KR100309769B1 - Positive active material for lithium secondary battery and method of preparing the same - Google Patents

Positive active material for lithium secondary battery and method of preparing the same Download PDF

Info

Publication number
KR100309769B1
KR100309769B1 KR1019990022765A KR19990022765A KR100309769B1 KR 100309769 B1 KR100309769 B1 KR 100309769B1 KR 1019990022765 A KR1019990022765 A KR 1019990022765A KR 19990022765 A KR19990022765 A KR 19990022765A KR 100309769 B1 KR100309769 B1 KR 100309769B1
Authority
KR
South Korea
Prior art keywords
active material
lithium secondary
metal
liani1
ycoxmyo2
Prior art date
Application number
KR1019990022765A
Other languages
Korean (ko)
Other versions
KR20010002784A (en
Inventor
권호진
정현숙
김근배
박동곤
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR1019990022765A priority Critical patent/KR100309769B1/en
Priority to US09/595,075 priority patent/US6749965B1/en
Priority to CNB001240218A priority patent/CN1171335C/en
Priority to JP2000182921A priority patent/JP2001028265A/en
Publication of KR20010002784A publication Critical patent/KR20010002784A/en
Application granted granted Critical
Publication of KR100309769B1 publication Critical patent/KR100309769B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 고용량, 장수명의 리튬 이차 전지의 양극 활물질에 관한 것으로서, 리튬 이차 전지용 양극 활물질인 LiaNi1-x-yCoxMyO2, LiaNi1-x-yCoxMyO2-ZFZ, LiaNi1-x-yCoxMyO2-ZSZ ( M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x 는 0~1, y 는 0.01~0.1, z 는 0.01~0.1, a 는 1.00~1.1 이다.)의 분말에 금속 알콕사이드 용액을 사용하여 표면 처리함으로써 전기 화학 반응에 제일 중요한 영향을 미치는 인자인 표면 구조, 표면 물성의 성질을 변형시켜 보다 더 장수명, 고용량, 구조적 안정성의 특성을 향상시킨 리튬 이차 전지용 양극 활물질을 제공하는 것 및 상기 금속 알콕사이드 용액으로 표면 처리된 리튬 이차 전지용 양극 활물질의 제조 방법을 제공하는 것이다.The present invention relates to a positive electrode active material of a high capacity, long life lithium secondary battery, LiaNi1-x-yCoxMyO2, LiaNi1-x-yCoxMyO2-ZFZ, LiaNi1-x-yCoxMyO2-ZSZ (M is Al, Mg) , Sr, La, Ce, V, Ti is a metal selected from the group consisting of, x is 0 to 1, y is 0.01 to 0.1, z is 0.01 to 0.1, a is 1.00 to 1.1.) Surface treatment using an alkoxide solution provides a cathode active material for lithium secondary batteries, which improves the characteristics of long life, high capacity, and structural stability by modifying the properties of surface structure and surface properties, which are the most important factors affecting the electrochemical reaction. And a method for producing a cathode active material for a lithium secondary battery surface-treated with the metal alkoxide solution.

Description

리튬 이차 전지용 양극 활물질과 그 제조 방법{POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND METHOD OF PREPARING THE SAME}A cathode active material for a lithium secondary battery and a method of manufacturing the same {POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND METHOD OF PREPARING THE SAME}

산업상 이용 분야Industrial use field

본 발명은 리튬 이차 전지용 양극 활물질과 그 제조 방법에 관한 것으로서, 더욱 상세하게는 LiaNi1-x-yCoxMyO2 에서 산소의 일부를 플루오르(F) 또는 황(S)으로 치환한 양극 활물질에 대하여 금속 알콕사이드 (alkoxide) 용액으로 표면 처리함으로써 표면 성질을 변형시킨 리튬 이차 전지용 양극 활물질을 제공하는 것과 그 제조 방법에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery and a method of manufacturing the same, and more particularly, to a cathode active material in which a part of oxygen is replaced with fluorine (F) or sulfur (S) in LiaNi1-x-yCoxMyO2. The present invention relates to providing a positive electrode active material for lithium secondary batteries whose surface properties are modified by surface treatment with a solution.

종래의 기술Conventional technology

비디오 카메라, 휴대 전화, 퍼스널 컴퓨터 등의 코드리스 포터블 기기의 소형, 경량화 및 고 기능화가 진행됨에 따라, 그 구동용 전원으로서 쓰이는 전지에 대해서도 고 에너지 밀도화의 요망이 높아지고 있다. 특히, 충전 가능한 리튬 이차 전지는 높은 에너지 밀도를 기대하고 국내외에서 활발히 연구 개발이 진행되고 있다.As cordless portable devices such as video cameras, cellular phones, personal computers, and the like become smaller, lighter, and higher in functionality, demand for higher energy density is increasing for batteries used as driving power sources. In particular, the rechargeable lithium secondary battery is expected to have a high energy density, and research and development are being actively conducted at home and abroad.

리튬 이차 전지는 리튬 이온의 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)이 가능한 물질을 음극 및 양극으로 사용하고, 상기 양극과 음극 사이에 리튬 이온의 이동이 가능한 유기 전해액 또는 폴리머 전해질을 충전시켜 제조하며, 리튬 이온이 상기 양극 및 음극에서 인터칼레이션/디인터칼레이션 될 때의 산화, 환원 반응에 의하여 전기적 에너지를 생성한다.Lithium secondary batteries use a material capable of intercalation and deintercalation of lithium ions as a negative electrode and a positive electrode, and an organic electrolyte or polymer electrolyte capable of moving lithium ions between the positive electrode and the negative electrode. It is prepared by charging, and produces electrical energy by oxidation and reduction reaction when lithium ions are intercalated / deintercalated in the positive electrode and the negative electrode.

리튬 이차 전지는 음극 재료(anode)로 리튬 금속이나 탄소 재료를 사용하고 있으며, 양극(cathode)재료로는 리튬 이온의 삽입과 탈리가 가능한 금속의 칼코겐화(chalcogenide) 화합물을 사용하고 있다. 음극 재료로 리튬 금속을 사용할 경우 덴드라이트(dendrite)상 리튬의 석출에 따른 폭발 위험성이 있고 리튬극의 충방전 효율이 낮다는 점에서 음극 재료로는 리튬 금속 대신 탄소 재료로 대체되어 가고 있다.Lithium secondary batteries use lithium metal or carbon as an anode material, and a chalcogenide compound of a metal capable of inserting and desorbing lithium ions is used as a cathode material. In the case of using lithium metal as a negative electrode material, there is a risk of explosion due to precipitation of lithium on a dendrite, and the charge and discharge efficiency of the lithium electrode is low, and thus the negative electrode material is being replaced with carbon material instead of lithium metal.

한편, 양극 재료로는 초기에는 크롬산화물, 이산화망간(MnO2)을 사용하였으나, 충ㆍ방전효율, 안전성 등에 문제가 있어 현재에는 LiCoO2, LiMn2O4, LiNi1-xCoxO2(0<x<1), LiMnO2 등의 복합 금속 산화물들이 연구되고 있다.On the other hand, chromium oxide and manganese dioxide (MnO2) were initially used as anode materials. However, due to problems with charging and discharging efficiency and safety, a composite such as LiCoO2, LiMn2O4, LiNi1-xCoxO2 (0 <x <1), LiMnO2, etc. Metal oxides are being studied.

Ni 계 양극 활물질을 사용하는 리튬 이차 전지는 큰 방전 용량의 특성으로 인하여 고용량 전지를 구성할 가능성이 무척 크나 LiNi1-xCoxO2(0<x<1) 등의 활물질이 갖는 낮은 수명 특성과 구조적 불안전성 등으로 인하여 이러한 단점을 극복하려고 하는 니켈계 양극 활물질의 개발이 요구되고 있다.Lithium secondary batteries using Ni-based positive electrode active materials are very likely to form high-capacity batteries due to their large discharge capacity. However, due to the low lifespan characteristics and structural instability of active materials such as LiNi1-xCoxO2 (0 <x <1), Therefore, the development of a nickel-based positive electrode active material to overcome these disadvantages is required.

지금까지의 니켈계 양극 활물질은 LiNiO2을 기본으로 하여 방전 용량과 수명 특성 그리고 구조적 안전성을 향상시킬 목적으로 Ni의 일부를 Co, Mn 등으로 치환한 LiNi1-xMxO2 (0<x<1) 분말을 고상반응 (solide state pocess), 공침법 (coprecipitation methode), 폴리너 칠레이팅 에이전트(polyner chelating agent)법 등으로 합성하는 방법이 개발 및 연구가 되어지고 있다.So far, nickel-based cathode active materials are solid-phase LiNi1-xMxO2 (0 <x <1) powders in which part of Ni is replaced with Co and Mn for the purpose of improving discharge capacity, lifetime characteristics and structural safety based on LiNiO2. Synthesis by solid state pocess, coprecipitation method, poly chelating agent method, etc. has been developed and studied.

