JP3232943B2 - Manufacturing method of positive electrode active material for lithium secondary battery - Google Patents

Manufacturing method of positive electrode active material for lithium secondary battery

Info

Publication number
JP3232943B2
JP3232943B2 JP04290095A JP4290095A JP3232943B2 JP 3232943 B2 JP3232943 B2 JP 3232943B2 JP 04290095 A JP04290095 A JP 04290095A JP 4290095 A JP4290095 A JP 4290095A JP 3232943 B2 JP3232943 B2 JP 3232943B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
lithium
electrode active
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04290095A
Other languages
Japanese (ja)
Other versions
JPH08222220A (en
Inventor
純一 山浦
一広 岡村
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26382644&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3232943(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04290095A priority Critical patent/JP3232943B2/en
Priority to US08/573,505 priority patent/US5626635A/en
Priority to DE69502690T priority patent/DE69502690T2/en
Priority to EP95119801A priority patent/EP0720247B1/en
Publication of JPH08222220A publication Critical patent/JPH08222220A/en
Application granted granted Critical
Publication of JP3232943B2 publication Critical patent/JP3232943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池の、と
くにその正極活物質の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a method for producing a positive electrode active material thereof.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水系二次電池、特にリチ
ウム二次電池はとりわけ高電圧・高エネルギー密度を有
する電池として期待が大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly advancing, and there is a high demand for a small and lightweight secondary battery having a high energy density as a drive power source for these devices. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, are expected to have high voltage and high energy density.

【0003】このような中でLiCoO2を正極に、炭
素材料を負極に用いた電池が開発されている。LiCo
2の作動電位はLiに対して4Vと高いため電池電圧
が高くなるとともに、負極に炭素材を用いてインターカ
レーション反応を利用しているため金属Liを負極に用
いた場合の課題であったデンドライト状Liが負極上に
析出することはなく電池の安全性を向上させることがで
きる。
Under such circumstances, a battery using LiCoO 2 as a positive electrode and a carbon material as a negative electrode has been developed. LiCo
Since the operating potential of O 2 is as high as 4 V with respect to Li, the battery voltage becomes high. In addition, since a carbon material is used for the negative electrode and an intercalation reaction is used, this is a problem when using metallic Li for the negative electrode. The dendritic Li does not precipitate on the negative electrode, and the safety of the battery can be improved.

【0004】しかし、Coの資源の問題とコストの問題
から、LiCoO2に代わるリチウム含有複合酸化物の
開発が進んでおりLiNiO2などが注目されはじめ
た。LiNiO2ならびにLiCoO2をはじめとするこ
の種のリチウム含有複合酸化物はいずれも高い電位を示
し、かつインターカレーション反応の利用できる同じ六
方晶系の結晶構造をもつ層状化合物であるため、正極活
物質材料としてその期待が大きい。このような観点か
ら、例えばLiXNiO2(米国特許第4302518
号)、LiyNi2-y2(特開平2−40861号公
報)などのLiNiO2に係るもの、あるいはLiyNi
XCo1-X2(特開昭63−299056号公報)やL
yNi1-XX2(但し、MはTi,V,Mn,Feの
いずれか)などのLiNiO2のNiの一部を他の金属
に置換したリチウム含有複合酸化物が提案されている。
その他、AxyZ2(但し、Aはアルカリ金属、Mは
遷移金属、NはAl,In,Snの一種)(特開昭62
−90863号公報)やLiXyZ2)(但し、Mは
Fe,Co,Niの中から選ばれた少なくとも一種で、
NはTi,V,Cr,Mnの中から選ばれた少なくとも
一種)(特開平4−267053号公報)などのリチウ
ム含有複合酸化物も提案されている。そしてこれらの活
物質材料を用いて4V級の放電電移をもった高エネルギ
ー密度のリチウム二次電池の開発が進められている。
However, due to the problem of Co resources and the problem of cost, development of a lithium-containing composite oxide in place of LiCoO 2 has been progressing, and attention has been paid to LiNiO 2 and the like. Lithium-containing composite oxides of this kind, such as LiNiO 2 and LiCoO 2 , each exhibit a high potential and are layered compounds having the same hexagonal crystal structure that can be used for an intercalation reaction. The expectation is great as a material. From such a viewpoint, for example, Li X NiO 2 (US Pat. No. 4,302,518)
No.), Li y Ni 2-y O 2 ( Japanese Patent Laid-Open No. 2-40861) as according to LiNiO 2, such as, or Li y Ni
X Co 1-X O 2 (JP-A-63-299056) and L
i y Ni 1-X M X O 2 ( where, M is Ti, V, Mn, either Fe) is proposed lithium-containing composite oxide obtained by substituting a part of LiNiO 2 of Ni with other metals, such as is ing.
Other, A x M y N Z O 2 ( where, A is an alkali metal, M is a transition metal, N represents Al, In, one Sn) (JP 62
-90863 JP) and Li X M y N Z O 2 ) ( where, M is Fe, Co, at least one selected from among Ni,
A lithium-containing composite oxide such as N is at least one selected from Ti, V, Cr, and Mn (Japanese Patent Application Laid-Open No. 4-267053) has also been proposed. Using these active material materials, development of a high energy density lithium secondary battery having a 4V-class discharge transfer has been promoted.

