KR19990034749A - Lithium-ion secondary battery employing a lithium composite oxide, a method of manufacturing the same, and a positive electrode using the same - Google Patents

Lithium-ion secondary battery employing a lithium composite oxide, a method of manufacturing the same, and a positive electrode using the same Download PDF

Info

Publication number
KR19990034749A
KR19990034749A KR1019970056445A KR19970056445A KR19990034749A KR 19990034749 A KR19990034749 A KR 19990034749A KR 1019970056445 A KR1019970056445 A KR 1019970056445A KR 19970056445 A KR19970056445 A KR 19970056445A KR 19990034749 A KR19990034749 A KR 19990034749A
Authority
KR
South Korea
Prior art keywords
lithium
composite oxide
particles
heat treatment
lithium composite
Prior art date
Application number
KR1019970056445A
Other languages
Korean (ko)
Other versions
KR100261509B1 (en
Inventor
김근배
박용철
조재필
김성수
Original Assignee
손욱
삼성전관 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손욱, 삼성전관 주식회사 filed Critical 손욱
Priority to KR1019970056445A priority Critical patent/KR100261509B1/en
Priority to DE19849343A priority patent/DE19849343A1/en
Priority to JP32149298A priority patent/JP4100785B2/en
Priority to US09/179,963 priority patent/US6241959B1/en
Priority to CNB981214479A priority patent/CN1208249C/en
Publication of KR19990034749A publication Critical patent/KR19990034749A/en
Application granted granted Critical
Publication of KR100261509B1 publication Critical patent/KR100261509B1/en
Priority to US09/849,246 priority patent/US6773852B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

코발트염과 니켈염의 혼합수용액에 착제로서 암모니아수와 pH 조절제로서 알칼리용액을 첨가하고 소정시간동안 공침반응시켜 침상의 1차 입자의 집합체가 구형의 2차 입자를 이루고 있는 니켈-코발트 복합수산화물을 형성하는 단계, 상기 복합수산화물에 수산화리튬을 첨가하여 280-420℃에서 1차열처리하는 단계, 및 상기 1차열처리하여 얻은 결과물을 650-700℃에서 2차열처리하는 단계를 포함하는 방법에 의해 제조되는 리튬 복합산화물 (LiNi(1-x-y)CoxMyO2(M=Al, Ca, Mg 및 B 중에서 선택되는 적어도 하나의 금속원자이고, x는 0.1 내지 0.3, y는 0 내지 0.1))은 미소한 각형의 1차 입자의 집합체가 구형의 2차 입자를 이루고 있고 탭밀도가 높아서, 이 리튬 복합산화물을 양극 활물질로 이용하는 경우 고용량의 리튬이온 이차전지를 얻을 수 있다.The aqueous solution of cobalt salt and nickel salt is added to the aqueous solution of ammonia as a complex and an alkaline solution as a pH regulator and co-precipitated for a predetermined time to form a nickel-cobalt composite hydroxide in which the aggregates of acicular primary particles form spherical secondary particles. Lithium prepared by the method comprising the steps of adding lithium hydroxide to the composite hydroxide, the first heat treatment at 280-420 ℃, and the second heat treatment at 650-700 ℃ the result obtained by the first heat treatment The composite oxide (LiNi (1-xy) Co x M y O 2 (M = Al, Ca, Mg and B is at least one metal atom selected from x, 0.1 is 0.3 to 0.3, y is 0 to 0.1)) The aggregate of a rectangular primary particle forms a spherical secondary particle, and the tap density is high. When the lithium composite oxide is used as a positive electrode active material, a high capacity lithium ion secondary battery can be obtained.

Description

리튬 복합산화물, 그 제조방법 및 그것을 활물질로 하는 양극을 채용한 리튬이온 이차전지Lithium-ion secondary battery employing a lithium composite oxide, a method of manufacturing the same, and a positive electrode using the same as an active material

본 발명은 리튬 이차전지에 관한 것으로서, 입자형태가 구형인 리튬 복합산화물, 그 제조방법 및 이러한 리튬 복합산화물을 활물질로 하는 양극을 채용하고 있는 리튬 이온 이차전지에 관한 것이다.The present invention relates to a lithium secondary battery, and relates to a lithium composite oxide having a spherical particle shape, a method for manufacturing the same, and a lithium ion secondary battery employing a positive electrode using the lithium composite oxide as an active material.

전자기기, 특히 캠코더, 셀룰라폰 및 노트북 컴퓨터 등의 소형화, 경량화 및 무선화가 급속하게 진행됨에 따라 이들 전자기기의 구동전원으로서 소형, 경량이며 에너지밀도가 높은 2차전지에 대한 요구가 증대되고 있다. 이러한 점에서, 특히 리튬 이차전지가 주목을 받고 있다.With the rapid progress in miniaturization, weight reduction, and wirelessization of electronic devices, particularly camcorders, cellular phones, and notebook computers, there is an increasing demand for secondary batteries having small size, light weight, and high energy density as driving power for these electronic devices. In this respect, in particular, lithium secondary batteries have attracted attention.

리튬 금속은 지구상에 존재하는 금속 중 가장 가벼우므로 단위 질량당 전기 용량이 가장 크고 전기음성도가 커서 전지의 음극 물질로 사용될 수 있다. 그러나, 금속 상태의 리튬은 유기용매와의 반응에 의해 패시베이션 (passivation)되어 수지상으로 성장하여 전지 내부의 단락을 유발할 수 있어 전지의 안전성에 심각한 문제를 일으킬 수 있다. 따라서, 리튬 금속을 대체할 수 있는 음극 재료로서 전극 전위가 리튬 금속과 가장 유사하며 층상구조를 가지고 있어서 리튬 이온의 가역적인 삽입/탈삽입 (intercalation/ deintercalation)이 가능한 카본이 개발되었다.Lithium metal is the lightest metal on the planet, so it has the largest electric capacity per unit mass and its electronegativity, which can be used as a negative electrode material of a battery. However, lithium in the metal state may be passivated by the reaction with the organic solvent to grow dendritic and cause short circuits in the battery, which may cause serious problems in the safety of the battery. Accordingly, carbon has been developed as an anode material capable of replacing lithium metal, having an electrode potential most similar to that of lithium metal, having a layered structure, and capable of reversible intercalation / deintercalation of lithium ions.

카본 음극과 금속 산화물 양극 및 액체 전해질로 이루어진 리튬 이차전지의 전극반응은 다음과 같다.The electrode reaction of a lithium secondary battery composed of a carbon anode, a metal oxide anode, and a liquid electrolyte is as follows.

충전시에는 양극내의 리튬 이온이 탈삽입되고 전해액 중의 리튬 이온이 카본의 층상구조내로 삽입되어 전해액중의 리튬 이온의 농도는 일정하게 유지되며, 방전시에는 충전의 역방향으로 리튬이온의 삽입/탈삽입이 진행된다. 이 전지는, 충방전에 따라 리튬 이온이 두 전극 사이를 왕복한다는 점에서 록킹-췌어 (rocking- chair) 전지라고 불리며, 또한 리튬 금속이 관여하지 않고 리튬은 이온 상태로 존재하므로 리튬 이온 전지라고도 한다.During charging, lithium ions in the positive electrode are removed and lithium ions in the electrolyte are inserted into the carbon layered structure so that the concentration of lithium ions in the electrolyte is kept constant. During discharge, the lithium ions are inserted / reinserted in the opposite direction of charging. This is going on. This battery is called a rocking-chair cell in that lithium ions reciprocate between two electrodes due to charging and discharging. Also, this battery is also called a lithium ion battery because lithium metal is not involved and lithium exists in an ionic state. .

상기와 같은 리튬 이온 이차전지에서, 양극 물질로는 리튬 금속산화물이 이용되는데, 특히 LiCoO2, LiMn2O4, LiNiO2등이 알려져 있다. 이중 Co계의 리튬산화물은 이미 상품화되어 널리 사용되고 있기는 하지만 코발트의 가격이 높고 유해하다는 단점이 있다. 니켈계의 리튬산화물은 가격이 저렴하고 금속 유해성이 적으며 고용량을 얻을 수 있기는 하지만 분말합성이 용이하지 않고 수명특성이 좋지 않다는 단점이 있다. 이러한 문제점을 해결하기 위해, LiMM'Ox(여기서, M 및 M'는 천이금속으로서 Co, Mn, Ni, V, Fe, W 등이다)로 표시되는 리튬 복합산화물이 개발되었다. 즉, LiNiO2에서 Ni의 일부가 다른 금속으로 치환됨으로써 합성이 보다 용이하게 이루어질 수 있고 수명특성이 개선될 수 있다. 이러한 특성의 개선은 최종적으로 형성되는 리튬 산화물의 결정구조 또는 입자형태에 따라 크게 좌우되는 것으로 알려져 있다. 예를 들어, 통상 입자의 양극 활물질의 입자형태가 부정형이고 미세한 (평균입경 약 5㎛ 정도) 경우는 리튬 이온의 삽입/탈삽입에 유리하므로 고용량의 전지를 얻을 수 있고, 구형에 가까운 경우는 탭밀도 (tap density)를 증가시키는데 유리하므로 전지의 제조시 양극 활물질의 상대적인 무게비를 증가시킬 수 있다.In the lithium ion secondary battery as described above, lithium metal oxide is used as the positive electrode material, and in particular, LiCoO 2 , LiMn 2 O 4 , LiNiO 2, and the like are known. Co-based lithium oxide is already commercialized and widely used, but has the disadvantage of high cobalt price and harmfulness. Nickel-based lithium oxide is inexpensive, low in metal hazards and high in capacity, but has a disadvantage in that powder synthesis is not easy and life characteristics are not good. In order to solve this problem, lithium composite oxides represented by LiMM'O x (wherein M and M 'are Co, Mn, Ni, V, Fe, W, etc.) are developed. That is, by replacing a portion of Ni in LiNiO 2 with another metal, the synthesis can be made easier and lifespan characteristics can be improved. The improvement of these properties is known to depend greatly on the crystal structure or particle shape of the finally formed lithium oxide. For example, in the case where the particle shape of the positive electrode active material of the particles is irregular and fine (about 5 μm in average particle size), it is advantageous to insert / de-insert lithium ions, so that a battery having a high capacity can be obtained, and the tab is close to a spherical shape. Since it is advantageous to increase the tap density, it is possible to increase the relative weight ratio of the positive electrode active material in manufacturing a battery.

일본특허출원공개 평7-37576호에는, 니켈염 수용액과 알칼리 수용액의 중화반응에 의해 석출되는 수산화니켈의 판상 단결정입자 (1차 입자)를 구상 또는 타원체상으로 집합시켜 2차 입자를 형성한 다음, 상기 수산화니켈의 2차 입자와 리튬화합물과, 경우에 따라 마그네슘화합물을 산소분위기하에서 열처리하여 니켈계의 리튬산화물을 제조하는 방법이 개시되어 있다. 이 방법에 의해 제조되는 니켈계의 리튬산화물은, 박편이 다수 적층되어 층상구조를 이루는 판상의 1차 입자가 다수 집합되어 2차 입자를 이루며, 2차 입자는 구상 또는 타원체상으로서 약 2 내지 20㎛의 평균입경을 가지고 있다. 즉, 이미 층상구조를 이루고 있는 1차 입자를 집합시키는 조립공정을 통해 2차 입자를 형성하는 방법을 사용하고 있다. 그러나, 조립방법을 이용하여 1차 입자를 집합시켜 2차 입자를 형성하므로, 최종적으로 얻어지는 활물질의 입자크기의 미세화가 곤란하며 조립공정의 조건을 최적화하기 위해서도 세심한 주의가 요구된다.In Japanese Patent Application Laid-Open No. 7-37576, platelet single crystal particles (primary particles) of nickel hydroxide precipitated by neutralization reaction of an aqueous nickel salt solution and an aqueous alkali solution are aggregated into spherical or ellipsoidal forms to form secondary particles. A method of preparing nickel-based lithium oxide is disclosed by heat treating a secondary particle of nickel hydroxide, a lithium compound, and optionally a magnesium compound in an oxygen atmosphere. In the nickel-based lithium oxide produced by this method, a plurality of plate-shaped primary particles forming a layered structure by stacking a plurality of flakes form a secondary particle, and the secondary particles are spherical or ellipsoidal, about 2 to 20. It has an average particle diameter of 탆. That is, a method of forming secondary particles through an assembly process of collecting primary particles having a layered structure is used. However, since the primary particles are aggregated to form secondary particles by using the granulation method, it is difficult to refine the particle size of the finally obtained active material and careful attention is also required to optimize the conditions of the granulation process.

일본특허출원공개 평8-339806호에는, 코발트염과 니켈염의 혼합수용액에 알칼리용액을 첨가하여 코발트수산화물과 니켈수산화물을 공침시켜 복합수산화물을 얻은 다음, 이 복합수산화물의 단결정입자를 구상 또는 타원체상으로 집합시켜 2차 입자를 형성하고, 이어서 이 복합수산화물에 리튬화합물을 첨가하여 열처리함으로써, 층상구조부분이 구형 또는 타원형의 2차 입자의 외측으로 향해 노출되어 있는 니켈계 리튬 복합산화물 (LiNi(1-x)MxO2(M=Co 또는 Al, x=0.05 내지 0.3))이 개시되어 있다. 이 방법에서, 상기 구상형태의 2차입자는 Ni와 Co의 복합수산화물을 얻는 시점에서 형성되고 그 후 리튬화합물을 첨가하여 열처리를 실시한 후에도 그 입자형상은 거의 그대로 유지된다. 그러나, 이 방법에 의하면, 열처리 온도가 약 750℃인 경우에 용량특성이 개선되는데, 온도가 높아지면 입자 형태의 유지가 곤란하게 된다. 또한, 층상구조부분이 2차 입자의 외측으로 노출되어 있어서 탭밀도가 그다지 높지 않다. 일반적으로 탭밀도는 입자의 표면상태가 평탄할수록 높게 나타나며 탭밀도가 높을수록 양전극 제조시 활물질의 상대적인 충전량을 증가시킬 수 있으므로 전지의 용량을 증가시키는데 유리하게 작용한다. 종래의 방법에 따라 제조되는 종래의 리튬복합산화물의 경우, 탭밀도는 통상 2.4-2.7g/cm3수준이었다.In Japanese Patent Application Laid-Open No. 8-339806, an alkali solution is added to a mixed solution of cobalt salt and nickel salt to coprecipitate cobalt hydroxide and nickel hydroxide to obtain a composite hydroxide, and then single crystal particles of the composite hydroxide are spherical or ellipsoidal. The secondary particles are collected to form a secondary compound, and then a lithium compound is added to the composite hydroxide and subjected to heat treatment, whereby the layered structure part is exposed to the outside of the spherical or elliptical secondary particles (LiNi (1 -Ni). x) M x O 2 (M = Co or Al, x = 0.05 to 0.3) is disclosed. In this method, the spherical secondary particles are formed at the time of obtaining a composite hydroxide of Ni and Co, and the particle shape is almost maintained even after heat treatment by addition of a lithium compound. According to this method, however, the capacity characteristics are improved when the heat treatment temperature is about 750 ° C., but the maintenance of the particle form becomes difficult when the temperature is increased. In addition, since the layered structure part is exposed to the outside of the secondary particles, the tap density is not so high. In general, the tap density is higher as the surface state of the particles are flat, the higher the tap density can increase the relative charge amount of the active material in the production of the positive electrode, which is advantageous to increase the capacity of the battery. In the case of the conventional lithium composite oxide prepared according to the conventional method, the tap density was usually 2.4-2.7 g / cm 3 level.

본 발명에서는, 탭밀도가 높은 구형의 리튬 복합산화물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a spherical lithium composite oxide having a high tap density.

본 발명의 다른 목적은 상기 구형의 리튬 복합산화물을 간단하게 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for simply preparing the spherical lithium composite oxide.

본 발명의 또 다른 목적은 상기 구형의 리튬 복합산화물을 활물질로 하는 양극을 채용하고 있는 리튬 이온 이차전지를 제공하는 것이다.Another object of the present invention is to provide a lithium ion secondary battery employing a positive electrode having the spherical lithium composite oxide as an active material.

도 1a, 1b, 1c 및 1d는 본 발명의 일실시예에 따른 리튬 복합산화물의 제조시 1차열처리 (도 1a 및 1b) 및 2차 열처리 (도 1c 및 1d) 후 얻어지는 복합산화물 및 그 입자표면상태를 나타내는 주사전자현미경 (SEM) 사진이다.Figures 1a, 1b, 1c and 1d is a composite oxide and its particle surface obtained after the first heat treatment (Fig. 1a and 1b) and the secondary heat treatment (Fig. 1c and 1d) in the production of a lithium composite oxide according to an embodiment of the present invention A scanning electron microscope (SEM) photograph showing the state.

도 2a 및 2b는 본 발명의 일실시예에 따라 제조된 리튬 복합산화물을 양극으로 채용한 전지의 충방전실험결과를 나타내는 그래프이다.2A and 2B are graphs showing charge and discharge test results of a battery employing a lithium composite oxide prepared according to an embodiment of the present invention as a positive electrode.

도 3a, 3b, 3c 및 3d는 본 발명의 일실시예에 따른 리튬 복합산화물의 제조시 1차열처리 (도 3a 및 3b) 및 2차 열처리 (도 3c 및 3d) 후 얻어지는 복합산화물 및 그 입자표면상태를 나타내는 주사전자현미경 (SEM) 사진이다.3A, 3B, 3C, and 3D illustrate composite oxides and particle surfaces obtained after primary heat treatment (FIGS. 3A and 3B) and secondary heat treatment (FIGS. 3C and 3D) in the preparation of a lithium composite oxide according to one embodiment of the present invention. A scanning electron microscope (SEM) photograph showing the state.

도 4a 및 4b는 본 발명의 다른 실시예에 따라 제조된 리튬 복합산화물을 양극으로 채용한 전지의 충방전실험결과를 나타내는 그래프이다.4A and 4B are graphs showing charge and discharge test results of a battery employing a lithium composite oxide prepared according to another embodiment of the present invention as a positive electrode.

상기 목적을 달성하기 위하여 본 발명에서는, 각형의 1차 입자의 집합체가 구형의 2차 입자를 이루고 있으며, 탭밀도가 2.4-3.2g/cm3인 것을 특징으로 하는 리튬 복합산화물 (LiNi(1-x-y)CoxMyO2(M=Al, Ca, Mg 및 B 중에서 선택되는 적어도 하나의 금속원자이고, x는 0.1 내지 0.3, y는 0 내지 0.1))이 제공된다.In the present invention, in order to attain the object, which is an aggregate of primary particles of the square forms a secondary particle of a spherical shape, the lithium composite oxide, characterized in that the tap density of 2.4-3.2g / cm 3 (LiNi (1- xy) Co x M y O 2 (M = Al, Ca, Mg, and at least one metal atom selected from B, x is 0.1 to 0.3, y is 0 to 0.1) is provided.

상기 1차 입자는 삼각형 내지 오각형, 바람직하기로는 사각형으로 되어 있고 평균입자크기는 0.2-0.5㎛ 이며, 2차 입자의 평균입자크기는 5 내지 20㎛ 이다.The primary particles are triangular to pentagonal, preferably rectangular, with an average particle size of 0.2-0.5 μm and an average particle size of secondary particles of 5 to 20 μm.

상기 본 발명의 다른 목적은, a) 코발트염과 니켈염의 혼합수용액에 착제로서 암모니아수 및 pH 조절제로서 알칼리용액을 첨가하여 6-10시간 공침시켜 니켈-코발트 복합수산화물을 추출하는 단계, b) 상기 복합수산화물에 수산화리튬을 첨가하여 280-420℃에서 1차열처리하는 단계, c) 상기 1차열처리하여 얻은 결과물을 650-700℃에서 2차열처리하는 단계를 포함하는 리튬 복합산화물 ((LiNi(1-x)CoxO2(x는 0.1 내지 0.3))의 제조방법에 의해 달성된다.Another object of the present invention, a) adding ammonia water as a complex and an alkaline solution as a pH adjuster to a mixed aqueous solution of cobalt salt and nickel salts and co-precipitated for 6-10 hours to extract the nickel-cobalt composite hydroxide, b) the complex Adding a lithium hydroxide to the hydroxide and performing a first heat treatment at 280-420 ° C., c) a lithium composite oxide comprising a second heat treatment at 650-700 ° C. (LiNi (1- x) Co x 0 2 (x is 0.1 to 0.3)).

상기 a)단계에 있어서, 니켈염과 코발트염의 혼합수용액에 착제와 pH조절제를 첨가하기 전에 Al, Ca, Mg 및 B 중에서 선택되는 적어도 하나의 금속원자를 포함하는 제3의 금속염을 전체 금속염 (니켈염과 코발트염과 제3의 금속염의 합)에 대해 0.1몰비 이하의 비율로 첨가할 수 있다.In step a), before adding the complexing agent and the pH adjusting agent to the mixed aqueous solution of nickel salt and cobalt salt, a third metal salt containing at least one metal atom selected from Al, Ca, Mg and B is added to the total metal salt (nickel Salt, cobalt salt and third metal salt) in an amount of 0.1 mole ratio or less.

상기 1차열처리 및 2차열처리는 모두 건조공기분위기에서 실시된다.Both the primary heat treatment and the secondary heat treatment are performed in a dry air atmosphere.

본 발명의 또 다른 목적은, 리튬 산화물을 활물질로 하는 양극, 카본계 음극 및 비수계 전해액을 포함하는 리튬이온 이차전지에 있어서, 상기 양극의 리튬 산화물은 각형의 1차 입자의 집합체가 구형의 2차 입자를 이루고 있으며, 탭밀도가 2.4-3.2g/cm3인 리튬 복합산화물 (LiNi(1-x)CoxMyO2(M=Al, Ca, Mg 및 B 중에서 선택되는 적어도 하나의 금속원자이고, x는 0.1 내지 0.3, y는 0 내지 0.1))인 것을 특징으로 하는 리튬 이온 이차전지에 의하여 달성된다.Still another object of the present invention is to provide a lithium ion secondary battery comprising a positive electrode, a carbon-based negative electrode, and a non-aqueous electrolytic solution containing lithium oxide as an active material, wherein the lithium oxide of the positive electrode is formed of spherical secondary particles. Lithium composite oxide (LiNi (1-x) Co x M y O 2 (M = Al, Ca, Mg and B) at least one metal constituting the secondary particles and having a tap density of 2.4-3.2 g / cm 3 Atom, x is 0.1 to 0.3, y is 0 to 0.1)) is achieved by a lithium ion secondary battery.

이하, 본 발명의 리튬 복합산화물의 제조방법에 대한 보다 상세한 설명을 통해 본 발명의 원리에 대해 설명하기로 한다.Hereinafter, the principle of the present invention will be described through a more detailed description of the method for producing a lithium composite oxide of the present invention.

먼저, 코발트염과 니켈염, 경우에 따라 알루미늄, 칼슘, 마그네슘 또는 붕소 중에서 선택된 어느 하나의 제3의 금속염을 포함하는 혼합수용액에 암모니아수와 알칼리용액을 첨가한다. 여기서, 암모니아수는 착제로서 형성되는 복합수산화물의 형상을 조절하는 작용을 하며, 알칼리용액은 pH 조절제로서 상기 혼합수용액에서 공침이 일어나기에 적합한 pH를 유지하는 작용을 한다. 바람직한 pH 범위는 10.5 내지 11.5로서 염기성을 유지하도록 한다. 공침 후 소정시간 경과 후 공침생성물을 추출하면 침상의 미세입자가 뭉쳐진 구형의 니켈-코발트, 경우에 따라 니켈-코발트-제3 금속의 복합수산화물이 형성된다. 이때, 공침반응시간과 pH에 따라 입자의 형태를 조절할 수 있다. 본 발명에서는 공침시킨 후 공침물의 입자 형태를 계속 모니터링하면서 2차 입자가 구형을 이루는 시점에서 공침물을 추출하였다. 본 발명에서는 공침시간을 6-10시간으로 하였는데, 공침시간이 6시간 미만인 경우에는 최종적으로 얻어지는 리튬 복합산화물 입자의 표면상태가 평탄하지 못하여 원하는 범위의 탭밀도를 얻기가 곤란하고 공침시간을 10시간 이상으로 하는 경우에는 최종적으로 얻어지는 리튬 복합산화물 입자를 이루는 1차 입자들이 융합되어 탭밀도 향상에는 유리하지만 리튬 이온의 삽입/탈삽입 효율이 떨어지게 된다.First, ammonia water and an alkaline solution are added to a mixed aqueous solution containing a cobalt salt and a nickel salt, optionally, a third metal salt selected from aluminum, calcium, magnesium or boron. Here, the aqueous ammonia serves to control the shape of the complex hydroxide formed as a complex, and the alkaline solution serves to maintain a pH suitable for coprecipitation in the mixed aqueous solution as a pH adjusting agent. The preferred pH range is 10.5 to 11.5 to maintain basicity. Extraction of the coprecipitation product after a predetermined time after the coprecipitation forms a composite hydroxide of spherical nickel-cobalt, and optionally a nickel-cobalt-third metal, in which needle-like fine particles are aggregated. At this time, the shape of the particles can be adjusted according to the coprecipitation reaction time and pH. In the present invention, the co-precipitate was extracted at the time point where the secondary particles form a sphere while continuously monitoring the particle shape of the co-precipitate. In the present invention, the coprecipitation time was 6-10 hours. When the coprecipitation time is less than 6 hours, the surface state of the finally obtained lithium composite oxide particles is not flat, and it is difficult to obtain a tap density in a desired range, and the coprecipitation time is 10 hours. In the above case, primary particles constituting the finally obtained lithium composite oxide particles are fused, which is advantageous for improving the tap density, but decreases the insertion / deinsertion efficiency of lithium ions.

상기 침상의 미세입자가 뭉쳐져 있는 구형의 복합수산화물에 수산화리튬을 첨가하고 280-420℃에서 1차열처리하여 니켈-코발트 복합산화물 또는 니켈-코발트-제3 금속의 복합산화물의 표면에 수산화리튬이 부분적으로 용해된 상태의 중간생성물을 형성한 다음 상온까지 서서히 냉각하고, 다시 650-700℃에서 2차열처리를 실시한 다음 상온으로 냉각한다. 상기 1차열처리 및 2차열처리는 각각 4-7시간 및 10-20시간 실시하는데, 이 범위에서 입자의 형태가 바람직하게 유지될 수 있다.Lithium hydroxide is partially added to the surface of the nickel-cobalt composite oxide or the nickel-cobalt-third metal composite oxide by adding lithium hydroxide to the spherical composite hydroxide in which the needle-shaped fine particles are aggregated, and performing primary heat treatment at 280-420 ° C. After forming an intermediate product in a dissolved state, and slowly cooled to room temperature, and then subjected to a second heat treatment at 650-700 ° C. and then cooled to room temperature. The first heat treatment and the second heat treatment are carried out for 4-7 hours and 10-20 hours, respectively, in which the form of the particles can be preferably maintained.

즉, 본 발명에서는 니켈-코발트 복합수산화물을 공침시킨 후 소정시간 경과 후 침상의 1차 입자의 집합체가 구형의 2차 입자로 성장된 다음 추출하는 것이 매우 중요하다. 본 발명에서는, 침상, 바람직하기로는 길이 약 1㎛ 이하, 폭이 약 0.1㎛ 이하인 침상의 미세입자의 집합체가 구형의 입자를 이루는 복합수산화물을 형성한 후, 이것을 출발물질로 사용함으로써 본 발명에 따른 독특한 구조의 리튬 복합산화물이 제조된다. 그러므로, 본 발명은 출발화합물의 입자형태를 조절함으로써 최종 생성물의 입자 형태를 원하는 형태로 얻는 점에 특징이 있으며, 출발화합물의 입자형태를 조절하는데 있어서는 암모니아수를 이용한다. 상기 공침의 반응메카니즘에 있어서 암모니아수를 착제 (complexing agent)로 이용하는 것과 동시에 공침반응시간만을 조절함으로써 출발화합물인 복합수산화물의 입자형태를 용이하게 조절할 수 있다.That is, in the present invention, it is very important that the aggregate of needle-shaped primary particles grows into spherical secondary particles after extraction for a predetermined time after co-precipitating the nickel-cobalt composite hydroxide. In the present invention, a needle, preferably an aggregate of needle-like fine particles having a length of about 1 μm or less and a width of about 0.1 μm or less, forms a composite hydroxide of spherical particles, and then uses this as a starting material. A lithium composite oxide with a unique structure is produced. Therefore, the present invention is characterized in that the particle form of the final product is obtained in a desired form by adjusting the particle form of the starting compound, and ammonia water is used to control the particle form of the starting compound. In the reaction mechanism of coprecipitation, by using ammonia water as a complexing agent and controlling only the coprecipitation reaction time, it is possible to easily control the particle form of the composite hydroxide as a starting compound.

이렇게 제조된 리튬 복합산화물을 활물질로 하는 양극을 제조하는 방법은 특별히 제한되지 않으므로, 통상적으로 이용되는 방법을 그대로 적용할 수 있다. 또한, 이렇게 제조된 양극을 이용하여 리튬이온 이차전지를 제조하는데 있어서도, 통상적인 방법이 그대로 이용될 수 있다.Since the method for producing the positive electrode using the lithium composite oxide prepared as an active material is not particularly limited, a method commonly used may be applied as it is. In addition, in manufacturing a lithium ion secondary battery using the positive electrode thus prepared, a conventional method may be used as it is.

이하, 하기 실시예를 들어 본 발명을 보다 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

< 실시예 1 ><Example 1>

반응조에 니켈, 코발트 및 마그네슘 각각의 질산염을 0.79:0.19: 0.02의 몰비로 혼합하여 전체금속의 몰농도를 2.5M로 하는 용액을 형성하고, 여기에 암모니아수를 1몰의 양으로 첨가하고 6M NaOH를 사용하여 pH를 약 11로 유지하여 공침시켰다. 6시간 경과 후 구형의 니켈-코발트 복합수산화물을 분리하였다. 이 복합수산화물과 LiOH·H2O를 1:1의 비율로 혼합한 다음 건조공기분위기에서 분당 2℃의 승온속도로 400℃까지 가열하는 1차 열처리를 통해 니켈-코발트 복합산화물의 표면에 LiOH가 부분적으로 용해된 상태로 존재하는 중간생성물을 얻은 다음 이 온도에서 6시간 동안 유지한 후 서서히 냉각시켜 주사전사현미경 (SEM) 사진을 촬영하였다 (도 1a 및 1b 참조). 이어서, 상기 열처리에 의해 형성된 산화물을 분당 약 1℃의 승온속도로 약 700℃까지 가열하여 이 온도에서 약 16시간 동안 건조공기분위기하에 2차열처리(소결)한 다음 분당 약 1℃의 냉각속도로 상온으로 냉각시켜 주사전자현미경 사진을 촬영하였다 (도 1c 및 1d 참조).In the reactor, nitrates of nickel, cobalt, and magnesium were mixed at a molar ratio of 0.79: 0.19: 0.02 to form a solution having a molar concentration of 2.5M of all metals, to which ammonia water was added in an amount of 1 mol and 6M NaOH was added thereto. And co-precipitated using a pH of about 11. After 6 hours, the spherical nickel-cobalt composite hydroxide was separated. LiOH is mixed on the surface of the nickel-cobalt composite oxide by mixing the composite hydroxide and LiOH.H 2 O at a ratio of 1: 1 and then heating it to 400 ° C. at a heating rate of 2 ° C. per minute in a dry air atmosphere. Intermediate products that were present in partially dissolved state were obtained and then maintained at this temperature for 6 hours and then cooled slowly to obtain SEM images (see FIGS. 1A and 1B). Subsequently, the oxide formed by the heat treatment was heated to about 700 ° C. at a temperature increase rate of about 1 ° C. per minute, and then subjected to secondary heat treatment (sintering) under a dry air atmosphere at this temperature for about 16 hours, followed by a cooling rate of about 1 ° C. per minute. Scanning electron micrographs were taken by cooling to room temperature (see FIGS. 1C and 1D).

도 1a는 공침반응시간을 6시간으로 하고, 1차 열처리 후에 얻은 니켈-코발트 산화물의 SEM 사진으로서, 열처리에 의해 LiOH가 거의 분해되어 니켈-코발트 산화물의 표면에 접착 또는 용해되어 있는 것을 보여주고 있으며, 도 1b는 도 1a에 도시된 입자의 표면상태를 나타내는 SEM 사진이다.Figure 1a is a SEM image of the nickel-cobalt oxide obtained after the first heat treatment with the coprecipitation reaction time of 6 hours, showing that LiOH is almost decomposed by the heat treatment and adhered or dissolved on the surface of the nickel-cobalt oxide. 1B is an SEM photograph showing the surface state of the particles shown in FIG. 1A.

도 1c는 2차열처리 (소결)후 최종적으로 얻은 리튬 복합산화물의 SEM 사진이며, 도 1d는 도 1c에 도시된 입자의 표면상태를 나타내는 SEM 사진이다. 소결 후 분말입자의 평균입도는 출발물질의 평균입도와 비슷하지만 미소한 1차 입자가 침상에서 각형으로 변화되어 있고, 각형의 입자가 2차 입자의 외측으로 약간 돌출되어 있다.FIG. 1C is a SEM photograph of a lithium composite oxide finally obtained after secondary heat treatment (sintering), and FIG. 1D is a SEM photograph showing the surface state of the particles shown in FIG. 1C. The average particle size of the powder particles after sintering is similar to the average particle size of the starting material, but the fine primary particles are changed from needle bed to square, and the square particles slightly protrude out of the secondary particles.

2차열처리 후 냉각시켜 얻은 리튬 복합산화물 분말에 대해 탭밀도를 측정한 결과 약 2.4g/cm3이었다.The tap density of the lithium composite oxide powder obtained by cooling after the secondary heat treatment was about 2.4 g / cm 3 .

이어서, 상기 분말을 이용하여 통상의 방법에 따라 시험용의 코인전지를 만든 다음 0.2C로 충방전실험을 실시하였다. 그 결과를 도 2a와 도 2b의 그래프로서 나타내었다. 도 2a와 2b의 그래프로부터, 초기용량은 160mAh/g이었고, 30회 충방전 후에도 거의 초기용량이 그대로 유지되는 것을 알 수 있다.Subsequently, a coin battery for a test was made according to a conventional method using the powder, followed by charging and discharging experiments at 0.2C. The result is shown as a graph of FIGS. 2A and 2B. From the graphs of FIGS. 2A and 2B, the initial capacity was 160 mAh / g, and it can be seen that the initial capacity was almost maintained even after 30 charge / discharge cycles.

< 실시예 2 ><Example 2>

공침반응시간을 10시간으로 한 것을 제외하고는 실시예 1에 기재된 방법과 동일한 방법으로 하여 리튬 복합산화물을 제조하였다.A lithium composite oxide was prepared in the same manner as described in Example 1, except that the coprecipitation reaction time was 10 hours.

도 3a는 공침반응시간을 10시간으로 하고, 1차 열처리 후에 얻은 니켈-코발트 산화물의 SEM 사진으로서, 도 1a와 마찬가지로 열처리에 의해 LiOH가 거의 분해되어 니켈-코발트 산화물의 표면에 접착 또는 용해되어 있는 것을 보여주고 있으며, 도 3b는 도 3a에 도시된 입자의 표면상태를 나타내는 SEM 사진이다. 도 3a와 1a, 도 3b와 1b를 비교해 볼 때, 공침시간을 10시간으로 한 경우에 입자의 표면상태가 보다 치밀해지고 평탄해지는 것을 알 수 있다.FIG. 3A is a SEM photograph of a nickel-cobalt oxide obtained after the first heat treatment with a coprecipitation reaction time of 10 hours, similarly to FIG. 1A, in which LiOH is almost decomposed and adhered or dissolved on the surface of the nickel-cobalt oxide. 3b is a SEM photograph showing the surface state of the particles shown in FIG. 3a. Comparing FIG. 3A and FIG. 1A and FIG. 3B and 1B, when the coprecipitation time was set to 10 hours, it turns out that the surface state of particle | grains becomes more dense and flat.

도 3c는 2차열처리 (소결)후 최종적으로 얻은 리튬 복합산화물의 SEM 사진이며, 도 3d는 도 3c에 도시된 입자의 표면상태를 나타내는 SEM 사진이다. 도 3c와 1c, 도 3d와 1d를 비교해 볼 때, 공침시간을 변화시켜도 최종적으로 얻어지는 리튬 복합산화물의 2차 입자의 크기에는 별다른 영향이 없으나, 표면상태에 있어서는 10시간으로 한 경우에 얻어지는 입자가 훨씬 평탄하다는 것을 알 수 있다.FIG. 3C is a SEM photograph of a lithium composite oxide finally obtained after secondary heat treatment (sintering). FIG. 3D is a SEM photograph showing the surface state of the particles shown in FIG. 3C. 3C and 1C and 3D and 1D show that even if the coprecipitation time is changed, the size of the secondary particles of the lithium composite oxide finally obtained is not significantly affected, but the particles obtained when the surface state is set to 10 hours It can be seen that it is much flatter.

2차열처리 후 냉각시켜 얻은 리튬 복합산화물 분말에 대해 탭밀도를 측정한 결과 약 3.2g/cm3이었다.The tap density of the lithium composite oxide powder obtained by cooling after the secondary heat treatment was about 3.2 g / cm 3 .

< 실시예 3 ><Example 3>

니켈염과 코발트염만을 0.8:0.2의 몰비로 사용하고, 1차열처리시 분당 5℃의 승온속도로 350℃까지 가열하여 8시간동안 반응시키고 이어서 분당 3℃의 냉각속도로 상온으로 냉각하고, 2차열처리시 분당 3℃의 승온속도로 가열하여 700℃에서 16시간 동안 반응시킨 후 분당 2℃의 냉각속도로 상온으로 냉각시키는 것을 제외하고는 실시예 1에 기재되어 있는 것과 동일한 방법으로 리튬 복합산화물을 제조한 다음 코인전지를 제조하였다. 이 전지를 이용하여 충방전실험을 실시하였다. 0.2C로 2회 충방전한 다음 0.5C로 20회 충방전을 실시하여 그 결과를 도 4a와 4b의 그래프로서 나타내었다. 도 4a, 4b로부터, 0.5C로 충방전을 하는 경우에도 용량의 감소가 거의 없는 것을 알 수 있다.Only nickel salt and cobalt salt were used in a molar ratio of 0.8: 0.2, and in the first heat treatment, the mixture was heated to 350 ° C. at a temperature rising rate of 5 ° C. per minute for 8 hours, and then cooled to room temperature at a cooling rate of 3 ° C. per minute, 2 Lithium composite oxide in the same manner as described in Example 1 except that the heat treatment was heated at a temperature increase rate of 3 ℃ per minute and reacted at 700 ℃ for 16 hours and then cooled to room temperature at a cooling rate of 2 ℃ per minute After preparing a coin battery was prepared. A charge and discharge experiment was conducted using this battery. After charging and discharging twice at 0.2C and then performing 20 times charging and discharging at 0.5C, the results are shown as graphs of FIGS. 4A and 4B. It can be seen from FIGS. 4A and 4B that there is almost no decrease in capacity even when charging and discharging at 0.5C.

상기 실시예에서 제조된 리튬 복합산화물을 양극 활물질로 하는 경우, 활물질의 입자형태가 전체적으로는 구형으로서 단위용적당 충진율을 증가시킬 수 있으며, 구형의 입자 자체가 각형의 미세입자의 집합체로 되어 있어 리튬 이온의 삽입/탈삽입에 유리하다. 또한, 리튬 복합산화물의 제조과정에서 공침반응시간을 적절한 범위내에서 조절하는 것에 의해 최종 입자의 표면상태가 쉽게 조절되므로 제조공정이 간단하다.In the case of using the lithium composite oxide prepared in the above example as the positive electrode active material, the particle shape of the active material as a whole may increase the filling rate per unit volume, and the spherical particles themselves are aggregates of rectangular fine particles. It is advantageous for the insertion / deinsertion of ions. In addition, since the surface state of the final particle is easily controlled by controlling the coprecipitation reaction time within an appropriate range in the manufacturing process of the lithium composite oxide, the manufacturing process is simple.

본 발명에 따른 리튬 복합산화물은 리튬 이온의 삽입/탈삽입이 용이하면서도 탭밀도가 높아서 리튬 이온 이차전지의 양극 활물질로서 사용되는 경우 전지 용량을 증가시킬 수 있으며, 간단한 방법으로 제조될 수 있다.The lithium composite oxide according to the present invention can increase the battery capacity when used as a positive electrode active material of a lithium ion secondary battery because it is easy to insert / de-insertion of lithium ions and has a high tap density, and can be manufactured by a simple method.

Claims (12)

미소한 각형의 1차 입자의 집합체가 구형의 2차 입자를 이루고 있으며, 탭밀도가 2.4-2.7g/cm3인 것을 특징으로 하는 리튬 복합산화물 (LiNi(1-x-y)CoxMyO2(M=Al, Ca, Mg 및 B 중에서 선택되는 적어도 하나의 금속원자이고, x는 0.1 내지 0.3, y는 0 내지 0.05)).Lithium composite oxide (LiNi (1-xy) Co x M y O 2 ) , characterized in that the aggregate of minute rectangular primary particles is composed of spherical secondary particles and has a tap density of 2.4-2.7 g / cm 3 . (M = Al, Ca, Mg, and at least one metal atom selected from B, x is from 0.1 to 0.3, y is from 0 to 0.05). 제 1항에 있어서, 상기 1차 입자는 사각형 모양으로 되어 있고 입자의 평균크기는 0.2-0.5㎛인 것을 특징으로 하는 리튬 복합산화물.The lithium composite oxide of claim 1, wherein the primary particles have a rectangular shape and the average size of the particles is 0.2-0.5 μm. 제 1항에 있어서, 상기 2차 입자의 평균입경은 5 내지 20㎛인 것을 특징으로 하는 리튬 복합산화물.The lithium composite oxide of claim 1, wherein an average particle diameter of the secondary particles is 5 to 20 μm. a) 코발트염과 니켈염의 혼합수용액에 착제로서 암모니아수와 pH 조절제로서 알칼리용액을 첨가하여 6-10시간동안 공침시켜 니켈-코발트 복합수산화물을 추출하는 단계,a) extracting the nickel-cobalt composite hydroxide by coprecipitation for 6-10 hours by adding an aqueous ammonia solution as a complex and an alkaline solution as a pH adjusting agent to a mixed aqueous solution of cobalt salt and nickel salt, b) 상기 복합수산화물에 수산화리튬을 첨가하여 280-420℃에서 1차열처리하는 단계, 및b) primary heat treatment at 280-420 ° C. by adding lithium hydroxide to the composite hydroxide, and c) 상기 1차열처리하여 얻은 결과물을 650-700℃에서 2차열처리하는 단계를 포함하는 것을 특징으로 하는 리튬 복합산화물 ((LiNi(1-x)CoxO2(x는 0.1 내지 0.3))의 제조방법.c) a lithium composite oxide comprising a second heat treatment of the resultant obtained by the first heat treatment at 650-700 ° C. ((LiNi (1-x) Co x O 2 (x is 0.1 to 0.3)) Manufacturing method. 제 4항에 있어서, 상기 a)단계에서 니켈염과 코발트염의 혼합수용액에 착제와 pH조절제를 첨가하기 전에 Al, Ca, Mg 및 B 중에서 선택되는 적어도 하나의 금속의 염을 전체 금속염에 대해 0.1몰비 이하의 비율로 첨가하는 것을 특징으로 하는 방법.5. The method according to claim 4, wherein the salt of at least one metal selected from Al, Ca, Mg, and B is added to the total metal salt before adding the complexing agent and the pH adjusting agent to the mixed solution of nickel salt and cobalt salt in step a). It adds in the following ratios. 제 4항 또는 5항에 있어서, 상기 리튬 복합산화물 (LiNi(1-x-y)CoxMyO2(M=Al, Ca, Mg 및 B 중에서 선택되는 적어도 하나의 금속원자이고, x는 0.1 내지 0.3, y는 0 내지 0.1))은 미소한 각형의 1차 입자의 집합체가 구형의 2차 입자를 이루고 있는 것을 특징으로 하는 방법.The method of claim 4 or 5, wherein the lithium composite oxide (LiNi (1-xy) Co x M y O 2 (M = Al, Ca, Mg and B is at least one metal atom selected from B, x is from 0.1 to 0.3, y is 0 to 0.1)), characterized in that the aggregate of minute rectangular primary particles is composed of spherical secondary particles. 제 6항에 있어서, 상기 리튬 복합산화물의 탭밀도가 2.4-3.2g/cm3인 것을 특징으로 하는 방법.7. The method of claim 6, wherein the tap density of the lithium composite oxide is 2.4-3.2 g / cm 3 . 제 4항 또는 5항에 있어서, 상기 1차열처리는 건조공기분위기에서 실시하는 것을 특징으로 하는 방법.The method of claim 4 or 5, wherein the primary heat treatment is performed in a dry air atmosphere. 제 4항 또는 5항에 있어서, 상기 2차열처리는 건조공기분위기에서 실시하는 것을 특징으로 하는 방법.The method of claim 4 or 5, wherein the secondary heat treatment is performed in a dry air atmosphere. 리튬 산화물을 활물질로 하는 양극, 카본계 음극 및 비수계 전해액을 포함하는 리튬이온 이차전지에 있어서, 상기 양극의 리튬산화물은 미소한 각형의 1차 입자의 집합체가 구형의 2차 입자를 이루고 있으며, 탭밀도가 2.4-3.2g/cm3인 리튬 복합산화물 (LiNi(1-x-y)CoxMyO2(M=Al, Ca, Mg 및 B 중에서 선택되는 적어도 하나의 금속원자이고, x는 0.1 내지 0.3, y는 0 내지 0.1))인 것을 특징으로 하는 리튬이온 이차전지In a lithium ion secondary battery comprising a positive electrode having a lithium oxide as an active material, a carbon-based negative electrode, and a non-aqueous electrolyte, the lithium oxide of the positive electrode is composed of spherical secondary particles in a collection of minute rectangular primary particles. Lithium composite oxide with a tap density of 2.4-3.2 g / cm 3 (LiNi (1-xy) Co x M y O 2 (M = Al, Ca, Mg and B is at least one metal atom selected from, and x is 0.1 To 0.3, and y is 0 to 0.1)). 제 10항에 있어서, 상기 1차 입자는 사각형 모양으로 되어 있고 입자의 평균크기는 0.2-0.5㎛인 것을 특징으로 하는 리튬 복합산화물.The lithium composite oxide of claim 10, wherein the primary particles have a rectangular shape and have an average size of 0.2-0.5 μm. 제 9항에 있어서, 상기 2차 입자의 평균입경은 5 내지 20㎛ 인 것을 특징으로 하는 리튬 복합산화물.The lithium composite oxide of claim 9, wherein the secondary particles have an average particle diameter of 5 to 20 μm.
KR1019970056445A 1997-10-30 1997-10-30 Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode KR100261509B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019970056445A KR100261509B1 (en) 1997-10-30 1997-10-30 Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
DE19849343A DE19849343A1 (en) 1997-10-30 1998-10-26 Composite lithium-nickel-cobalt oxide used as positive active material in a secondary lithium ion cell
JP32149298A JP4100785B2 (en) 1997-10-30 1998-10-27 LITHIUM COMPOUND OXIDE, PROCESS FOR PRODUCING THE SAME AND LITHIUM ION SECONDARY BATTERY HAVING ANODE USING LITHIUM COMPOUND OXIDE
US09/179,963 US6241959B1 (en) 1997-10-30 1998-10-28 Method of manufacturing lithium composite oxide as positive active material for lithium secondary batteries
CNB981214479A CN1208249C (en) 1997-10-30 1998-10-30 Lithium composite oxide, preparation method thereof and lithium ion secondary cell adopting lithium composite oxide as active material of positive electrode
US09/849,246 US6773852B2 (en) 1997-10-30 2001-05-07 Lithium composition oxide as positive active material for lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970056445A KR100261509B1 (en) 1997-10-30 1997-10-30 Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode

Publications (2)

Publication Number Publication Date
KR19990034749A true KR19990034749A (en) 1999-05-15
KR100261509B1 KR100261509B1 (en) 2000-07-15

Family

ID=19523783

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970056445A KR100261509B1 (en) 1997-10-30 1997-10-30 Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode

Country Status (1)

Country Link
KR (1) KR100261509B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388576B1 (en) * 2000-12-28 2003-06-25 제일모직주식회사 Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof
KR100709205B1 (en) * 2001-04-02 2007-04-18 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery
KR100816116B1 (en) * 2000-06-19 2008-03-24 나노그램 코포레이션 Lithium metal oxides
KR100887186B1 (en) * 2007-09-18 2009-03-10 한국화학연구원 Apparatus and method for preparing precursor of cathode material for lithium secondary battery
WO2011081422A2 (en) * 2009-12-31 2011-07-07 주식회사 에코프로 Lithium composite oxide and a production method therefor
WO2013081369A2 (en) * 2011-11-28 2013-06-06 주식회사 포스코이에스엠 Method for preparing lithium-nickel-cobalt-aluminum composite oxide, and lithium-nickel-cobalt-aluminum composite oxide prepared by the method and lithium secondary battery comprising same
KR20170134949A (en) 2016-05-26 2017-12-07 한양대학교 산학협력단 Positive active material for rechargeable sodium battery, and method of fabricating of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677535B1 (en) 2005-05-30 2007-02-02 한양대학교 산학협력단 Method of preparing layered cathode active materials with high capacity and high safety for lithium secondary batteries and the product thereby

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630064B1 (en) * 1993-04-28 1998-07-15 Fuji Photo Film Co., Ltd. Nonaqueous electrolyte-secondary battery
JP3257350B2 (en) * 1995-06-09 2002-02-18 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816116B1 (en) * 2000-06-19 2008-03-24 나노그램 코포레이션 Lithium metal oxides
KR100388576B1 (en) * 2000-12-28 2003-06-25 제일모직주식회사 Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof
KR100709205B1 (en) * 2001-04-02 2007-04-18 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery
US7507501B2 (en) 2001-04-02 2009-03-24 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium batteries
KR100887186B1 (en) * 2007-09-18 2009-03-10 한국화학연구원 Apparatus and method for preparing precursor of cathode material for lithium secondary battery
WO2011081422A2 (en) * 2009-12-31 2011-07-07 주식회사 에코프로 Lithium composite oxide and a production method therefor
WO2011081422A3 (en) * 2009-12-31 2011-11-10 주식회사 에코프로 Lithium composite oxide and a production method therefor
WO2013081369A2 (en) * 2011-11-28 2013-06-06 주식회사 포스코이에스엠 Method for preparing lithium-nickel-cobalt-aluminum composite oxide, and lithium-nickel-cobalt-aluminum composite oxide prepared by the method and lithium secondary battery comprising same
WO2013081369A3 (en) * 2011-11-28 2013-07-25 주식회사 포스코이에스엠 Method for preparing lithium-nickel-cobalt-aluminum composite oxide, and lithium-nickel-cobalt-aluminum composite oxide prepared by the method and lithium secondary battery comprising same
KR101338371B1 (en) * 2011-11-28 2014-01-10 주식회사 포스코이에스엠 Manufacturing method of lithium nickel cobalt aluminium composite oxide, lithium nickel cobalt aluminium composite oxide made by the same, lithium secondary battery comprising the same
KR20170134949A (en) 2016-05-26 2017-12-07 한양대학교 산학협력단 Positive active material for rechargeable sodium battery, and method of fabricating of the same

Also Published As

Publication number Publication date
KR100261509B1 (en) 2000-07-15

Similar Documents

Publication Publication Date Title
JP4100785B2 (en) LITHIUM COMPOUND OXIDE, PROCESS FOR PRODUCING THE SAME AND LITHIUM ION SECONDARY BATTERY HAVING ANODE USING LITHIUM COMPOUND OXIDE
JP4954476B2 (en) Lithium transition metal oxide with gradient in composition of metal components
CN110085858B (en) Niobium-phosphorus co-doped high-nickel ternary cathode material and preparation method and application thereof
JP4890264B2 (en) Electrode active material powder having particle size-dependent composition and method for producing the same
JP4305629B2 (en) Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
KR20180059753A (en) Nickel manganese complex hydroxides and methods for their preparation
JP3606290B2 (en) Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery
CN101426728A (en) Lithium-metal composite oxides and electrochemical device using the same
JP2006253140A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, its manufacturing method and lithium secondary battery containing the same
WO2018015210A1 (en) A method for upscalable precipitation synthesis of battery materials with tunable particle size distribution
JP4066472B2 (en) Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material
KR20090012187A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosphorus
JP2000058059A (en) Positive-electrode active material for lithium secondary battery and its manufacture
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP2005332713A (en) Lithium secondary battery and positive electrode active material for secondary battery
KR100261509B1 (en) Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
JP3229544B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP2011219354A (en) Crystalline manganese complex oxide, lithium manganese complex oxide for lithium secondary battery and method for producing the same
US6589695B2 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP3425006B2 (en) Ni-Mn composite hydroxide powder for positive electrode active material of lithium secondary battery and method for producing the same
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
KR100261508B1 (en) Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120326

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130322

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160323

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20170324

Year of fee payment: 18

EXPY Expiration of term