LiNiO2의 충전, 방전 용량은 200 mAh/g 이상의 특성을 나타내고 있으나, 수명 특성이 나빠서 실제 전지에 사용이 불가능하며 합성하기 어려운 단점이 있다.Although the charge and discharge capacity of LiNiO2 is more than 200 mAh / g, it has a disadvantage in that it is impossible to use in actual batteries due to poor life characteristics and difficult to synthesize.

또한, LiCoO2 는 실온에서 10-2~ 1 S/cm 정도의 전기 전도도와 높은 전지 전압 그리고 우수한 전극 특성을 보이므로 널리 사용되고 있으나, 고율 충방전시 안정성이 낮다는 문제가 있다.In addition, LiCoO2 is widely used because it exhibits electrical conductivity of about 10 −2 to 1 S / cm, high battery voltage, and excellent electrode characteristics at room temperature, but has a problem of low stability at high rate charge and discharge.

이러한 단점을 극복하고자, 대한민국 특허 출원 제 97-56444 호에서는 Ni 의 일부를 Co 또는 Mn 등으로 치환된 LiNi1-xMxO2의 분말이 개발되고 있으며, 최근에는 Co 이외의 제3의 금속을 소량 첨가하는 LiNi1-x-yCoxMyO2 (M=Al, Mg, Sr, La, Ce 등 : 0<x<1, 0<y<1)의 분말들이 개시되어 있고, 또한, 미국 특허 출원번호 제 5773168호 (US Pat. 5773168)에서는 LiNiO2 에서 산소의 일부를 플루오르(F)로 치환한 새로운 리튬 이차 전지용 양극 활물질에 관한 발명을 개시하고 있다.In order to overcome this drawback, Korean Patent Application No. 97-56444 has developed a powder of LiNi1-xMxO2 in which a part of Ni is substituted with Co or Mn, and recently, LiNi1 which adds a small amount of a third metal other than Co. -x-yCoxMyO2 (M = Al, Mg, Sr, La, Ce et al .: 0 <x <1, 0 <y <1) powders are disclosed, and are also described in US Pat. Appl. No. 5773168 (US Pat. 5773168 discloses a novel invention for a positive electrode active material for a lithium secondary battery in which a part of oxygen in LiNiO2 is replaced with fluorine (F).

그러나, 상기 기존의 발명들은 종래 기술의 문제점을 보완하였으나, 여전히 구조적 안정성 및 수명 특성등이 낮다는 단점이 있다.However, the existing inventions have solved the problems of the prior art, but still have disadvantages such as low structural stability and life characteristics.

본 발명은 상기한 바와 같은 문제점을 해결하고자 안출된 것으로서, 리튬 이차 전지용 양극 활물질인 LiaNi1-x-yCoxMyO2, LiaNi1-x-yCoxMyO2-ZFZ, LiaNi1-x-yCoxMyO2-ZSZ, ( M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x 는 0~1, y 는 0.01~0.1, z 는 0.01~0.1, a 는 1.00~1.1 이다.) 분말을 합성하고 이들 분말을 금속 알콕사이드 용액을 사용하여 표면 처리를 함으로써 전기 화학 반응에 제일 중요한 영향을 미치는 인자인 표면 구조, 표면 물성의 성질을 변형시켜 보다 더 장수명, 고용량, 구조적 안정성의 특성을 향상시킨 리튬이차 전지용 양극 활물질을 개발하여 제공하는 것이다.The present invention has been made to solve the problems described above, LiaNi1-x-yCoxMyO2, LiaNi1-x-yCoxMyO2-ZFZ, LiaNi1-x-yCoxMyO2-ZSZ, (M is Al, Mg, Sr, La, Ce, V, Ti is a metal selected from the group consisting of, x is 0 ~ 1, y is 0.01 ~ 0.1, z is 0.01 ~ 0.1, a is 1.00 ~ 1.1. The surface of the powder is treated with a metal alkoxide solution to modify the properties of the surface structure and surface properties, which are the most important factors affecting the electrochemical reaction, thereby improving characteristics of longer life, high capacity, and structural stability. It is to develop and provide an active material.

본 발명의 다른 목적은 상기 금속 알콕사이드 용액으로 표면 처리된 리튬 이차 전지용 양극 활물질의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a cathode active material for a lithium secondary battery surface-treated with the metal alkoxide solution.

도 1 은 Al 용액으로 표면 처리한(300℃) a) Li1.02Ni0.89Co0.1La0.01O2 와 b) Li1.02Ni0.89Co0.1La0.01O1.95F0.05의 코인 전지의 1 사이클의 충방전 특성 결과를 나타낸 그래프이다.1 is a cycle of charging and discharging of a coin battery of a) Li1.02Ni0.89Co0.1La0.01O2 and b) Li1.02Ni0.89Co0.1La0.01O1.95F0.05 surface-treated with Al solution (300 ° C). A graph showing the results.

도 2 는 Al 용액으로 표면 처리의 유무에 따른 Li1.02Ni0.89Co0.1La0.01O1.95F0.05 의 코인 전지 의 1 사이클의 충방전 특성결과를 나타낸 그래프이다 ( a) 표면 처리 안함 b) Al 표면 처리).2 is a graph showing the results of one cycle charge / discharge characteristics of a coin cell of Li1.02Ni0.89Co0.1La0.01O1.95F0.05 with or without Al solution (a) without surface treatment b) Al surface process).

도 3 은 Al 용액으로 표면 처리한(300℃) a) Li1.02Ni0.89Co0.1La0.01O2 와 b) Li1.02Ni0.89Co0.1La0.01O1.95F0.05 의 코인 전지의 50 사이클 동안의 충방전 특성 결과를 나타낸 그래프이다.FIG. 3 shows charge and discharge during 50 cycles of a coin cell surface treated with Al solution (300 ° C.) a) Li1.02Ni0.89Co0.1La0.01O2 and b) Li1.02Ni0.89Co0.1La0.01O1.95F0.05 A graph showing the characteristic results.

도 4 는 Al 용액으로 표면 처리의 유무에 따른 Li1.02Ni0.89Co0.1La0.01O1.95F0.05 의 코인 전지의 50 사이클 동안의 충방전 특성 결과를 나타낸 그래프이다 ( a) 표면 처리 안함 b) Al 표면 처리).4 is a graph showing the results of charge and discharge characteristics during 50 cycles of a coin cell of Li1.02Ni0.89Co0.1La0.01O1.95F0.05 with or without Al treatment (a) without surface treatment b) Al Surface treatment).

도 5 는 Al 용액으로 표면 처리의 유무에 따른 Li1.02Ni0.89Co0.1La0.01O2 의 코인 전지의 50 사이클 동안의 충방전 특성 평가 결과를 나타낸 그래프이다 ( a) Al 용액으로 표면 처리한 것 b) Al 용액으로 표면 처리하지 않은 것).5 is a graph showing evaluation results of charge and discharge characteristics during 50 cycles of a coin battery of Li1.02Ni0.89Co0.1La0.01O2 with or without Al treatment (a) surface treatment with Al solution b) Not surface treated with Al solution).

본 발명은 상기한 목적을 달성하기 위하여 하기 화학식 1 내지 3의 화합물로 이루어진 군에서 선택되는 리튬 이차 전지용 양극 활물질로서, 하기 화학식 1 내지 3의 화합물 분말에 금속 알콕사이드 용액을 사용하여 표면 처리된 리튬 이차 전지용 양극 활물질을 제공한다.The present invention is a lithium secondary battery positive electrode active material selected from the group consisting of compounds of the following formulas 1 to 3 in order to achieve the above object, a lithium secondary surface-treated using a metal alkoxide solution to the compound powder of formulas 1 to 3 Provided is a battery positive electrode active material.

[화학식 1][Formula 1]

LiaNi1-x-yCoxMyO2LiaNi1-x-yCoxMyO2

[화학식 2][Formula 2]

LiaNi1-x-yCoxMyO2-zFzLiaNi1-x-yCoxMyO2-zFz

[화학식 3][Formula 3]

LiaNi1-x-yCoxMyO2-zSzLiaNi1-x-yCoxMyO2-zSz

(상기 화학식 1 내지 3 에서, M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x 는 0~1, y 는 0.01~0.1, z 는 0.01~0.1, a 는 1.00~1.1 이다.)(In the above Chemical Formulas 1 to 3, M is a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti, x is 0 to 1, y is 0.01 to 0.1, z is 0.01 to 0.1 , a is between 1.00 and 1.1.)