【0005】[0005]

【発明が解決しようとする課題】これらのリチウム含有
複合酸化物の中でLiNiO2はリチウムに対し4Vの
作動電位を示すので、正極活物質として用いると高エネ
ルギー密度を有する二次電池が実現できる。しかし、電
池の充放電サイクルの経過にともなって電池容量が劣化
し、50サイクル目では初期容量の65%まで低下し、
良好な充放電サイクル特性が得られないという課題があ
った。
Among these lithium-containing composite oxides, LiNiO 2 exhibits an operating potential of 4 V with respect to lithium, so that when used as a positive electrode active material, a secondary battery having a high energy density can be realized. . However, as the charge / discharge cycle of the battery elapses, the battery capacity deteriorates, and at the 50th cycle, drops to 65% of the initial capacity,
There was a problem that good charge / discharge cycle characteristics could not be obtained.

【0006】このような課題に対し、上記に示すような
Niの一部を他の金属に置換したリチウム複合酸化物や
多種の金属元素を同時に含むものなどが提案されてき
た。しかし、LiNiO2のNiの一部を他の金属に置
換したものはサイクル可逆性が向上する一方、放電容量
が小さくなり、かつ放電電圧も低くなる傾向にあり、本
来要望されている高電圧、高エネルギー密度という特徴
を減ずる結果となった。これらの中でNiの一部をCo
に置換したものはサイクル可逆性、放電容量、放電電圧
のいずれも他のリチウム含有複合酸化物に比べると比較
的良好であった。
[0006] In order to solve such a problem, there have been proposed lithium composite oxides in which a part of Ni is replaced with another metal as described above, and those containing simultaneously various metal elements. However, LiNiO 2 obtained by substituting a part of Ni with another metal has improved cycle reversibility, but has a tendency to reduce discharge capacity and discharge voltage. The result was a reduction in the feature of high energy density. In these, some of Ni
In the case of substituting with, all of cycle reversibility, discharge capacity and discharge voltage were relatively good as compared with other lithium-containing composite oxides.

【0007】ここで、LiNiO2のNiの一部をCo
に置換した活物質の合成は、水酸化リチウムなどのLi
化合物と水酸化ニッケルなどのNi化合物に水酸化コバ
ルトなどのCo化合物を加えて焼成する方法(以後、複
合式合成法と呼ぶ)が一般的であった。Niの一部をC
oに置換して結晶構造が単一相である化合物を得るため
には焼成温度を600℃〜800℃の温度範囲とする。
単一相の生成は焼成温度に依存し焼成温度が600℃以
下では反応は完結せず単一相を有する化合物は得られな
い。また、Niの比率が大きくなるほど800℃を超え
ると単一相にはなるが結晶性は低下する。
Here, a part of Ni of LiNiO 2 is replaced with Co.
Synthesis of the active material substituted with
A method of adding a Co compound such as cobalt hydroxide to a compound and a Ni compound such as nickel hydroxide and firing the mixture (hereinafter, referred to as a composite synthesis method) has been common. Part of Ni is C
In order to obtain a compound having a single-phase crystal structure by substituting with o, the firing temperature is set to a temperature range of 600 ° C to 800 ° C.
The formation of a single phase depends on the firing temperature. When the firing temperature is 600 ° C. or lower, the reaction is not completed and a compound having a single phase cannot be obtained. Further, as the ratio of Ni increases, if the temperature exceeds 800 ° C., a single phase is formed, but the crystallinity decreases.

【0008】これは、800℃以上の高温で合成すると
結晶中でLiの入るべきサイトにNiやCoが入り込ん
でしまい、結晶構造が乱れることによると考えられる。
[0008] This is considered to be due to the fact that when synthesized at a high temperature of 800 ° C or higher, Ni or Co enters the site where Li should enter in the crystal, and the crystal structure is disturbed.

