalt oxide and method for preparation of the same
JP2008016234A (en) * 2006-07-03 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
WO2009063613A1 (en) 2007-11-12 2009-05-22 Toda Kogyo Corporation Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous elctrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
KR20100093034A (en) 2007-11-12 2010-08-24 도다 고교 가부시끼가이샤 Li-ni-based composite oxide particle powder for rechargeable battery with nonaqueous electrolyte, process for producing the powder, and rechargeable battery with nonaqueous electrolyte
JP2008147199A (en) * 2008-01-28 2008-06-26 Canon Inc Suitability judging method of positive electrode active material
JP2011086603A (en) * 2009-10-16 2011-04-28 ▲ショウ▼▲ゲン▼科技股▲ふん▼有限公司 Composite electrode active material for lithium battery and method of manufacturing the same
CN102088084A (en) * 2009-12-03 2011-06-08 剩沅科技股份有限公司 Lithium battery compound electrode active material and preparation method thereof
WO2011136035A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2015028958A (en) * 2010-04-28 2015-02-12 株式会社半導体エネルギー研究所 Power storage device
JP2011249323A (en) * 2010-04-28 2011-12-08 Semiconductor Energy Lab Co Ltd Power storage device
US8597830B2 (en) 2010-05-28 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2012018827A (en) * 2010-07-08 2012-01-26 Sony Corp Positive electrode active material, nonaqueous electrolyte battery and manufacturing method of positive electrode active material
JP2019096612A (en) * 2017-11-22 2019-06-20 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Cathode active material for lithium secondary battery
JP2021048137A (en) * 2017-11-22 2021-03-25 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Cathode active material for lithium secondary battery
JP2022534939A (en) * 2019-05-28 2022-08-04 ビーワイディー カンパニー リミテッド Cathode materials for composite lithium-ion batteries, lithium-ion batteries and automobiles
US20240038973A1 (en) * 2020-11-02 2024-02-01 L&F Co., Ltd. Novel one-body particle for cathode active material
US12027697B2 (en) * 2020-11-02 2024-07-02 L&F Co., Ltd. One-body particle for cathode active material

Similar Documents

Publication Publication Date Title
JPH1167209A (en) Lithium secondary battery
JP3634694B2 (en) Lithium secondary battery
US7309546B2 (en) Positive active material for rechargeable lithium battery
JP3869605B2 (en) Nonaqueous electrolyte secondary battery
JP3653409B2 (en) Positive electrode active material for lithium secondary battery and manufacturing method thereof, positive electrode for lithium secondary battery using the positive electrode active material and manufacturing method thereof, lithium secondary battery using the positive electrode and manufacturing method thereof
JP3561607B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode material
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
US20110104569A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP3615415B2 (en) Non-aqueous secondary battery
KR20150134161A (en) Composite cathode active material, lithium battery comprising the same, and preparation method thereof
JPH11219706A (en) Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR100593772B1 (en) Nonaqueous Electrolyte Secondary Battery
JP2008277309A (en) Positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP3301931B2 (en) Lithium secondary battery
JPH08171935A (en) Lithium secondary battery
JP3768046B2 (en) Lithium secondary battery
JP2000100434A (en) Lithium secondary battery
JP3625679B2 (en) Lithium secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
JP4810729B2 (en) Lithium transition metal composite oxide and method for producing the same
JP2002260660A (en) Positive electrode material for nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP2000277111A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810