또한, 본 발명은 상기 양극 활물질의 제조 방법으로서, NiaCoxMy(OH)2 를 공침법으로 합성하고 이 물질에 LiOH 와 LiF, NaS 등의 분말을 혼합한 후 이 혼합물을 열처리하여 상기 화학식 1 내지 3 의 양극 활물질 화합물을 얻는 공정 및 이화합물을 금속 알콕사이드 용액을 사용하여 상기 물질을 표면 처리하는 공정을 포함하는 상기 화학식 1 내지 3 의 리튬 이차 전지용 양극 활물질을 제조하는 방법을 제공한다.In addition, the present invention is a method for producing the positive electrode active material, NiaCoxMy (OH) 2 by synthesizing by coprecipitation method and mixing the powder of LiOH, LiF, NaS and the like to this material and heat-treated the mixture of the formulas 1 to 3 It provides a method for producing a positive electrode active material for lithium secondary batteries of Formulas 1 to 3 including the step of obtaining a positive electrode active material compound and the step of surface treatment of the material using a metal alkoxide solution.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 이차 전지용 양극 활물질로는 하기 화학식 1 내지 3으로 이루어진 군에서 선택되어지는 화합물이다.As the cathode active material for a secondary battery of the present invention, the compound is selected from the group consisting of the following Chemical Formulas 1 to 3 below.

[화학식 1][Formula 1]

LiaNi1-x-yCoxMyO2LiaNi1-x-yCoxMyO2

[화학식 2][Formula 2]

LiaNi1-x-yCoxMyO2-zFzLiaNi1-x-yCoxMyO2-zFz

[화학식 3][Formula 3]

LiaNi1-x-yCoxMyO2-zSzLiaNi1-x-yCoxMyO2-zSz

(상기 화학식 1 내지 3 에서, M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x 는 0~1, y 는 0.01~0.1, z 는 0.01~0.1, a 는 1.00~1.1 이다.)(In the above Chemical Formulas 1 to 3, M is a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti, x is 0 to 1, y is 0.01 to 0.1, z is 0.01 to 0.1 , a is between 1.00 and 1.1.)

상기 화합물을 제조하기 위해서 Al, Mg, Sr, La, Ce, V, Ti 등으로 이루어진 군에서 선택된 금속을 공침시킨 구형 또는 유사 구형의 NiaCoxMy(OH)2 분말을 사용하는 것이 바람직하다.In order to prepare the compound, it is preferable to use spherical or pseudo-spherical NiaCoxMy (OH) 2 powder co-precipitated with a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti and the like.

NiaCoxMy(OH)2 는 공침법으로 합성한다. NiaCoxMy(OH)2를 제조하기 위하여 먼저 니켈염, 코발트염과 Al, Mg, Sr, La, Ce, V, Ti 등으로 이루어진 군에서 선택된 금속의 염을 포함하는 용액을 제조한다. 이때, 전체 금속의 농도는 약 2.5 M가 되도록 제조하는 것이 바람직하며, 용매로는 물을 사용한다.NiaCoxMy (OH) 2 is synthesized by coprecipitation. To prepare NiaCoxMy (OH) 2, first, a solution including a nickel salt, a cobalt salt, and a salt of a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti, and the like is prepared. At this time, the concentration of the total metal is preferably prepared to be about 2.5 M, water is used as a solvent.

상기 제조된 금속 수용액과, 착체로서 NH4OH, 침전제로서 NaOH를 오버플로우(overflow) 가능한 반응조에 연속적으로 공급한다.The aqueous metal solution prepared above, NH 4 OH as a complex, and NaOH as a precipitant are continuously supplied to a reactor capable of overflowing.

이때, 반응조의 온도는 약 50 ℃로 유지하는 것이 바람직하며, 반응조 내의 pH 는 11-12로 유지되는 것이 바람직하다. 또한 공급되는 금속과 NH4OH의 몰비는 1:0.4-1인 것이 바람직하며, 이들 반응조 내의 물질들을 약 900 rpm의 속도로 교반하면서 반응시키는 것이 바람직하다.At this time, the temperature of the reaction vessel is preferably maintained at about 50 ℃, pH in the reaction vessel is preferably maintained at 11-12. In addition, the molar ratio of the supplied metal and NH 4 OH is preferably 1: 0.4-1, and the materials in these reactors are preferably reacted with stirring at a speed of about 900 rpm.

상기 반응한 오버플로우된 반응 침전물을 물 또는 약산의 용액으로 중성이 될 때까지 세척한 후, 건조시켜 구형 또는 유사 구형의 NiaCoxMy(OH)2 분말을 얻는다.The reacted overflowed reaction precipitate is washed with a solution of water or weak acid until neutral and dried to obtain spherical or pseudo-spherical NiaCoxMy (OH) 2 powder.

상기 제조된 NiaCoxMy(OH)2 분말에 LiOH 와 LiF 또는 NaS 등의 분말을 당량비 대로 측정하여 모르타르(mortar) 교반기에서 약 10 에서 30 분간 교반하여 균일한 혼합물을 제조한다.The NiaCoxMy (OH) 2 powder prepared above was measured by an equivalent ratio of powders such as LiOH and LiF or NaS, and stirred for about 10 to 30 minutes in a mortar stirrer to prepare a uniform mixture.

이 혼합된 분말을 가스분위기가 조절되는 로(furnace)에서 건조공기를 블로잉(blowing)시키면서 600 내지 800 ℃ 에서 18 내지 22 시간 열처리를 실시하여 상기 화학식 1 내지 4 의 양극 활물질의 분말을 합성한다.The mixed powder is blown at 600 to 800 ° C. while blowing dry air in a furnace controlled by a gas atmosphere. 18 to 22 hours of heat treatment to synthesize the powder of the positive electrode active material of Formula 1 to 4.

이 때 열처리 공정은 1 ~ 5 ℃/분의 속도로 승온하여 실시하고, 열처리 온도에서 일정시간 유지한 후 자연 냉각하는 것으로 이루어진다. 열처리 온도가 900 ℃ 이상이면 리튬이 분해되므로 바람직하지 않다.At this time, the heat treatment step is carried out by increasing the temperature at a rate of 1 ~ 5 ℃ / min, and after maintaining a constant time at the heat treatment temperature consists of natural cooling. If the heat treatment temperature is 900 ° C or higher, lithium is decomposed, which is not preferable.

이렇게 합성한 분말에 대하여 금속 알콕사이드 분말을 알코올에 용해시켜 제조한 1 내지 30 중량%의 금속 알콕사이드 용액을 사용하여 표면 처리(coating)를 실시한 후 건조시킨다.The powder thus synthesized is subjected to surface treatment (coating) using a 1 to 30% by weight metal alkoxide solution prepared by dissolving the metal alkoxide powder in alcohol, followed by drying.

금속 알콕사이드 용액을 사용하여 실시하는 표면 처리법(코팅법)에는 스퍼터링법, CVD(Chemical Vapor Deposition)법, 딥 코팅( dip coating)법 등의 범용 코팅법이 있으나, 가장 간편한 코팅법으로서 단순히 분말을 코팅 용액에 담그었다가 빼내는 딥 코팅법을 사용하는 것이 바람직하다.The surface treatment method (coating method) performed using a metal alkoxide solution includes general coating methods such as sputtering method, chemical vapor deposition (CVD) method and dip coating method, but are simply coated powder as the simplest coating method. It is preferable to use a dip coating method which is immersed in a solution and then taken out.

위에서 사용한 금속 알콕사이드 용액은 알코올과 그 알코올에 대하여 1 내지 30 중량%에 해당하는 양의 금속을 혼합한 후, 이를 환류시켜 제조한다. 여기에서 알코올로는 메탄올 또는 에탄올을 사용할 수 있다. The metal alkoxide solution used above is prepared by mixing the alcohol and the metal in an amount corresponding to 1 to 30% by weight based on the alcohol, and then refluxing it. Herein, methanol or ethanol may be used as the alcohol.

또한, 금속으로는 Mg, Al, Co, K, Na, Ca, Si, Ti 및 V 등을 사용할 수 있으며, Mg을 사용하는 것이 바람직하다. 이때 금속의 농도가 1 중량%보다 낮으면 금속 알콕사이드 용액으로 상기 화학식 1 내지 3 의 화합물로 이루어진 군에서 선택되는 화합물 분말을 코팅하는 효과가 나타나지 않으며, 금속의 농도가 30 중량%를 초과하면 금속 알콕사이드 코팅층의 두께가 너무 두꺼워져 바람직하지 않다.In addition, Mg, Al, Co, K, Na, Ca, Si, Ti, and V may be used as the metal, and Mg is preferably used. At this time, when the concentration of the metal is lower than 1% by weight, there is no effect of coating the compound powder selected from the group consisting of the compounds of Formulas 1 to 3 with the metal alkoxide solution, and when the concentration of the metal exceeds 30% by weight of the metal alkoxide The thickness of the coating layer is too thick, which is undesirable.

이와 같이 금속 알콕사이드 용액을 코팅한 경우 표면 처리된 층의 두께는 1 내지 10 nm 가 바람직하다. 표면 처리된 층의 두께가 두꺼운 경우에는 전기적 특성은 저하되나 안정성이 향상되는 효과가 나타난다.When the metal alkoxide solution is coated in this way, the thickness of the surface-treated layer is preferably 1 to 10 nm. If the thickness of the surface-treated layer is thick, the electrical properties are degraded, but stability is improved.

또한, 활물질 표면이 금속 산화물로 코팅된 경우 활물질과 전해액과의 직접적인 접촉을 막아주기 때문에 수명 향상 효과를 가져오는 것으로 판단된다.In addition, when the surface of the active material is coated with a metal oxide, it is judged to have a life improvement effect because it prevents direct contact between the active material and the electrolyte.

상기의 분말을 표면 처리한 후 200 내지 1000 ℃ 의 온도에서 2 내지 30 시간 열처리를 실시하여 표면 성질이 변화된 새로운 형태의 금속 산화물이 코팅된 상기 1 내지 3 의 이차 전지용 양극 활물질을 제조한다. 이렇게 표면 처리 한 후 열처리 시간은 바람직하게는 10 시간 정도이며, 열처리 온도는 300 내지 500 ℃ 정도가 바람직하다.After the powder is surface treated, heat treatment is performed at a temperature of 200 to 1000 ° C. for 2 to 30 hours to prepare a cathode active material for secondary batteries 1 to 3 coated with a new type of metal oxide having a changed surface property. The heat treatment time after the surface treatment is preferably about 10 hours, the heat treatment temperature is preferably about 300 to 500 ℃.

금속 알콕사이드 용액을 이용하여 표면 처리하여 제조된 상기 화합물 1 내지 3 의 물질 중 분말 입자 한 개를 선택하여 전자선(eletron beam)을 조사하여 방출되는 2차 이온(secondary ion)을 검출하여 표면에 존재하는 금속을 정량, 정성 분석할 수 있는 SIMS(Secondary Ion Mass Spetroscopy)를 이용하여 분말 표면에 존재하는 금속을 정량, 정성 분석하였다. 상기 실험 결과 금속 알콕사이드로 표면 처리한 상기 1 내지 3 의 화합물의 입자의 표면에만 금속이 존재한다는 것을 알 수 있었다.One of the powder particles of the compounds 1 to 3 prepared by surface treatment using a metal alkoxide solution is selected and irradiated with an electron beam to detect secondary ions emitted from the surface. By using SIMS (Secondary Ion Mass Spetroscopy) capable of quantitatively and qualitatively analyzing metals, metals present on the surface of powders were quantitatively and qualitatively analyzed. The experiment result It was found that the metal was present only on the surface of the particles of the compounds of the above 1 to 3 surface treated with the metal alkoxide.

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다.The following presents a preferred embodiment to aid the understanding of the present invention.

그러나, 하기의 실시예들은 본 발명의 이해를 돕기 위한 것일 뿐 본 발명이 하기의 실시예들에 한정되는 것은 아니다.However, the following examples are only for the understanding of the present invention and the present invention is not limited to the following examples.

실시예 1Example 1

LiaNi1-x-yCoxLayO2-zFz (x= 0~1, y= 0.01~0.1, z= 0.01~0.1, a= 1.00~1.1) 를 제조한 후 이 물질에 금속 알콕사이드 용액으로 표면 처리하였다.LiaNi1-x-yCoxLayO2-zFz (x = 0-1, y = 0.01-0.1, z = 0.01-0.1, a = 1.00-1.1) was prepared, and this material was surface-treated with the metal alkoxide solution.

먼저, Li1.02Ni0.89Co0.1La0.01O1.95F0.05 를 제조하기 위해서 Ni0.89Co0.1La0.01(OH)2 를 공침법으로 합성하였다.First, Ni0.89Co0.1La0.01 (OH) 2 was synthesized by coprecipitation to produce Li1.02Ni0.89Co0.1La0.01O1.95F0.05.

Ni0.89Co0.1La0.01(OH)2를 제조하기 위하여 니켈염, 코발트염과 Al, Mg, Sr, La, Ce, V, Ti 등으로 이루어진 군에서 선택된 금속의 염을 포함하는 용액을 제조하였다. 이때, 전체 금속의 농도는 약 2.5 M가 되도록 제조하며, 용매로는 물을 사용하였다.To prepare Ni 0.99 Co 0.1 La 0.01 (OH) 2, a solution including a nickel salt, a cobalt salt, and a salt of a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti, and the like was prepared. . At this time, the concentration of the total metal was prepared to be about 2.5 M, water was used as a solvent.

상기 제조된 금속 수용액과, 착체로서 NH4OH, 침전제로서 NaOH를 오버플로우(overflow) 가능한 반응조에 연속적으로 공급하였다.The aqueous metal solution prepared above, NH 4 OH as a complex, and NaOH as a precipitant were continuously supplied to a reactor capable of overflowing.

이때, 반응조의 온도는 약 50 ℃로 유지하며, 반응조 내의 pH 는 11-12로 유지하였다. 또한 공급되는 금속과 NH4OH의 몰비는 1:0.4-1로 하였으며, 이들 반응조 내의 물질들을 약 900 rpm의 속도로 교반하면서 반응시켰다.At this time, the temperature of the reactor was maintained at about 50 ℃, pH in the reactor was maintained at 11-12. In addition, the molar ratio of the supplied metal and NH 4 OH was 1: 0.4-1, and the materials in these reactors were reacted with stirring at a speed of about 900 rpm.

상기 반응한 오버플로우된 반응 침전물을 물 또는 약산의 용액으로 중성이 될 때까지 세척한 후, 건조시켜 구형 또는 유사 구형의 NiaCoxMy(OH)2 분말을 얻었다.The reacted overflowed reaction precipitate was washed with a solution of water or weak acid until neutral and dried to obtain spherical or pseudo-spherical NiaCoxMy (OH) 2 powder.

상기 제조된 분말에 LiOH 와 LiF 분말을 당량비대로 측량하여 모르타르 교반기에서 약 10~30 분간 교반하여 균일한 혼합물을 제조하였다.LiOH and LiF powder was measured in the powder prepared in an equivalent ratio, and stirred for about 10-30 minutes in a mortar stirrer to prepare a uniform mixture.

이 혼합된 분말을 가스 분위기가 조절되는 로에서 건조 공기를 블로잉시키며 700 ℃ 에서 20 시간 열처리를 실시하여 Li1.02Ni0.89Co0.1La0.01O1.95F0.05 양극 활물질을 합성하였다.The mixed powder was blown with dry air in a furnace in which a gas atmosphere was controlled and heat-treated at 700 ° C. for 20 hours to synthesize Li 1.02 Ni 0.98 Co 0.1 La 0.01 O 1.95 F 0.05 active material.

이렇게 합성한 분말에 대하여 알루미늄이소프로폭사이드(Al-isopropoxide) 분말을 알코올에 용해시켜 제조한 5 중량% 알루미늄이소프로폭사이드 용액을 사용하여 딥 코팅법으로 표면 처리를 실시한 후 건조시켜 300 ℃ 의 온도에서 10 시간정도 건조 공기 블로잉 조건에서 열처리를 실시하여 표면 성질이 변화된 Li1.02Ni0.89Co0.1La0.01O1.95F0.05 표면에 산화알루미늄(Al2O3)이 코팅된 새로운 형태의 양극 활물질을 제조하였다.The powder thus synthesized was subjected to surface treatment by a dip coating method using a 5% by weight aluminum isopropoxide solution prepared by dissolving an aluminum isopropoxide powder in alcohol, followed by drying. Heat treatment was performed under dry air blowing conditions at a temperature of about 10 hours to prepare a new type of positive electrode active material coated with aluminum oxide (Al 2 O 3) on a surface of Li 1.02 Ni 0.98 Co 0.1 La 0.01 O 1.95 F 0.05 having changed surface properties.

실시예 2Example 2

상기 실시예 1에 있어서 양극 활물질이 Li1.02Ni0.89Co0.1Mg0.01O1.95F0.05 인 것을 제외하고는 상기 실시예 1과 동일한 조건과 방법으로 Li1.02Ni0.89Co0.1Mg0.01O1.95F0.05 분말에 산화알루미늄이 코팅된 분말을 제조하였다.Li1.02Ni0.89Co0.1Mg0.01O1.95F0.05 under the same conditions and methods as in Example 1 except that the positive electrode active material in Example 1 was Li1.02Ni0.89Co0.1Mg0.01O1.95F0.05 A powder coated with aluminum oxide was prepared.

실시예 3Example 3

Li1.02Ni0.89Co0.1La0.01O1.95F0.05 을 상기 실시예 1과 동일한 방법으로 제조한 후 이렇게 합성한 분말에 대하여 알루미늄이소프로폭사이드 분말을 알코올에 용해시켜 제조한 15 중량%의 알루미늄이소프로폭사이드 용액을 사용하여 표면 처리를 실시한 후 건조시켜 900 ℃ 의 온도에서 10시간 정도 건조공기 블로잉 조건에서 열처리를 실시하여 Li1.02Ni0.89Co0.1La0.01O1.95F0.05 에 산화알루미늄이 코팅된 양극 활물질을 제조하였다.15 wt% of aluminum isodium prepared by dissolving Li1.02Ni0.89Co0.1La0.01O1.95F0.05 in the same manner as in Example 1 and then dissolving aluminum isopropoxide powder in alcohol Surface treatment was performed using a propoxide solution, followed by drying. Heat treatment was performed at 900 ° C. for 10 hours at dry air blowing conditions. Li1.02Ni0.89Co0.1La0.01O1.95F0.05 was coated with aluminum oxide. A positive electrode active material was prepared.

실시예 4Example 4

Li1.02Ni0.89Co0.1Mg0.01O1.95F0.05 을 상기 실시예 1과 동일한 방법으로 제조한 후 이렇게 합성한 분말에 대하여 알루미늄이소프로폭사이드 분말을 알코올에 용해시켜 제조한 15 중량%의 알루미늄이소프로폭사이드 용액을 사용하여 표면 처리를 실시한 후 건조시켜 900 ℃ 의 온도에서 10시간 정도 건조공기 블로잉 조건에서열처리를 실시하여 Li1.02Ni0.89Co0.1Mg0.01O1.95F0.05 에 산화알루미늄이 코팅된 양극 활물질을 제조하였다.15% by weight of aluminum isodium prepared by dissolving Li1.02Ni0.89Co0.1Mg0.01O1.95F0.05 in the same manner as in Example 1 and then dissolving aluminum isopropoxide powder in alcohol Surface treatment was performed using propoxide solution, followed by drying. Heat treatment was performed under dry air blowing conditions at a temperature of 900 ° C. for about 10 hours, and aluminum oxide was coated on Li1.02Ni0.89Co0.1Mg0.01O1.95F0.05. A positive electrode active material was prepared.

비교예 1Comparative Example 1

실시예의 결과와 비교하기 위하여 실시예 1의 제조 과정에서 금속 알콕사이드 용액으로 표면 처리하는 공정만을 제외하고 Li1.02Ni0.89Co0.1La0.01O2 양극 활물질을 제조하였다.In order to compare with the results of the Example 1 except that the surface treatment with a metal alkoxide solution in the manufacturing process of Example 1 Li1.02Ni 0.98 Co 0.1 La 0.01O 2 cathode active material was prepared.

먼저, Li1.02Ni0.89Co0.1La0.01O2 를 제조하기 위해서 Ni0.89Co0.1La0.01(OH)2 를 공침법으로 합성한 후 여기에 LiOH 분말을 당량비 대로 측량하여 모르타르 교반기에서 약 10~30 분간 교반하여 균일한 혼합물을 제조하였다.First, in order to prepare Li1.02Ni0.89Co0.1La0.01O2, Ni0.89Co0.1La0.01 (OH) 2 was synthesized by coprecipitation method, and then LiOH powder was measured at an equivalence ratio, and the mixture was stirred for about 10-30 minutes in a mortar stirrer. Stirring gave a homogeneous mixture.

이 혼합된 분말을 가스 분위기가 조절되는 로에서 건조 공기를 블로잉시키며 700 ℃ 에서 20 시간 열처리를 실시하여 Li1.02Ni0.89Co0.1La0.01O2 양극 활물질을 합성하였다.The mixed powder was heat-treated at 700 ° C. for 20 hours while blowing dry air in a furnace in which a gas atmosphere was controlled to synthesize a Li 1.02 Ni 0.98 Co 0.1 La 0.01 O 2 cathode active material.

비교예 2Comparative Example 2

실시예의 결과와 비교하기 위하여 La 의 조성비를 비교예 1의 0.01에서 0.02 로 변화시켜 비교예 1의 제조 방법으로 Li1.02Ni0.88Co0.1La0.02O2 양극 활물질을 제조하였다.In order to compare with the results of the Example, the composition ratio of La was changed from 0.01 to 0.02 of Comparative Example 1 to prepare a Li 1.02 Ni 0.98 Co 0.1 La 0.02 O 2 cathode active material by the production method of Comparative Example 1.

비교예 3Comparative Example 3

실시예의 결과와 비교하기 위하여 실시예 2의 제조 과정에서 금속 알콕사이드 용액으로 표면 처리하는 공정만을 제외하고 Li1.02Ni0.89Co0.1Mg0.01O2 양극활물질을 제조하였다.In order to compare with the results of the Example 2 Li1.02Ni0.89Co0.1Mg0.01O2 cathode active material was prepared except for the surface treatment with a metal alkoxide solution in the manufacturing process of Example 2.

먼저, Li1.02Ni0.89Co0.1Mg0.01O2 를 제조하기 위해서 Ni0.89Co0.1Mg0.01(OH)2를 상기 실시예의 공침법으로 합성한 후 여기에 LiOH 분말을 당량비 대로 측량하여 모르타르 교반기에서 약 10~30 분간 교반하여 균일한 혼합물을 제조하였다.First, Ni0.89Co0.1Mg0.01 (OH) 2 was synthesized by the coprecipitation method of the above embodiment in order to prepare Li1.02Ni0.89Co0.1Mg0.01O2, and then LiOH powder was measured in an equivalence ratio and about 10 in a mortar stirrer. Stir for ˜ 30 minutes to produce a homogeneous mixture.

이 혼합된 분말을 가스 분위기가 조절되는 로에서 건조 공기를 블로잉시키며 700 ℃ 에서 20 시간 열처리를 실시하여 Li1.02Ni0.89Co0.1Mg0.01O2 양극 활물질을 제조하였다.The mixed powder was heat-treated at 700 ° C. for 20 hours while blowing dry air in a furnace in which a gas atmosphere was controlled to prepare a Li 1.02 Ni 0.98 Co 0.1 Mg 0.01 O 2 cathode active material.

비교예 4Comparative Example 4

실시예의 결과와 비교하기 위하여 Mg 의 조성비를 비교예 3의 0.01에서 0.02 로 변화시켜 비교예 3의 제조방법으로 Li1.02Ni0.88Co0.1Mg0.02O2 양극 활물질을 제조하였다.In order to compare with the results of the Example, the composition ratio of Mg was changed from 0.01 to 0.02 of Comparative Example 3 to prepare a Li 1.02 Ni 0.98 Co 0.1 Mg 0.02 O 2 cathode active material in the preparation method of Comparative Example 3.

비교예 5Comparative Example 5

실시예의 결과와 비교하기 위하여 Li1.02Ni0.89Co0.1La0.01O2 를 다음의 방법으로 제조하였다.In order to compare with the results of the Example Li 1.02 Ni 0.98 Co 0.1 La 0.01O 2 was prepared by the following method.

먼저, Ni0.89Co0.1La0.01(OH)2 를 공침법으로 합성한 후 여기에 LiOH 분말을 당량비 대로 측량하여 모르타르 교반기에서 약 10~30 분간 교반하여 균일한 혼합물을 제조하였다.First, Ni0.89Co0.1La0.01 (OH) 2 was synthesized by coprecipitation method, and LiOH powder was measured therein in the equivalence ratio, and stirred for about 10-30 minutes in a mortar stirrer to prepare a uniform mixture.

이 혼합된 분말을 가스 분위기가 조절되는 로에서 건조 공기를 블로잉시키며 700 ℃ 에서 20 시간 열처리를 실시하여 Li1.02Ni0.89Co0.1La0.01O2 양극 활물질을 합성하였다.The mixed powder was heat-treated at 700 ° C. for 20 hours while blowing dry air in a furnace in which a gas atmosphere was controlled to synthesize a Li 1.02 Ni 0.98 Co 0.1 La 0.01 O 2 cathode active material.