【0009】本発明は、このような課題を解決するもの
であり、Niの一部をCoに確実に置換して一般式Li
NiXCo(1-X)2で表わされるリチウム含有複合酸化
物の結晶構造を単一相とし、結晶完成度が高く結晶の崩
壊がなく結晶内でLiが移動し易い安定した結晶場を得
ることができる製造法を提供するものである。
The present invention has been made to solve such a problem, and it is intended that a part of Ni be surely replaced with Co to obtain a general formula Li
The crystal structure of the lithium-containing composite oxide represented by Ni X Co (1-X) O 2 is made into a single phase, and a stable crystal field where the crystal perfection is high, the crystal is not collapsed, and Li can easily move in the crystal. It provides a production method that can be obtained.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明のリチウム二次電池用正極活物質の製造方法
は、リチウムとニッケルおよびコバルトを含むリチウム
含有複合酸化物で、一般式LiNixCo(1-x)2で表
わされ、式中のx値を0.95≧x≧0.50とする正
極活物質の製造方法であり、コバルト塩とニッケル塩と
の混合水溶液にアルカリ溶液を加えてコバルトとニッケ
ルの水酸化物を共沈させることによってコバルトとニッ
ケルの複合水酸化物を得た後、水酸化リチウムなどのリ
チウム化合物と混合し、この混合物を焼成するものであ
る。
Means for Solving the Problems In order to solve the above problems, a method for producing a positive electrode active material for a lithium secondary battery according to the present invention is a lithium-containing composite oxide containing lithium, nickel and cobalt, which has a general formula of LiNi x Co (1-x) O 2 , wherein the x value in the formula is 0.95 ≧ x ≧ 0.50 , a method for producing a positive electrode active material, wherein a mixed aqueous solution of a cobalt salt and a nickel salt is prepared. After obtaining a composite hydroxide of cobalt and nickel by coprecipitating a hydroxide of cobalt and nickel by adding an alkali solution, the mixture is mixed with a lithium compound such as lithium hydroxide and the mixture is fired. .

【0011】[0011]

【作用】本発明の製造法では、コバルト塩とニッケル塩
との混合溶液にアルカリ溶液を加えてコバルトとニッケ
ルの水酸化物を共沈させることによりニッケルとコバル
トの複合水酸化物(以下、Ni・Co複合水酸化物)を
得ているので、結晶構造がNiの一部をCoで確実に置
換した固溶体レベルに至っており、X線回折でも単一相
になっていて結晶完成度も極めて高いものとなってい
る。
According to the production method of the present invention, an alkali solution is added to a mixed solution of a cobalt salt and a nickel salt to co-precipitate a hydroxide of cobalt and nickel, thereby obtaining a composite hydroxide of nickel and cobalt (hereinafter referred to as Ni (Co composite hydroxide), the crystal structure has reached a solid solution level in which Ni is partly replaced with Co, and a single phase is obtained by X-ray diffraction, and the crystal perfection is extremely high. It has become something.

【0012】そして、このNi・Co複合水酸化物にL
i塩を加えて焼成すると、結晶内でLiが移動し易い結
晶構造を有するリチウム含有複合酸化物を得ることがで
きる。さらに本発明では焼成温度を600℃〜800℃
としているので結晶構造の乱れはない。
The Ni / Co composite hydroxide has L
When the i-salt is added and calcined, a lithium-containing composite oxide having a crystal structure in which Li easily moves in the crystal can be obtained. Further, in the present invention, the sintering temperature is set at
Therefore, there is no disorder in the crystal structure.

【0013】また、NiとCoの混合原子価状態を形成
して安定した結晶構造を得るためには、少なくともNi
のCoへの置換数は0.05以上必要である。しかし、
NiのCoへの置換数が0.5を超えると結晶の歪みの
増大や結晶構造の崩れの発生、および混合原子価状態の
不釣り合いでLiが動き難い状況を作り出して活物質の
容量低下が著しくなる。
In order to form a mixed valence state of Ni and Co to obtain a stable crystal structure, at least Ni
Is required to be 0.05 or more. But,
When the number of substitutions of Ni for Co exceeds 0.5, the crystal strain increases, the crystal structure collapses, and the mixed valence state becomes unbalanced, creating a state in which Li is difficult to move, and the capacity of the active material is reduced. It becomes remarkable.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】まず、本発明のNi・Co複合水酸化物の
共沈による製造法を説明する。市販試薬の硫酸ニッケル
を水に加え、飽和状態の硫酸ニッケル水溶液を作成し、
これに所定量(目的のCo/Ni比に合わせて)の硫酸
コバルトを加え、さらに水を加えて調整して硫酸ニッケ
ルおよび硫酸コバルトを含む飽和水溶液を作成した。次
いで、攪拌しながらこの水溶液に水酸化ナトリウムを溶
解したアルカリ水溶液をゆっくりと加えていくと、Ni
とCoの水酸化物の沈殿(共沈)が同時に始まった。十
分にアルカリ溶液を加えて沈殿が終了したのを見極めた
後、濾過して沈殿物を回収し水洗した。pHを測定しな
がら水洗を繰り返し、残存アルカリがほぼ無くなったの
を見極めた後、熱風空気(100℃に設定した熱風乾燥
器を用いた)で乾燥させた。
First, the production method of the present invention by coprecipitation of the Ni / Co composite hydroxide will be described. Nickel sulfate, a commercially available reagent, was added to water to create a saturated aqueous solution of nickel sulfate.
A predetermined amount of cobalt sulfate (according to the target Co / Ni ratio) was added thereto, and water was further added to adjust the solution to prepare a saturated aqueous solution containing nickel sulfate and cobalt sulfate. Then, an alkaline aqueous solution in which sodium hydroxide was dissolved was slowly added to this aqueous solution with stirring, and Ni
And Co hydroxide precipitation (coprecipitation) started simultaneously. After sufficiently adding an alkaline solution to confirm that the precipitation was completed, the precipitate was collected by filtration and washed with water. Washing was repeated while measuring the pH, and after it was determined that the residual alkali had almost disappeared, the sample was dried with hot air (using a hot air dryer set at 100 ° C.).

【0016】このようにして得られたNi・Co複合水
酸化物のX線回折パターンはきわめて単一相に近いもの
であり、元素分析の結果、ほぼ目的の比率でCoとNi
を含んでいた。
The X-ray diffraction pattern of the Ni / Co composite hydroxide thus obtained is very close to a single phase. As a result of elemental analysis, Co and Ni have almost the desired ratio.
Was included.

【0017】なお、本実施例では共沈原材料のNi源と
して硫酸ニッケル、Co源として硫酸コバルトを用いた
が、ニッケル源として硝酸ニッケル、コバルト源として
硝酸コバルトなど、基本的には水溶液を作りうる塩であ
ればいずれも使用可能である。また、アルカリ溶液とし
ては水酸化ナトリウム水溶液を用いたが、水酸化カリウ
ム水溶液、水酸化リチウム水溶液など他のアルカリ溶液
であっても良い。
In this embodiment, nickel sulfate is used as the Ni source and cobalt sulfate is used as the Co source of the coprecipitating raw material. Any salt can be used. Although an aqueous solution of sodium hydroxide was used as the alkaline solution, other alkaline solutions such as an aqueous solution of potassium hydroxide and an aqueous solution of lithium hydroxide may be used.

【0018】次いで、Li化合物との焼成工程を説明す
る。Li化合物としては水酸化リチウムを用い、上記共
沈で得られたNi・Co複合水酸化物にCoとNiの原
子数の和とLiの原子数が等量になるように加えてボー
ルミルで粉砕しながら十分混合し、この複合物をアルミ
ナ製るつぼに入れ酸素中において550℃で20時間で
1段目の焼成をした後、750℃で2時間で2段目の焼
成をした。焼成後室温までゆっくりと冷却し、粉砕した
ものを正極活物質粉末とした。
Next, the firing step with the Li compound will be described. Lithium hydroxide is used as the Li compound, and the sum of the number of Co and Ni atoms and the number of Li atoms are equalized to the Ni / Co composite hydroxide obtained by the above coprecipitation and pulverized by a ball mill. The composite was placed in a crucible made of alumina, baked in oxygen at 550 ° C. for 20 hours, and then baked at 750 ° C. for 2 hours. After calcination, the mixture was slowly cooled to room temperature and pulverized to obtain a positive electrode active material powder.

【0019】Co/Ni比の異なるいくつかのCo・N
i複合水酸化物について合成を試みた結果、活物質の組
成を示す一般式LiNiXCo(1-X)2のx値が0.5
以上であるとこのリチウム含有複合酸化物のX線回折パ
ターンが単一相で得られた。しかし、x値が0.5未満
になるとX線パターンはほぼ単一相ではあるものの、ピ
ーク強度が弱まり結晶性が低下する傾向があった。
Some Co · N with different Co / Ni ratios
As a result of an attempt to synthesize the i-composite hydroxide, the x value of the general formula LiNi X Co (1-X) O 2 indicating the composition of the active material was 0.5.
As described above, an X-ray diffraction pattern of this lithium-containing composite oxide was obtained in a single phase. However, when the x value is less than 0.5, the X-ray pattern is almost a single phase, but the peak intensity tends to be weakened and the crystallinity tends to be reduced.

【0020】そして、この正極活物質100重量部に対
してアセチレンブラックを5重量部加え十分に混合した
後、この混合物をN−メチルピロリジノン(NMP)の
溶媒に結着剤のポリフッ化ビニリデン(PVDF)を溶
解した液で練りペーストとした。なお、PVDFの量は
正極活物質100重量部に対して4重量部となるように
調整した。次いで、このペーストをアルミ箔の片面に塗
着した後、乾燥して圧延し極板とした。図1は本発明の
実施例に用いたコイン形リチウム二次電池の縦断面図で
ある。図1において、正極1は前記極板を円板状に打ち
抜いたもので、正極ケース2の内側に設置したものであ
る。また、負極3は金属リチウムをステンレス鋼製ネッ
ト5上に圧着したもので、封口板4の内側にスポット溶
接されている。正極1と負極3の間にはポリプロピレン
製セパレータ6が配されており電解液7が注液されてい
る。また、ポリプロピレン製ガスケット8を介して密封
した。なお、電解液には1モルの六フッ化リン酸リチウ
ム(LiPF6)を炭酸エチレン(EC)と炭酸ジエチ
ル(DEC)の混合溶媒中に溶かしたものを用いた。
Then, 5 parts by weight of acetylene black was added to 100 parts by weight of the positive electrode active material and mixed well, and the mixture was mixed with a solvent of N-methylpyrrolidinone (NMP) in polyvinylidene fluoride (PVDF) as a binder. ) Was dissolved into a kneaded paste. The amount of PVDF was adjusted to be 4 parts by weight based on 100 parts by weight of the positive electrode active material. Next, this paste was applied to one side of an aluminum foil, dried and rolled to obtain an electrode plate. FIG. 1 is a longitudinal sectional view of a coin-type lithium secondary battery used in an example of the present invention. In FIG. 1, a positive electrode 1 is obtained by punching the above-mentioned electrode plate into a disk shape, and is provided inside a positive electrode case 2. The negative electrode 3 is formed by pressing metallic lithium on a stainless steel net 5 and is spot-welded to the inside of the sealing plate 4. A separator 6 made of polypropylene is arranged between the positive electrode 1 and the negative electrode 3, and an electrolytic solution 7 is injected. In addition, sealing was performed via a polypropylene gasket 8. The electrolyte used was a solution prepared by dissolving 1 mol of lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC).

【0021】そして、一般式LiNiXCo(1-X)2
表わされる正極活物質のxの値を0,0.1,0.2,
0.3,0.4,0.5,0.6,0.7,0.8,
0.9,0.95,1.0とし、これらを用いて上記と
同様の方法でコイン形電池を作製した。なお、x=1.
0はCoを含まないLiNiO2である。ついで、これ
らの電池を用いて充放電サイクル寿命試験を行った。充
放電条件は、室温(20℃)で正極に対して0.5mA
/cm2の定電流で充放電し、充電終止電圧を4.3
V、放電終止電圧を3.0Vとして行った。
The value of x of the positive electrode active material represented by the general formula LiNi x Co (1-x) O 2 is set to 0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95, and 1.0 were used, and a coin-type battery was produced using these in the same manner as described above. Note that x = 1.
0 is LiNiO 2 containing no Co. Next, a charge / discharge cycle life test was performed using these batteries. The charge and discharge conditions are as follows: at room temperature (20 ° C.), 0.5 mA
/ Cm 2 at a constant current and charge end voltage of 4.3
V, and the discharge end voltage was 3.0 V.

【0022】図2は充放電サイクル試験の結果で、x=
0.1〜0.4の範囲の正極活物質は初期容量が120
mAh/gと小さくなった。
FIG. 2 shows the results of the charge / discharge cycle test, where x =
The positive electrode active material in the range of 0.1 to 0.4 has an initial capacity of 120.
mAh / g.

【0023】x=0.5〜0.95の範囲の正極活物質
は初期容量が140〜150mAh/gと大きく、かつ
サイクル劣化も小さく、50サイクル目で初期容量の9
0%を維持しているとともにそれ以後のサイクルの繰り
返しにおいても容量低下がほとんど見られなかった。と
ころが、x=1.0でCoを含まない正極活物質は初期
容量こそ150mAh/g以上のものが得られるものの
サイクル劣化は大きく、50サイクル目で初期容量の6
5%まで低下し、その後も劣化が進んだ。
The positive electrode active material in the range of x = 0.5 to 0.95 has a large initial capacity of 140 to 150 mAh / g and a small cycle deterioration.
The capacity was maintained at 0%, and the capacity was hardly reduced even when the cycle was repeated thereafter. However, the positive electrode active material which does not contain Co at x = 1.0 has an initial capacity of 150 mAh / g or more, but the cycle deterioration is large, and the initial capacity is 6 times at the 50th cycle.
It decreased to 5%, and then deteriorated.

