JP3229544B2 - Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material - Google Patents

Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material

Info

Publication number
JP3229544B2
JP3229544B2 JP07910996A JP7910996A JP3229544B2 JP 3229544 B2 JP3229544 B2 JP 3229544B2 JP 07910996 A JP07910996 A JP 07910996A JP 7910996 A JP7910996 A JP 7910996A JP 3229544 B2 JP3229544 B2 JP 3229544B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
cobalt hydroxide
active material
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07910996A
Other languages
Japanese (ja)
Other versions
JPH09270258A (en
Inventor
庄一郎 渡邊
茂雄 小林
秀行 北
臼井  猛
有純 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Tanaka Chemical Corp
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13680744&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3229544(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tanaka Chemical Corp, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Tanaka Chemical Corp
Priority to JP07910996A priority Critical patent/JP3229544B2/en
Publication of JPH09270258A publication Critical patent/JPH09270258A/en
Application granted granted Critical
Publication of JP3229544B2 publication Critical patent/JP3229544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の正極活物質のLixNiyCoz2(0.90≦x≦
1.05、0.7≦y≦0.9、y+z=1)で表され
るリチウム複合ニッケルーコバルト酸化物の合成に原材
料として用いるニッケル−コバルト水酸化物に関するも
のである。
[0001] The present invention relates to a Li x Ni y Co z O 2 (0.90 ≦ x ≦) cathode active material for a non-aqueous electrolyte secondary battery.
The present invention relates to a nickel-cobalt hydroxide used as a raw material for synthesizing a lithium composite nickel-cobalt oxide represented by 1.05, 0.7 ≦ y ≦ 0.9, y + z = 1).

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進んでいる。現在、これら電子機
器の駆動用電源としての役割を、ニッケルーカドミウム
蓄電池あるいは密閉型小型鉛蓄電池が担っているが、ポ
ータブル化、コードレス化が進展し、定着するにしたが
い、駆動用電源となる二次電池の高エネルギー密度化、
小型軽量化の要望が強くなっている。また、近年二次電
池は、携帯電話用の電源として注目されており、急速な
市場の拡大と共に、通話時間の長期化、サイクル寿命の
改善への要望は非常に大きいものとなっている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
Cordless use is rapidly progressing. Currently, nickel-cadmium batteries or sealed small lead-acid batteries play the role of power sources for driving these electronic devices. However, as portable and cordless devices have been developed and established, they will become power sources for driving. High energy density of secondary batteries,
The demand for smaller and lighter is increasing. In recent years, secondary batteries have been attracting attention as power sources for mobile phones. With the rapid market expansion, demands for longer talk time and improved cycle life have become extremely large.

【0003】このような状況から、高い充放電電圧を示
すリチウム複合遷移金属酸化物、例えばLiCoO
2(例えば特開昭63−59507号公報)や、さらに
高容量を目指したLiNiO2(例えば米国特許第43
02518号)が報告されている。特にLiNiO
2は、LiCoO2に比べ高エネルギー密度が期待され、
各方面で開発が進められている。しかし、LiNiO2
は、充電時の分極が大きく、Liが十分取り出せないう
ちに電解液の酸化分解電圧に達してしまうため、期待さ
れる大きい容量が得られなかった。
Under such circumstances, a lithium composite transition metal oxide exhibiting a high charge / discharge voltage, for example, LiCoO
2 (for example, JP-A-63-59507) or LiNiO 2 (for example, US Pat.
02518) has been reported. Especially LiNiO
2 is expected to have a higher energy density than LiCoO 2 ,
Development is ongoing in various areas. However, LiNiO 2
Has a large polarization at the time of charging, and reaches the oxidative decomposition voltage of the electrolytic solution before Li can not be sufficiently taken out, so that the expected large capacity could not be obtained.

【0004】このような問題を解決するため、ニッケル
元素の一部をコバルトで置換したものを正極活物質に用
い、リチウムイオンの挿入・離脱を利用した非水電解液
二次電池が提案されている。例えば、特開昭62−25
6371号公報では、炭酸リチウムと炭酸コバルト、炭
酸ニッケルを混合し900℃で焼成することによってリ
チウム複合ニッケル−コバルト酸化物を合成している。
また、特開昭63−299056号公報では、リチウム
とコバルト、ニッケルの水酸化物、酸化物を混合する方
法が報告されている。さらに、特開平1−294364
号公報には、ニッケルイオンとコバルトイオンを含む水
溶液中から炭酸塩としてニッケルイオンとコバルトイオ
ンを共沈させ、その後炭酸リチウムと混合し、リチウム
複合ニッケル−コバルト酸化物の合成を行った例が報告
されている。
In order to solve such a problem, a non-aqueous electrolyte secondary battery has been proposed which uses a material in which a part of nickel element is replaced with cobalt as a positive electrode active material and utilizes insertion / removal of lithium ions. I have. For example, JP-A-62-25
In US Pat. No. 6371, lithium composite nickel-cobalt oxide is synthesized by mixing lithium carbonate, cobalt carbonate, and nickel carbonate and firing at 900 ° C.
JP-A-63-299056 discloses a method of mixing lithium and cobalt and nickel hydroxides and oxides. Further, JP-A-1-294364
In this publication, an example was reported in which nickel ions and cobalt ions were coprecipitated as carbonates from an aqueous solution containing nickel ions and cobalt ions, and then mixed with lithium carbonate to synthesize a lithium composite nickel-cobalt oxide. Have been.

【0005】[0005]

【発明が解決しようとする課題】しかし、これまで報告
されているようなLixNiyCoz2(0.90≦x≦
1.05、0.7≦y≦0.9、y+z=1)で表され
るリチウム複合ニッケル−コバルト酸化物では、置換C
o量(z値)が大きくなるにつれて放電容量は徐々に大
きくなるものの、充放電サイクルを繰り返し行うと、そ
の電池放電容量が徐々に減少するサイクル劣化の問題が
明らかとなった。本発明者らが、十分検討を重ねた結
果、このような特性劣化は以下のことが原因であること
が解った。すなわち、サイクル劣化した電池を分解し、
極板を観察した結果、充放電サイクルを繰り返した正極
板では、正極活物質の結晶構造に変化が起こっているこ
とが判明した。
[SUMMARY OF THE INVENTION However, heretofore, such as reported Li x Ni y Co z O 2 (0.90 ≦ x ≦
1.05, 0.7 ≦ y ≦ 0.9, y + z = 1) In the lithium composite nickel-cobalt oxide represented by
Although the discharge capacity gradually increases as the amount o (z value) increases, the problem of cycle deterioration in which the battery discharge capacity gradually decreases when charge / discharge cycles are repeated is evident. As a result of extensive studies by the present inventors, it has been found that such characteristic deterioration is caused by the following. That is, disassemble the cycle-degraded battery,
As a result of observing the electrode plate, it was found that a change in the crystal structure of the positive electrode active material occurred in the positive electrode plate after repeated charge / discharge cycles.

【0006】LiNiO2は、電池の充放電にともな
い、その格子定数が変化することが報告されており
(W.Li,J.N.Reimers and J.
R.Dahn, Solid State Ionic
s,67,123(1993))、Liを脱離するに伴
い結晶相が六方晶(Hexagonal)から単斜晶(Monoclini
c)、さらに第2六方晶(Hexagonal)、第3六方晶(He
xagonal)へと変化していくことが報告されている。こ
のような結晶相変化は、可逆性に乏しく、充放電反応を
繰り返すうちにLiを挿入・脱離できるサイトが徐々に
失われてしまうことが原因と考えられる。Niの一部を
Coで置換することによって、このような結晶相の変化
は著しく緩和される。これはCoの酸素との結合力がN
iに比べ強いため結晶構造がより安定化したためと考え
られ、Co置換しない(z=0)場合のような結晶相の
変化が起こらなくなる。このため、Co置換量(z値)
が大きくなるほど結晶相がより安定化し、放電容量、サ
イクル特性ともに改善されると考えられる。
It has been reported that the lattice constant of LiNiO 2 changes as the battery is charged and discharged (W. Li, JN Reimers and J. Amer.
R. Dahn, Solid State Ionic
s, 67 , 123 (1993)), and the crystal phase changes from hexagonal (Hexagonal) to monoclinic (Monoclini) as Li is desorbed.
c), second hexagonal (Hexagonal), third hexagonal (He
xagonal). It is considered that such a crystal phase change is poor in reversibility, and the sites where Li can be inserted and desorbed gradually are lost during repeated charge / discharge reactions. By substituting a part of Ni with Co, such a change in the crystal phase is remarkably reduced. This is because the bonding force of Co with oxygen is N
This is considered to be because the crystal structure was more stabilized because it was stronger than i, and a change in the crystal phase as in the case where Co substitution was not performed (z = 0) does not occur. For this reason, the amount of Co substitution (z value)
It is considered that the crystal phase becomes more stable and the discharge capacity and the cycle characteristics are improved as the value increases.

【0007】しかし、実際には特開昭62−25637
1号公報や特開昭63−299056号公報で報告され
ているようなコバルト、ニッケルの炭酸塩、水酸化物、
酸化物等のそれぞれの化合物を混合することによって合
成されたリチウム複合ニッケル−コバルト酸化物は、C
o置換量(z値)が大きくなると(z≧0.1)実際に
はニッケルとコバルトが均一に分散されておらず、部分
的にLiNiO2とLiCoO2の混合物になっているこ
とが明らかになった。このため、このような活物質で
は、放電容量はある程度大きいものの、充放電を繰り返
すと、Coが十分置換されていない部分において前述の
結晶相変化により結晶構造が破壊され、その結果、放電
容量が低下し、電池活物質として十分なものではなかっ
た。また、特開平1−294364号公報のようにニッ
ケルイオンとコバルトイオンを炭酸塩として共沈させた
場合、ニッケルとコバルトが均一に分散するため良好な
サイクル特性が確保される。しかし、この場合、塩基性
炭酸塩として析出するため、実際には不定含量のNi
(OH)2を含む複塩NiCO3・xNi(OH)2とな
っており、リチウムとの合成過程が均一でない。このた
め電池特性のばらつきが大きく、実使用上に問題があっ
た。
However, actually, Japanese Patent Application Laid-Open No. 62-25637
No. 1 and JP-A-63-299056, cobalt and nickel carbonates and hydroxides,
Lithium composite nickel-cobalt oxide synthesized by mixing each compound such as oxide,
When the o-substitution amount (z value) increases (z ≧ 0.1), it is apparent that nickel and cobalt are not actually uniformly dispersed but are partially a mixture of LiNiO 2 and LiCoO 2. became. For this reason, in such an active material, although the discharge capacity is large to some extent, when charge and discharge are repeated, the crystal structure is destroyed due to the above-described crystal phase change in a portion where Co is not sufficiently substituted, and as a result, the discharge capacity is reduced. It was not enough as a battery active material. Further, when nickel ions and cobalt ions are coprecipitated as carbonates as disclosed in JP-A-1-294364, good cycle characteristics are ensured because nickel and cobalt are uniformly dispersed. However, in this case, since it precipitates as a basic carbonate, indefinite amount of Ni
(OH) 2 has a double salt NiCO 3 · XNI (OH) 2 containing, non-uniform synthesis process of lithium. For this reason, there is a large variation in battery characteristics, and there is a problem in practical use.

【0008】また、近年のポータブル機器の高付加価値
に伴い電池への負荷が増大するため、特に大きい電流で
放電する高率放電特性の改善が大きな課題であり、前述
の方法で合成した活物質を用いた電池では、いずれも不
十分なものであった。本発明の目的は、上記した従来の
正極に関する問題点の解決を図るものであり、充放電特
性の優れた非水電解液二次電池を与えるリチウム複合ニ
ッケル−コバルト酸化物の合成用原料のニッケル−コバ
ルト水酸化物を提供することである。
In addition, since the load on the battery increases with the recent added value of portable equipment, improvement of the high-rate discharge characteristics for discharging with a large current is a major problem. All of the batteries using were insufficient. An object of the present invention is to solve the above-described problems related to the conventional positive electrode, and to provide a nonaqueous electrolyte secondary battery having excellent charge / discharge characteristics, a nickel composite nickel-cobalt oxide raw material nickel. -To provide cobalt hydroxide.

【0009】[0009]

【課題を解決するための手段】このような問題を解決す
るために、本発明者らは、正極活物質の原料であるニッ
ケル、コバルト源として、共沈によって生成した水酸化
物を用いると共に、その物性について鋭意検討を行い、
粒子内におけるニッケル、コバルト原子の配列、粒子形
状、粒子径、比表面積、タップ密度、細孔の空間体積、
細孔の占有率を制御することにより、サイクル劣化を防
止すると共に、良好な高率放電特性を有する電池を得る
ことに成功した。すなわち、本発明は、LixNiyCo
z2(0.90≦x≦1.05、0.7≦y≦0.9、
y+z=1)を正極活物質として合成する際のニッケル
ーコバルト源としてNivCow(OH)2(v+w=1)
で表されるニッケル−コバルト水酸化物を用い、Co置
換量(w値)は0.1〜0.3の範囲に制御すると共
に、得られたニッケル−コバルト水酸化物は、SEM写
真観察において米粒状の一次粒子が無数に凝集し二次粒
子を形成しており、その二次粒子の平均粒子径が1.5
〜10μmになるように制御されたものである。このニ
ッケル−コバルト水酸化物は、pH、温度を調整した槽
内にニッケル塩水溶液、コバルト塩水溶液およびか性ア
ルカリ水溶液をその濃度、流量を制御しながら連続的に
供給し、槽からオーバーフローする液から生成物を採取
することによって物性を制御することができる。
Means for Solving the Problems In order to solve such a problem, the present inventors have used hydroxide produced by co-precipitation as a source of nickel and cobalt which are raw materials of a positive electrode active material, After careful examination of its physical properties,
Arrangement of nickel and cobalt atoms in particles, particle shape, particle size, specific surface area, tap density, pore volume,
By controlling the occupation ratio of the pores, it was possible to prevent cycle deterioration and to obtain a battery having good high-rate discharge characteristics. That is, the present invention relates to Li x Ni y Co
z O 2 (0.90 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9,
y + z = 1) as a nickel-cobalt source in the synthesis as a positive active material Ni v Co w (OH) 2 (v + w = 1)
Using a nickel-cobalt hydroxide represented by the formula, the amount of Co substitution (w value) is controlled in the range of 0.1 to 0.3, and the obtained nickel-cobalt hydroxide is observed by SEM photograph observation. The primary particles of rice grains are innumerably aggregated to form secondary particles, and the secondary particles have an average particle diameter of 1.5.
It is controlled to be 10 to 10 μm. This nickel-cobalt hydroxide is a solution that continuously supplies a nickel salt aqueous solution, a cobalt salt aqueous solution, and a caustic alkali aqueous solution in a tank whose pH and temperature are adjusted while controlling the concentration and flow rate thereof, and overflows from the tank. The physical properties can be controlled by collecting the product from.

【0010】[0010]

【発明の実施の形態】本発明のニッケル−コバルト水酸
化物は、式NivCow(OH)2(0.7≦v≦0.9、
v+w=1)で表され、SEM写真観察において米粒状
の一次粒子が無数に凝集して二次粒子を形成しており、
その二次粒子の平均粒子径が1.5〜10μmの範囲に
ある。 ニッケルーコバルト水酸化物の粒子形状は、球
状または楕円球状であると高充填性が実現できるので、
さらに望ましい。また、高率放電特性を十分満足するた
めには、ニッケル−コバルト水酸化物は、窒素ガスの吸
着により測定されるBET比表面積が8〜35m2/g
であることが望ましい。さらに、ニッケル−コバルト水
酸化物は、タップ密度が1.4〜2.3g/cm3であ
ることが望ましい。さらに、ニッケル−コバルト水酸化
物は、細孔の空間体積が0.010〜0.10cm3
gであることが望ましい。さらに、ニッケル−コバルト
水酸化物は、細孔占有率が5〜40%の範囲であるであ
ることが望ましい。
DETAILED DESCRIPTION OF THE INVENTION The nickel - cobalt hydroxide has the formula Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.9,
v + w = 1), and in the SEM photograph observation, the primary particles of rice grains are innumerably aggregated to form secondary particles,
The average particle size of the secondary particles is in the range of 1.5 to 10 μm. Since the particle shape of the nickel-cobalt hydroxide is spherical or elliptical spherical, high filling properties can be realized,
More desirable. In order to sufficiently satisfy the high-rate discharge characteristics, the nickel-cobalt hydroxide has a BET specific surface area of 8 to 35 m 2 / g measured by nitrogen gas adsorption.
It is desirable that Further, the nickel-cobalt hydroxide desirably has a tap density of 1.4 to 2.3 g / cm 3 . Further, nickel-cobalt hydroxide has a pore volume of 0.010 to 0.10 cm 3 /
g is desirable. Further, the nickel-cobalt hydroxide preferably has a pore occupancy in the range of 5 to 40%.

【0011】このような、ニッケルとコバルトを水酸化
物として共沈させる方法は、ニッケルーカドミウム電池
用正極に使用される水酸化ニッケルの製法として報告が
なされている。例えば、特開昭63−16556号公
報、特開昭64−42330号公報では、水酸化ニッケ
ルの製造方法としてpH、温度を調整した槽内にニッケ
ル塩水溶液、コバルト塩水溶液、およびか性アルカリ水
溶液をその濃度、流量を制御しながら連続的に供給し、
採取する方法が報告されている。さらに、特開昭63−
152866号公報、特開平5−41212号公報、特
開平7−73877号公報では、反応槽内にCoを含む
多種の金属元素を共沈法により水酸化ニッケル中に固溶
させる方法が報告されている。しかし、これらの発明に
おけるCoの添加は、いずれも水溶液系のニッケルーカ
ドミウム電池もしくはニッケルー水素吸蔵合金電池等の
アルカリ蓄電池の特性改良が目的であり、以下の理由に
よって行われている。
Such a method of coprecipitating nickel and cobalt as a hydroxide has been reported as a method for producing nickel hydroxide used for a positive electrode of a nickel-cadmium battery. For example, JP-A-63-16556 and JP-A-64-42330 disclose an aqueous nickel salt solution, an aqueous cobalt salt solution, and an aqueous caustic alkali solution in a tank whose pH and temperature are adjusted as a method for producing nickel hydroxide. Continuously while controlling its concentration and flow rate,
Methods for sampling have been reported. Further, JP-A-63-
JP-A-152866, JP-A-5-41212, and JP-A-7-73877 report a method in which various metal elements including Co are dissolved in nickel hydroxide by a coprecipitation method in a reaction vessel. I have. However, the addition of Co in these inventions is aimed at improving the characteristics of alkaline storage batteries such as aqueous nickel-cadmium batteries or nickel-hydrogen storage alloy batteries, and is performed for the following reasons.

【0012】電池の放電容量の低下をもたらすγ−N
iOOHの生成を抑制させる。(例えば M.Oshitani,
K.Takashima, and Y.Matsumara,Proceedings of the S
ymp.on Nickel Hydroxide Electrodes, Volume 90-4 /T
he Electrochemical Soc.,197 (1989) 、特開平5−4
1212号公報)
Γ-N which causes a decrease in the discharge capacity of the battery
Suppress generation of iOOH. (Eg M.Oshitani,
K.Takashima, and Y.Matsumara, Proceedings of the S
ymp.on Nickel Hydroxide Electrodes, Volume 90-4 / T
he Electrochemical Soc., 197 (1989), JP-A-5-4
No. 1212)

【0013】水酸化ニッケル表面における水素のイオ
ン化速度や、水酸化ニッケル中のプロトン伝導の促進に
よる利用率、高率充放電効率の向上。(例えばI.Matsum
oto,M.Ikeyama,T.Iwaki,Y.Umeo and Y.Ogawa,Denkikaga
ku,54,159〜164 (1986)等)
[0013] Improvement of the ionization rate of hydrogen on the surface of nickel hydroxide, the utilization rate by promoting proton conduction in nickel hydroxide, and the high rate charging and discharging efficiency. (For example, I.Matsum
oto, M.Ikeyama, T.Iwaki, Y.Umeo and Y.Ogawa, Denkikaga
ku, 54, 159-164 (1986))

【0014】以上のようにこれらの発明におけるCoの
役割は、いずれも触媒的作用を目的としており、水酸化
ニッケル結晶マトリックス内での活物質として添加され
ているわけではない。このため、あまりCo添加量が増
すと逆に活物質の利用率が小さくなるため、通常添加さ
れる量はNivCow(OH)2(v+w=1)においてw
≦0.1である場合がほとんどである。本発明は、非水
電解液電池の特性改良を目的としたものであり、活物質
LixNiyCoz2(0.90≦x≦1.05、0.7
≦y≦0.9、y+z=1)で表されるリチウム複合ニ
ッケル−コバルト酸化物の合成に原材料として用いるニ
ッケル−コバルト水酸化物NivCow(OH)2(0.7
≦v≦0.9、v+w=1)の物性を制御したものであ
る。当然のことながら、Coは活物質の結晶マトリック
ス中に固溶しており、活物質として作用するため、前述
のアルカリ蓄電池の特性改善とは全く異なるものであ
る。
As described above, the role of Co in these inventions is all for the purpose of catalytic action, and is not necessarily added as an active material in the nickel hydroxide crystal matrix. For this reason, when the amount of Co added is too large, the utilization rate of the active material becomes conversely small. Therefore, the normally added amount is w in Ni v Cow (OH) 2 (v + w = 1).
In most cases, ≤0.1. The present invention has the purpose of improving characteristics of the nonaqueous electrolyte battery, the active material Li x Ni y Co z O 2 (0.90 ≦ x ≦ 1.05,0.7
≦ y ≦ 0.9, y + z = 1 lithium nickel composite represented by) - Nickel is used as a raw material for the synthesis of cobalt oxide - cobalt hydroxide Ni v Co w (OH) 2 (0.7
.Ltoreq.v.ltoreq.0.9, v + w = 1). As a matter of course, Co is dissolved in the crystal matrix of the active material and acts as an active material, which is completely different from the above-described improvement in the characteristics of the alkaline storage battery.

【0015】LiNiO2の合成反応は、熱処理を加え
ることによりニッケル塩の結晶中にリチウム原子が拡散
する形で進行し、LiNiO2が合成される。従来から
報告されている炭酸ニッケル、酸化ニッケル等は、粒子
中における結晶はランダムに配列したいわゆる多結晶状
態であり、このためこれらを原料に用いたLiNiO2
は同様の多結晶状態となる。このような多結晶構造を持
つLiNiO2を用いて二次電池を構成し、充放電を行
った場合、充放電に伴う結晶相の転移の繰り返しにより
Liを収容できるサイトが破壊されると共に、微細な結
晶が膨張・収縮を繰り返し粒子が微細化し、電池集電体
から脱離する。その結果、電池の放電容量が低下しサイ
クル劣化を引き起こしてしまう。また、Co添加方法と
して合成時に酸化コバルトや炭酸コバルト、水酸化コバ
ルトを添加した場合、共沈法で得られるような原子レベ
ルでの固溶は実現できず、部分的にLiNiO2やLi
CoO2として存在するようになるため、同様の理由に
よりサイクル劣化を引き起こす。
The reaction for synthesizing LiNiO 2 proceeds by applying heat treatment in such a manner that lithium atoms diffuse into crystals of the nickel salt, whereby LiNiO 2 is synthesized. Nickel carbonate being reported conventionally, the nickel oxide or the like, crystals in the particles is a so-called polycrystalline state randomly arranged, LiNiO 2 using this for them to feed
Is in the same polycrystalline state. When a secondary battery is formed by using LiNiO 2 having such a polycrystalline structure and charging and discharging are performed, sites capable of accommodating Li are destroyed by repetition of transition of a crystal phase accompanying charging and discharging, and fine Such crystals are repeatedly expanded and contracted to make the particles finer and detached from the battery current collector. As a result, the discharge capacity of the battery decreases, causing cycle deterioration. Also, when cobalt oxide, cobalt carbonate, or cobalt hydroxide is added during synthesis as a Co addition method, solid solution at the atomic level as obtained by the coprecipitation method cannot be realized, and LiNiO 2 or Li
Since it is present as CoO 2 , cycle deterioration is caused for the same reason.

【0016】本発明におけるニッケル−コバルト水酸化
物の製造方法を用いた場合、コバルト濃度、槽温度、攪
拌速度、pH等を制御することにより、槽内で生成した
微細な結晶が成長する形でニッケルーコバルト水酸化物
粒子を形成するため、Co置換量(w値)が0.1以上
と大きくても、ニッケルとコバルトが原子レベルで固溶
すると共に、結晶が非常に良く同一方向に配列する。し
かも、結晶構造がLixNiyCoz2と同じ六方晶であ
るため、リチウム塩と混合し合成を行っても、原子の配
列は維持される。なお、Co置換量(w値)が0.3を
越えると、結晶成長が困難となり、多結晶のNivCow
(OH)2が生成してしまう。このためCo置換量は0.
1≦w≦0.3であることが望ましい。
When the method for producing a nickel-cobalt hydroxide according to the present invention is used, by controlling the cobalt concentration, the bath temperature, the stirring speed, the pH, etc., fine crystals formed in the bath grow. Since nickel-cobalt hydroxide particles are formed, even if the Co substitution amount (w value) is as large as 0.1 or more, nickel and cobalt form a solid solution at the atomic level and crystals are very well aligned in the same direction. I do. In addition, since the crystal structure is hexagonal, which is the same as Li x Ni y Co z O 2 , the arrangement of atoms is maintained even when the mixture is mixed with a lithium salt for synthesis. If the Co substitution amount (w value) exceeds 0.3, crystal growth becomes difficult, and polycrystalline Ni v Co w
(OH) 2 is produced. Therefore, the amount of Co substitution is 0.1.
It is desirable that 1 ≦ w ≦ 0.3.

【0017】この結果、結晶粒界の非常に少ないLix
NiyCoz2の合成が可能となる。このような構造を
持つNivCow(OH)2(0.7≦v≦0.9、v+w
=1)を合成の原材料としたLixNiyCoz2(0.
90≦x≦1.05、0.7≦y≦0.9、y+z=
1)を用いて二次電池を構成し、充放電を行った場合、
Coを添加することによって結晶の安定性が向上し、充
放電に伴う結晶相の転移がなくなると共に、粒子構造破
壊の原因となる結晶粒界が非常に少ないため、粒子の微
細化、脱落が防止でき、良好なサイクル特性を実現する
ことができる。また、本発明によるニッケル−コバルト
水酸化物粒子の粒径、BET比表面積、タップ密度、細
孔の空間体積、細孔占有率を制御することによって、電
池を構成した場合にリチウムイオンを受け渡しする電解
液との接触面積が増大し、高効率放電特性を実現でき
る。
As a result, Li x having very few crystal grain boundaries is obtained.
Ni y Co z O 2 can be synthesized. Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.9 having such a structure, v + w
= 1) was the synthesis of raw materials Li x Ni y Co z O 2 (0.
90 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9, y + z =
When a secondary battery is configured using 1) and charged and discharged,
The addition of Co improves the stability of the crystal, eliminates the transition of the crystal phase due to charge and discharge, and minimizes the grain refinement and dropout due to the very small number of crystal grain boundaries that cause the destruction of the particle structure. And good cycle characteristics can be realized. Further, by controlling the particle size, BET specific surface area, tap density, space volume of pores, and pore occupancy of the nickel-cobalt hydroxide particles according to the present invention, lithium ions are transferred when a battery is configured. The contact area with the electrolyte is increased, and high-efficiency discharge characteristics can be realized.

【0018】[0018]

【実施例】以下、図面とともに本発明を具体的な実施例
に沿って説明する。 《実施例1》図1に本実施例および比較例でニッケル−
コバルト水酸化物を原料として合成した非水二次電池用
活物質の評価に用いた円筒形電池の縦断面図を示す。耐
有機電解液性のステンレス鋼板を加工した電池ケース1
内には、正極板5と負極板6とをセパレータ7を介して
渦巻状に巻回した極板群4が上下に絶縁板8、9を配し
て収納されている。電池ケース1の開口部は、安全弁を
設けた組立封口板2および絶縁パッキング3により密封
されている。そして、上記正極板5からはアルミ製正極
リード5aが引き出されて封口板2に接続され、負極板
6からはニッケル製負極リード6aが引き出されて電池
ケース1の底部に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the drawings according to specific embodiments. << Example 1 >> FIG. 1 shows nickel-nickel in this example and a comparative example.
1 is a longitudinal sectional view of a cylindrical battery used for evaluating an active material for a non-aqueous secondary battery synthesized using cobalt hydroxide as a raw material. Battery case 1 processed from stainless steel sheet resistant to organic electrolyte
Inside, an electrode plate group 4 in which a positive electrode plate 5 and a negative electrode plate 6 are spirally wound via a separator 7 is housed with insulating plates 8 and 9 arranged vertically. The opening of the battery case 1 is sealed by an assembly sealing plate 2 provided with a safety valve and an insulating packing 3. Then, an aluminum positive electrode lead 5 a is pulled out from the positive electrode plate 5 and connected to the sealing plate 2, and a nickel negative electrode lead 6 a is pulled out from the negative electrode plate 6 and connected to the bottom of the battery case 1.

【0019】以下、負極板6、電解液等について詳しく
説明する。負極板6は以下のようにして製造した。ま
ず、黒鉛粉100重量部に、フッ素樹脂系結着剤10重
量部を混合し、この混合物をカルボキシメチルセルロー
ス水溶液に懸濁させてペースト状にした。そして、この
ペーストを厚さ0.015mmの銅箔の表面に塗着し、
乾燥した後0.2mmに圧延し、幅37mm、長さ28
0mmの大きさに切り出して負極板とした。電解液に
は、炭酸エチレンと炭酸ジエチルの等容積混合溶媒に、
六フッ化リン酸リチウム1モル/リットル(L)の割合
で溶解したものを用いた。この電解液は、極板群4に注
入した後、電池を密封口し、試験電池とした。
Hereinafter, the negative electrode plate 6, the electrolyte and the like will be described in detail. The negative electrode plate 6 was manufactured as follows. First, 100 parts by weight of graphite powder was mixed with 10 parts by weight of a fluororesin binder, and this mixture was suspended in an aqueous solution of carboxymethyl cellulose to form a paste. Then, this paste is applied to the surface of a copper foil having a thickness of 0.015 mm,
After drying, rolling to 0.2 mm, width 37 mm, length 28
The negative electrode plate was cut out to a size of 0 mm. In the electrolyte, a mixed solvent of equal volume of ethylene carbonate and diethyl carbonate,
What was melt | dissolved at the ratio of lithium hexafluorophosphate 1 mol / liter (L) was used. After this electrolyte solution was injected into the electrode plate group 4, the battery was sealed and used as a test battery.

【0020】次に、本発明のニッケル−コバルト水酸化
物を用いたリチウム複合ニッケル−コバルト酸化物の製
造法について詳しく説明する。ニッケル−コバルト水酸
化物を製造する析出槽として、容積100Lのタンクを
用いた。ニッケル塩水溶液として金属ニッケル量が60
g/L相当の硫酸ニッケル水溶液を用い、これにニッケ
ルに対するコバルトのモル比が0、5、10、20、3
0、40%になるように硫酸コバルトを添加、溶解して
硫酸ニッケル−コバルト混合水溶液を調製した。また、
か性アルカリ水溶液として25重量%の水酸化ナトリウ
ム水溶液を用いた。上記の析出槽内へニッケルーコバル
ト混合水溶液を10L/hの一定流量で導入し、十分攪
拌しながら、水酸化ナトリウム溶液を導入し、生成する
ニッケル−コバルト水酸化物の平均粒径が3〜5μmの
範囲になるように反応槽のpH値を制御した。得られた
ニッケル−コバルト水酸化物を、水中で水洗した後、8
0℃で乾燥してニッケル−コバルト水酸化物とした。
Next, a method for producing a lithium composite nickel-cobalt oxide using the nickel-cobalt hydroxide of the present invention will be described in detail. A 100 L tank was used as a precipitation tank for producing nickel-cobalt hydroxide. The amount of metallic nickel is 60 as a nickel salt aqueous solution.
g / L of an aqueous nickel sulfate solution having a molar ratio of cobalt to nickel of 0, 5, 10, 20, 3
Cobalt sulfate was added and dissolved at 0 and 40% to prepare a nickel sulfate-cobalt mixed aqueous solution. Also,
A 25% by weight aqueous solution of sodium hydroxide was used as the caustic aqueous solution. A nickel-cobalt mixed aqueous solution is introduced into the above-mentioned precipitation tank at a constant flow rate of 10 L / h, and while sufficiently stirring, a sodium hydroxide solution is introduced to produce a nickel-cobalt hydroxide having an average particle size of 3 to 3. The pH value of the reaction tank was controlled so as to be in the range of 5 μm. After washing the obtained nickel-cobalt hydroxide in water, 8
It was dried at 0 ° C. to obtain a nickel-cobalt hydroxide.

【0021】なお、平均粒径はレーザー法によって測定
し、累積50%に相当する値を平均粒径とした。また、
比表面積は窒素を用いたBET法で測定した。タップ密
度は20cm3のメスシリンダー(重量Ag)にニッケル
−コバルト水酸化物を充填し、200回タッピング後、
メスシリンダーの重量(Bg)、ニッケル−コバルト水
酸化物の体積(Dcm3)を測定し、次式により求めた。 タップ密度(g/cm3)=(B−A)/D
The average particle size was measured by a laser method, and a value corresponding to a cumulative 50% was defined as the average particle size. Also,
The specific surface area was measured by a BET method using nitrogen. A 20 cm 3 measuring cylinder (weight Ag) is filled with nickel-cobalt hydroxide and the tap density is 200 taps.
The weight (Bg) of the measuring cylinder and the volume (Dcm 3 ) of the nickel-cobalt hydroxide were measured and determined by the following equation. Tap density (g / cm 3 ) = (BA) / D

【0022】ニッケル−コバルト水酸化物の細孔分布お
よび細孔の空間体積は、窒素吸着を用いたBJH法を用
いて10〜200オングストロームの範囲の細孔を測定
した。なお、10オングストローム未満の細孔分布は、
窒素ガス吸着による方法では測定が困難であり、実際に
は10オングストローム未満の細孔を有する空間は存在
すると考えられる。また、ニッケル−コバルト水酸化物
の細孔占有率を窒素を用いたBJH法によって測定した
細孔の空間体積の値(cm3/g)と、ピクノメーターを
用いたアルコール法によって測定した真密度(g/cm
3)の値から次式により算出した。 細孔占有率(%)=細孔の空間体積値(cm3/g)×
真密度(g/cm3) また、原子吸光分析によりニッケル−コバルト水酸化物
中に含まれるCo量を分析した。以上の条件で作成した
ニッケル−コバルト水酸化物A〜Fの物性を表1に示
す。
The pore distribution and spatial volume of the pores of the nickel-cobalt hydroxide were measured for pores in the range of 10 to 200 angstroms using the BJH method using nitrogen adsorption. The pore distribution of less than 10 Å is
It is difficult to measure by the method using nitrogen gas adsorption, and it is considered that a space having pores smaller than 10 angstroms actually exists. In addition, the pore volume occupancy of the nickel-cobalt hydroxide was measured by the BJH method using nitrogen, the value of the space volume of the pores (cm 3 / g), and the true density measured by the alcohol method using a pycnometer. (G / cm
It was calculated from the value of 3 ) by the following formula. Pore occupancy (%) = spatial volume value of pores (cm 3 / g) x
True density (g / cm 3 ) Further, the amount of Co contained in the nickel-cobalt hydroxide was analyzed by atomic absorption analysis. Table 1 shows the physical properties of the nickel-cobalt hydroxides A to F prepared under the above conditions.

【0023】[0023]

【表1】 [Table 1]

【0024】次に、LixNiyCoz2の合成方法につ
いて説明する。上記の方法で作製したニッケル−コバル
ト水酸化物A〜Fを、水酸化リチウムと(ニッケル+コ
バルト)が原子比で1.05対1になるように混合し、
酸化雰囲気下において700℃で10時間焼成してLi
xNiyCoz2(y+z=1)を合成した。ニッケル−
コバルト水酸化物A〜Fから得られた活物質をそれぞれ
活物質A〜Fとする。また、比較例として、ニッケル−
コバルト水酸化物AにCo置換量(z値)が0.2とな
るように酸化コバルトを添加、混合した後、水酸化リチ
ウムと(ニッケル+コバルト)が原子比で1.05対1
になるように混合し、同様の条件で合成を行い活物質G
とした。合成されたLixNiyCoz2は、比較的ほぐ
れやすい凝集塊状物として得られるので、乳鉢を用いて
粉砕した。
Next, a method for synthesizing Li x Ni y Co z O 2 will be described. The nickel-cobalt hydroxides A to F produced by the above method are mixed such that lithium hydroxide and (nickel + cobalt) have an atomic ratio of 1.05 to 1,
Baking at 700 ° C. for 10 hours in an oxidizing atmosphere, Li
x Ni y Co z O 2 ( y + z = 1) was synthesized. Nickel-
Active materials obtained from cobalt hydroxides A to F are referred to as active materials A to F, respectively. As a comparative example, nickel-
After adding and mixing cobalt oxide to the cobalt hydroxide A so that the amount of Co substitution (z value) becomes 0.2, lithium hydroxide and (nickel + cobalt) have an atomic ratio of 1.05 to 1.
And then synthesized under the same conditions to obtain the active material G.
And Synthesized Li x Ni y Co z O 2 is is obtained as a relatively loose easily aggregate mass was pulverized using a mortar.

【0025】以下に、正極板の製造法を説明する。ま
ず、正極活物質であるLixNiyCoz2(y+z=
1)の粉末100重量部に、アセチレンブラック3重量
部、およびフッ素樹脂系結着剤5重量部を混合し、この
混合物を前記結着剤の溶媒N−メチルー2ーピロリドン
に懸濁させてペースト状にした。このペーストを厚さ
0.020mmのアルミ箔の両面に塗着し、乾燥した
後、厚み0.130mm、幅35mm、長さ270mm
の正極板5を作製した。そして正極板と負極板を、セパ
レータを介して渦巻き状に巻回し、直径13.8mm、
高さ50mmの電池ケース内に収納した。電解液には炭
酸エチレンと炭酸ジエチルの等容積混合溶媒に、六フッ
化リン酸リチウム1モル/Lの割合で溶解したものを用
いて極板群4に注入した後、電池を密封口し、試験電池
とした。上記正極活物質A〜Gを用いた電池をそれぞれ
電池A〜Gとした。
Hereinafter, a method for manufacturing the positive electrode plate will be described. First, a positive electrode active material Li x Ni y Co z O 2 (y + z =
To 100 parts by weight of the powder of 1), 3 parts by weight of acetylene black and 5 parts by weight of a fluororesin binder are mixed, and this mixture is suspended in a solvent N-methyl-2-pyrrolidone for the binder to form a paste. I made it. This paste was applied on both sides of an aluminum foil having a thickness of 0.020 mm, dried, and then dried, and then 0.130 mm in thickness, 35 mm in width and 270 mm in length
Of the positive electrode plate 5 was produced. Then, the positive electrode plate and the negative electrode plate are spirally wound with a separator interposed therebetween, and have a diameter of 13.8 mm.
It was stored in a battery case having a height of 50 mm. The electrolyte was injected into the electrode group 4 using a solution of ethylene carbonate and diethyl carbonate in an equal volume mixed solvent of lithium hexafluorophosphate at a rate of 1 mol / L, and the battery was sealed. A test battery was used. Batteries using the positive electrode active materials A to G were referred to as batteries A to G, respectively.

【0026】これらの電池について以下の条件下で試験
を行った。20℃の環境下で120mAの電流で4.2
Vまで充電した後、1時間休止し、その後同様に120
mAの電流で3Vまで放電した。この方法で充放電を3
回繰り返し、3回目の放電容量を初期容量とした。ま
た、初期容量を電池内に含まれるリチウム複合ニッケル
−コバルト酸化物の重量で割ることによって活物質の利
用率(mAh/g)を算出した。更に、120mAの電
流で4.2Vまで充電した後、1200mAの電流で放
電したときの容量を高率放電容量とし、高率放電率=1
00×(1200mA放電容量/120mA放電容量)
(%)の式を用いて高率放電率を算出した。また、20
℃の環境下で120mAの電流で4.2Vまで充電した
後、1時間休止し、その後同様に120mAの電流で3
Vまで放電する充放電サイクルを繰り返し、放電容量が
初期の半分に減少するまでのサイクル数をもって寿命と
した。表2に、電池A〜Gの120mA放電容量、活物
質の利用率、高率放電率および寿命を調べた結果を示
す。
The batteries were tested under the following conditions. 4.2 mA at 120 mA in a 20 ° C. environment
After charging to V, pause for 1 hour and then
The battery was discharged to 3 V at a current of mA. Charge and discharge by this method
Repeated times, the third discharge capacity was used as the initial capacity. In addition, the utilization rate (mAh / g) of the active material was calculated by dividing the initial capacity by the weight of the lithium composite nickel-cobalt oxide contained in the battery. Further, after the battery was charged to 4.2 V with a current of 120 mA, the capacity when discharged at a current of 1200 mA was defined as a high-rate discharge capacity, and a high-rate discharge rate = 1.
00 × (1200 mA discharge capacity / 120 mA discharge capacity)
The high rate discharge rate was calculated using the formula of (%). Also, 20
Charged to 4.2 V at a current of 120 mA in an environment of 120 ° C., paused for 1 hour, and then charged at a current of 120 mA for 3 hours.
The charge / discharge cycle of discharging to V was repeated, and the life was defined as the number of cycles until the discharge capacity was reduced to half of the initial value. Table 2 shows the results of examining the 120 mA discharge capacity, active material utilization rate, high rate discharge rate, and life of batteries A to G.

【0027】[0027]

【表2】 [Table 2]

【0028】表2から明らかなように、Coを置換して
いない活物質を用いた電池Aや置換量の少ない活物質を
用いた電池Bは、充放電の際に前述したような結晶相変
化が観察され、このような結晶相変化が可逆性に乏し
く、充放電反応を繰り返すうちにLiを挿入・脱離でき
るサイトが徐々に失われてしまうことが原因でサイクル
特性が劣化したことが考えられる。これに対し電池C〜
Eのリチウム複合ニッケル−コバルト酸化物は、いずれ
も利用率170mAh/g以上を示し、高率放電、サイ
クル特性共に良好な結果が得られた。これはNiの一部
をCoで置換することによって、結晶相の変化が著しく
緩和されたためである。しかし、Co添加量(w値)が
0.4である電池Fでは、寿命が250サイクルと逆に
劣化していることがわかる。これはCo置換量(z値)
が0.4以上に大きくなると、ニッケル−コバルト水酸
化物の結晶成長が困難となり、多結晶のNivCow(O
H)2が生成してしまう。このため、合成によって得られ
るリチウム複合ニッケル−コバルト酸化物も多結晶とな
り、充放電サイクルを重ねることにより結晶粒界が成長
し、活物質が微粉化し極板から脱落して容量の低下を招
いたものと考えられる。
As is clear from Table 2, the battery A using the active material without substitution of Co and the battery B using the active material with a small substitution amount have the above-mentioned crystal phase change during charge and discharge. It was considered that such a crystal phase change was poor in reversibility, and the cycle characteristics were degraded due to the gradual loss of sites where Li can be inserted and desorbed during repeated charge and discharge reactions. Can be On the other hand, batteries C ~
Each of the lithium composite nickel-cobalt oxides of E exhibited an availability of 170 mAh / g or more, and good results were obtained in both high rate discharge and cycle characteristics. This is because the change of the crystal phase was remarkably mitigated by partially replacing Ni with Co. However, it can be seen that the life of the battery F in which the Co addition amount (w value) is 0.4 is deteriorated, which is 250 cycles. This is the amount of Co substitution (z value)
When There increased to 0.4 or more, a nickel - crystal growth of the cobalt hydroxide becomes difficult, polycrystalline Ni v Co w (O
H) 2 is generated. For this reason, the lithium composite nickel-cobalt oxide obtained by the synthesis also becomes polycrystalline, and the crystal grain boundaries grow by repeated charge / discharge cycles, and the active material is pulverized and drops from the electrode plate, resulting in a decrease in capacity. It is considered something.

【0029】また、Co添加量(w値)が0.4以上に
大きくなると、このような共沈法を用いてもニッケルと
コバルトが均一に分散されておらず、部分的にLiNi
2とLiCoO2の混合物になっているものと考えら
れ、Coが十分置換されていない部分において前述の結
晶相変化により結晶構造が破壊され、放電容量が低下し
たものと考えられる。また、Co置換量が小さくとも、
活物質Gのように、共沈法を用いない場合、コバルトが
均一に分散されておらず、同様の理由でサイクル特性が
劣化している。以上の結果より、リチウム複合ニッケル
−コバルト酸化物の原料としてのニッケル−コバルト水
酸化物は、NivCow(OH)2(0.7≦v≦0.9、
v+w=1)で表されるニッケル−コバルト水酸化物で
ある場合に、放電容量、サイクル特性に優れた非水電解
液二次電池が得られる。
When the amount of Co added (w value) is increased to 0.4 or more, nickel and cobalt are not uniformly dispersed even when such a coprecipitation method is used, and LiNi is partially dispersed.
It is considered that the mixture was a mixture of O 2 and LiCoO 2 , and it is considered that the crystal structure was destroyed by the above-described crystal phase change in the portion where Co was not sufficiently substituted, and the discharge capacity was reduced. Also, even if the amount of Co substitution is small,
When the coprecipitation method is not used as in the case of the active material G, cobalt is not uniformly dispersed, and the cycle characteristics are deteriorated for the same reason. Above results, the lithium nickel composite - nickel as a raw material for cobalt oxide - cobalt hydroxide, Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.9,
v + w = 1), a non-aqueous electrolyte secondary battery having excellent discharge capacity and cycle characteristics can be obtained.

【0030】《実施例2》金属ニッケル量が60g/L
相当の硫酸ニッケル水溶液に、ニッケルに対するコバル
トのモル比が20%になるように硫酸コバルトを添加、
溶解して硫酸ニッケル−コバルト混合水溶液を調製し
た。このニッケル−コバルト混合水溶液を容積100L
の析出槽へ10L/hの一定流量で導入し、、槽内温度
を50℃に保ち、十分攪拌しながら、25重量%の水酸
化ナトリウム溶液を導入し、反応槽のpH値を制御し、
種々の粒径を持つニッケル−コバルト水酸化物を生成さ
せた。これを水洗、乾燥した。得られたニッケル−コバ
ルト水酸化物は、全てSEM写真観察において一次粒子
が無数に凝集した二次粒子を形成しており、その形状は
球状もしくは楕円球状であった。また、得られたリチウ
ム複合ニッケル−コバルト酸化物の平均粒径も原料であ
るニッケル−コバルト水酸化物の粒径とほぼ一致してい
た。作製したニッケル−コバルト水酸化物の物性を表3
に示す。
Example 2 The amount of metallic nickel was 60 g / L
Cobalt sulfate was added to a considerable aqueous solution of nickel sulfate so that the molar ratio of cobalt to nickel was 20%.
The mixture was dissolved to prepare a nickel sulfate-cobalt mixed aqueous solution. This nickel-cobalt mixed aqueous solution has a volume of 100 L.
Into the precipitation tank at a constant flow rate of 10 L / h, and while maintaining the inside temperature of the tank at 50 ° C. and stirring sufficiently, a 25% by weight sodium hydroxide solution was introduced to control the pH value of the reaction tank.
Nickel-cobalt hydroxides with various particle sizes were produced. This was washed with water and dried. All the obtained nickel-cobalt hydroxides formed secondary particles in which primary particles were innumerably aggregated in SEM photograph observation, and the shape was spherical or elliptical spherical. Further, the average particle size of the obtained lithium composite nickel-cobalt oxide was almost the same as the particle size of the nickel-cobalt hydroxide as the raw material. Table 3 shows the physical properties of the produced nickel-cobalt hydroxide.
Shown in

【0031】[0031]

【表3】 [Table 3]

【0032】平均粒径の異なるニッケル−コバルト水酸
化物H〜Lを原料としてリチウム複合ニッケル−コバル
ト酸化物を合成する他は全て実施例1と同様にして電池
を作製した。ニッケル−コバルト水酸化物H〜Lを用い
た電池をそれぞれ電池H〜Lとした。表4に、電池H〜
Lの120mA放電容量、活物質の利用率、高率放電率
および寿命を調べた結果を示す。
A battery was prepared in the same manner as in Example 1 except that lithium composite nickel-cobalt oxides were synthesized using nickel-cobalt hydroxides HL having different average particle sizes as raw materials. Batteries using nickel-cobalt hydroxides HL were designated as batteries HL, respectively. Table 4 shows that the batteries H to
5 shows the results of examining the L 120 mA discharge capacity, active material utilization rate, high rate discharge rate, and life.

【0033】[0033]

【表4】 [Table 4]

【0034】ニッケル−コバルト水酸化物の粒径は、リ
チウム複合ニッケル−コバルト酸化物の粒径と相関関係
があると共に、タップ密度や、BET比表面積とも相関
があり、電極への充填性に大きな影響を与えるため重要
である。活物質Hの様に平均粒径が小さく、タップ密度
が小さい場合、リチウム複合ニッケル−コバルト酸化物
の電極への充填密度、すなわち容量密度が低下し、実質
的な電池容量が低下する。また、平均粒径が10μmよ
りも大きくなると、充填性は十分であるものの、活物質
の利用率や、高率放電率が低下していることがわかる。
これは、ニッケル−コバルト水酸化物の粒径が大きくな
ると、比表面積が小さくなり、リチウム複合ニッケル−
コバルト酸化物合成の際の、リチウムとの反応速度が小
さくなり、合成反応が十分に進行しなかったことが考え
られる。さらに、合成されたリチウム複合ニッケル−コ
バルト酸化物の粒径も大きいため、電解液との反応界面
の面積が小さく、高率放電特性が低下したものと考えら
れる。
The particle size of the nickel-cobalt hydroxide has a correlation with the particle size of the lithium composite nickel-cobalt oxide, and also has a correlation with the tap density and the BET specific surface area. Important to influence. When the average particle size is small and the tap density is small like the active material H, the packing density of the lithium composite nickel-cobalt oxide into the electrode, that is, the capacity density is reduced, and the actual battery capacity is reduced. Further, when the average particle size is larger than 10 μm, although the filling property is sufficient, the utilization rate of the active material and the high rate discharge rate are decreased.
This is because when the particle size of the nickel-cobalt hydroxide increases, the specific surface area decreases, and the lithium composite nickel
It is considered that the rate of reaction with lithium during the synthesis of the cobalt oxide was reduced, and the synthesis reaction did not proceed sufficiently. Furthermore, since the synthesized lithium composite nickel-cobalt oxide has a large particle size, it is considered that the area of the reaction interface with the electrolytic solution is small and the high-rate discharge characteristics are reduced.

【0035】このように、リチウム複合ニッケル−コバ
ルト酸化物を用いた非水電解液二次電池の特性が、その
原料であるニッケル−コバルト水酸化物の物性によって
著しく左右されることがわかる。従って、非水電解液二
次電池用正極活物質であるLixNiyCoz2(0.9
0≦x≦1.05、0.7≦y≦0.9、y+z=1)
で表されるリチウム複合ニッケルーコバルト酸化物の合
成に原材料として用いるNivCow(OH)2(0.7≦
v≦0.9、v+w=1)で表されるニッケル−コバル
ト水酸化物は、平均粒子径が1.5〜10μm、窒素ガ
スの吸着により測定されるBET比表面積が8〜35m
2/g、タップ密度が1.4〜2.3g/cm3、細孔の
空間体積が0.010〜0.10cm3/g、細孔占有
率が5〜40%の範囲であることが望ましい。
Thus, it can be seen that the characteristics of the non-aqueous electrolyte secondary battery using the lithium composite nickel-cobalt oxide are significantly affected by the physical properties of the nickel-cobalt hydroxide as a raw material. Accordingly, Li x Ni y Co z O 2 (0.9%) which is a positive electrode active material for a non-aqueous electrolyte secondary battery is used.
0 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9, y + z = 1)
Ni v Co w (OH) 2 is used as a raw material for the synthesis of in the lithium composite nickel-cobalt oxide represented by (0.7 ≦
The nickel-cobalt hydroxide represented by v ≦ 0.9, v + w = 1) has an average particle diameter of 1.5 to 10 μm and a BET specific surface area of 8 to 35 m measured by nitrogen gas adsorption.
2 / g, tap density is 1.4 to 2.3 g / cm 3 , pore space volume is 0.010 to 0.10 cm 3 / g, and pore occupancy is 5 to 40%. desirable.

【0036】《比較例1】粒子の形状が塊状であるニッ
ケルーコバルト複合水酸化物を原材料として、実施例1
と同様にしてリチウム複合ニッケルーコバルト酸化物M
を合成した。得られたニッケルーコバルト複合酸化物の
化学組成はLiNi0.85Co0.152であった。合成さ
れたリチウム複合ニッケルーコバルト酸化物は、平均粒
径が4μmの塊状の粒子として得られた。このリチウム
複合ニッケルーコバルト酸化物Mを正極活物質として用
いる他は実施例1と同様にして電池を作製した。表5
に、この電池の初期放電容量、活物質の利用率、効率放
電率、および寿命末期サイクル数を調べた結果を示す。
Comparative Example 1 A nickel-cobalt composite hydroxide having a massive particle shape was used as a raw material in Example 1.
The lithium composite nickel-cobalt oxide M
Was synthesized. The chemical composition of the obtained nickel-cobalt composite oxide was LiNi 0.85 Co 0.15 O 2 . The synthesized lithium composite nickel-cobalt oxide was obtained as massive particles having an average particle size of 4 μm. A battery was fabricated in the same manner as in Example 1, except that the lithium composite nickel-cobalt oxide M was used as a positive electrode active material. Table 5
The results of examining the initial discharge capacity, active material utilization rate, efficient discharge rate, and end-of-life cycle number of this battery are shown below.

【0037】[0037]

【表5】 [Table 5]

【0038】表5から明らかなように、原料のニッケル
−コバルト水酸化物が塊状である活物質Mを用いた電池
では、塊状粒子であるために特に比表面積が小さく、極
板への充填性も小さくなる。また、充放電の際の分極が
大きいために、活物質の利用率も小さくなっている。以
上の結果より、リチウム複合ニッケル酸化物の原料とな
るニッケル−コバルト水酸化物は、球状もしくは楕円球
状であることが望ましい。
As is evident from Table 5, in the battery using the active material M in which the raw material nickel-cobalt hydroxide is a lump, the specific surface area is particularly small because the lump is a lump, and the filling property to the electrode plate is small. Is also smaller. Further, since the polarization at the time of charge and discharge is large, the utilization rate of the active material is low. From the above results, it is desirable that the nickel-cobalt hydroxide used as the raw material of the lithium composite nickel oxide be spherical or elliptical spherical.

【0039】上記実施例では、ニッケル−コバルト水酸
化物を製造する方法として、硫酸ニッケル−コバルト混
合水溶液とか性アルカリ水溶液を用いる方法を示した
が、本発明はこれに限定されるものではない。例えば、
金属イオンを安定化させるためにアンモニウムイオンな
どの錯化剤等を添加することがあるが、得られるニッケ
ル−コバルト水酸化物が同様の物性を持っていれば同様
の効果が得られる。また、上記実施例においては、円筒
型の電池を用いて評価したが、角型やコイン型など電池
形状が異なっても同様の効果が得られる。更に、上記実
施例において、負極には炭素質材料を用いたが、本発明
における効果は正極板において作用するため、リチウム
金属や、リチウム合金、Fe23、WO2、WO3等の酸
化物など、他の負極材料を用いても同様の効果が得られ
る。また、上記実施例において、電解質として六フッ化
リン酸リチウムを使用したが、他のリチウム含有塩、例
えば過塩素酸リチウム、四フッ化ホウ酸リチウム、トリ
フルオロメタンスルホン酸リチウム、六フッ化ヒ酸リチ
ウムなどでも同様の効果が得られる。さらに、上記実施
例では、炭酸エチレンと炭酸ジエチルの混合溶媒を用い
たが、他の非水溶媒例えば、プロピレンカーボネートな
どの環状エステル、テトラヒドロフランなどの環状エー
テル、ジメトキシエタンなどの鎖状エーテル、プロピオ
ン酸メチルなどの鎖状エステルなどの非水溶媒や、これ
らの多元系混合溶媒を用いても同様の効果が得られる。
In the above embodiment, as a method for producing a nickel-cobalt hydroxide, a method using a mixed aqueous solution of nickel sulfate-cobalt or an aqueous alkaline solution was described, but the present invention is not limited to this. For example,
A complexing agent such as ammonium ion or the like may be added to stabilize the metal ion, but the same effect can be obtained if the obtained nickel-cobalt hydroxide has similar physical properties. Further, in the above embodiment, the evaluation was performed using a cylindrical battery, but the same effect can be obtained even when the battery shape is different, such as a prismatic type or a coin type. Furthermore, in the above embodiment, a carbonaceous material was used for the negative electrode. However, since the effect of the present invention acts on the positive electrode plate, oxidation of lithium metal, lithium alloy, Fe 2 O 3 , WO 2 , WO 3, etc. The same effect can be obtained by using another negative electrode material such as a material. Further, in the above embodiment, lithium hexafluorophosphate was used as the electrolyte, but other lithium-containing salts such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and hexafluoroarsenate were used. Similar effects can be obtained with lithium and the like. Furthermore, in the above examples, a mixed solvent of ethylene carbonate and diethyl carbonate was used, but other non-aqueous solvents, for example, cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, chain ethers such as dimethoxyethane, and propionic acid Similar effects can be obtained by using a non-aqueous solvent such as a chain ester such as methyl, or a mixed solvent of these non-aqueous solvents.

【0040】[0040]

【発明の効果】以上の説明から明らかなように、本発明
による粒子形状、粒径等の物性を制御したニッケル−コ
バルト水酸化物を用いると、サイクル特性、および高率
放電特性の優れた非水電解液二次電池を与える正極活物
質リチウム複合ニッケル−コバルト酸化物を得ることが
できる。
As is evident from the above description, the use of the nickel-cobalt hydroxide of the present invention having controlled physical properties such as particle shape and particle size makes it possible to obtain a non-volatile metal having excellent cycle characteristics and high rate discharge characteristics. A positive electrode active material lithium composite nickel-cobalt oxide that provides a water electrolyte secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の円筒型電池の縦断面図であ
る。
FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8、9 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulating packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8, 9 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北 秀行 福井県福井市白方町45字砂浜割5番10 株式会社田中化学研究所内 (72)発明者 臼井 猛 福井県福井市白方町45字砂浜割5番10 株式会社田中化学研究所内 (72)発明者 亀田 有純 福井県福井市白方町45字砂浜割5番10 株式会社田中化学研究所内 (56)参考文献 特開 平9−129230(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 C01G 53/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideyuki Kita 45 characters, Shirakata-cho, Fukui City, Fukui Prefecture 5-10 Sunahamari Research Institute, Inc. (72) Inventor Takeshi Takeshi 45 characters, Shirakata-cho, Fukui City, Fukui Prefecture 5-10 Sandy Beach Discount, Tanaka Chemical Laboratory Co., Ltd. (72) Inventor Yuzumi Kameda 45-10, Shirahama-cho, Shirakata-cho, Fukui City, Fukui Prefecture (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/58 C01G 53/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非水電解液電池活物質LixNiyCoz
2(0.90≦x≦1.05、0.7≦y≦0.9、
y+z=1)で表されるリチウム複合ニッケル−コバル
ト酸化物の合成に原材料として用いるニッケル−コバル
ト水酸化物であって、NivCow(OH)2(0.7≦
v≦0.9、v+w=1)で表され、SEM写真観察に
おいて一次粒子が無数に凝集して二次粒子を形成してお
り、その二次粒子の平均粒子径が1.5〜10μmであ
り、窒素ガスの吸着により測定されるBET比表面積が
8〜35m 2 /gであることを特徴とする非水電解液電
池活物質用ニッケル−コバルト水酸化物。
1. A non-aqueous electrolyte battery active material Li x Ni y Co z
O 2 (0.90 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9,
y + z = 1) by the lithium nickel composite represented - nickel is used as a raw material for the synthesis of cobalt oxide - a cobalt hydroxide, Ni v Co w (OH) 2 (0.7 ≦
v ≦ 0.9, v + w = 1), and in the SEM photograph observation, the primary particles are innumerably aggregated to form secondary particles, and the average particle size of the secondary particles is 1.5 to 10 μm. Ah
BET specific surface area measured by nitrogen gas adsorption
A nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material, which has a mass of 8 to 35 m 2 / g .
【請求項2】 ニッケル−コバルト水酸化物は、球状ま
たは楕円球状である請求項1記載の非水電解液電池活物
質用ニッケル−コバルト水酸化物。
2. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide is spherical or elliptical spherical.
【請求項3】 ニッケル−コバルト水酸化物は、タップ
密度が1.4〜2.3g/cm3である請求項1記載の
非水電解液電池活物質用ニッケル−コバルト水酸化物。
3. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide has a tap density of 1.4 to 2.3 g / cm 3 .
【請求項4】 ニッケル−コバルト水酸化物は、細孔の
空間体積が0.010〜0.10cm3/gである請求
項1記載の非水電解液電池活物質用ニッケル−コバルト
水酸化物。
4. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide has a pore volume of 0.010 to 0.10 cm 3 / g. .
【請求項5】 ニッケル−コバルト水酸化物は、細孔占
有率が5〜40%の範囲である請求項1記載の非水電解
液電池活物質用ニッケル−コバルト水酸化物
5. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide has a pore occupancy in the range of 5 to 40% .
JP07910996A 1996-04-01 1996-04-01 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material Expired - Lifetime JP3229544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07910996A JP3229544B2 (en) 1996-04-01 1996-04-01 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07910996A JP3229544B2 (en) 1996-04-01 1996-04-01 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material

Publications (2)

Publication Number Publication Date
JPH09270258A JPH09270258A (en) 1997-10-14
JP3229544B2 true JP3229544B2 (en) 2001-11-19

Family

ID=13680744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07910996A Expired - Lifetime JP3229544B2 (en) 1996-04-01 1996-04-01 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material

Country Status (1)

Country Link
JP (1) JP3229544B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306787B1 (en) 1998-06-10 2001-10-23 Sakai Chemical Industry Co., Ltd. Nickel hydroxide particles and production and use thereof
KR100307163B1 (en) * 1999-06-12 2001-11-01 김순택 Method of preparing positive active material of lithium secondary battery
US20020053663A1 (en) * 2000-11-06 2002-05-09 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2005123179A (en) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp Lithium compound oxide particle for lithium secondary battery positive electrode material, and lithium secondary battery positive electrode using the same, and the lithium secondary battery
JP4996117B2 (en) * 2006-03-23 2012-08-08 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
DE102006062762A1 (en) * 2006-03-31 2008-01-31 H.C. Starck Gmbh Process for the preparation of pulverulent Ni, Co mixed hydroxides and their use
KR101390533B1 (en) 2010-02-09 2014-04-30 도요타지도샤가부시키가이샤 Positive electrode active material for non-aqueous electrolyte secondary battery and process for production thereof, and non-aqueous electrolyte secondary battery produced using the positive electrode active material
US10141571B2 (en) 2012-09-28 2018-11-27 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt composite hydroxide and method and device for producing same, cathode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP5626382B2 (en) 2013-01-30 2014-11-19 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide and method for producing the same
JP6136604B2 (en) * 2013-06-10 2017-05-31 住友金属鉱山株式会社 Method for producing nickel cobalt composite hydroxide particles
JP5874939B2 (en) * 2014-05-30 2016-03-02 住友金属鉱山株式会社 Nickel-containing hydroxide, nickel-containing oxide, and production method thereof
CN113421781A (en) * 2021-06-25 2021-09-21 上海理工大学 Preparation method of nickel-cobalt oxide @ nickel-cobalt hydroxide core-shell structure electrode material

Also Published As

Publication number Publication date
JPH09270258A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
JP5079951B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP3362564B2 (en) Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate
CN108292749B (en) Positive electrode material for nonaqueous electrolyte secondary battery, method for producing same, positive electrode composite paste, and nonaqueous electrolyte secondary battery
US20090314985A1 (en) Pulverulent compounds, a process for the preparation thereof and the use thereof in lithium secondary batteries
JP3606290B2 (en) Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery
JPH11135119A (en) Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JP4177574B2 (en) Lithium secondary battery
JPH09231973A (en) Positive electrode active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JP4454052B2 (en) Method for producing nickel electrode active material for alkaline storage battery, and method for producing nickel positive electrode
JP3229544B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2006286336A (en) Nonaqueous electrolyte secondary battery and its charging method
JPH01204361A (en) Secondary battery
JP2004059417A (en) Layered rock salt-type lithium nickelate powder and its manufacturing method
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell
JP2002042811A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR19990034749A (en) Lithium-ion secondary battery employing a lithium composite oxide, a method of manufacturing the same, and a positive electrode using the same
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JP2004119221A (en) Method for manufacturing positive active material for lithium secondary battery
JP3986148B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials
JP3954668B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term