이렇게 합성한 분말에 대하여 알루미늄이소프로폭사이드(Al-isopropoxide) 분말을 알코올에 용해시켜 제조한 5 중량% 알루미늄이소프로폭사이드 용액을 사용하여 딥 코팅법으로 표면 처리를 실시한 후 건조시켜 300 ℃ 의 온도에서 10 시간 정도 건조 공기 블로잉 조건에서 열처리를 실시하여 표면 성질이 변화된 Li1.02Ni0.89Co0.1La0.01O2 표면에 산화알루미늄이 코팅된 새로운 형태의 양극 활물질을 제조하였다.The powder thus synthesized was subjected to surface treatment by a dip coating method using a 5% by weight aluminum isopropoxide solution prepared by dissolving an aluminum isopropoxide powder in alcohol, followed by drying. Heat treatment was performed under dry air blowing conditions at a temperature of about 10 hours to prepare a new type of cathode active material coated with aluminum oxide on the Li1.02Ni0.89Co0.1La0.01O2 surface whose surface properties were changed.

실시예 1,2,3,4 및 비교예 1,2,3,4,5에서 합성한 분말에 대하여 XRD 로 구조 분석을 실시하여 그 성분을 확인하였고, SEM 으로 입자의 형상을 관찰하였으며, SIMS 와 TEM 으로 표면의 특성을 확인하였다.The powders synthesized in Examples 1,2,3,4 and Comparative Examples 1,2,3,4,5 were subjected to structural analysis by XRD to confirm their components, and the shape of the particles was observed by SEM. The surface characteristics were confirmed by and TEM.

충방전 특성 평가Charge / discharge characteristic evaluation

실시예 1,2,3,4 및 비교예 1,2,3,4,5 로 제조된 양극 활물질 분말의 충방전 특성 평가를 위하여 코인형(coin type)의 반전지(half cell)를 제조하여 충반전 특성 평가를 하였다.In order to evaluate the charge and discharge characteristics of the positive electrode active material powder prepared in Examples 1,2,3,4 and Comparative Examples 1,2,3,4,5, a coin type half cell was prepared. Charge and reversal characteristics were evaluated.

먼저 반전지를 제조하기 위하여 도전제 및 바인더로는 리튬 이차 전지용 양극 극판 제조시 사용되는 도전제인 3 중량%의 카본(상품명:슈퍼 P)과 바인더로 3 중량%의 폴리비닐리덴플루오라이드(상품명: KF-1300)를 사용하였다.First, in order to manufacture a half-cell, 3 wt% of carbon (trade name: Super P), which is a conductive agent used in manufacturing a positive electrode plate for lithium secondary batteries, and 3 wt% of polyvinylidene fluoride (trade name: KF) -1300).

양극 활물질 분말과 도전제 및 바인더를 NMP 용매를 사용하여 알루미늄 호일 위에 테이프 캐스팅(tape casting)하여 전극 극판으로 제조한 후 리튬 금속을 대극으로 사용하여 코인형의 반전지를 구성하였다. 반전지를 구성한 후 본 발명에서합성한 전극 활물질의 특성인 용량, 수명 특성을 평가하였다.The positive electrode active material powder, the conductive agent, and the binder were tape cast on an aluminum foil using an NMP solvent to prepare an electrode electrode plate, and then a coin-type half-cell was formed using lithium metal as a counter electrode. After the half-cell was constructed, the capacity and lifespan characteristics of the electrode active material synthesized in the present invention were evaluated.

이 충방전 평가를 실시하기 위하여 평가 조건은 2.75 V ~ 4.3 V 사이에서 0.1 C ↔ 0.1 C, 0.2 ↔ 0.2 C, 0.5 C ↔ 0.5 C, 1 C ↔ 1 C 의 조건으로 100 회씩 전류량을 변화시키며 평가하였다.In order to carry out the charging and discharging evaluation, the evaluation conditions were changed from 2.75 V to 4.3 V under the conditions of 0.1 C ↔ 0.1 C, 0.2 ↔ 0.2 C, 0.5 C ↔ 0.5 C, and 1 C ↔ 1 C. It was.

이 충방전 특성 평가 결과를 도 1 내지 5에 나타내었다.This charge / discharge characteristic evaluation result is shown to FIGS.

도 1 은 알루미늄 알콕사이드 용액으로 표면 처리한 후 300 ℃에서 열처리한 비교예 1 의 (a) Li1.02Ni0.89Co0.1La0.01O2 와 실시예 1의 (b) Li1.02Ni0.89Co0.1La0.01O1.95F0.05 의 코인 전지의 초기 충방전 특성 결과를 나타내고 있으며 도 3 은 위의 (a) 및 (b)의 분말을 1 C 충방전으로 50 사이클 동안에 특성 평가를 한 것을 나타내고 있는데, 초기 방전 용량은 Li1.02Ni0.89Co0.1La0.01O2 이 약 3 mAh/g 정도 우수하나 1 C 으로 50 사이클 동안 충방전한 경우 Li1.02Ni0.89Co0.1La0.01O1.95F0.05 가 약 10 % 정도 더 방전 용량이 우수한 것으로 나타나 있다.1 is (a) Li1.02Ni0.89Co0.1La0.01O2 of Comparative Example 1 and (b) Li1.02Ni0.89Co0.1La0.01O1 of Comparative Example 1 subjected to surface treatment with an aluminum alkoxide solution and then heat treated at 300 ° C. The initial charge / discharge characteristics of the coin battery of 95F0.05 are shown, and FIG. 3 shows that the powders of (a) and (b) above were characterized by 1 C charge / discharge during 50 cycles. Li1.02Ni0.89Co0.1La0.01O2 is about 3 mAh / g, but when discharged and discharged at 1 C for 50 cycles, Li1.02Ni0.89Co0.1La0.01O1.95F0.05 has about 10% more discharge capacity. It is shown to be excellent.

또한, 도 2 및 도 4 는 실시예 1 의 Li1.02Ni0.89Co0.1La0.01O1.95F0.05 를 알루미늄알콕사이드 용액으로 표면 처리하지 않은 것(a)과 표면 처리한 것(b)의 초기 방전 용량과 1 C 충방전으로 50 사이클 동안에 특성 평가를 한 것으로 이에 의하면 초기 방전 용량은 약 1 % 정도 감소하였으나 1 C 충방전으로 50 사이클 동안에 특성 평가를 한 경우 74 %에서 92 % 로 약 20 % 정도 수명특성이 향상되었다.2 and 4 show initial discharge capacities of (a) and (b) the surface treatment of Li1.02Ni0.89Co0.1La0.01O1.95F0.05 of Example 1 with or without aluminum alkoxide solution. The initial discharge capacity was reduced by about 1% for 50 cycles with and 1C charge / discharge.However, when the characteristics were evaluated during 50 cycles with 1C charge / discharge, it was 74% to 92% for about 20% lifetime. Properties have been improved.

도 5 는 Li1.02Ni0.89Co0.1La0.01O2 를 알루미늄알콕사이드 용액으로 표면 처리한 것(a)과 표면 처리하지 않은 것(b)과를 1 C 충방전으로 50 사이클 동안 특성 평가를 한 것으로 수명 특성이 61 %에서 82 % 로 약 20 % 정도 향상되었음을 나타내고 있다.FIG. 5 shows the characteristics of Li1.02Ni0.89Co0.1La0.01O2 surface treated with an aluminum alkoxide solution (a) and without surface treatment (b) with 1 C charge and discharge for 50 cycles. This is an improvement of about 20% from 61% to 82%.

본 발명에 의하면 LiaNi1-x-yCoxMyO2 (M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x= 0~1, y= 0.01~0.1, a= 1.00~1.1 이다.) 와 LiaNi1-x-yCoxMyO2-zFz(M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x= 0~1, y= 0.01~0.1, z= 0.01~0.1, a= 1.00~1.1) 의 분말에 각각 금속 알콕사이드 용액으로 표면 처리하여 열처리한 분말은 리튬 이차 전지에서 초기 방전 용량은 약 1 % 정도 작아지는 현상은 있지만 1 C 같은 고율 조건에서의 수명 특성은 표면 처리하여 코팅한 경우에는 1 C 충방전으로 50 사이클 동안에 약 20 % 정도 수명 특성이 향상되었음을 나타내어 장수명, 고용량의 소형, 대형 리튬 이차 전지용 양극 활물질을 제공할 수 있게 되었다.According to the present invention LiaNi1-x-yCoxMyO2 (M is a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti, x = 0 ~ 1, y = 0.01 ~ 0.1, a = 1.00 And LiaNi1-x-yCoxMyO2-zFz (M is a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti, x = 0 ~ 1, y = 0.01 ~ 0.1 , z = 0.01 ~ 0.1, a = 1.00 ~ 1.1), and the powder heat-treated by the metal alkoxide solution, respectively, has the initial discharge capacity of about 1% in the lithium secondary battery, but the high rate condition such as 1 C In the case of surface treatment, the coating showed that the lifespan characteristics were improved by about 20% during 50 cycles with 1 C charge / discharge. Thus, it was possible to provide a long-life, high-capacity small-size, large-size lithium secondary battery cathode active material.

Claims (8)

하기 화학식 1 내지 3 로 이루어진 군에서 선택되어지는 화합물로서, 상기 화합물은 표면에 금속 산화물이 코팅된 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.A compound selected from the group consisting of Formulas 1 to 3, wherein the compound is a cathode active material for a lithium secondary battery, characterized in that the metal oxide is coated on the surface. [화학식 1][Formula 1] LiaNi1-x-yCoxMyO2LiaNi1-x-yCoxMyO2 [화학식 2][Formula 2] LiaNi1-x-yCoxMyO2-zFzLiaNi1-x-yCoxMyO2-zFz [화학식 3][Formula 3] LiaNi1-x-yCoxMyO2-zSzLiaNi1-x-yCoxMyO2-zSz (상기 화학식 1 내지 3 에서, M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x 는 0~1, y 는 0.01~0.1, z 는 0.01~0.1, a 는 1.00~1.1 이다.)(In the above Chemical Formulas 1 to 3, M is a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti, x is 0 to 1, y is 0.01 to 0.1, z is 0.01 to 0.1 , a is between 1.00 and 1.1.) 제 1 항에 있어서,The method of claim 1, 상기 화합물의 표면에 코팅된 금속 산화물은 Mg, Si, Ti, Al, V, Co, K, Ca, Na, B 로 이루어진 군에서 선택되어지는 금속의 산화물인 리튬 이차 전지용 양극 활물질.The metal oxide coated on the surface of the compound is Mg, Si, Ti, Al, V, Co, K, Ca, Na, B A cathode active material for a lithium secondary battery, which is an oxide of a metal selected from the group consisting of: 제 1 항에 있어서.The method of claim 1. 상기 화합물의 표면에 코팅된 층의 두께는 1 내지 100 nm 인 리튬 이차 전지용 양극 활물질.The thickness of the layer coated on the surface of the compound is 1 to 100 nm positive electrode active material for a lithium secondary battery. a) LiaCoxMy(OH)2 (M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x 는 0~1, y 는 0.01~0.1 이다.)를 합성하는 단계;a) LiaCoxMy (OH) 2 (M is a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti, x is 0-1, y is 0.01-0.1) step; b) 상기 화합물에 LiOH 와 LiF, 또는 NaS 분말을 당량비로 측량하여 모르타르(mortar) 교반기에서 10 내지 30 분간 교반하여 균일한 혼합물을 제조하는 단계;b) measuring LiOH and LiF, or NaS powder to the compound in an equivalent ratio to prepare a uniform mixture by stirring for 10 to 30 minutes in a mortar stirrer; c) 상기 화합물의 분말을 가스 분위기가 조절되는 로에서 건조 공기를 블로잉시키며 700 내지 900 ℃에서 15 내지 20 시간 동안 열처리를 실시하여 하기 화학식 1 내지 4 로 이루어진 군에서 선택되는 화합물의 분말을 제조하는 단계;c) heat-treating the powder of the compound in a furnace in which a gas atmosphere is controlled and performing heat treatment at 700 to 900 ° C. for 15 to 20 hours to prepare a powder of the compound selected from the group consisting of Formulas 1 to 4 below. step; d) c) 단계에서 제조된 하기 화학식 1 내지 3의 화합물 분말을 (금속 알콕사이드 분말을 알코올에 용해시켜 제조한) 금속 알콕사이드 용액으로 표면 처리를 실시한 후 건조시키는 단계; 및d) performing surface treatment with a metal alkoxide solution (prepared by dissolving metal alkoxide powder in alcohol) prepared in step c) followed by drying; And e) d) 단계에서 표면 처리가 된 하기 화학식 1 내지 3의 화합물을 건조 공기 또는 산소분위기하 블로잉 조건에서 열처리를 실시하는 단계;e) heat-treating the compound of the following Chemical Formulas 1 to 3 subjected to the surface treatment in step d) under a dry air or an oxygen atmosphere blowing condition; 를 포함하는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질의 제조 방법.Method for producing a positive electrode active material for lithium secondary batteries comprising a. [화학식 1][Formula 1] LiaNi1-x-yCoxMyO2LiaNi1-x-yCoxMyO2 [화학식 2][Formula 2] LiaNi1-x-yCoxMyO2-zFzLiaNi1-x-yCoxMyO2-zFz [화학식 3][Formula 3] LiaNi1-x-yCoxMyO2-zSzLiaNi1-x-yCoxMyO2-zSz (상기 화학식 1 내지 3 에서, M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x 는 0~1, y 는 0.01~0.1, z 는 0.01~0.1, a 는 1.00~1.1 이다.)(In the above Chemical Formulas 1 to 3, M is a metal selected from the group consisting of Al, Mg, Sr, La, Ce, V, Ti, x is 0 to 1, y is 0.01 to 0.1, z is 0.01 to 0.1 , a is between 1.00 and 1.1.) 제 4 항에 있어서,The method of claim 4, wherein 금속 알콕사이드의 금속은 Mg, Si, Ti, Al, V, Co, K, Ca, Na, B 로 이루어진 군에서 선택되어 지는 금속인 리튬 이차 전지용 양극 활물질의 제조 방법.The metal of the metal alkoxide is Mg, Si, Ti, Al, V, Co, K, Ca, Na, B is a metal selected from the group consisting of a method for producing a positive electrode active material for lithium secondary batteries. 제 4 항에 있어서,The method of claim 4, wherein 금속 알콕사이드 용액의 농도는 1 중량% 내지 30 중량% 인 리튬 이차 전지용 양극 활물질의 제조 방법.The concentration of the metal alkoxide solution is 1% to 30% by weight of the method for producing a positive electrode active material for a lithium secondary battery. 제 4 항에 있어서,The method of claim 4, wherein (a) 단계에서의 LiaCoxMy(OH)2 (M 은 Al, Mg, Sr, La, Ce, V, Ti 로 이루어진 군에서 선택되어지는 금속이고, x 는 0~1, y 는 0.01~0.1 이다.)는 금속인 M 또는 M 의 염과 니켈염, 코발트염을 포함하는 금속 수용액을 출발 물질로 하여 합성하는 리튬 이차 전지용 양극 활물질의 제조 방법.LiaCoxMy (OH) 2 in step (a) (M is Al, Mg, Sr, La, Ce, V, Ti is a metal selected from the group consisting of, x is 0 to 1, y is 0.01 to 0.1. ) Is a method for producing a positive electrode active material for a lithium secondary battery synthesized using a metal aqueous solution containing M or M salt, nickel salt, cobalt salt as a starting material. 제 4 항에 있어서,The method of claim 4, wherein e) 단계에서의 열처리 온도는 200 내지 1000 ℃ 이고, 열처리 시간은 2 내지 30 시간인 리튬 이차 전지용 양극 활물질의 제조 방법.The heat treatment temperature in step e) is 200 to 1000 ℃, the heat treatment time is a method for producing a positive electrode active material for lithium secondary batteries.
KR1019990022765A 1999-02-10 1999-06-17 Positive active material for lithium secondary battery and method of preparing the same KR100309769B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019990022765A KR100309769B1 (en) 1999-06-17 1999-06-17 Positive active material for lithium secondary battery and method of preparing the same
US09/595,075 US6749965B1 (en) 1999-02-10 2000-06-16 Positive active material for lithium secondary batteries and method of preparing the same
CNB001240218A CN1171335C (en) 1999-06-17 2000-06-17 Positive active material for lithium secondary cell and its preparing method
JP2000182921A JP2001028265A (en) 1999-06-17 2000-06-19 Positive electrode active material for lithium secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990022765A KR100309769B1 (en) 1999-06-17 1999-06-17 Positive active material for lithium secondary battery and method of preparing the same

Publications (2)

Publication Number Publication Date
KR20010002784A KR20010002784A (en) 2001-01-15
KR100309769B1 true KR100309769B1 (en) 2001-11-01

Family

ID=19593130

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990022765A KR100309769B1 (en) 1999-02-10 1999-06-17 Positive active material for lithium secondary battery and method of preparing the same

Country Status (3)

Country Link
JP (1) JP2001028265A (en)
KR (1) KR100309769B1 (en)
CN (1) CN1171335C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975191B1 (en) 2005-06-16 2010-08-10 파나소닉 주식회사 Lithium ion secondary battery

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560534B1 (en) * 2000-09-25 2006-03-15 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a method of preparing the same
KR100406816B1 (en) * 2001-06-05 2003-11-21 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
KR100542184B1 (en) 2001-07-19 2006-01-10 삼성에스디아이 주식회사 An active material for a battery and a method of preparing the same
TW565961B (en) * 2001-11-30 2003-12-11 Sanyo Electric Co Nonaqueous electrolyte secondary battery and its manufacturing method
CN100459243C (en) * 2002-02-15 2009-02-04 清美化学股份有限公司 Particulate positive electrode active material for lithium secondary cell
KR101131479B1 (en) * 2003-09-16 2012-03-30 에이지씨 세이미 케미칼 가부시키가이샤 Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
US8117595B2 (en) 2004-03-23 2012-02-14 Microsoft Corporation Method for updating data in accordance with rights management policy
JP4794866B2 (en) * 2004-04-08 2011-10-19 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
CN101320803A (en) * 2004-04-30 2008-12-10 清美化学股份有限公司 Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP4838989B2 (en) * 2004-07-13 2011-12-14 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN100420088C (en) * 2004-11-08 2008-09-17 深圳市比克电池有限公司 Lithium ion secondary cell with nickel-base anode active material and producing method thereof
CN100416895C (en) * 2004-12-09 2008-09-03 比亚迪股份有限公司 Lithium ion cell positive electrode actived material and preparation method thereof
CN102176520A (en) * 2005-04-28 2011-09-07 住友化学株式会社 Active material for nonaqueous secondary battery and nonaqueous secondary battery
JP5034305B2 (en) * 2005-04-28 2012-09-26 住友化学株式会社 Non-aqueous secondary battery active material and method for producing the same
US9240593B2 (en) 2005-04-28 2016-01-19 Sumitomo Chemical Company, Limited Active material for nonaqueous secondary battery and method for producing same
WO2006136050A1 (en) * 2005-06-20 2006-12-28 Shenzhen Bak Battery Co., Ltd A multicomponent composite lithium oxide containing nickel and cobalt, a method for producing the same, the use thereof as a positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP5260821B2 (en) * 2005-07-11 2013-08-14 パナソニック株式会社 Lithium ion secondary battery
KR100944137B1 (en) * 2005-11-02 2010-02-24 에이지씨 세이미 케미칼 가부시키가이샤 Lithium-containing composite oxide and method for production thereof
JP5076332B2 (en) * 2006-03-06 2012-11-21 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
US9608266B2 (en) 2007-01-29 2017-03-28 Umicore Cathode material for lithium-ion rechargeable batteries
US9614220B2 (en) 2007-01-29 2017-04-04 Umicore Doped and island-covered lithium cobaltite oxides
US9177689B2 (en) 2007-01-29 2015-11-03 Umicore High density and high voltage stable cathode materials for secondary batteries
US8303855B2 (en) 2007-08-10 2012-11-06 Umicore Doped lithium transition metal oxides containing sulfur
CN101471441B (en) * 2007-12-27 2011-07-06 比亚迪股份有限公司 Active substance of lithium ion battery anode and preparation method thereof
JP2009193745A (en) 2008-02-13 2009-08-27 Sony Corp Method for manufacturing positive electrode active material
JP5389170B2 (en) 2008-08-04 2014-01-15 ユミコア ソシエテ アノニム High crystalline lithium transition metal oxide
JP5434278B2 (en) * 2009-05-29 2014-03-05 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
CN102449817B (en) * 2009-06-08 2014-11-19 住友化学株式会社 Electrode mix, electrode mix paste, electrode, and non-aqueous electrolyte secondary battery
KR101534896B1 (en) * 2010-06-29 2015-07-08 유미코르 High density and high voltage stable cathode materials for secondary batteries
CN101901906A (en) * 2010-07-22 2010-12-01 东莞新能源科技有限公司 Lithium ion secondary battery and cathode material prepared by same
US9356284B2 (en) 2011-07-13 2016-05-31 Nec Corporation Active material for secondary battery
CN102306751B (en) * 2011-08-04 2016-01-20 深圳市天骄科技开发有限公司 The preparation method of wet-processed aluminium-coated lithium ion battery cathode material
CN102496710B (en) * 2011-12-31 2014-01-08 湖南杉杉户田新材料有限公司 Nickel-based multiple components cathode material and preparation method thereof
TWI520422B (en) 2012-11-26 2016-02-01 財團法人工業技術研究院 Electrode powder and electrode plate for lithium ion battery
KR101491885B1 (en) * 2012-12-07 2015-02-23 삼성정밀화학 주식회사 Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR102124052B1 (en) * 2013-10-18 2020-06-17 삼성전자주식회사 Positive electrode active material, preparing method thereof, and lithium battery employing positive electrode including the same
KR101673178B1 (en) * 2014-03-20 2016-11-07 주식회사 엘 앤 에프 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6507778B2 (en) * 2015-03-26 2019-05-08 セイコーエプソン株式会社 Electrode complex and battery
JP6744009B2 (en) * 2015-09-16 2020-08-19 ユミコア Lithium battery containing cathode material and electrolyte additive for high voltage applications
JP6845699B2 (en) * 2017-01-27 2021-03-24 株式会社半導体エネルギー研究所 Method for producing positive electrode active material
JP7228772B2 (en) * 2018-01-17 2023-02-27 パナソニックIpマネジメント株式会社 Positive electrode active material and battery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243871A (en) * 1993-02-16 1994-09-02 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2787153B2 (en) * 1994-09-30 1998-08-13 株式会社日立製作所 Secondary battery and method of manufacturing the same
JP3172388B2 (en) * 1995-02-27 2001-06-04 三洋電機株式会社 Lithium secondary battery
JP3717544B2 (en) * 1995-03-08 2005-11-16 三洋電機株式会社 Lithium secondary battery
JP3582161B2 (en) * 1995-08-11 2004-10-27 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP2967051B2 (en) * 1995-08-23 1999-10-25 株式会社東芝 Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH09139212A (en) * 1995-11-15 1997-05-27 Sony Corp Nonaqueous electrolyte secondary battery
JPH09293508A (en) * 1996-04-25 1997-11-11 Sony Corp Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
US6881520B1 (en) * 1996-06-14 2005-04-19 N.V. Umicore S.A. Electrode material for rechargeable batteries and process for the preparation thereof
JP3290355B2 (en) * 1996-07-12 2002-06-10 株式会社田中化学研究所 Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same
JP3830586B2 (en) * 1996-09-12 2006-10-04 日本化学工業株式会社 Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery
JP4061668B2 (en) * 1997-04-21 2008-03-19 宇部興産株式会社 Lithium ion non-aqueous electrolyte secondary battery
JPH1116566A (en) * 1997-06-20 1999-01-22 Hitachi Ltd Battery
JPH1167209A (en) * 1997-08-27 1999-03-09 Sanyo Electric Co Ltd Lithium secondary battery
JP3355126B2 (en) * 1998-01-30 2002-12-09 同和鉱業株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975191B1 (en) 2005-06-16 2010-08-10 파나소닉 주식회사 Lithium ion secondary battery

Also Published As

Publication number Publication date
CN1171335C (en) 2004-10-13
CN1280397A (en) 2001-01-17
KR20010002784A (en) 2001-01-15
JP2001028265A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
KR100309769B1 (en) Positive active material for lithium secondary battery and method of preparing the same
US6372385B1 (en) Active material for positive electrode used in lithium secondary battery and method of manufacturing same
JP4362021B2 (en) Positive electrode active material for lithium secondary battery
JP4546937B2 (en) Cathode active material for non-aqueous electrolyte lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR100277796B1 (en) Cathode active material for lithium secondary battery and manufacturing method thereof
KR100542184B1 (en) An active material for a battery and a method of preparing the same
JP5753650B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP4524339B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR100428616B1 (en) Positive active material for lithium secondary battery and method of preparing same
KR100309773B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP2008255000A (en) New titanium oxide, its preparation method and lithium rechargeable battery using the same as active material
KR20000029333A (en) Manganese oxide, lithium manganese complex oxide and cobalt-coated lithium manganese complex oxide, and preparation processes thereof
CN112447948B (en) Sulfide coated positive electrode material, preparation method thereof and lithium ion battery
KR100300334B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
US6749965B1 (en) Positive active material for lithium secondary batteries and method of preparing the same
KR20010091887A (en) A positive active material for a lithium secondary battery and a method of preparing the same
JP2009242121A (en) Lithium manganese oxide powder particle and production method of the same, and lithium secondary battery using the same as positive active material
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
KR100358799B1 (en) Method of preparing positive active material for lithium secondary battery
KR100759456B1 (en) Positive active material for lithium rechargeable battery and method of preparing same
El Halya et al. Limiting voltage and capacity fade of lithium-rich, low cobalt Li 1.2 Ni 0.13 Mn 0.54 Fe 0.1 Co 0.03 O 2 by controlling the upper cut-off voltage
JP3480037B2 (en) Method for producing amorphous lithium manganese composite oxide and use thereof
KR20200073361A (en) New V-O type electrode material for lithium battery

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120823

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20130827

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150820

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170809

Year of fee payment: 17

EXPY Expiration of term