【0024】以上の結果からも明らかなように、共沈に
より調整したNi・Co複合水酸化物を用いて合成した
活物質LiNiXCo(1-x)2におけるxの値は0.5
〜0.95の範囲のものが好ましい。
As is clear from the above results, the value of x in the active material LiNi X Co (1-x) O 2 synthesized using the Ni—Co composite hydroxide prepared by coprecipitation is 0.5
Those having a range of 0.95 to 0.95 are preferred.

【0025】次に、一般式LiNiXCo(1-X)2で表
わされる正極活物質のxの値が0.0〜0.95の範囲
のものについて焼成温度を変える検討を行った。1段目
の焼成である550℃20時間の工程は上記と同様に行
い、その後の焼成について焼成温度を550℃、600
℃、650℃、700℃、750℃、800℃、850
℃、900℃とした。そして、これらの正極活物質を用
いて上記と同様の電池を構成し、上記と同様の条件の充
放電サイクル試験を行った。図3にこの結果を示す。な
お、上記式中のx値は0.8とした。
Next, for the positive electrode active material represented by the general formula LiNi X Co (1-X) O 2 in which the value of x is in the range of 0.0 to 0.95, a study was made on changing the firing temperature. The first firing step at 550 ° C. for 20 hours is performed in the same manner as described above.
° C, 650 ° C, 700 ° C, 750 ° C, 800 ° C, 850
° C and 900 ° C. A battery similar to the above was constructed using these positive electrode active materials, and a charge / discharge cycle test was performed under the same conditions as described above. FIG. 3 shows the result. The x value in the above equation was set to 0.8.

【0026】図3からも明らかなように、焼成温度を6
00℃〜800℃として合成した活物質が初期容量、な
らびにサイクル特性も良好で、550℃のものは初期容
量、サイクル性とともに不十分で、850℃、900℃
のものは初期容量が若干小さくなり、サイクル劣化も大
きくなった。
As is apparent from FIG.
The active material synthesized at a temperature between 00 ° C and 800 ° C has good initial capacity and cycle characteristics, and the one with 550 ° C has insufficient initial capacity and cycleability, and 850 ° C and 900 ° C.
Those having a small initial capacity and a large cycle deterioration.

【0027】以上の結果より、正極活物質の焼成温度は
600℃〜800℃が良いが、800℃になるとサイク
ル劣化が若干大きくなり、初期容量も若干小さめにな
り、600℃になると初期容量は良好なもののサイクル
劣化が若干大きくなるので、650℃〜750℃が好ま
しい。
From the above results, the firing temperature of the positive electrode active material is preferably from 600 ° C. to 800 ° C., but at 800 ° C., the cycle deterioration is slightly increased, and the initial capacity is slightly reduced. 650 ° C. to 750 ° C. is preferable since the cycle deterioration is good but the cycle deterioration is slightly increased.

【0028】本実施例では、x値が0.8の場合のもの
について述べたが、x値が0.50〜0.95の範囲の
ものについてそれぞれ同様の焼成温度に関する検討を行
った結果、x=0.8の場合と同様の傾向を示す結果が
得られた。
In this embodiment, the case where the x value is 0.8 has been described. As a result of the same examination of the firing temperature for each of the cases where the x value is in the range of 0.50 to 0.95, A result showing the same tendency as in the case of x = 0.8 was obtained.

【0029】従来の混合式合成法を用いて、LiNi
0.8Co0.22の組成を有する正極活物質を合成した。
まず、水酸化ニッケルと水酸化リチウムと水酸化コバル
トとをNi:Co:Liの原子比が0.8:0.2:
1.0となるように秤量し、ボールミルで粉砕しながら
混合し、混合物をアルミナるつぼに入れ酸素中において
550℃、20時間で1段目の焼成をした後、750
℃、2時間で2段目の焼成をした。焼成後室温までゆっ
くりと冷却し、粉砕したものを正極活物質とした。この
活物質のX線回折パターンは単一相になったが、上記と
同様の充放電サイクル試験を行うとサイクル経過にとも
なう容量低下が大きかった。そこで、LiNi XCo
(1-X)2におけるxの値を0,0.1,0.2,0.
3,0.4,0.5,0.6,0.7,0.8,0.9
として正極活物質を合成し、上記と同様の充放電サイク
ル試験を行った。この結果を図4に示す。
Using a conventional mixed synthesis method, LiNi
0.8Co0.2OTwoA positive electrode active material having the following composition was synthesized.
First, nickel hydroxide, lithium hydroxide, and cobalt hydroxide
And the atomic ratio of Ni: Co: Li is 0.8: 0.2:
1.0 and crushed with a ball mill
Mix and place the mixture in an alumina crucible in oxygen
After the first firing at 550 ° C. for 20 hours, 750 ° C.
The second-stage baking was performed at 2 ° C. for 2 hours. After firing
The material was cooled and pulverized to obtain a positive electrode active material. this
The X-ray diffraction pattern of the active material became a single phase.
When a similar charge / discharge cycle test is performed,
There was a large drop in capacity. Therefore, LiNi XCo
(1-X)OTwoAt 0, 0.1, 0.2, 0.
3,0.4,0.5,0.6,0.7,0.8,0.9
A positive electrode active material was synthesized as
Test. The result is shown in FIG.

【0030】図4に示したように、xの値が0.5〜
0.9の範囲であっても従来の方法により合成した正極
活物質ではサイクルの経過に伴う容量低下が本発明のも
のより大きかった。
As shown in FIG. 4, the value of x is 0.5 to
Even in the range of 0.9, in the cathode active material synthesized by the conventional method, the capacity decrease with the passage of the cycle was larger than that of the present invention.

【0031】[0031]

【発明の効果】以上のように本発明のリチウム二次電池
用正極活物質の製造法では、ニッケル塩とコバルト塩と
の混合溶液にアルカリ溶液を加えてニッケルとコバルト
の水酸化物を共沈させることによりニッケルとコバルト
の複合水酸化物を得ているので、結晶構造がNiの一部
をCoで確実に置換した固溶体レベルに至っており、X
線回折でも単一相になっていて結晶完成度が極めて高い
ものとなっている。そして、このNi・Co複合水酸化
物にLi塩を加えて焼成すると、結晶内でLiが移動し
易い結晶構造を有するリチウム含有複合酸化物を得るこ
とができ、容量が大きくサイクル特性に優れた正極活物
質を得ることができる。
As described above, in the method for producing a cathode active material for a lithium secondary battery according to the present invention, an alkaline solution is added to a mixed solution of a nickel salt and a cobalt salt to coprecipitate a hydroxide of nickel and cobalt. Thus, a composite hydroxide of nickel and cobalt is obtained, so that the crystal structure reaches a solid solution level in which a part of Ni is surely replaced with Co.
Even in the line diffraction, it has a single phase and the crystal perfection is extremely high. When a Li salt is added to the Ni / Co composite hydroxide and fired, a lithium-containing composite oxide having a crystal structure in which Li easily moves in the crystal can be obtained, and the capacity is large and the cycle characteristics are excellent. A positive electrode active material can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に用いたコイン形リチウム二次電池の
断面図
FIG. 1 is a cross-sectional view of a coin-type lithium secondary battery used in this example.

【図2】x値を変化させたときの正極活物質の容量とサ
イクル数との関係を示す図
FIG. 2 is a diagram showing the relationship between the capacity of the positive electrode active material and the number of cycles when the value x is changed.

【図3】焼成温度を変化させたときの正極活物質の容量
とサイクル数との関係を示す図
FIG. 3 is a diagram showing the relationship between the capacity of the positive electrode active material and the number of cycles when the firing temperature is changed.

【図4】従来の製造法により合成した正極活物質の容量
とサイクル数との関係を示す図
FIG. 4 is a diagram showing the relationship between the capacity of a positive electrode active material synthesized by a conventional manufacturing method and the number of cycles.

【符号の説明】[Explanation of symbols]

1 正極 2 正極ケース 3 負極 4 封口板 5 ステンレス鋼製ネット 6 セパレータ 7 電解液 8 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode case 3 Negative electrode 4 Sealing plate 5 Stainless steel net 6 Separator 7 Electrolyte 8 Gasket

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−294364(JP,A) 特開 平5−290845(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 4/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-294364 (JP, A) JP-A-5-290845 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 4/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムとニッケルおよびコバルトを含
むリチウム含有複合酸化物で、一般式LiNiXCo
(1-x)2で表わされる式中のx値を0.95≧x≧0.
50とする正極活物質の製造方法であり、コバルト塩と
ニッケル塩との混合水溶液にアルカリ溶液を加えてコバ
ルトとニッケルの水酸化物を共沈させることによってコ
バルトとニッケルの複合水酸化物を得た後、水酸化リチ
ウムなどのリチウム化合物と混合し、この混合物を焼成
することを特徴とするリチウム二次電池用正極活物質の
製造法。
1. A lithium-containing composite oxide containing lithium, nickel and cobalt, having the general formula LiNi x Co
The value of x in the expression represented by (1-x) O 2 is 0.95 ≧ x ≧ 0.
A method for producing a positive electrode active material, wherein a composite hydroxide of cobalt and nickel is obtained by adding an alkaline solution to a mixed aqueous solution of a cobalt salt and a nickel salt and coprecipitating a hydroxide of cobalt and nickel. And then mixing the mixture with a lithium compound such as lithium hydroxide and calcining the mixture to produce a positive electrode active material for a lithium secondary battery.
【請求項2】 コバルトとニッケルの複合水酸化物とリ
チウム化合物との混合物を、600℃以上800℃以下
で焼成する請求項1記載のリチウム二次電池用正極活物
質の製造法。
2. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein a mixture of a composite hydroxide of cobalt and nickel and a lithium compound is calcined at a temperature of 600 ° C. or more and 800 ° C. or less.
JP04290095A 1994-12-16 1995-03-02 Manufacturing method of positive electrode active material for lithium secondary battery Expired - Fee Related JP3232943B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04290095A JP3232943B2 (en) 1994-12-16 1995-03-02 Manufacturing method of positive electrode active material for lithium secondary battery
US08/573,505 US5626635A (en) 1994-12-16 1995-12-15 Processes for making positive active material for lithium secondary batteries and secondary batteries therefor
DE69502690T DE69502690T2 (en) 1994-12-16 1995-12-15 Process for the production of positive active material for lithium secondary batteries and secondary cells containing them
EP95119801A EP0720247B1 (en) 1994-12-16 1995-12-15 Manufacturing processes of positive active materials for lithium secondary batteries and lithium secondary batteries comprising the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-313141 1994-12-16
JP31314194 1994-12-16
JP04290095A JP3232943B2 (en) 1994-12-16 1995-03-02 Manufacturing method of positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08222220A JPH08222220A (en) 1996-08-30
JP3232943B2 true JP3232943B2 (en) 2001-11-26

Family

ID=26382644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04290095A Expired - Fee Related JP3232943B2 (en) 1994-12-16 1995-03-02 Manufacturing method of positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3232943B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207208A (en) * 1996-11-07 1999-02-03 松下电器产业株式会社 Method of manufacturing positive active material for nonaqueous electrolyte secondary cells
KR100222914B1 (en) * 1997-01-15 1999-10-01 윤덕용 Method of manufacturing electrode for lithium secondary cell using precipitation method
KR100434547B1 (en) * 1997-05-12 2004-09-18 삼성전자주식회사 Lithium metal oxide cathode and lithium secondary battery using the same
JP3045998B2 (en) 1997-05-15 2000-05-29 エフエムシー・コーポレイション Interlayer compound and method for producing the same
KR19990026736A (en) * 1997-09-26 1999-04-15 손욱 Cathode active materials for lithium batteries and batteries made therefrom
AU1720000A (en) 1998-11-13 2000-06-05 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
KR100353620B1 (en) * 1999-11-03 2002-09-26 한국과학기술원 Modified lithium nickel oxide compounds for positive electrodes of the secondary batteries
CN1243664C (en) 1999-12-10 2006-03-01 Fmc公司 Lithium cobalt oxides and methods of making same
JP4374930B2 (en) * 2003-07-04 2009-12-02 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US9190647B2 (en) 2005-03-17 2015-11-17 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery with high temperature and storage characteristics
JP5515435B2 (en) 2009-06-04 2014-06-11 住友化学株式会社 Raw material powder for lithium nickel composite metal oxide
US9822015B2 (en) 2009-12-07 2017-11-21 Sumitomo Chemical Company, Limited Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
JP7135433B2 (en) * 2017-05-19 2022-09-13 住友金属鉱山株式会社 Method for producing lithium-nickel composite oxide

Also Published As

Publication number Publication date
JPH08222220A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
US20090127520A1 (en) Lithium metal oxide compositions
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2000133262A (en) Nonaqueous electrolyte secondary battery
JPH11307094A (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JP2002289261A (en) Non-aqueous electrolyte secondary battery
EP0914683B1 (en) Positive electrode for lithium battery
US6420069B2 (en) Positive electrode for lithium battery
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
JP3232943B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JP2003238165A (en) Lithium-containing compound oxide and its production method
EP0734085B1 (en) Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP2001185145A (en) Method of manufacturing positive electrode material for lithium secondary battery
JP3185609B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP2001302248A (en) Method for producing spinel-based manganese oxide for lithium secondary battery
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP3331373B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the positive electrode material
JP3487941B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte battery
JP2000154022A (en) Lithium manganese double oxide, its production and its use

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees