JPH07326356A - Lithium transition metal composite oxide powder and manufacture thereof, lithium secondary battery positive electrode and lithium secondary battery - Google Patents

Lithium transition metal composite oxide powder and manufacture thereof, lithium secondary battery positive electrode and lithium secondary battery

Info

Publication number
JPH07326356A
JPH07326356A JP6099786A JP9978694A JPH07326356A JP H07326356 A JPH07326356 A JP H07326356A JP 6099786 A JP6099786 A JP 6099786A JP 9978694 A JP9978694 A JP 9978694A JP H07326356 A JPH07326356 A JP H07326356A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
transition metal
oxide powder
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6099786A
Other languages
Japanese (ja)
Other versions
JP3687106B2 (en
Inventor
Kenji Nakane
堅次 中根
Chikashi Akamatsu
哉志 赤松
Hironori Nishida
裕紀 西田
Tomoari Sato
朋有 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP09978694A priority Critical patent/JP3687106B2/en
Publication of JPH07326356A publication Critical patent/JPH07326356A/en
Application granted granted Critical
Publication of JP3687106B2 publication Critical patent/JP3687106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide composite oxide powder for a lithium secondary battery positive electrode having a steep grain size distribution and displaying an excellent discharge characteristic as well as a method for manufacturing the powder, and also provide a positive electrode for a lithium secondary battery as well as a lithium secondary battery. CONSTITUTION:This lithium transition metal composite oxide powder for the positive electrode of a lithium ion secondary battery is obtained by adding a compound giving a liquid phase at a baking temperature to a lithium compound and a transition metal compound, and, then, applying a baking process thereto. In this case, when 10% grain sizes available by totalling the measurement results of a grain size distribution from the side of fine grains on a volume basis is expressed as D10, and 90% grain sizes as D90, the ratio of D90 to D10 is kept equal to or less than six.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム遷移金属複合酸
化物粉末とその製造方法およびそれを含むリチウム二次
電池正極とリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium transition metal composite oxide powder, a method for producing the same, a lithium secondary battery positive electrode including the same, and a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、VTR、携帯電話、ラップトップ
パソコン等にみられるように、電子機器のポータブル
化、コードレス化が急速に進行している。現在これらの
駆動用電源の主流はニッケルカドミウム電池であるが、
さらなる高機能化に伴い、より小型で軽量、大容量を実
現できるリチウム二次電池に対する期待が高まってい
る。該リチウム二次電池の正極活物質にはリチウムイオ
ンを電気化学的にドープ・脱ドープすることが可能であ
るコバルト酸リチウム、ニッケル酸リチウム等のリチウ
ムと遷移金属との複合酸化物を用いたものが一般的であ
る。
2. Description of the Related Art Recently, as seen in VTRs, mobile phones, laptop personal computers, etc., portable electronic devices and cordless electronic devices have been rapidly developed. Currently, the mainstream of these driving power supplies is nickel-cadmium batteries,
Along with higher functionality, expectations for lithium secondary batteries, which are smaller, lighter, and have higher capacity, are increasing. The positive electrode active material of the lithium secondary battery uses a composite oxide of lithium and a transition metal such as lithium cobalt oxide and lithium nickel oxide, which can be electrochemically doped and undoped with lithium ions. Is common.

【0003】通常、リチウムと遷移金属との複合酸化物
は、原料となる炭酸リチウム等のリチウム化合物と例え
ば炭酸コバルトのような遷移金属の化合物とを混合し、
大気中あるいは酸素中等の雰囲気で焼成する方法が広く
行われている。焼成温度については、それぞれの遷移金
属に応じて異なっているが、充放電特性を考慮した場
合、いずれも比較的狭い温度領域が選択される。このよ
うな製法では出発物質が熱分解するときに大きな体積収
縮を伴うことから焼成むらを生じやすく、その結果複合
酸化物粒子の部分的な焼結を進行させてしまい、得られ
る粉末は焼結の程度が異なったものの集合体となってし
まう。一般に、複合酸化物粉末をリチウム二次電池用正
極活物質として用いる場合、導電材、バインダーととも
に金属箔等の集電体上に薄く塗着してシート化する。こ
のとき粒径の不揃いの程度が大きい複合酸化物粉末、す
なわち粒度分布が急峻でない複合酸化物粉末を用いる
と、導電材やバインダーとの混合状態が不均一になって
過電圧が増大したり、充放電に伴う体積の膨張収縮によ
り活物質が脱落しやすくなるといった問題を生ずる。
Usually, a composite oxide of lithium and a transition metal is prepared by mixing a lithium compound such as lithium carbonate as a raw material with a transition metal compound such as cobalt carbonate,
A method of firing in an atmosphere such as air or oxygen is widely used. The firing temperature varies depending on each transition metal, but in consideration of charge / discharge characteristics, a relatively narrow temperature range is selected in each case. In such a manufacturing method, since the starting material undergoes large volume contraction when thermally decomposed, uneven firing is likely to occur, and as a result, partial sintering of the composite oxide particles proceeds, and the obtained powder is sintered. Will be a collection of things with different degrees. Generally, when the composite oxide powder is used as a positive electrode active material for a lithium secondary battery, it is thinly applied together with a conductive material and a binder onto a current collector such as a metal foil to form a sheet. At this time, if a complex oxide powder having a large degree of irregularity in particle size, that is, a complex oxide powder having a steep particle size distribution is used, the mixed state with the conductive material and the binder becomes non-uniform, and overvoltage increases, and charging is increased. There is a problem that the active material is likely to fall off due to the expansion and contraction of the volume accompanying the discharge.

