KR100388576B1 - Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof - Google Patents

Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof Download PDF

Info

Publication number
KR100388576B1
KR100388576B1 KR20000083655A KR20000083655A KR100388576B1 KR 100388576 B1 KR100388576 B1 KR 100388576B1 KR 20000083655 A KR20000083655 A KR 20000083655A KR 20000083655 A KR20000083655 A KR 20000083655A KR 100388576 B1 KR100388576 B1 KR 100388576B1
Authority
KR
South Korea
Prior art keywords
manganese composite
composite hydroxide
hours
metal salt
prepared
Prior art date
Application number
KR20000083655A
Other languages
Korean (ko)
Other versions
KR20020054534A (en
Inventor
양호석
김종섭
이영기
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR20000083655A priority Critical patent/KR100388576B1/en
Publication of KR20020054534A publication Critical patent/KR20020054534A/en
Application granted granted Critical
Publication of KR100388576B1 publication Critical patent/KR100388576B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 망간복합 수산화물, 그의 제조방법 및 그를 포함하는 양극활물질에 관한 것으로, 보다 상세하게는 증류수가 담긴 반응기 안에 금속염의 농도가 1.5∼3.0M인 금속염 용액을 입자체류시간이 3∼10시간이 되도록 일정속도로 주입하고, 더불어 암모니아 수용액을 암모니아와 금속염의 몰비가 1∼4가 되도록 일정속도로 주입하면서, 반응온도를 30∼50℃로, pH를 11.0∼11.99로 조절하여 입자를 생성시키고, 생성된 입자를 오버플로우시켜 수집하여 세척, 여과 및 건조하는 과정을 포함하는, 하기 화학식 1로 표시되는 망간복합 수산화물의 제조방법에 관한 것이며, 본 발명에 의해 초기 용량이 높고 고율특성이 좋은 전지를 제공할 수 있다.The present invention relates to a manganese composite hydroxide, a method for preparing the same, and a cathode active material including the same. More specifically, a metal salt solution having a metal salt concentration of 1.5 to 3.0 M in a reactor containing distilled water has a particle retention time of 3 to 10 hours. Inject at a constant rate so that the aqueous solution of ammonia is injected at a constant rate such that the molar ratio of ammonia and metal salt is 1 to 4, and adjust the reaction temperature to 30 to 50 ℃, pH to 11.0 to 11.99 to form particles, The present invention relates to a method for producing a manganese composite hydroxide represented by the following Chemical Formula 1, including collecting and washing, filtering, and drying the resulting particles by overflowing the present invention. Can provide.

[화학식 1][Formula 1]

Ni1-v-w-x-y-zMnvCowMxM'yM"z(OH)2 Ni 1-vwxyz Mn v Co w M x M ' y M " z (OH) 2

상기 식에서 M, M' 및 M"은 각각 Al, Mg, Sr 또는 Ca이며, v, w, x, y 및 z는 0.1 ≤v ≤0.40, 0.01 ≤w ≤0.2, 0 ≤x+y+z ≤0.05을 만족시키는 값이다.Wherein M, M 'and M "are Al, Mg, Sr or Ca, respectively, and v, w, x, y and z are 0.1 ≦ v ≦ 0.40, 0.01 ≦ w ≦ 0.2, 0 ≦ x + y + z ≦ It is a value satisfying 0.05.

Description

망간복합 수산화물, 그의 제조방법 및 그를 포함하는 양극활물질 {Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof}Manganese Composite Hydroxide, Method for Preparing Eating and Cathod Active Materials Containing}

본 발명은 망간복합 수산화물, 그의 제조방법 및 그를 포함하는 양극활물질에 관한 것으로, 보다 상세하게는 증류수가 담긴 반응기 안에 금속염의 농도가 1.5∼3.0M인 금속염 용액을 입자체류시간이 3∼10시간이 되도록 일정속도로 주입하고, 더불어 암모니아 수용액을 암모니아와 금속염의 몰비가 1∼4가 되도록 일정속도로 주입하면서, 반응온도를 30∼50℃로, pH를 11.0∼11.99로 조절하여 입자를 생성시키고, 생성된 입자를 오버플로우시켜 수집하여 세척, 여과 및 건조하는 과정을 포함하는, 하기 화학식 1로 표시되는 망간복합 수산화물의 제조방법에 관한 것이다.The present invention relates to a manganese composite hydroxide, a method for preparing the same, and a cathode active material including the same. More specifically, a metal salt solution having a metal salt concentration of 1.5 to 3.0 M in a reactor containing distilled water has a particle retention time of 3 to 10 hours. Inject at a constant rate so that the aqueous solution of ammonia is injected at a constant rate such that the molar ratio of ammonia and metal salt is 1 to 4, and adjust the reaction temperature to 30 to 50 ℃, pH to 11.0 to 11.99 to form particles, It relates to a method for producing a manganese composite hydroxide represented by the following formula 1, including the process of overflowing the resulting particles collected, washed, filtered and dried.

[화학식 1][Formula 1]

Ni1-v-w-x-y-zMnvCowMxM'yM"z(OH)2 Ni 1-vwxyz Mn v Co w M x M ' y M " z (OH) 2

상기 식에서 M, M' 및 M"은 각각 Al, Mg, Sr 또는 Ca이며, v, w, x, y 및 z는 0.1 ≤v ≤0.40, 0.01 ≤w ≤0.2, 0 ≤x+y+z ≤0.05을 만족시키는 값이다.Wherein M, M 'and M "are Al, Mg, Sr or Ca, respectively, and v, w, x, y and z are 0.1 ≦ v ≦ 0.40, 0.01 ≦ w ≦ 0.2, 0 ≦ x + y + z ≦ It is a value satisfying 0.05.

대표적인 리튬 이차 전지용 양극활물질인 코발트계 양극활물질 LiCoO2는 우수한 수명특성 및 전도도를 가지고 있지만 용량이 작고 원료가 고가인 단점이 있다. 이런 문제점을 해결하기 위해 LiNiO2의 일부를 코발트로 치환시킨 LiNiCoO2활물질에 대한 연구가 활발히 진행되어 왔으나 만족할만한 고율충방전 특성 및 고온특성을 얻지 못해 아직까지 전지 안전성을 확립하지 못하고 있는 실정이다. 최근에 LiNiCoO2의 안전성이 스피넬(spinel) LiMn2O4의 첨가를 통해 크게 향상된다는 보고 이후 니켈망간계에 대한 관심이 크게 높아지고 있다.Cobalt-based cathode active material LiCoO 2, which is a typical cathode active material for lithium secondary batteries, has excellent life characteristics and conductivity, but has disadvantages of small capacity and expensive raw materials. In order to solve this problem, studies have been actively conducted on LiNiCoO 2 active materials in which a part of LiNiO 2 is substituted with cobalt. However, battery safety has not yet been established because satisfactory high-rate charging and discharging characteristics and high temperature characteristics have not been obtained. Recently, the interest in the nickel manganese system has been greatly increased since the report that the safety of LiNiCoO 2 is greatly improved through the addition of spinel LiMn 2 O 4 .

니켈망간수산화물 제조법으로는 일본특허 95-335214, 96-225328, 99-312519 에 보고된 것처럼 pH 12 이상의 조건에서 수산화니켈망간 2성분계를 제조한 방법이 있다. 또한 일본특허 96-315822, 98-81520 등에는 킬레이트를 이용한 공침법이 개시되어 있으나, 이러한 방법은 소성시 NOx나 COx등의 배기가스가 배출되는 문제가 있다. 한편 알루미늄이 첨가된 3성분계 제조법이 일본특허 96-225328에 보고되어 있으나 이 경우 알루미늄 첨가시 사이클에 따른 용량 저하가 크다. 또한 일본특허99-260364호에서는 수산화 니켈망간분말을 니켈이나 코발트 용액에 분산시킨 후 침전시켜 니켈이나 코발트를 수산화망간표면에 피복시키는 2단계 제조법이 보고되어 있다.As a method of preparing nickel manganese hydroxide, there is a method of preparing a nickel manganese hydroxide two-component system at a pH of 12 or more as reported in Japanese Patents 95-335214, 96-225328, and 99-312519. Also, Japanese Patent Nos. 96-315822, 98-81520 and the like disclose a co-precipitation method using a chelate, but this method has a problem in that exhaust gas such as NO x or CO x is emitted during firing. On the other hand, a three-component manufacturing method with aluminum is reported in Japanese Patent No. 96-225328, but in this case, the capacity decrease according to the cycle when aluminum is added. In addition, Japanese Patent No. 99-260364 discloses a two-step manufacturing method in which nickel manganese hydroxide powder is dispersed in a nickel or cobalt solution and then precipitated to coat nickel or cobalt on the surface of manganese hydroxide.

그러나 니켈구조를 안정화시켜주는 효과가 있는 코발트를 함유한 3성분계 망간복합 수산화물을 대략 pH 11.00∼11.99 정도의 낮은 pH 조건에서 제조하는 방법은 아직까지 보고되어 있지 않다.However, a method of preparing cobalt-containing three-component manganese composite hydroxides having an effect of stabilizing nickel structure at low pH of about 11.00 to 11.99 has not been reported.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, pH 11.0∼11.99 조건에서 망간, 니켈 및 코발트를 주성분으로 하는 망간복합 수산화물을 제조하는 방법을 제공함을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, it is an object of the present invention to provide a method for producing a manganese composite hydroxide mainly composed of manganese, nickel and cobalt at pH 11.0 to 11.99 conditions.

본 발명의 다른 목적은 상기 방법에 의해 제조된 망간복합 수산화물을 제공함을 목적으로 한다.Another object of the present invention is to provide a manganese composite hydroxide prepared by the above method.

본 발명의 또 다른 측면은 상기 망간복합 수산화물을 포함하는 양극활물질을 제공함을 목적으로 한다.Another aspect of the present invention is to provide a cathode active material containing the manganese composite hydroxide.

즉, 상기와 같은 목적을 달성하기 위한 본 발명의 한 측면은 증류수가 담긴 반응기 안에 금속염의 농도가 1.5∼3.0M인 금속염 용액을 입자체류시간이 3∼10시간이 되도록 일정속도로 주입하고, 더불어 암모니아 수용액을 암모니아와 금속염의 몰비가 1∼4가 되도록 일정속도로 주입하면서, 반응온도를 30∼50℃로, pH를 11.0∼11.99로 조절하여 입자를 생성시키고, 생성된 입자를 오버플로우시켜 수집하여세척, 여과 및 건조하는 과정을 포함하는, 하기 화학식 1로 표시되는 망간복합 수산화물의 제조방법에 관한 것이다.That is, one aspect of the present invention for achieving the above object is injecting a metal salt solution having a metal salt concentration of 1.5 ~ 3.0M in a reactor containing distilled water at a constant rate so that the particle residence time is 3 to 10 hours, and While injecting the aqueous ammonia solution at a constant rate such that the molar ratio of ammonia to metal salt was 1 to 4, the reaction temperature was adjusted to 30 to 50 ° C. and the pH was adjusted to 11.0 to 11.99 to form particles. It relates to a method for producing a manganese composite hydroxide represented by the following formula (1), including the process of washing, filtration and drying.

[화학식 1][Formula 1]

Ni1-v-w-x-y-zMnvCowMxM'yM"z(OH)2 Ni 1-vwxyz Mn v Co w M x M ' y M " z (OH) 2

상기 식에서 M, M' 및 M"은 각각 Al, Mg, Sr 또는 Ca이며, v, w, x, y 및 z는 0.1 ≤v ≤0.40, 0.01 ≤w ≤0.2, 0 ≤x+y+z ≤0.05을 만족시키는 값이다.Wherein M, M 'and M "are Al, Mg, Sr or Ca, respectively, and v, w, x, y and z are 0.1 ≦ v ≦ 0.40, 0.01 ≦ w ≦ 0.2, 0 ≦ x + y + z ≦ It is a value satisfying 0.05.

상기와 같은 목적을 달성하기 위한 본 발명의 다른 측면은 상기 방법에 의해 제조된 망간복합 수산화물에 관한 것이다.Another aspect of the present invention for achieving the above object relates to a manganese composite hydroxide prepared by the above method.

상기와 같은 목적을 달성하기 위한 본 발명의 다른 측면은 상기 망간복합 수산화물을 리튬화합물과 혼합하여 400∼600℃에서 전처리한 후, 다시 750∼900℃에서 열처리하여 제조된 양극활물질에 관한 것이다.Another aspect of the present invention for achieving the above object relates to a cathode active material prepared by mixing the manganese composite hydroxide with a lithium compound, pre-treated at 400 ~ 600 ℃, and then heat treated at 750 ~ 900 ℃.

도 1은 실시예 1에서 제조된 망간복합 수산화물의 전자현미경사진, 및1 is an electron micrograph of the manganese composite hydroxide prepared in Example 1, and

도 2는 실시예 5, 6 및 비교예 1에서 제조된 전지의 방전특성을 도시한 그래프이다.2 is a graph showing the discharge characteristics of the batteries prepared in Examples 5, 6 and Comparative Example 1.

하기에서 본 발명을 보다 상세하게 설명한다.The present invention is explained in more detail below.

본 발명에서 제조되는 망간복합 수산화물은 하기 화학식 1과 같다.Manganese composite hydroxide prepared in the present invention is represented by the formula (1).

Ni1-v-w-x-y-zMnvCowMxM'yM"z(OH)2 Ni 1-vwxyz Mn v Co w M x M ' y M " z (OH) 2

상기 식에서 M, M' 및 M"은 각각 Al, Mg, Sr 또는 Ca이며, v, w, x 및 y는 0.1 ≤v ≤0.40, 0.01 ≤w ≤0.2, 0 ≤x+y+z ≤0.05을 만족시키는 값이다.Wherein M, M 'and M "are Al, Mg, Sr or Ca, respectively, and v, w, x and y are 0.1 ≦ v ≦ 0.40, 0.01 ≦ w ≦ 0.2, 0 ≦ x + y + z ≦ 0.05. It is a satisfying value.

상기와 같은 본 발명의 망간복합 수산화물은 니켈-망간-코발트 3성분계 주성분으로 하고 알루미늄, 마그네슘, 스트론튬, 칼슘 중 적어도 한 종류를 소량 함유하고 있다. 상기 망간복합 수산화물을 제조하기 위한 원료물질로서는 니켈, 코발트 및 망간은 이들의 황산염 또는 질산염을 사용하고, 알루미늄, 마그네슘, 스트론튬 및 칼슘은 이들의 황산염, 질산염 또는 아세테이트염을 사용한다.The manganese composite hydroxide of the present invention as described above contains a nickel-manganese-cobalt tricomponent main component and contains a small amount of at least one of aluminum, magnesium, strontium and calcium. As raw materials for producing the manganese composite hydroxide, nickel, cobalt and manganese use their sulfates or nitrates, and aluminum, magnesium, strontium and calcium use their sulfates, nitrates or acetate salts.

상기 망간복합 수산화물을 제조방법은 하기와 같다.The manufacturing method of the manganese composite hydroxide is as follows.

반응기의 pH는 11.0∼11.99, 보다 바람직하게는 11.4∼11.8로 조절하고, 반응물의 온도는 30∼50℃, 보다 바람직하게는 40∼45℃로 조절하면서, 금속혼합용액과 암모니아 수용액을 계속적으로 투입하여 망간복합 수산화물 입자를 생성시킨다. 상기 투입되는 금속혼합용액은 금속농도가 1.5∼3.0몰인 것을 사용하는 것이 좋다. 금속혼합용액의 투입속도는 입자체류시간이 3∼10시간, 보다 바람직하게는 4∼7시간이 되도록 조절한다. 암모니아 수용액은 암모니아와 금속의 몰비가 1∼4가 되도록 속도를 조절하여 투입한다.The pH of the reactor was adjusted to 11.0 to 11.99, more preferably 11.4 to 11.8, and the temperature of the reactant was adjusted to 30 to 50 ° C, more preferably 40 to 45 ° C, while continuously adding a metal mixture solution and an aqueous ammonia solution. To produce manganese composite hydroxide particles. The metal mixed solution to be added is preferably used that the metal concentration is 1.5 to 3.0 mol. The feed rate of the metal mixture solution is adjusted so that the particle residence time is 3 to 10 hours, more preferably 4 to 7 hours. The aqueous ammonia solution is added at a controlled rate so that the molar ratio between ammonia and metal is 1-4.

상기와 같은 조건 하에서 제조된 망간복합 수산화물의 입자는 반응기에서 오버플로우시켜 수집하였으며, 여과액의 pH가 7 이하가 될 때까지 물로 반복하여 세척, 여과하였다. 여과된 망간복합 수산화물 입자는 100∼130℃사이에서 20 시간 이상 건조하였다. 이렇게 제조된 입자는 구형의 형상을 갖고 있으며 탭(tap) 밀도는 1.8g/cc 이상을 나타낸다.Particles of manganese composite hydroxide prepared under the above conditions were collected by overflowing the reactor, and washed repeatedly with water until the pH of the filtrate was 7 or less, and filtered. The filtered manganese composite hydroxide particles were dried at 100 to 130 ° C. for at least 20 hours. The particles thus prepared have a spherical shape and have a tap density of 1.8 g / cc or more.

상기와 같이 제조된 망간복합 수산화물을 이용하여 다음과 같은 방법으로 양극활물질을 제조할 수 있다.Using the manganese composite hydroxide prepared as described above it can be prepared a cathode active material in the following manner.

망간복합 수산화물과 리튬수산화물을 적정비율로 균일하게 혼합후 400∼600℃, 보다 바람직하게는 500∼550℃ 사이에서 10∼30시간, 보다 바람직하게는 15∼25시간 공기분위기 하에서 전처리를 한다. 전처리를 한 분말은 다시 750∼900℃, 보다 바람직하게는 830∼880℃ 사이에서 20∼60 시간, 보다 바람직하게는 30∼45 시간 공기분위기 하에서 소성하여 양극활물질을 제조한다. 상기와 같이 제조된 양극활물질의 X선 회절분석 결과 좋은 층상구조를 갖는 것으로 확인되었다. 상기와 같은 양극활물질을 사용하여 전지를 제조하는 경우 높은 초기용량 및 좋은 고율특성을 얻을 수 있다.After manganese composite hydroxide and lithium hydroxide are uniformly mixed at an appropriate ratio, pretreatment is performed under an air atmosphere for 10 to 30 hours, more preferably for 15 to 25 hours, between 400 and 600 ° C, more preferably between 500 and 550 ° C. The pretreated powder is further baked in an air atmosphere at 750 to 900 ° C, more preferably at 830 to 880 ° C for 20 to 60 hours, more preferably at 30 to 45 hours, to prepare a cathode active material. X-ray diffraction analysis of the positive electrode active material prepared as described above was confirmed to have a good layered structure. When the battery is manufactured using the cathode active material as described above, high initial capacity and good high rate characteristics can be obtained.

하기에서 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 하나, 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하기 위한 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the Examples are not intended to limit the present invention for the purpose of explanation.

실시예 1Example 1

40℃로 유지된 5L 반응기에 증류수 4L를 넣고, 28% NH4OH를 400㎖를 가하였다. 여기 니켈, 코발트 및 망간의 몰비가 60:20:20인 2.5M 금속염용액을 정량펌프를 이용하여 입자체류시간이 7시간으로 유지되도록 일정속도로 주입하고, 28% 암모니아 수용액도 암모니아 대 금속의 몰비가 2∼2.5가 되도록 일정속도로 주입하였다. 이때 pH 전극과 수산화나트륨 주입 펌프를 연결하여 반응기의 pH가 11.8로 자동적으로 유지되도록 하였다. 생성된 입자는 반응기에서 오버플로우시켜 수집하였으며, 수집된 입자를 여과액의 pH가 6.5가 될때까지 물로 반복하여 세척, 여과한 후, 110℃ 오븐에서 20시간 이상 건조하여 1∼50 마이크론 입도 분포를 갖는 구형의 망간복합 수산화물을 얻었다. 이때 탭밀도는 1.9g/cc 였다. 상기 제조된 망간 복합 수산화물의 전자현미경사진을 도 1에 나타내었다.4 L of distilled water was added to a 5 L reactor maintained at 40 ° C, and 400 ml of 28% NH 4 OH was added thereto. Here, a 2.5M metal salt solution with a molar ratio of 60:20:20 of nickel, cobalt and manganese was injected at a constant rate so that the particle retention time was maintained at 7 hours using a metering pump. Was injected at a constant speed so that 2 to 2.5. At this time, the pH electrode and the sodium hydroxide injection pump was connected to automatically maintain the pH of the reactor to 11.8. The resulting particles were collected by overflowing the reactor, and the collected particles were repeatedly washed with water until the pH of the filtrate was 6.5, filtered, and then dried in a 110 ° C. oven for at least 20 hours to obtain a 1-50 micron particle size distribution. A spherical manganese composite hydroxide having was obtained. At this time, the tap density was 1.9 g / cc. An electron micrograph of the prepared manganese composite hydroxide is shown in FIG. 1.

실시예 2Example 2

40℃로 유지된 5L 반응기에 증류수 4L를 넣고, 28% NH4OH를 400㎖를 가하였다. 여기 니켈, 코발트, 망간, 알루미늄 및 마그네슘의 몰비가 58.5:10:30:0.3:1.2 인 2.5M 금속염용액을 정량펌프를 이용하여 입자체류시간이 7시간으로 유지되도록 일정속도로 주입하고, 28% 암모니아수용액도 암모니아 대 금속의 몰비가 2∼2.5가 되도록 일정속도로 주입하였다. 이때 pH 전극과 수산화나트륨 주입 펌프를 연결하여 반응 pH가 11.5로 유지되도록 하였다. 생성된 입자는 반응기에서 오버플로우시켜 수집하였으며, 수집된 입자를 여과액의 pH 가 6.5가 될때까지 물로 반복하여 세척, 여과한 후, 110℃ 오븐에서 20시간이상 건조하여 1∼50 마이크론 입도 분포를 갖는 구형의 망간복합 수산화물을 얻었다. 이때 탭밀도는 2.0g/cc 였다.4 L of distilled water was added to a 5 L reactor maintained at 40 ° C, and 400 ml of 28% NH 4 OH was added thereto. Here, a 2.5M metal salt solution with a molar ratio of 58.5: 10: 30: 0.3: 1.2 of nickel, cobalt, manganese, aluminum and magnesium was injected at a constant rate to maintain the particle retention time of 7 hours using a metering pump, and 28% An aqueous ammonia solution was also injected at a constant rate such that the molar ratio of ammonia to metal was between 2 and 2.5. At this time, the pH electrode and the sodium hydroxide injection pump was connected to maintain the reaction pH at 11.5. The resulting particles were collected by overflowing the reactor, and the collected particles were repeatedly washed with water until the pH of the filtrate was 6.5, filtered, and dried in an oven at 110 ° C. for at least 20 hours to obtain a particle size distribution of 1 to 50 microns. A spherical manganese composite hydroxide having was obtained. At this time, the tap density was 2.0 g / cc.

실시예 3Example 3

니켈, 코발트, 망간, 알루미늄, 스트론튬 및 마그네슘의 몰비가 56:10:30:1:1:2 를 갖는 2.5몰 금속용액을 사용하여 실시예 1과 동일한 방법으로 망간복합 수산화물을 제조하였다. 제조된 망간복합 수산화물은 1∼50 마이크론 입도 분포를 갖는 구형 형상을 갖고 있었으며 tap 밀도는 2.0g/cc 였다.Manganese composite hydroxides were prepared in the same manner as in Example 1, using a 2.5 molar metal solution having a molar ratio of nickel, cobalt, manganese, aluminum, strontium, and magnesium of 56: 10: 30: 1: 1: 2. The prepared manganese composite hydroxide had a spherical shape with a particle size distribution of 1 to 50 microns and a tap density of 2.0 g / cc.

실시예 4Example 4

니켈, 코발트, 망간 및 칼슘의 몰비가 58:10:30:2를 갖는 2.5몰 금속용액을 사용하여 실시예 1과 동일한 방법으로 망간복합 수산화물을 제조하였다. 제조된 망간복합 수산화물은 1 ∼ 50 마이크론 입도 분포를 갖는 구형 형상을 갖고 있었으며 tap 밀도는 2.0g/cc였다.Manganese composite hydroxides were prepared in the same manner as in Example 1, using a 2.5 molar metal solution having a molar ratio of nickel, cobalt, manganese, and calcium of 58: 10: 30: 2. The prepared manganese composite hydroxide had a spherical shape having a particle size distribution of 1 to 50 microns and a tap density of 2.0 g / cc.

실시예 5Example 5

실시예 1에서 제조된 망간복합 수산화물 20g과 리튬수산화물 모노하이드레이트 9.48g을 균일하게 혼합한 다음, 승온 2℃/분 속도로 500℃까지 승온한 후 20시간동안 공기분위기 하에서 열처리하였다. 그런 다음 2℃/분 속도로 실온까지 강온한 후 열처리된 분말을 다시 균일하게 혼합하였다. 상기 열처리된 분말을 다시 2℃/분 속도로 850℃까지 승온하여 공기분위기 하에서 40시간 열처리 후 다시 2℃/분 속도로 강온하여 양극활물질을 얻었다. 이 양극활물질의 X선 회절분석결과를 도 3에 나타내었다.20 g of the manganese composite hydroxide prepared in Example 1 and 9.48 g of lithium hydroxide monohydrate were mixed uniformly, and then heated to 500 ° C. at a rate of 2 ° C./min and then heat-treated under an air atmosphere for 20 hours. Then, after the temperature was lowered to room temperature at a rate of 2 ° C./min, the heat-treated powder was mixed uniformly again. The heat-treated powder was again heated to 850 ° C. at a rate of 2 ° C./min, and heat-treated at 40 ° C./min for 2 hours under an air atmosphere to obtain a cathode active material. The X-ray diffraction analysis of this cathode active material is shown in FIG.

상기에서 얻어진 양극활물질 9.2g, 도전제 0.4g 및 바인더 0.4g을 9g의 N-메틸 피롤리돈에 녹인 다음 슬러리가 될 때까지 혼합한 후 250마이크론 두께로 알루미늄 호일에 코팅하여 양극판을 제조하였다. 이 극판을 130℃에서 N-메틸피롤리돈이 완전히 휘발될때까지 건조시킨 다음 40℃로 가열된 프레스를 사용하여 두께를 90마이크론까지 압착시켰다.9.2 g of the positive electrode active material obtained above, 0.4 g of a conductive agent, and 0.4 g of a binder were dissolved in 9 g of N-methyl pyrrolidone, mixed until a slurry, and then coated on an aluminum foil with a thickness of 250 microns to prepare a positive electrode plate. The plate was dried at 130 ° C. until N-methylpyrrolidone was completely volatilized and then pressed to 90 microns in thickness using a press heated to 40 ° C.

이와 같이 제조된 양극과 Li 포일 음극, 분리막 및 전해액(에틸카보네이트:디메틸카보네이트=1:1, LiPF6농도 1.0M)를 사용하여 0.1C, 0.2C, 0.5C, 1.0C에서 충방전하여 충방전 용량을 측정하고 이를 표 1에 나타내었다. 이때 충방전 전압영역은 2.75 ∼ 4.3V였다.Charge and discharge at 0.1C, 0.2C, 0.5C, 1.0C using the positive electrode, Li foil negative electrode, separator and electrolyte (ethylcarbonate: dimethylcarbonate = 1: 1, LiPF 6 concentration 1.0M) prepared as described above. Doses were measured and shown in Table 1. At this time, the charge / discharge voltage range was 2.75 to 4.3V.

실시예 6Example 6

실시예 2에서 얻어진 망간복합 수산화물을 이용하여 실시예 5과 동일한 방법으로 양극활물질을 제조하고 그 X선 회절분석결과를 도 3에 나타내었다. 다시 실시예 5와 동일한 방법으로 전지를 제조하여 평가하고 이를 표 1에 나타내었다.A positive electrode active material was prepared in the same manner as in Example 5 using the manganese composite hydroxide obtained in Example 2, and the results of X-ray diffraction analysis are shown in FIG. 3. Again, a battery was prepared and evaluated in the same manner as in Example 5, which is shown in Table 1.

비교예 1Comparative Example 1

코발트수산화물 20g과 리튬카보네이트 7.95g을 균일하게 혼합한 다음, 승온 2℃/분 속도로 500℃까지 승온한 후 10시간 동안 공기분위기 하에서 열처리하였다. 다음으로 2℃/분 속도로 실온까지 강온한 후 열처리된 분말을 다시 균일하게 혼합하였다. 상기 열처리된 분말을 다시 2℃/분 속도로 850℃까지 승온하였으며 공기분위기 하에서 20시간 열처리 후 다시 2℃/분 속도로 강온하여 양극활물질을 얻었다. 이 양극활물질의 X선 회절분석결과를 도 3에 나타내었다. 얻어진 양극활물질을 사용하여 실시예 5와 동일한 방법으로 전지를 제조하여 평가하고 이를 표 1에 나타내었다.20 g of cobalt hydroxide and 7.95 g of lithium carbonate were uniformly mixed, and then heated to 500 ° C. at a rate of 2 ° C./min, and then heat-treated under an air atmosphere for 10 hours. Next, after the temperature was lowered to room temperature at a rate of 2 ° C./min, the heat-treated powder was mixed uniformly again. The heat-treated powder was again heated to 850 ° C. at a rate of 2 ° C./min, and heat-treated again at 2 ° C./min after annealing for 20 hours in an air atmosphere to obtain a cathode active material. The X-ray diffraction analysis of this cathode active material is shown in FIG. Using the obtained cathode active material, a battery was prepared in the same manner as in Example 5, evaluated and shown in Table 1.

실시예 5(mAh/g)Example 5 (mAh / g) 실시예 6(mAh/g)Example 6 (mAh / g) 비교예 1(mAh/g)Comparative Example 1 (mAh / g) 0.1C0.1C 181181 172172 150150 0.2C0.2C 177177 170170 149149 0.5C0.5C 170170 164164 146146 1.0C(첫번째 주기)1.0C (first cycle) 164164 155155 139139 1.0C(스무번째 주기)1.0C (twentieth cycle) 157157 154154 131131

본 발명에 의해 비교적 낮은 pH조건 하에서도 다성분계 망간복합 수산화물을 제조가 가능하게 되었으며, 이를 이용하여 전지를 제조하는 경우 높은 초기용량 및 좋은 고율특성을 얻을 수 있다.According to the present invention, it is possible to manufacture a multicomponent manganese composite hydroxide even under relatively low pH conditions. When the battery is manufactured using the same, high initial capacity and good high rate characteristics can be obtained.

Claims (3)

증류수가 담긴 반응기 안에 금속염의 농도가 1.5∼3.0M인 금속염 용액을 입자체류시간이 3∼10시간이 되도록 일정속도로 주입하고, 더불어 암모니아 수용액을 암모니아와 금속염의 몰비가 1∼4가 되도록 일정속도로 주입하면서, 반응온도를 30∼50℃로, pH를 11.0∼11.99로 조절하여 입자를 생성시키고, 생성된 입자를 오버플로우시켜 수집하여 세척, 여과 및 건조하는 과정을 포함하는, 하기 화학식 1로 표시되는 망간복합 수산화물의 제조방법.Into a reactor containing distilled water, a metal salt solution with a concentration of 1.5 to 3.0 M was injected at a constant rate so that the particle residence time was 3 to 10 hours. While injecting, the reaction temperature is adjusted to 30 to 50 ℃, pH is adjusted to 11.0 to 11.99 to produce particles, and the resulting particles are collected by overflowing, washing, filtration and drying to the formula (1) Method for producing a manganese composite hydroxide represented. [화학식 1][Formula 1] Ni1-v-w-x-y-zMnvCowMxM'yM"z(OH)2 Ni 1-vwxyz Mn v Co w M x M ' y M " z (OH) 2 상기 식에서 M, M' 및 M"은 각각 Al, Mg, Sr 또는 Ca이며, v, w, x, y 및 z는 0.1 ≤v ≤0.40, 0.01 ≤w ≤0.2, 0 ≤x+y+z ≤0.05을 만족시키는 값이다.Wherein M, M 'and M "are Al, Mg, Sr or Ca, respectively, and v, w, x, y and z are 0.1 ≦ v ≦ 0.40, 0.01 ≦ w ≦ 0.2, 0 ≦ x + y + z ≦ It is a value satisfying 0.05. 제 1항의 방법으로 제조된 망간복합 수산화물.Manganese composite hydroxide prepared by the method of claim 1. 제 2항의 망간복합 수산화물을 리튬화합물과 혼합하여 400∼600℃에서 10∼30시간 공기분위기 하에서 전처리한 후, 다시 750∼900℃에서 20∼60시간 공기분위기 하에서 열처리하여 제조된 양극활물질.A cathode active material prepared by mixing the manganese composite hydroxide of claim 2 with a lithium compound and pretreating at 400 to 600 ° C. for 10 to 30 hours in an air atmosphere, and then heat treating at 750 to 900 ° C. for 20 to 60 hours in an air atmosphere.
KR20000083655A 2000-12-28 2000-12-28 Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof KR100388576B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20000083655A KR100388576B1 (en) 2000-12-28 2000-12-28 Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20000083655A KR100388576B1 (en) 2000-12-28 2000-12-28 Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof

Publications (2)

Publication Number Publication Date
KR20020054534A KR20020054534A (en) 2002-07-08
KR100388576B1 true KR100388576B1 (en) 2003-06-25

Family

ID=27687261

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20000083655A KR100388576B1 (en) 2000-12-28 2000-12-28 Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof

Country Status (1)

Country Link
KR (1) KR100388576B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688732B1 (en) * 2005-03-30 2007-03-02 에스케이 주식회사 Process of Precipitation for Spheric Manganese Carbonate and the products produced thereby
KR100616475B1 (en) * 2005-05-07 2006-08-29 한국과학기술연구원 Precursor for cathode active materials for lithium secondary battery, cathode active materials and lithium secondary battery using the same, and preparation method thereof
WO2006126854A1 (en) * 2005-05-27 2006-11-30 Dae-Jung Chemicals & Metals Co., Ltd. Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
CN101998932B (en) 2008-04-03 2013-05-01 株式会社Lg化学 Novel precursor for the production of a lithium composite transition metal oxide
KR100959589B1 (en) * 2008-04-03 2010-05-27 주식회사 엘지화학 Novel Precursor for Preparation of Lithium Composite Transition Metal Oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222216A (en) * 1995-02-14 1996-08-30 Sanyo Electric Co Ltd Nonsintered nickel electrode for alkaline storage battery and its manufacture
KR960032786A (en) * 1995-02-14 1996-09-17 다까노 야스아끼 Arsenic-free nickel electrode for alkaline storage batteries
KR19990015233A (en) * 1997-08-04 1999-03-05 손욱 Method for manufacturing double structure nickel hydroxide active material
KR19990034749A (en) * 1997-10-30 1999-05-15 손욱 Lithium-ion secondary battery employing a lithium composite oxide, a method of manufacturing the same, and a positive electrode using the same
KR19990051812A (en) * 1997-12-20 1999-07-05 손욱 Method for producing positive electrode slurry of alkaline secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222216A (en) * 1995-02-14 1996-08-30 Sanyo Electric Co Ltd Nonsintered nickel electrode for alkaline storage battery and its manufacture
KR960032786A (en) * 1995-02-14 1996-09-17 다까노 야스아끼 Arsenic-free nickel electrode for alkaline storage batteries
KR19990015233A (en) * 1997-08-04 1999-03-05 손욱 Method for manufacturing double structure nickel hydroxide active material
KR19990034749A (en) * 1997-10-30 1999-05-15 손욱 Lithium-ion secondary battery employing a lithium composite oxide, a method of manufacturing the same, and a positive electrode using the same
KR19990051812A (en) * 1997-12-20 1999-07-05 손욱 Method for producing positive electrode slurry of alkaline secondary battery

Also Published As

Publication number Publication date
KR20020054534A (en) 2002-07-08

Similar Documents

Publication Publication Date Title
EP0806397B1 (en) Lithium-nickel composite oxide, process for preparing the same, and positive active material for secondary battery
EP1875537B1 (en) Method for preparing layered core-shell cathode active materials for lithium secondary batteries
KR101066185B1 (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR101051066B1 (en) Method for manufacturing a metal composite oxide for a lithium secondary battery and a cathode active material comprising the same
KR101458676B1 (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
KR101762540B1 (en) Positive active material for sodium rechargeable batteries and method of manufacturing the same
JPWO2011111364A1 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
TWI622212B (en) Cathode compositions for lithium-ion batteries
US20110143200A1 (en) Method of manufacturing cathode active material for lithium secondary battery and 1-d nanocluster cathode active material with chestnut type morphology obtained by the method
KR20040044170A (en) Active material for positive electrode of lithium secondary battery
CN107148690B (en) Method for preparing positive active material and positive active material prepared according to the method
KR20130059029A (en) Process for producing composite metal oxide
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
KR20150078672A (en) Complx metal precursor for lithium secondary battery, method for production thereof, cathode active material, lithium secondary battery including the same
KR101848979B1 (en) Transition metal oxide precursor, lithium composite transition metal hydroxide, secondary battery and cathode comprising the same
KR100872370B1 (en) Spinel type Cathode Active Material for Lithium Secondary Batteries and Manufacturing Method for the Same
KR100388576B1 (en) Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof
KR101684387B1 (en) Method for Preparation of Olivine Type Lithium Manganese Iron Phosphate and Product Obtained from the Same
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
KR101392525B1 (en) Positive active material, method of preparing the same, and lithium battery using the same
KR101893956B1 (en) Methods of preparation for electrode active materials of lithium secondary batteries and lithium secondary batteries containing the electrode active materials
KR102478973B1 (en) Composite positive electrode active material with strong superstructure, preparing method for the same, positive electrtode including the same, and lithium ion battery including the same
KR101466448B1 (en) Method for preparing lithium metal oxide
JP2001328814A (en) Lithium-manganese composite oxide, method for producing the same and secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130418

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140610

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160610

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170612

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180712

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20190513

Year of fee payment: 17