【0004】したがって、従来の製法では部分的な焼結
で生じた粗大な凝集粒子を後工程で粉砕する必要があっ
た。しかし粉砕では粒度分布の制御が難しく、また粉砕
媒体からの不純物の混入や、粉砕時の衝撃で導入された
結晶の歪みや粒子形状が粉砕によって不定形になること
に起因する性能低下が生じるという問題が残った。粉砕
によらずに急峻な粒度分布を達成する手段として分級が
ある。しかしこの操作では製造収率を悪化させてしまう
ので、工業的に不利である。以上のような問題点を解決
するために特殊な出発原料を用いる試みがなされてき
た。例えば、特開平5−54888号公報にはコバルト
酸リチウムのコバルト源としてほぼ球状もしくは長円球
状で平均粒子径が1μm 以下の一次粒子が複数個連接し
た凝集塊からなるコバルト酸化物を用いて合成すること
により、粒径が均一でかつ細かく粒子形状の揃ったコバ
ルト酸リチウムを得る方法が開示されている。
Therefore, in the conventional manufacturing method, it was necessary to grind coarse agglomerated particles produced by partial sintering in a subsequent step. However, it is difficult to control the particle size distribution by pulverization, and there is a decrease in performance due to the inclusion of impurities from the pulverizing medium, the distortion of crystals introduced by the impact during pulverization, and the irregular shape of the particles caused by pulverization. The problem remained. Classification is a means for achieving a sharp particle size distribution without using crushing. However, this operation deteriorates the production yield and is industrially disadvantageous. Attempts have been made to use special starting materials in order to solve the above problems. For example, in JP-A-5-54888, a cobalt source of lithium cobalt oxide is synthesized by using a cobalt oxide composed of an agglomerate of a plurality of primary particles having a substantially spherical or ellipsoidal shape and having an average particle size of 1 μm or less. By doing so, a method of obtaining lithium cobalt oxide having a uniform particle size and a fine particle shape is disclosed.

【0005】また、特開平5−290832号公報には
Co、Ni、Fe、Mnの中から選ばれる1種ないし数
種の金属またはそれらの合金粉末の粒径を0.2〜9μ
m に揃え、これをリチウム化合物と加熱処理することに
より、粉砕工程を付加することなしに正極活物質の粒度
分布を一定にする方法が開示されている。しかしなが
ら、これらはいずれも特殊な方法で調製された原料を使
用せねばならず、工業的に簡便で効率的な方法ではなか
った。
Further, in Japanese Patent Laid-Open No. 5-29083, the particle size of one or several metals selected from Co, Ni, Fe and Mn or their alloy powders is 0.2 to 9 μm.
A method is disclosed in which the particle size distribution of the positive electrode active material is made constant without adding a pulverizing step by aligning the particles with m and heat-treating this with a lithium compound. However, these all require the use of raw materials prepared by a special method, and are not industrially simple and efficient methods.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、急峻
な粒度分布を有し、優れた充放電特性を示すリチウム二
次電池正極用複合酸化物粉末とその製造方法およびリチ
ウム二次電池正極とリチウム二次電池を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite oxide powder for a lithium secondary battery positive electrode having a sharp particle size distribution and exhibiting excellent charge / discharge characteristics, a method for producing the same, and a lithium secondary battery positive electrode. And to provide a lithium secondary battery.

【0007】[0007]

【課題を解決するための手段】このような事情をみて、
本発明者らは鋭意検討をおこなった結果、原料となるリ
チウム化合物と遷移金属化合物に焼成温度で液相となる
第三成分を添加して焼成することにより、粉砕や分級工
程を付加することなしに、急峻な粒度分布を有し、リチ
ウム二次電池正極として使用した際に優れた充放電特性
を示す複合酸化物粉末が得られることを見出し、本発明
を完成するに至った。
[Means for Solving the Problems] In view of such circumstances,
As a result of intensive studies by the present inventors, the lithium compound and the transition metal compound, which are the raw materials, are added with the third component that is in the liquid phase at the firing temperature and fired without adding a pulverization or classification step. Furthermore, they have found that a complex oxide powder having a sharp particle size distribution and exhibiting excellent charge / discharge characteristics when used as a positive electrode for a lithium secondary battery is obtained, and completed the present invention.

【0008】すなわち、本発明は次に記す発明からな
る。 (I)リチウム化合物と遷移金属化合物とに、焼成温度
で液相となる化合物を添加し、焼成して得られることを
特徴とする、粒度分布測定結果を体積基準で微粒側から
積算した場合の10%粒子径をD10、90%粒子径をD
90とした場合、比D90/D10の値が6以下である、リチ
ウム二次電池正極用リチウム遷移金属複合酸化物粉末。 (II)焼成温度で液相となる化合物がハロゲン化リチ
ウムであることを特徴とする(I)記載のリチウム遷移
金属複合酸化物粉末。 (III)リチウム化合物と遷移金属化合物とに、焼成
温度で液相となる化合物を添加し、焼成することを特徴
とする、粒度分布測定結果を体積基準で微粒側から積算
した場合の10%粒子径をD10、90%粒子径をD90
した場合、比D90/D10の値が6以下である、リチウム
二次電池正極用リチウム遷移金属複合酸化物粉末の製造
方法。 (IV)焼成温度で液相となる化合物がハロゲン化リチ
ウムであることを特徴とする(III)記載のリチウム
遷移金属複合酸化物粉末の製造方法。 (V)前記(I)または(II)記載のリチウム遷移金
属複合酸化物粉末を含むリチウム二次電池正極。 (VI)リチウムイオンをドープ・脱ドープ可能な材料
を活物質として含む正極と、リチウム金属、リチウム合
金、またはリチウムイオンをドープ・脱ドープ可能な材
料からなる負極と、液体または固体の電解質とを有する
リチウム二次電池において、該正極の活物質として
(I)または(II)記載のリチウム遷移金属複合酸化
物粉末を含むことを特徴とするリチウム二次電池。
That is, the present invention comprises the following inventions. (I) A lithium compound and a transition metal compound, which are obtained by adding a compound that is in a liquid phase at a firing temperature and firing the mixture, wherein the particle size distribution measurement results are integrated from the fine particle side on a volume basis. 10% particle size is D 10 , 90% particle size is D
When 90 , the ratio of D 90 / D 10 is 6 or less, and the lithium transition metal composite oxide powder for a lithium secondary battery positive electrode. (II) The lithium-transition metal composite oxide powder according to (I), wherein the compound that becomes a liquid phase at the firing temperature is lithium halide. (III) A 10% particle obtained by adding a compound that is in a liquid phase at a firing temperature to a lithium compound and a transition metal compound and firing the mixture, where the particle size distribution measurement results are integrated from the fine grain side on a volume basis. If D 10, 90% particle diameter of the diameter is D 90, the value of the ratio D 90 / D 10 is 6 or less, the manufacturing method of a lithium secondary battery positive electrode for a lithium transition metal composite oxide powder. (IV) The method for producing a lithium-transition metal composite oxide powder according to (III), wherein the compound that becomes a liquid phase at the firing temperature is lithium halide. (V) A lithium secondary battery positive electrode containing the lithium-transition metal composite oxide powder according to (I) or (II). (VI) A positive electrode containing a material capable of doping and dedoping lithium ions as an active material, a negative electrode made of lithium metal, a lithium alloy, or a material capable of doping and dedoping lithium ions, and a liquid or solid electrolyte. A lithium secondary battery having the lithium secondary battery including the lithium transition metal composite oxide powder according to (I) or (II) as an active material of the positive electrode.

【0009】以下、本発明をさらに詳細に説明する。本
発明のリチウム二次電池正極用リチウム遷移金属複合酸
化物粉末(以下、本発明の複合酸化物粉末ということが
ある。)は、リチウムと遷移金属との複合酸化物粉末で
あり、該遷移金属としてはNi、Co、FeまたはMn
から選ばれた少なくとも1種が好ましく、Ni、Coが
さらに好ましい。ただし、Feについては、他の遷移金
属とともに用いることが好ましい。本発明の複合酸化物
粉末は、該粉末の粒度分布測定結果を体積基準で微粒側
から積算した場合の10%粒子径をD10、90%粒子径
をD90とした場合、比D90/D10の値が6以下のもので
ある。該比D90/D10が6を超えると、リチウムイオン
二次電池正極を製造する際に、導電材やバインダーとの
混合状態が不均一になって過電圧が増大したり、充放電
に伴う体積の膨張収縮により活物質が脱落しやすくなっ
たりするので好ましくない。ここで、本発明における粉
末の粒度分布測定方法は、レーザー散乱式粒度分布測定
方法をいう。本発明におけるメディアン径も該測定方法
による。
The present invention will be described in more detail below. The lithium transition metal composite oxide powder for a lithium secondary battery positive electrode of the present invention (hereinafter sometimes referred to as the composite oxide powder of the present invention) is a composite oxide powder of lithium and a transition metal. As Ni, Co, Fe or Mn
At least one selected from the above is preferable, and Ni and Co are more preferable. However, it is preferable to use Fe together with other transition metals. The composite oxide powder of the present invention has a ratio D 90 / when the 10% particle size is D 10 and the 90% particle size is D 90 when the particle size distribution measurement results of the powder are integrated from the fine particle side on a volume basis. The value of D 10 is 6 or less. If the ratio D 90 / D 10 exceeds 6, the lithium ion secondary battery positive electrode may have a non-uniform mixed state with a conductive material or a binder, resulting in increased overvoltage or volume accompanying charge / discharge. The active material is likely to fall off due to the expansion and contraction of, which is not preferable. Here, the powder particle size distribution measuring method in the present invention means a laser scattering type particle size distribution measuring method. The median diameter in the present invention also depends on the measuring method.

【0010】本発明の複合酸化物粉末の製造方法につい
て説明する。原料としては、リチウム化合物と遷移金属
化合物と焼成温度で液相となる化合物(以下、第三成分
と呼ぶことがある。)を用いる。これらの原料を混合
し、リチウム化合物と遷移金属化合物との組み合わせに
応じて適切な温度で公知の方法により焼成する。原料と
なるリチウム化合物としては、炭酸リチウム、硝酸リチ
ウム、水酸化リチウム等が挙げられる。これらは、市販
品を特に前処理することなく用いることができる。同様
に原料となる遷移金属化合物としては、遷移金属、好ま
しくはNi、Co、FeまたはMnから選ばれた少なく
とも1種の遷移金属の炭酸塩、硝酸塩、水酸化物、酸化
物等またはこれらの混合物が挙げられる。これらは、市
販品を特に前処理することなく使用できる。それぞれ高
純度であることが好ましい。
A method for producing the composite oxide powder of the present invention will be described. As the raw material, a lithium compound, a transition metal compound, and a compound that becomes a liquid phase at the firing temperature (hereinafter, may be referred to as a third component) are used. These raw materials are mixed and fired by a known method at an appropriate temperature depending on the combination of the lithium compound and the transition metal compound. Examples of the lithium compound as a raw material include lithium carbonate, lithium nitrate, lithium hydroxide and the like. These can be used as commercial products without any particular pretreatment. Similarly, the transition metal compound as a raw material is a transition metal, preferably a carbonate, nitrate, hydroxide, oxide or the like of at least one transition metal selected from Ni, Co, Fe or Mn, or a mixture thereof. Is mentioned. These can be used as commercial products without any special pretreatment. It is preferable that each has high purity.

【0011】第三成分は、リチウム化合物と遷移金属の
化合物との組み合わせに応じて適切な焼成温度が異なる
ので、それぞれ個別に選択される。例えば、該遷移金属
がCoの場合には600℃以上1000℃以下が好まし
く、Niの場合には350℃以上800℃以下が好まし
く、Mnの場合には350℃以上900℃以下がそれぞ
れ好ましい。該焼成温度における第三成分の蒸気圧が高
いと焼成中に揮散してしまい充分な効果が得られないこ
とがあるため、該焼成温度における蒸気圧が低いものが
好ましい。ハロゲン化リチウムが第三成分として好まし
く、塩化リチウムが特に好ましい。第三成分の役割は未
だ解明されていないが、焼成の間ある量の液相が維持さ
れることで均一な焼成環境を提供し、焼成むらの発生を
防いでいるものと考えられる。
The third component is selected individually because the appropriate firing temperature varies depending on the combination of the lithium compound and the transition metal compound. For example, when the transition metal is Co, 600 ° C. or more and 1000 ° C. or less is preferable, when Ni is 350 ° C. or more and 800 ° C. or less, and when Mn is 350 ° C. or more and 900 ° C. or less, respectively. If the vapor pressure of the third component is high at the firing temperature, it may be volatilized during firing and a sufficient effect may not be obtained. Therefore, the vapor pressure at the firing temperature is preferably low. Lithium halide is preferred as the third component, and lithium chloride is particularly preferred. Although the role of the third component has not been clarified yet, it is considered that a certain amount of liquid phase is maintained during firing to provide a uniform firing environment and prevent uneven firing.

【0012】該第三成分の添加量については充分な量の
液相が確保される量であればよく、原料となるリチウム
化合物に対して1モル%以上が好ましいが、あまりに多
く添加すると充放電特性に不利であるので、原料となる
リチウム化合物に対してモル比で1/3以下であること
が好ましく、1/4以下であることがさらに好ましい。
水等の溶媒に溶解させて添加する等、より均一に添加で
きる方法を採用すれば、さらに添加量を少量にすること
ができるので好ましい。
The amount of the third component to be added may be such that a sufficient amount of liquid phase can be secured, and it is preferably 1 mol% or more with respect to the lithium compound as a raw material. Since it is disadvantageous in characteristics, the molar ratio to the lithium compound as a raw material is preferably 1/3 or less, more preferably 1/4 or less.
It is preferable to adopt a method capable of adding more uniformly, such as adding by dissolving in a solvent such as water, since the addition amount can be further reduced.

【0013】焼成した後に、残存する焼成温度で液相と
なる化合物を除くために溶媒で洗浄することが好まし
い。溶媒としては、メタノール、エタノール、アセト
ン、エーテルなどが挙げられる。また、洗浄工程におけ
る効率を高めるために、通常では凝集粒を壊すに至らな
い程度の弱い力による解砕を洗浄前の段階で行うことも
できる。
After firing, it is preferable to wash with a solvent in order to remove the compound which becomes a liquid phase at the remaining firing temperature. Examples of the solvent include methanol, ethanol, acetone, ether and the like. Further, in order to improve the efficiency in the washing step, crushing with a weak force that does not usually break the agglomerated particles can be performed before the washing.

【0014】次に、本発明のリチウム二次電池について
詳細に説明する。本発明のリチウム二次電池の正極は、
前述した本発明のリチウム遷移金属複合酸化物粉末を活
物質として含むものである。該正極は、具体的には、該
リチウム遷移金属複合酸化物粉末、導電材としての炭素
質材料、バインダーとしての熱可塑性樹脂などを含有す
るものが挙げられる。炭素質材料としては、天然黒鉛、
人造黒鉛、コークス類などが挙げられる。熱可塑性樹脂
としては、ポリフッ化ビニリデン、ポリテトラフルオロ
エチレン、ポリエチレン、ポリプロピレンなどが挙げら
れる。
Next, the lithium secondary battery of the present invention will be described in detail. The positive electrode of the lithium secondary battery of the present invention is
It contains the above-mentioned lithium-transition metal composite oxide powder of the present invention as an active material. Specific examples of the positive electrode include those containing the lithium transition metal composite oxide powder, a carbonaceous material as a conductive material, and a thermoplastic resin as a binder. As the carbonaceous material, natural graphite,
Examples include artificial graphite and cokes. Examples of the thermoplastic resin include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene and the like.

【0015】本発明のリチウム二次電池の負極として
は、リチウム金属、リチウム合金、またはリチウムイオ
ンをドープ・脱ドープ可能な材料が用いられる。リチウ
ムイオンをドープ・脱ドープ可能な材料としては、天然
黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分
解炭素類、炭素繊維、有機高分子化合物焼成体などの炭
素質材料が挙げられる。炭素質材料の形状は薄片状、球
状、繊維状、または微粉末の凝集体などのいずれでもよ
く、必要に応じてバインダーとしての熱可塑性樹脂を添
加することができる。熱可塑性樹脂としては、ポリフッ
化ビニリデン、ポリエチレン、ポリプロピレンなどが挙
げられる。
For the negative electrode of the lithium secondary battery of the present invention, a lithium metal, a lithium alloy, or a material capable of being doped / dedoped with lithium ions is used. Examples of the material capable of doping / dedoping with lithium ions include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies. The carbonaceous material may be in the form of flakes, spheres, fibers, or an aggregate of fine powder, and a thermoplastic resin as a binder may be added if necessary. Examples of the thermoplastic resin include polyvinylidene fluoride, polyethylene, polypropylene and the like.

【0016】本発明のリチウム二次電池の電解質として
は、リチウム塩を有機溶媒に溶解させた非水電解質溶
液、または固体電解質のいずれかから選ばれる公知のも
のが用いられる。リチウム塩としては、LiClO4
LiPF6 、LiAsF6 、LiSbF6 、LiB
4 、LiCF3 SO3 、LiN(CF3 SO2 2
Li 2 10Cl10、低級脂肪族カルボン酸リチウム塩、
LiAlCl4 などのうち一種あるいは二種以上の混合
物が挙げられる。
As the electrolyte of the lithium secondary battery of the present invention
Is a non-aqueous electrolyte solution prepared by dissolving a lithium salt in an organic solvent.
A well-known material selected from either liquid or solid electrolytes
Is used. As the lithium salt, LiClOFour,
LiPF6, LiAsF6, LiSbF6, LiB
FFour, LiCF3SO3, LiN (CF3SO2)2,
Li 2BTenClTen, Lower aliphatic carboxylic acid lithium salt,
LiAlClFourOr a mixture of two or more
Things can be mentioned.

【0017】有機溶媒としてはプロピレンカーボネー
ト、エチレンカーボネート、ジメチルカーボネート、ジ
エチルカーボネートなどのカーボネート類;1,2−ジ
メトキシエタン、1,3−ジメトキシプロパン、テトラ
ヒドロフラン、2−メチルテトラヒドロフランなどのエ
ーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクト
ンなどのエステル類;アセトニトリル、ブチロニトリル
などのニトリル類;N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミドなどのアミド類;3−メ
チル−2−オキサゾリドンなどのカーバメート類;スル
ホラン、ジメチルスルホキシド、1,3−プロパンサル
トンなどの含硫黄化合物が挙げられるが、通常はこれら
のうちの二種以上を混合して用いる。中でもカーボネー
ト類を含む混合溶媒が好ましく、環状カーボネートと非
環状カーボネート、または環状カーボネートとエーテル
類の混合溶媒がさらに好ましい。
As the organic solvent, carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate and diethyl carbonate; ethers such as 1,2-dimethoxyethane, 1,3-dimethoxypropane, tetrahydrofuran and 2-methyltetrahydrofuran; methyl formate , Esters such as methyl acetate and γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide,
Amides such as N, N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethylsulfoxide, and 1,3-propanesultone, but of these, usually Two or more of these are mixed and used. Among them, a mixed solvent containing a carbonate is preferable, and a mixed solvent of a cyclic carbonate and an acyclic carbonate, or a mixed solvent of a cyclic carbonate and an ether is more preferable.

【0018】固体電解質としてはポリエチレンオキサイ
ド系、ポリオルガノシロキサン鎖もしくはポリオキシア
ルキレン鎖の少なくとも一種以上を含む高分子化合物な
どの高分子電解質、またはLi2 S−SiS2 、Li2
S−GeS2 、Li2 S−P 2 5 、Li2 S−B2
3 などの硫化物系電解質、またはLi2 S−SiS2
Li3 PO4 、Li2 S−SiS2 −Li2 SO4 など
の硫化物を含む無機化合物系電解質が挙げられる。ま
た、高分子に非水電解質溶液を保持させた、いわゆるゲ
ルタイプのものを用いることもできる。なお、本発明の
リチウム二次電池の形状は特に限定されず、ペーパー
型、コイン型、円筒型、角型などのいずれであってもよ
い。
Polyethylene oxide as the solid electrolyte
De-based, polyorganosiloxane chain or polyoxya
A polymer compound containing at least one or more alkylene chains
Which polyelectrolyte, or Li2S-SiS2, Li2
S-GeS2, Li2SP 2SFive, Li2S-B2S
3Sulfide-based electrolyte such as, or Li2S-SiS2
Li3POFour, Li2S-SiS2-Li2SOFourSuch
Inorganic compound-based electrolytes containing sulfides of Well
In addition, a so-called gel in which a non-aqueous electrolyte solution is held in a polymer is used.
It is also possible to use the red type. In addition, according to the present invention
The shape of the lithium secondary battery is not particularly limited.
Type, coin type, cylindrical type, square type, etc.
Yes.

【0019】[0019]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明はこれらによって何ら限定されるもの
ではない。なお、特にことわらない限り、充放電試験用
の電極と平板型電池の作製は下記の方法によった。リチ
ウム遷移金属複合酸化物からなる活物質と導電材アセチ
レンブラックの混合物に、バインダーとしてポリフッ化
ビニリデン(以下、PVDFということがある。)の1
−メチル−2−ピロリドン溶液(以下、NMPというこ
とがある。)を、活物質:導電材:バインダー=91:
6:3(重量比)の組成となるように加えて混練するこ
とによりペーストとし、集電体となる#200ステンレ
スメッシュに該ペーストを塗布して150℃で8時間真
空乾燥を行い、電極を得た。このようにして得た電極
に、電解質溶液としてプロピレンカーボネート(以下、
PCということがある。)と1,2−ジメトキシエタン
(以下、DMEということがある。)の1:1混合液に
過塩素酸リチウムを1モル/リットルとなるように溶解
したものを、セパレーターとしてポリプロピレン多孔質
膜を、また対極(負極)として金属リチウムを組み合わ
せて平板型電池を作製した。
EXAMPLES The present invention will now be described in more detail by way of examples, which should not be construed as limiting the invention thereto. Unless otherwise specified, the electrodes for charge / discharge test and the flat battery were manufactured by the following method. 1 of polyvinylidene fluoride (hereinafter sometimes referred to as PVDF) as a binder is added to a mixture of an active material composed of a lithium transition metal composite oxide and a conductive material acetylene black.
-Methyl-2-pyrrolidone solution (hereinafter, sometimes referred to as NMP), active material: conductive material: binder = 91:
A paste was prepared by adding and kneading the mixture to give a composition of 6: 3 (weight ratio), applying the paste to # 200 stainless steel mesh serving as a current collector, and vacuum drying at 150 ° C. for 8 hours to form an electrode. Obtained. The electrode thus obtained, as an electrolyte solution, propylene carbonate (hereinafter,
Sometimes called a PC. ) And 1,2-dimethoxyethane (hereinafter sometimes referred to as DME) in a 1: 1 mixture of lithium perchlorate at a concentration of 1 mol / liter, and a polypropylene porous membrane as a separator. Further, a plate type battery was produced by combining metallic lithium as a counter electrode (negative electrode).

【0020】実施例1 硝酸リチウム(和光純薬工業株式会社製、試薬特級グレ
ード)1.815g、炭酸ニッケル〔NiCO3 ・2N
i( OH)2・4H2 O:和光純薬工業株式会社製、試薬
グレード〕3.136g、塩化リチウム(和光純薬工業
株式会社製、試薬特級グレード)0.223gをめのう
製乳鉢でよく混合した後、アルミナ炉心管を使用した管
状炉に入れ、酸素流量50cm3 /minの酸素気流中
において700℃で15時間焼成した。硝酸リチウムの
塩化リチウムに対するモル比は1:0.2である。室温
まで冷却した後、メタノール(和光純薬工業株式会社
製、試薬特級グレード)を用いて洗浄することにより塩
化リチウムを除去した。
[0020] Example 1 Lithium nitrate (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) 1.815G, nickel carbonate [NiCO 3 · 2N
i (OH) 2 · 4H 2 O: Wako Pure Chemical Industries, Ltd., reagent grade] 3.136G, (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) lithium chloride 0.223g well in an agate mortar mixtures After that, it was placed in a tubular furnace using an alumina core tube, and fired at 700 ° C. for 15 hours in an oxygen stream having an oxygen flow rate of 50 cm 3 / min. The molar ratio of lithium nitrate to lithium chloride is 1: 0.2. After cooling to room temperature, the lithium chloride was removed by washing with methanol (Wako Pure Chemical Industries, Ltd., special grade reagent).

【0021】得られたニッケル酸リチウム粉末の粒度分
布をレーザー散乱式粒度分布測定装置(株式会社島津
製、SALD1100)により測定し、図1に示す分布
曲線を得た。なお、粉末の分散媒としては、商品名Da
rvan821A(R.T.Vanderbilt社
製)の0.2%水溶液を用いた。体積基準で微粒側から
積算した場合の10%粒子径D10および90%粒子径D
90は、それぞれ0.25および1.11μm 、粒度分布
の急峻さを表す比D90/D10の値は4.4であった。ま
たメディアン径は0.47μm 、2.6μm 以上の粗粒
成分は3.2%であった。表1にこれらの結果をまとめ
た。得られたニッケル酸リチウム粉末を電極に加工し、
平板型電池を作製した後充電最大電圧4.2V、放電最
小電圧2.5V、0.17mA/cm2 の定電流で充放
電試験を実施した。放電容量は162mAh/gであっ
た。
Particle size of the obtained lithium nickelate powder
Laser scattering type particle size distribution measuring device (Shimadzu Corporation)
Manufactured by SALD1100) and the distribution shown in FIG.
The curve was obtained. In addition, as a powder dispersion medium, a trade name Da
rvan821A (RT Vanderbilt, Inc.
(Manufactured by Japan) was used. From the fine particle side based on volume
10% particle size D when integratedTenAnd 90% particle size D
90Are 0.25 and 1.11 μm, respectively, particle size distribution
Ratio D that represents the steepness of90/ DTenThe value of was 4.4. Well
The median diameter is 0.47 μm, coarse particles of 2.6 μm or more
The component was 3.2%. Table 1 summarizes these results.
It was The obtained lithium nickel oxide powder is processed into an electrode,
After making a flat-type battery, charge maximum voltage 4.2V, discharge maximum
Small voltage 2.5V, 0.17mA / cm2Charged with a constant current of
An electric test was carried out. The discharge capacity is 162 mAh / g
It was

【0022】実施例2 硝酸リチウム(和光純薬工業株式会社製、試薬特級グレ
ード)14.48g、と塩化リチウム(和光純薬工業株
式会社製、試薬特級グレード)1.78gを20.9g
の水に溶解させ、さらに炭酸ニッケル〔NiCO3 ・2
Ni( OH)2・4H2 O:和光純薬工業株式会社製、試
薬グレード〕25.08gを加えてよく分散させた後、
乾燥させて混合粉末を得た。硝酸リチウムの塩化リチウ
ムに対するモル比は1:0.2である。これをアルミナ
炉心管を使用した管状炉に入れ、酸素流量50cm3
minの酸素気流中において700℃で15時間焼成し
た。室温まで冷却した後、メタノール(和光純薬工業株
式会社製、試薬特級グレード)を用いて洗浄することに
より塩化リチウムを除去した。得られたニッケル酸リチ
ウム粉末について実施例1と同様に粒度分布を測定し
た。結果を図1および表1に示す。粒度分布の急峻さを
表す比D90/D10の値は5.5、またメディアン径は
0.32μm 、2.6μm 以上の粗粒成分は0%であっ
た。得られたニッケル酸リチウム粉末を用いて実施例1
と同様に充放電試験を実施した。放電容量は156mA
h/gであった。
Example 2 14.48 g of lithium nitrate (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) and lithium chloride (Wako Pure Chemical Industries, Ltd. reagent special grade) 1.78 g, 20.9 g
Of dissolved in water, further nickel carbonate [NiCO 3 · 2
Ni (OH) 2 · 4H 2 O: manufactured by Wako Pure Chemical Industries, Ltd., was dispersed well by the addition of reagent grade] 25.08g,
It was dried to obtain a mixed powder. The molar ratio of lithium nitrate to lithium chloride is 1: 0.2. This was put into a tubular furnace using an alumina core tube, and the oxygen flow rate was 50 cm 3 /
It was fired at 700 ° C. for 15 hours in an oxygen stream of min. After cooling to room temperature, the lithium chloride was removed by washing with methanol (Wako Pure Chemical Industries, Ltd., special grade reagent). The particle size distribution of the obtained lithium nickelate powder was measured in the same manner as in Example 1. The results are shown in FIG. 1 and Table 1. The value of the ratio D 90 / D 10 representing the steepness of the particle size distribution was 5.5, and the median diameter was 0.32 μm, and the coarse particle component of 2.6 μm or more was 0%. Example 1 using the obtained lithium nickel oxide powder
A charge / discharge test was carried out in the same manner as in. Discharge capacity is 156mA
It was h / g.

【0023】比較例1 硝酸リチウム(和光純薬工業株式会社、試薬特級グレー
ド)18.10gと炭酸ニッケル〔NiCO3 ・2Ni
( OH)2・4H2 O:和光純薬工業株式会社、試薬グレ
ード〕31.34gとをめのう製乳鉢でよく混合した
後、アルミナ炉心管を使用した管状炉に入れ、酸素流量
50cm3 /minの酸素気流中において700℃で1
5時間焼成した。得られたニッケル酸リチウム粉末につ
いて実施例1と同様に粒度分布を測定した。結果を図1
および表1に示す。粒度分布は不均一で、急峻さを表す
比D90/D10の値は130、またメディアン径は1.2
2μm 、2.6μm 以上の粗粒成分は44%であった。
Comparative Example 1 18.10 g of lithium nitrate (Wako Pure Chemical Industries, Ltd. special grade reagent) and nickel carbonate [NiCO 3 .2Ni]
(OH) 2 · 4H 2 O : Wako Pure Chemical Industries, Ltd., was mixed well and reagent grade] 31.34g in an agate mortar, charged in a tubular furnace having an alumina core tube, the oxygen flow rate 50 cm 3 / min In an oxygen stream at 700 ℃
It was baked for 5 hours. The particle size distribution of the obtained lithium nickelate powder was measured in the same manner as in Example 1. The result is shown in Figure 1.
And shown in Table 1. The particle size distribution is non-uniform, and the ratio D 90 / D 10 indicating steepness is 130, and the median diameter is 1.2.
The proportion of coarse particles having a particle size of 2 μm or more than 2.6 μm was 44%.

【0024】得られたニッケル酸リチウム粉末をアルミ
ナボールとともにアルミナポットに入れ、ボールミル粉
砕を11時間行った。粉砕後のニッケル酸リチウム粉末
について実施例1と同様に粒度分布を測定した。結果を
図1および表1に示す。粉砕による粗粒分の減少が認め
られ、粒度分布の急峻性は向上したが(D90/D10の値
は7.3)、実施例1と同様の方法で測定した放電容量
は126mAh/gに低下してしまった。
The obtained lithium nickel oxide powder was put into an alumina pot together with alumina balls, and ball milling was performed for 11 hours. The particle size distribution of the pulverized lithium nickel oxide powder was measured in the same manner as in Example 1. The results are shown in FIG. 1 and Table 1. Although a reduction in the coarse particle content was recognized by the pulverization and the steepness of the particle size distribution was improved (D 90 / D 10 value was 7.3), the discharge capacity measured by the same method as in Example 1 was 126 mAh / g. Has fallen to.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明のリチウム二次電池正極用リチウ
ム遷移金属複合酸化物粉末は、急峻な粒度分布を有し、
該複合酸化物粉末を用いたリチウム二次電池正極は、過
電圧が低く、活物質の脱落も少なく、優れた充放電特性
を示すので、その工業的価値は極めて大きい。
The lithium-transition metal composite oxide powder for a lithium secondary battery positive electrode of the present invention has a sharp particle size distribution,
The positive electrode of a lithium secondary battery using the composite oxide powder has a low overvoltage, less loss of active material, and excellent charge / discharge characteristics, and therefore has an extremely large industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および比較例で得られた複合酸
化物の粒度分布図。
FIG. 1 is a particle size distribution diagram of composite oxides obtained in Examples of the present invention and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 朋有 茨城県つくば市北原6 住友化学工業株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomo Sato 6 Kitahara, Tsukuba, Ibaraki Sumitomo Chemical Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】リチウム化合物と遷移金属化合物とに、焼
成温度で液相となる化合物を添加し、焼成して得られる
ことを特徴とする、粒度分布測定結果を体積基準で微粒
側から積算した場合の10%粒子径をD10、90%粒子
径をD90とした場合、比D90/D10の値が6以下であ
る、リチウム二次電池正極用リチウム遷移金属複合酸化
物粉末。
1. A lithium compound and a transition metal compound, which are obtained by adding a compound that is in a liquid phase at a baking temperature and baking the mixture, and the particle size distribution measurement results are integrated from the fine particle side on a volume basis. In this case, when the 10% particle size is D 10 and the 90% particle size is D 90 , the lithium transition metal composite oxide powder for a lithium secondary battery positive electrode has a ratio D 90 / D 10 of 6 or less.
【請求項2】焼成温度で液相となる化合物がハロゲン化
リチウムであることを特徴とする請求項1記載のリチウ
ム遷移金属複合酸化物粉末。
2. The lithium-transition metal composite oxide powder according to claim 1, wherein the compound which becomes a liquid phase at the firing temperature is lithium halide.
【請求項3】リチウム化合物と遷移金属化合物とに、焼
成温度で液相となる化合物を添加し、焼成することを特
徴とする、粒度分布測定結果を体積基準で微粒側から積
算した場合の10%粒子径をD10、90%粒子径をD90
とした場合、比D90/D10の値が6以下である、リチウ
ム二次電池正極用リチウム遷移金属複合酸化物粉末の製
造方法。
3. A lithium compound and a transition metal compound, wherein a compound which is in a liquid phase at a firing temperature is added, and the mixture is fired. % Particle size is D 10 , 90% particle size is D 90
And the ratio D 90 / D 10 is 6 or less, the method for producing a lithium transition metal composite oxide powder for a lithium secondary battery positive electrode.
【請求項4】焼成温度で液相となる化合物がハロゲン化
リチウムであることを特徴とする請求項3記載のリチウ
ム遷移金属複合酸化物粉末の製造方法。
4. The method for producing a lithium-transition metal composite oxide powder according to claim 3, wherein the compound which is in a liquid phase at the firing temperature is lithium halide.
【請求項5】請求項1または2記載のリチウム遷移金属
複合酸化物粉末を含むリチウム二次電池正極。
5. A lithium secondary battery positive electrode containing the lithium-transition metal composite oxide powder according to claim 1.
【請求項6】リチウムイオンをドープ・脱ドープ可能な
材料を活物質として含む正極と、リチウム金属、リチウ
ム合金、またはリチウムイオンをドープ・脱ドープ可能
な材料からなる負極と、液体または固体の電解質とを有
するリチウム二次電池において、該正極の活物質として
請求項1または2記載のリチウム遷移金属複合酸化物粉
末を含むことを特徴とするリチウム二次電池。
6. A positive electrode containing a material capable of doping and dedoping lithium ions as an active material, a negative electrode made of lithium metal, a lithium alloy, or a material capable of doping and dedoping lithium ions, and a liquid or solid electrolyte. A lithium secondary battery comprising: a lithium secondary battery containing the lithium-transition metal composite oxide powder according to claim 1 or 2 as an active material of the positive electrode.
JP09978694A 1994-04-06 1994-05-13 Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery Expired - Fee Related JP3687106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09978694A JP3687106B2 (en) 1994-04-06 1994-05-13 Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-68671 1994-04-06
JP6867194 1994-04-06
JP09978694A JP3687106B2 (en) 1994-04-06 1994-05-13 Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07326356A true JPH07326356A (en) 1995-12-12
JP3687106B2 JP3687106B2 (en) 2005-08-24

Family

ID=26409875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09978694A Expired - Fee Related JP3687106B2 (en) 1994-04-06 1994-05-13 Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3687106B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054776A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Electrode for non-aqueous electrolytic cells
JP2002151082A (en) * 2000-11-10 2002-05-24 Kansai Research Institute Iron phosphate lithium, its manufacturing method, and secondary battery using it
JP2004339034A (en) * 2003-05-19 2004-12-02 Nippon Chem Ind Co Ltd Method of manufacturing lithium cobalt-based multiple oxide
JP2008105912A (en) * 2006-10-27 2008-05-08 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING NANO-MULTIPLE OXIDE AxMyOz
WO2010110402A1 (en) 2009-03-23 2010-09-30 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
JP2013051104A (en) * 2011-08-31 2013-03-14 Toda Kogyo Corp Lithium titanate particle powder, negative electrode active material particle powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016096150A (en) * 2011-11-09 2016-05-26 株式会社Gsユアサ Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054776A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Electrode for non-aqueous electrolytic cells
JP2002151082A (en) * 2000-11-10 2002-05-24 Kansai Research Institute Iron phosphate lithium, its manufacturing method, and secondary battery using it
JP2004339034A (en) * 2003-05-19 2004-12-02 Nippon Chem Ind Co Ltd Method of manufacturing lithium cobalt-based multiple oxide
JP2008105912A (en) * 2006-10-27 2008-05-08 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING NANO-MULTIPLE OXIDE AxMyOz
WO2010110402A1 (en) 2009-03-23 2010-09-30 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
US8758455B2 (en) 2009-03-23 2014-06-24 Sumitomo Chemical Company, Limited Process for producing lithium composite metal oxide having layered structure
JP2013051104A (en) * 2011-08-31 2013-03-14 Toda Kogyo Corp Lithium titanate particle powder, negative electrode active material particle powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016096150A (en) * 2011-11-09 2016-05-26 株式会社Gsユアサ Active material for nonaqueous electrolyte secondary battery, method for manufacturing active material, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3687106B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP4644895B2 (en) Lithium secondary battery
JP4216669B2 (en) Lithium / nickel / manganese / cobalt composite oxide and lithium ion secondary battery using the same as positive electrode active material
KR101886174B1 (en) Lithium-manganese-type solid solution positive electrode material
EP0929111B1 (en) Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JPH09237631A (en) Positive electrode active substance for lithium secondary battery, manufacture thereof and lithium secondary battery
WO2005020354A1 (en) Positive electrode active material powder for lithium secondary battery
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
JPH09129230A (en) Nonaqueous electrolytic battery and manufacture of positive active material
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
CN109845003B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP7047251B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JPH09153360A (en) Lithium secondary battery positive electrode and its manufacture, and lithium secondary battery
KR20080031470A (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
CN111771302A (en) Positive electrode active material for lithium secondary battery, preparation method thereof and lithium secondary battery
JP2001080920A (en) Aggregated granular lithium multiple oxide, its production and lithium secondary battery
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP7159697B2 (en) Method for producing positive electrode active material for lithium ion secondary battery, and method for producing lithium ion secondary battery
JP2017010841A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2004349109A (en) Lithium-manganese-nickel complex oxide, manufacturing method of the same, nonaqueous electrolyte secondary battery positive electrode activator, and nonaqueous electrolyte secondary battery
JPH07326356A (en) Lithium transition metal composite oxide powder and manufacture thereof, lithium secondary battery positive electrode and lithium secondary battery
JP7310872B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2004207034A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees