KR101458676B1 - Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same - Google Patents

Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same Download PDF

Info

Publication number
KR101458676B1
KR101458676B1 KR1020120134821A KR20120134821A KR101458676B1 KR 101458676 B1 KR101458676 B1 KR 101458676B1 KR 1020120134821 A KR1020120134821 A KR 1020120134821A KR 20120134821 A KR20120134821 A KR 20120134821A KR 101458676 B1 KR101458676 B1 KR 101458676B1
Authority
KR
South Korea
Prior art keywords
active material
lithium
secondary battery
lithium secondary
metal oxide
Prior art date
Application number
KR1020120134821A
Other languages
Korean (ko)
Other versions
KR20140067508A (en
Inventor
조성님
공영선
김지윤
심형철
이하연
조해인
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Priority to KR1020120134821A priority Critical patent/KR101458676B1/en
Publication of KR20140067508A publication Critical patent/KR20140067508A/en
Application granted granted Critical
Publication of KR101458676B1 publication Critical patent/KR101458676B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬이차전지용 양극 활물질이 층상구조의 리튬금속산화물로 이루어지는 기재물질의 표면에 스피넬구조의 리튬금속산화물로 이루어지는 표층물질을 포함하여 이루어지는 리튬이차전지용 양극 활물질을 제공함으로써 이를 이용하는 리튬이차전지의 고용량이면서도 동시에 고율 특성 및 높은 용량 유지율을 구현할 수 있다.The present invention provides a cathode active material for a lithium secondary battery comprising a base material comprising a lithium metal oxide having a layered structure and a cathode active material for a lithium secondary battery, the cathode active material comprising a surface layer material composed of a lithium metal oxide having a spinel structure, High-capacity characteristics and high capacity retention rate can be realized at the same time.

Description

리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지{POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, METHOD OF PREPARING THE SAME, AND LITHIUM SECONDARY BATTERY USING THE SAME}FIELD OF THE INVENTION [0001] The present invention relates to a positive active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the same. BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 발명은 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지에 관한 것이다. 보다 상세하게는 본 발명은 고용량이면서도 동시에 우수한 고율 특성 및 용량 유지율을 구현할 수 있는 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the same. More particularly, the present invention relates to a cathode active material for a lithium secondary battery capable of realizing high-capacity and high-rate characteristics and capacity retention ratio at the same time as a high capacity, a method for producing the same, and a lithium secondary battery using the same.

리튬이차전지가 소형 전자기기에서 전기자동차 및 전력저장용으로 활용범위가 확대되면서 고안전성, 장수명, 고에너지 밀도 및 고출력 특성의 이차전지용 양극 소재에 대한 요구가 커지고 있다. 리튬이차전지의 양극 활물질로는 리튬복합금속화합물이 사용되고 있으며, 그 예로 LiCoO2, LiMn2O4, LiNiO2, LiNi1-x-yCoxMnyO2(0<x+y<1), LiMnO2 등의 복합금속산화물들이 연구되고 있다. Lithium secondary batteries have been increasingly used in small electronic devices for electric vehicles and electric power storage, and there is a growing demand for cathode materials for secondary batteries having high safety, long life, high energy density and high output characteristics. LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1-xy Co x Mn y O 2 (0 <x + y <1), and LiMnO 2 (Li x Ni y O 2 ) are used as the cathode active material of the lithium secondary battery. 2 Have been studied.

최근에 주목을 받고 있는 리튬 과량의 리튬금속산화물은 단위 무게 당 240mAh/g 이상의 고용량을 갖는 양극 활물질로 차세대 전기자동차 및 전력저장용 양극 소재로 주목받고 있다. 그러나 첫번째 충방전에서 상변화에 의한 비가역 용량이 커서 방전시 고유의 용량을 구현하기 어렵고 망간(Mn) 함량이 높은 경우, 전기전도성이 떨어져 고율에서 방전용량이 낮아지는 문제점을 가지고 있다.Lithium metal oxide, which has been attracting attention recently, is a cathode active material having a high capacity of 240 mAh / g or more per unit weight and is attracting attention as a next generation electric vehicle and a cathode material for power storage. However, when the irreversible capacity due to the phase change is large in the first charge / discharge, it is difficult to realize a specific capacity at the time of discharging, and when the content of manganese (Mn) is high, the electric conductivity decreases and the discharge capacity decreases at a high rate.

이에 본 발명의 목적은 고용량이면서도 동시에 우수한 고율 특성 및 용량 유지율을 구현할 수 있는 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지를 제공하고자 한다.Accordingly, an object of the present invention is to provide a cathode active material for a lithium secondary battery capable of realizing high-capacity and high-rate characteristics and capacity retention ratio at the same time as a high capacity, a process for producing the same, and a lithium secondary battery using the same.

본 발명은 하기 화학식 1로 표시되는 층상구조의 리튬금속산화물을 함유하는 기재물질; 및 상기 기재물질의 표면에 코팅된 하기 화학식 2로 표시되는 스피넬구조의 리튬금속산화물을 함유하는 표층물질을 포함하는 리튬이차전지용 양극 활물질을 제공한다.The present invention relates to a base material containing a lithium metal oxide having a layered structure represented by the following formula (1); And a surface layer material containing a lithium metal oxide having a spinel structure represented by the following Chemical Formula 2 coated on the surface of the base material.

Li1 + xM1 - xO2 (1)Li 1 + x M 1 - x O 2 (One)

(상기 식에서, 0.05<x<0.33, M: Co, Ni, Mn, Zr, Cr, V, Ti, Fe 및 Cu로 이루어진 군에서 선택된 2종 이상의 전이금속임)(Wherein 0.05 <x <0.33, M: Co, Ni, Mn, Zr, Cr, V, Ti, Fe and Cu)

LiM'yMn2 - yO4 (2) LiM 'y Mn 2 - y O 4 (2)

(상기 식에서, 0 < y ≤ 0.5, M'은 Co, Ni, Mn, Zr, Cr, V, Ti, Fe 및 Cu 로 이루어진 군에서 선택된 1종 이상의 전이금속임) Wherein 0 < y &lt; 0.5 and M 'is at least one transition metal selected from the group consisting of Co, Ni, Mn, Zr, Cr, V, Ti, Fe and Cu.

또한, 본 발명은 상기한 양극 활물질의 제조방법을 제공한다.The present invention also provides a method for producing the above-mentioned cathode active material.

또한, 본 발명은 상기한 양극 활물질을 이용한 리튬이차전지를 제공한다.The present invention also provides a lithium secondary battery using the above-mentioned cathode active material.

본 발명은 층상구조의 리튬금속산화물을 함유하는 기재물질의 표면에 스피넬구조의 리튬금속산화물을 함유하는 표층물질이 코팅된 리튬이차전지용 양극 활물질을 제공함으로써 고용량의 특성을 유지하면서 고율 특성이 우수하고 충방전을 반복한 후에도 용량 유지율이 높은 리튬이차전지용 양극 활물질을 제공할 수 있다.The present invention provides a positive electrode active material for a lithium secondary battery in which a surface layer material containing a lithium metal oxide having a spinel structure is coated on a surface of a base material containing a lithium metal oxide having a layered structure, It is possible to provide a positive electrode active material for a lithium secondary battery having a high capacity retention rate even after repeated charging and discharging.

도 1은 실시예 및 비교예에서 제조된 양극활물질의 1st 충전 방전 곡선을 나타낸 그래프이다.
도 2는 실시예 및 비교예에서 제조된 양극활물질의 XRD 구조 분석 그래프이다.
도 3은 실시예 및 비교예에서 제조된 양극활물질의 수명 특성을 비교한 그래프이다.
도 4는 본 발명에 따른 리튬이차전지의 일례를 개략적으로 나타낸 도면이다.
1 is a graph showing a 1 st charge discharge curve of the cathode active material prepared in Examples and Comparative Examples.
2 is an XRD structural analysis graph of the cathode active material prepared in Examples and Comparative Examples.
FIG. 3 is a graph comparing lifetime characteristics of the cathode active materials prepared in Examples and Comparative Examples. FIG.
4 is a schematic view showing an example of a lithium secondary battery according to the present invention.

본 발명은 하기 화학식 1로 표시되는 층상구조의 리튬금속산화물을 함유하는 기재물질; 및 상기 기재물질의 표면에 코팅된 하기 화학식 2로 표시되는 스피넬구조의 리튬금속산화물을 함유하는 표층물질을 포함하는 리튬이차전지용 양극 활물질에 관한 것이다.The present invention relates to a base material containing a lithium metal oxide having a layered structure represented by the following formula (1); And a surface layer material containing a lithium metal oxide having a spinel structure represented by the following Chemical Formula 2 coated on the surface of the base material.

Li1 + xM1 - xO2 (1)Li 1 + x M 1 - x O 2 (One)

(상기 식에서, 0.05<x<0.33, M은 Co, Ni, Mn, Zr, Cr, V, Ti, Fe 및 Cu로 이루어진 군에서 선택된 2종 이상의 전이금속임) Wherein M is at least two transition metals selected from the group consisting of Co, Ni, Mn, Zr, Cr, V, Ti, Fe and Cu,

LiM'yMn2 - yO4 (2) LiM 'y Mn 2 - y O 4 (2)

(상기 식에서, 0 < y ≤ 0.5, M'은 Co, Ni, Mn, Zr, Cr, V, Ti, Fe 및 Cu 로 이루어진 군에서 선택된 1종 이상의 전이금속임)Wherein 0 < y &lt; 0.5 and M 'is at least one transition metal selected from the group consisting of Co, Ni, Mn, Zr, Cr, V, Ti, Fe and Cu.

즉, 본 발명에 따른 양극 활물질은 고용량을 갖는 리튬 과량의 층상구조의 리튬금속산화물을 함유하는 기재물질의 표면에 구조적으로 안정한 스피넬 구조의 표층물질을 형성하여 고용량이면서 고율 특성이 우수하고 충방전을 반복한 후에도 용량유지율이 높은 양극활물질을 제공할 수 있다. That is, the cathode active material according to the present invention has a structure in which a surface layer material having a spinel structure is formed on the surface of a base material containing a lithium metal oxide having a layered lithium excess amount of lithium having a high capacity, It is possible to provide a positive electrode active material having a high capacity retention rate even after it is repeated.

상기 표층물질은 상기 양극 활물질 총중량을 기준으로 0.5 내지 10중량%의 양의 범위 이내로 포함될 수 있다. 상기 양극 활물질 총중량을 기준으로 상기 표층물질이 0.5중량% 미만으로 포함되는 경우 표면 스피넬 구조 형성에 따른 고율특성 및 수명 특성 향상 효과가 미미하고, 10중량%를 초과하는 경우 용량 감소가 커져 고용량 구현이 어렵다.The surface layer material may be contained in an amount of 0.5 to 10% by weight based on the total weight of the cathode active material. When the amount of the surface layer material is less than 0.5% by weight based on the total weight of the cathode active material, the effect of improving the high-rate characteristics and the lifetime characteristics due to the formation of the surface spinel structure is insignificant. When the amount exceeds 10% by weight, it's difficult.

상기 양극 활물질은 2 내지 5㎡/g의 비표면적을 가질 수 있다. 상기 양극 활물질의 비표면적이 2㎡/g 미만으로 되는 경우 Li 이온의 이동 면적이 좁아져 일정한 전류밀도에서 방전용량이 현격하게 낮아지는 단점이 있으며, 5㎡/g를 초과하는 경우 전극 제작 시 바인더와의 결합력 저하로 고합제 구현이 어려울 수 있다.The cathode active material may have a specific surface area of 2 to 5 m 2 / g. When the specific surface area of the cathode active material is less than 2 m &lt; 2 &gt; / g, the moving area of Li ions is narrowed and the discharge capacity is remarkably lowered at a constant current density. When the specific surface area exceeds 5 m & It may be difficult to realize a uniform mixture.

상기 층상구조의 리튬금속산화물은 Co, Ni 및 Mn를 포함하는 것이 바람직하고, Li1 .17Ni0 .17Co0 .17Mn0 .49O2, Li1 .17Ni0 .33Co0 .05Mn0 .46O2 또는 Li1 .17Ni0 .34Co0 .03Mn0 .47O2인 것이 특히 바람직하다. 또한 상기 스피넬구조의 리튬금속산화물은 Mn을 포함하는 것이 바람직하고, LiNi0 .5Mn1 .5O4, LiMn2O4인 것이 특히 바람직하다. The lithium metal oxide of the layered structure preferably contains Co, Ni and Mn, and is preferably Li 1 .17 Ni 0 .17 Co 0 .17 Mn 0 .49 O 2 , Li 1 .17 Ni 0 .33 Co 0 . 05 Mn 0 .46 O 2 or Li 1 .17 Ni 0 .34 Co 0 .03 Mn of 0 .47 O 2 is especially preferred. In addition, the lithium metal oxides of the spinel structure and may include a Mn, LiNi 0 .5 particularly preferably Mn 1 .5 O 4, LiMn 2 O 4.

또한, 본 발명은 리튬화합물 및 제1 전이금속화합물을 혼합한 후 1차 소성하여 층상구조의 리튬금속산화물을 함유하는 기재물질을 형성하는 단계; 상기 기재물질의 표면에 제2 전이금속층을 형성하는 단계; 및 상기 제2 전이금속층이 형성된 기재물질을 리튬화합물과 혼합한 후 2차 소성하여 스피넬구조의 리튬금속산화물을 함유하는 표층물질을 형성하는 단계를 포함하는 본 발명의 리튬이차전지용 양극 활물질의 제조방법에 관한 것이다.The present invention also provides a method for manufacturing a lithium secondary battery, comprising: mixing a lithium compound and a first transition metal compound, followed by a first calcination to form a base material containing a layered lithium metal oxide; Forming a second transition metal layer on a surface of the base material; And a step of mixing the base material on which the second transition metal layer is formed with a lithium compound and then performing secondary firing to form a surface layer material containing a lithium metal oxide having a spinel structure. The method for producing a cathode active material for a lithium secondary battery of the present invention .

상기 리튬화합물은 Li2CO3, LiOH 등을 사용할 수 있고, 상기 제1 전이금속화합물은 코발트, 니켈, 망간, 지르코늄, 크롬, 바나듐, 티타늄, 철 및 구리로 이루어지는 그룹 중에서 선택되는 2종 이상의 전이금속을 함유하는 화합물을 사용할 수 있다. The lithium compound may be Li 2 CO 3 or LiOH and the first transition metal compound may be at least one transition metal selected from the group consisting of cobalt, nickel, manganese, zirconium, chromium, vanadium, titanium, iron, A compound containing a metal may be used.

상기 양극 활물질의 제조방법에서 1차 소성은 700 내지 900℃의 온도에서 15 내지 35시간 동안 행하는 것이 바람직하다. 상기 소성온도가 700℃ 미만이면 결정성이 낮아 수명 특성이 나빠질 수 있으며, 900℃를 초과하면 입자 크기가 커지고 비표면적이 작아져 용량 및 율특성 저하가 나타날 수 있다. In the method for producing a cathode active material, the first firing is preferably performed at a temperature of 700 to 900 DEG C for 15 to 35 hours. If the calcination temperature is less than 700 ° C, the crystallinity is low and the life characteristics may be deteriorated. If the calcination temperature is higher than 900 ° C, the particle size may be large and the specific surface area may be small, resulting in deterioration of capacity and rate characteristics.

상기 리튬화합물과 제1 전이금속화합물은 화학당량비로 1.20:1 에서 1.50:1 범위에서 혼합할 수 있다. 상기 범위 내에는 리튬 과량의 리튬금속산화물을 제조하여 전지의 용량을 향상시킬 수 있다.The lithium compound and the first transition metal compound can be mixed in a chemical equivalent ratio ranging from 1.20: 1 to 1.50: 1. Within the above range, it is possible to improve the capacity of the battery by preparing an excess lithium metal oxide.

상기 제2 전이금속층 형성 단계는 상기 기재물질을 제2 전이금속화합물 수용액 또는 유기용매에 첨가하고 혼합한 후, 이 혼합물에 탄산나트륨(Na2CO2) 용액, 수산화나트륨(NaOH), 과황산암모늄 [(NH4)2S2O8] 용액을 첨가하여 40℃ 내지 80℃ 온도에서 2시간 내지 10시간 동안 반응시켜 행할 수 있다. In the second transition metal layer formation step, the base material is added to and mixed with the second transition metal compound aqueous solution or the organic solvent, and then sodium carbonate (Na 2 CO 2 ) solution, sodium hydroxide (NaOH), ammonium persulfate (NH 4 ) 2 S 2 O 8 ] is added and reacted at a temperature of 40 ° C to 80 ° C for 2 hours to 10 hours.

상기 제2 전이금속화합물은 코발트, 니켈, 망간, 지르코늄, 크롬, 바나듐, 티타늄, 철 및 구리로 이루어지는 그룹 중에서 선택되는 1종 이상의 전이금속을 함유하는 화합물을 사용할 수 있다.The second transition metal compound may be a compound containing at least one transition metal selected from the group consisting of cobalt, nickel, manganese, zirconium, chromium, vanadium, titanium, iron and copper.

상기 표층물질 형성 단계는 상기 제2 전이금속층이 형성된 상기 기재물질을 리튬화합물과 혼합한 후, 300 내지 700℃의 온도에서 5 내지 35시간 동안 2차 소성하여 스피넬구조의 리튬금속산화물을 형성시키는 것으로 이루어진다. 2차 소성 온도가 700℃ 초과하여 1차 소성 온도 보다 높으면 활물질의 입자 특성에 변화를 주게 되어 특성 저하를 유발할 수 있으며, 300℃ 미만이면 Li과 전이금속화합물이 반응하지 않아 스피넬 구조 형성이 어렵다. 상기 리튬화합물은 상기 기재물질 형성 단계에서 사용된 것과 동일한 것을 사용할 수 있다. The surface layer material forming step may be performed by mixing the base material having the second transition metal layer formed thereon with a lithium compound and then performing secondary firing at a temperature of 300 to 700 ° C for 5 to 35 hours to form a lithium metal oxide having a spinel structure . If the secondary firing temperature is higher than 700 캜 and higher than the first firing temperature, the characteristics of the active material may be changed, which may cause deterioration of properties. If the secondary firing temperature is less than 300 캜, Li and the transition metal compound do not react to form a spinel structure. The lithium compound may be the same as that used in the base material forming step.

또한, 본 발명은 상기 양극 활물질을 포함하는 리튬이차전지를 제공한다. In addition, the present invention provides a lithium secondary battery including the above cathode active material.

상기 리튬 이차 전지는 양극 활물질을 포함하는 양극, 이외 음극, 분리막 및 비수 전해액을 더 구성할 수 있다. 상기 이차 전지의 구조와 제조방법은 본 발명의 기술 분야에서 알려져 있고, 본 발명의 범위를 벗어나지 않는 한 적절히 선택할 수 있다. The lithium secondary battery may further include a positive electrode including a positive electrode active material, a negative electrode, a separator, and a non-aqueous electrolyte. The structure and the manufacturing method of the secondary battery are known in the technical field of the present invention and can be appropriately selected without departing from the scope of the present invention.

예를 들어, 상기 양극은 본 발명에 의한 양극 활물질 및 바인더를 포함하는 양극 활물질 형성용 조성물을 양극 집전체에 도포하고 건조한 이후 압연하여 제조된다. For example, the positive electrode is prepared by applying a composition for forming a positive electrode active material containing a positive electrode active material and a binder according to the present invention to a positive electrode collector, drying and then rolling.

상기 바인더는 양극 활물질들 간의 결합과 집전체에 이들을 고정시키는 역할을 하며, 본 기술 분야에서 사용되는 바인더라면 제한 없이 사용될 수 있으며, 바람직하게는 폴리비닐리덴플루오라이드, 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 폴리에틸렌, 폴리프로필렌, 스틸렌부티렌 고무, 불소 고무 중에서 선택된 1종 이상일 수 있다. The binder serves to bind the positive electrode active materials and to fix them to the current collector. Any binders used in the technical field can be used without limitation, and preferable examples include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl And may be at least one selected from the group consisting of polyvinylpyrrolidone, polyvinylpyrrolidone, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, polyethylene, polypropylene, styrene butylene rubber and fluorine rubber.

상기 양극 활물질 형성용 조성물은 양극 활물질 및 바인더에 선택적으로 NMP(N-Methyl-2-pyrrolidone) 등과 같은 용매 및 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등과 같은 섬유 상 물질로 이루어진 충진재 등을 더 추가하여 제조될 수 있다. 또한, 하기 음극에서 제시한 도전재를 더 포함할 수 있다.The composition for forming a positive electrode active material may further include a solvent such as NMP (N-methyl-2-pyrrolidone) and an oligomer such as polyethylene or polypropylene to the positive electrode active material and the binder; A filler made of fibrous materials such as glass fibers, carbon fibers, and the like. Further, it may further include a conductive material shown in the following cathode.

상기 양극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소; 구리 및 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것; 알루미늄-카드뮴 합금 등일 수 있고, 필름, 시트, 호일, 네트, 다공질체, 발포제, 부직포체 등 다양한 형태도 가능하다. The positive electrode collector may be made of copper, stainless steel, aluminum, nickel, titanium, sintered carbon; Surfaces of copper and stainless steel surface treated with carbon, nickel, titanium or silver; Aluminum-cadmium alloy, and the like, and various shapes such as a film, a sheet, a foil, a net, a porous body, a foaming agent, and a nonwoven fabric can be used.

상기 음극은 음극 집전체 상에 음극 활물질을 포함하는 음극 활물질 형성용 조성물을 도포하고 건조하여 제조될 수 있고, 또는 리튬 금속일 수 있다. 상기 음극 활물질 형성용 조성물은 바인더 및 도전재 등을 선택적으로 더 포함할 수 있다. The negative electrode may be manufactured by applying and drying a composition for forming an anode active material on a negative electrode current collector, or may be lithium metal. The composition for forming the negative electrode active material may further include a binder and a conductive material.

상기 음극 활물질은 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 등의 탄소질 재료, 리튬과 실리콘(Si), 알루미늄(Al), 주석(Sn), 납(Pb), 아연(Zn), 비스무스(Bi), 인듐(In), 망간(Mg), 갈륨(Ga), 카드뮴(Cd), 실리콘 합금, 주석 합금, 알루미늄 합금 등과 같은 합금화가 가능한 금속질 화합물 및 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등일 수 있다. The negative electrode active material may be selected from the group consisting of carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon, lithium and silicon, aluminum (Al), tin (Sn), lead (Pb) Metal alloys capable of alloying such as bismuth (Bi), indium (In), manganese (Mg), gallium (Ga), cadmium (Cd), silicon alloys, tin alloys, aluminum alloys and the like, And the like.

상기 음극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소; 구리 및 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것; 알루미늄-카드뮴 합금 등일 수 있고, 필름, 시트, 호일, 네트, 다공질체, 발포제, 부직포체 등 다양한 형태도 가능하다. The negative electrode current collector may be made of copper, stainless steel, aluminum, nickel, titanium, sintered carbon; Surfaces of copper and stainless steel surface treated with carbon, nickel, titanium or silver; Aluminum-cadmium alloy, and the like, and various shapes such as a film, a sheet, a foil, a net, a porous body, a foaming agent, and a nonwoven fabric can be used.

상기 분리막은 음극 및 양극 사이에 배치되며, 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등일 수 있다.예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막 등일 수 있다.The separation membrane is disposed between the cathode and the anode, and includes an olefin-based polymer such as polypropylene; For example, polyethylene, polypropylene, polyvinylidene fluoride or a multilayer film of two or more thereof, a polyethylene / polypropylene two-layer separator, a polyethylene / polypropylene / polyethylene A three-layer separator, a mixed multilayer film such as a polypropylene / polyethylene / polypropylene three-layer separator, or the like.

상기 비수 전해액은 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등을 포함할 수 있으며, 예를 들어, 상기 비수계 유기 용매로는 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트, 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트, 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티로락톤, 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란, 아세토니트릴, 디메틸포름아미드, N-메틸-2-피롤리디논, 디메틸술폭시드, 1,3-디메틸-2-이미다졸리디논, 설포란, 메틸 설포란 등일 수 있다.The nonaqueous electrolyte solution may include a nonaqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the nonaqueous organic solvent may include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate Methyl ethyl ketone, diethyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate,? -Butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, But are not limited to, 1,2-dioxane, 2-methyltetrahydrofuran, acetonitrile, dimethylformamide, N-methyl-2-pyrrolidinone, dimethylsulfoxide, , Methyl sulfolane, and the like.

상기 유기 고체 전해질은 폴리에틸렌옥시드, 폴리아크릴로니트릴 등의 중합체 전해질에 전해액을 함침한 겔상 중합체전해질 등일 수 있다.The organic solid electrolyte may be a gelated polymer electrolyte impregnated with a polymer electrolyte such as polyethylene oxide, polyacrylonitrile or the like, and the like.

상기 무기 고체 전해질은 Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등일 수 있다. Wherein the inorganic solid electrolyte is selected from the group consisting of Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI -LiOH, Li 3 PO 4 -Li 2 S-SiS 2, and other nitrides, halides, sulfates and the like of Li.

상기 리튬이차전지는 코인형, 각형, 원통형, 파우치형 등으로 분리될 수 있고, 이들 전지의 구조와 제조방법은 본 기술 분야에서 알려져 있으므로, 상세한 설명은 생략한다. 코인셀이라고도 불리우는 상기 코인형의 리튬이차전지를 도 4에 예시적으로 나타내었다. 이러한 코인형 리튬이차전지의 경우, 도 4에 나타낸 바와 같이, 스테인리스 등의 금속제 용기(11)에 전극(집전체(12), 전극 재료(13)), 분리막(14), 전극(전극 재료(13) 및 집전체(12))을 순차 적층하고, 전해액을 함침시키고, 금속제 덮개(15) 및 가스켓(16)으로 밀봉하는 구조와 제조방법을 들 수 있다. 각형, 원통형, 파우치형 등도 기본적인 구성은 코인형 전지와 대동소이하며, 형상이나 크기를 달리하거나 용기를 달리하는 등 이차전지가 사용되는 목적이나 특성(형상이나 규격 등)에 따라 달라질 수 있는 것으로서 당업자에게는 용이하게 이해될 수 있는 것이므로 나머지 구조 및 그의 제조방법들에 대해서는 그 상세한 설명은 생략한다. The lithium secondary battery can be separated into a coin type, a prismatic type, a cylindrical type, a pouch type, and the like. Since the structure and manufacturing method of these batteries are known in the art, detailed description thereof will be omitted. The coin-type lithium secondary battery, also referred to as a coin cell, is exemplarily shown in Fig. In the case of such a coin type lithium secondary battery, as shown in Fig. 4, an electrode (current collector 12, electrode material 13), a separator film 14, an electrode (electrode material 13 and the current collector 12 are successively laminated and impregnated with an electrolytic solution and sealed with a metal lid 15 and a gasket 16 can be mentioned. The basic configuration of the square type, the cylindrical type, the pouch type, and the like is the same as that of the coin type battery, and it may vary depending on purposes or characteristics (shape, specification, etc.) The detailed description of the remaining structures and manufacturing methods thereof will be omitted.

이하 본 발명을 하기의 실시예 및 비교예에 의하여 보다 구체적으로 설명한다. 하기의 실시예는 본 발명을 예시하기 위한 예에 지나지 않으며, 본 발명의 보호범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples and comparative examples. The following examples are only illustrative of the present invention and do not limit the scope of protection of the present invention.

[[ 합성예Synthetic example 1] 제1 전이금속화합물의 합성 1] Synthesis of first transition metal compound

황산니켈(NiSO4), 황산코발트(CoSO4), 황산망간(MnSO4)을 물에 2:2:6의 비율로 용해시킨 후, 1M NaOH 용액에 투입하였다. 위의 용액에 금속의 농도비와 동일한 당량비의 암모니아수(NH4OH)를 천천히 투입하였다. 연속형 반응기를 이용하여 12시간 반응시킨 후, 형성된 침전물을 여과해내고, 증류수로 10회 세정 후, 120℃의 온도 하에서 건조오븐 내에서 건조시켜 Ni0 .2Co0 .2Mn0 .6(OH)2를 수득하였다. Nickel sulfate (NiSO 4 ), cobalt sulfate (CoSO 4 ) and manganese sulfate (MnSO 4 ) were dissolved in water at a ratio of 2: 2: 6 and then added to a 1 M NaOH solution. Ammonia water (NH 4 OH) of the same equivalent ratio as the metal concentration ratio was slowly added to the above solution. After 12 hours by using a continuous-type reactor, the precipitate formed was filtered off, was washed 10 times with distilled water, dried in a drying oven at a temperature of 120 ℃ Ni 0 .2 Co 0 .2 Mn 0 .6 ( OH) 2 was obtained.

[[ 합성예Synthetic example 2] 층상구조의 리튬금속산화물의 합성 2] Synthesis of layered lithium metal oxide

상기 합성예 1의 전이금속화합물(니켈코발트망간수산화물; Ni0.2Co0.2Mn0.6(OH)2)와 리튬카보네이트(Li2CO3)를 리튬과 전이금속의 화학당량비가 1.40:1가 되도록 혼합하여 800℃에서 24시간 동안 소성하여 기재물질로서 사용되는 층상구조의 리튬금속산화물(Li1 .17Ni0 .17Co0 .17Mn0 .49O2)을 수득하였다. 수득된 양극 활물질의 비표면적은 3㎡/g이었다.The transition metal compound (nickel cobalt manganese hydroxide; Ni 0.2 Co 0.2 Mn 0.6 (OH) 2 ) and lithium carbonate (Li 2 CO 3 ) of Synthesis Example 1 were mixed so that the chemical equivalence ratio of lithium and the transition metal was 1.40: 1 in 800 ℃ baked for 24 hours to obtain a lithium metal oxide (Li 1 .17 Ni 0 .17 Co 0 .17 Mn 0 .49 O 2) of the layered structure is used as the base material. The specific surface area of the obtained positive electrode active material was 3 m 2 / g.

[[ 실시예Example 1] 1.0중량% 표층물질/기재물질 구조의 양극 활물질의 합성 1] 1.0 wt% Synthesis of cathode active material of surface material / base material structure

MnSO4 수용액에 위 합성예 2에서 합성된 층상구조의 리튬금속산화물을 천천히 넣으면서 60분간 마그네틱바를 이용해 혼합시켰다. 위의 혼합액에 Na2CO3 수용액을 천천히 주입하며 60℃에서 5시간 동안 반응시켜 층상구조의 리튬금속산화물로 이루어지는 기재물질의 표면에 전이금속층으로서 MnCO3의 층을 형성하였다. 형성된 전이금속층-기재물질 슬러리를 필터로 여과해내고, 세정한 후, 120℃의 온도의 오븐에서 12시간 동안 건조시켜 전이금속층-기재물질의 구조의 분말을 수득하였으며, 이렇게 수득된 분말에 Li2CO3를 리튬(Li)과 망간(Mn)의 화학당량비가 1:2로 되도록 혼합한 후, 700℃에서 20시간 동안 소성시켜 본 발명에 따른 표층물질/기재물질 구조의 양극 활물질로서 LiMn2O4의 함량이 1.0중량%인 양극 활물질을 수득하였다.MnSO 4 The lithium metal oxide having the layered structure synthesized in Synthesis Example 2 above was slowly added to the aqueous solution for 60 minutes using a magnetic bar. A Na 2 CO 3 aqueous solution was slowly added to the above mixed solution and reacted at 60 ° C for 5 hours to form a layer of MnCO 3 as a transition metal layer on the surface of the base material made of the layered lithium metal oxide. The resulting transition metal layer-based material slurry was filtered with a filter, washed and then dried in an oven at 120 ° C. for 12 hours to obtain a powder of the structure of the transition metal layer-based material. To the thus obtained powder was added Li 2 CO 3 was mixed so that the chemical equivalent ratio of lithium (Li) to manganese (Mn) was 1: 2, and then calcined at 700 ° C for 20 hours to obtain LiMn 2 O as the cathode active material of the surface material / 4 was contained in an amount of 1.0% by weight.

[[ 실시예Example 2] 2.0중량% 표층물질/기재물질 구조의 양극 활물질의 합성 2] 2.0 wt% Synthesis of cathode active material of surface material / base material structure

LiMn2O4의 함량이 2.0중량%가 되도록 하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 본 발명에 따른 표층물질/기재물질 구조의 양극 활물질을 수득하였다.Except that the content of LiMn 2 O 4 was adjusted to 2.0 wt%, thereby obtaining a cathode active material having a surface material / base material structure according to the present invention.

[[ 실시예Example 3] 10.0중량% 표층물질/기재물질 구조의 양극 활물질의 합성 3] 10.0 wt% Synthesis of cathode active material of surface material / base material structure

LiMn2O4의 함량이 10.0중량%가 되도록 하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 본 발명에 따른 표층물질/기재물질 구조의 양극 활물질을 수득하였다.Except that the content of LiMn 2 O 4 was adjusted to 10.0% by weight in the same manner as in Example 1, to obtain a cathode active material having a surface layer material / base material structure according to the present invention.

[[ 실시예Example 4] 0.2중량%의  4] 0.2% by weight LiMnLiMn 22 OO 44 혼합 양극 활물질의 합성 Synthesis of mixed cathode active material

LiMn2O4의 함량이 0.2중량%가 되도록 하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 표층물질/기재물질 구조의 양극 활물질을 수득하였다.A cathode active material having a surface material / base material structure was obtained in the same manner as in Example 1, except that the content of LiMn 2 O 4 was 0.2 wt%.

[[ 실시예Example 5] 12중량%의  5] 12% by weight of LiMnLiMn 22 OO 44 혼합 양극 활물질의 합성 Synthesis of mixed cathode active material

LiMn2O4의 함량이 12중량%가 되도록 하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 표층물질/기재물질 구조의 양극 활물질을 수득하였다.A cathode active material having a surface material / base material structure was obtained in the same manner as in Example 1 except that the content of LiMn 2 O 4 was 12 wt%.

[[ 비교예Comparative Example 1]  One]

기재물질로서 상기 합성예 2에서 합성된 층상구조의 리튬금속산화물 기재물질(Li1 .17Ni0 .17Co0 .17Mn0 .49O2)을 사용하되, 표층물질인 스피넬구조의 리튬금속산화물을 포함하지 않는 양극 활물질을 사용하였다. But as a base material using a lithium metal oxide substrate material (Li 1 .17 Ni 0 .17 Co 0 .17 Mn 0 .49 O 2) of the laminated structure prepared in Synthesis Example 2, the lithium metal of the spinel structure, the surface layer material A cathode active material containing no oxide was used.

[[ 비교예Comparative Example 2] 2중량%의  2] 2% by weight of LiMnLiMn 22 OO 44 혼합 양극 활물질의 합성 Synthesis of mixed cathode active material

상기 합성예 2에서 합성된 층상구조의 리튬금속산화물 98.0중량%와 스피넬구조의 리튬금속산화물(LiMn2O4) 2.0중량%를 분말 혼합기로 (호소카와 노빌타 설비 사용, 제품명 : NOB-mini)로 혼합하여 2.0중량%의 LiMn2O4 혼합 층상구조양극 활물질을 수득하였다.98.0 wt% of the layered lithium metal oxide synthesized in Synthesis Example 2 and 2.0 wt% of a lithium metal oxide (LiMn 2 O 4 ) having a spinel structure were mixed in a powder mixer (NOB-mini, product of Hosokawa Industrial Co., Ltd.) The mixture was mixed with 2.0 wt% of LiMn 2 O 4 Mixed layered structure cathode active material was obtained.

[[ 비교예Comparative Example 3] 10중량%의  3] 10% by weight of LiMnLiMn 22 OO 44 혼합 양극 활물질의 합성 Synthesis of mixed cathode active material

상기 합성예 2와 같이 합성된 층상구조의 리튬금속산화물 90중량%와 스피넬구조의 리튬금속산화물(LiMn2O4) 10.0중량%를 물리적인 방법으로 혼합하여 10.0중량%의 LiMn2O4 혼합 층상구조양극 활물질을 수득하였다.90% by weight of the layered lithium metal oxide synthesized as in Synthesis Example 2 and 10.0% by weight of the spinel structure lithium metal oxide (LiMn 2 O 4 ) were mixed by physical methods to obtain 10.0% by weight of LiMn 2 O 4 Mixed layered structure cathode active material was obtained.

[[ 실험예Experimental Example 1]  One] XRDXRD 구조 분석 Structure analysis

상기 실시예 2 및 비교예 1에서 얻어진 양극활물질에 대해서 XRD 구조 분석을 하였으며, 그 결과를 도 2에 나타내었다. 분석 조건은 2θ= 10 내지 80°, 0.001°/step이고, Cu-Kα선((1.5418Å, 40kV/30mA), 제조사 : BRUKER AXS)를 측정하였고, JCPDS(01-070-865)로 스피넬 구조를 확인하였다. 도 2에서 보듯이, 실시예 2의 양극활물질은 LiMn2O4의 코팅 후 스피넬 피크가 형성된 것을 확인할 수 있었다.XRD structure analysis was performed on the cathode active material obtained in Example 2 and Comparative Example 1, and the results are shown in FIG. The analytical conditions were 2θ = 10 to 80 ° and 0.001 ° / step. The Cu-Kα line (1.5418 Å, 40 kV / 30 mA, manufacturer: BRUKER AXS) was measured and JCPDS (01-070-865) Respectively. As shown in FIG. 2, it was confirmed that the cathode active material of Example 2 had a spinel peak formed after coating LiMn 2 O 4 .

[[ 실험예Experimental Example 2] 전지특성 평가 2] Evaluation of battery characteristics

합성된 양극 활물질과 도전재인 덴카블랙(DenkaBlack), 폴리비닐피롤리돈(PVDF) 바인더를 94:3:3의 비율로 혼합하여 알루미늄(Al) 호일 위에 코팅하여 전극 극판을 제작하였다. 음극으로 금속 리튬을, 전해질로 1.3M LiPF6 EC/DMC/EC = 3:4:3 용액을 사용하여 2032 코인셀을 제작하였다. 1사이클(cycle)의 충방전은 3.0 내지 4.7V의 범위에서 0.1C로 진행시켰고, 이후에는 3 내지 4.6V의 범위에서 0.1C 방전용량, 3C 이상의 고율특성, 1C에서 50회 후 용량유지율로 수명특성을 평가하였으며, 그 결과를 하기 표 1 및 도면에 나타내었다.Denka Black and polyvinylpyrrolidone (PVDF) binders were mixed in the ratio of 94: 3: 3 and coated on the aluminum foil to prepare an electrode plate. 2032 coin cells were fabricated using metal lithium as the cathode and 1.3M LiPF 6 EC / DMC / EC = 3: 4: 3 solution as the electrolyte. Charging and discharging of one cycle proceeded to 0.1 C in the range of 3.0 to 4.7 V, followed by 0.1 C discharge capacity in the range of 3 to 4.6 V, high rate characteristics of 3 C or more, And the results are shown in Table 1 and the following Table.

구분division 표층물질
함량
(중량%)
Surface material
content
(weight%)
0.1C
충전용량
(mAh/g)
0.1 C
Charging capacity
(mAh / g)
0.1C
방전용량
(mAh/g)
0.1 C
Discharge capacity
(mAh / g)
효율
(%, 충전/방전)
efficiency
(%, Charge / discharge)
고율특성
(%)
High rate characteristic
(%)
용량유지율
(%)
Capacity retention rate
(%)
비교예 1Comparative Example 1 -- 306306 275 275 9090 7777 8585 실시예 1Example 1 1.01.0 303303 282 282 9393 7979 9191 실시예 2Example 2 2.02.0 302302 287 287 9595 8181 9292 실시예 3Example 3 10.010.0 290290 281 281 9797 8383 9292 실시예 4Example 4 0.20.2 306306 272 272 8989 7777 8484 실시예 5Example 5 12.012.0 286286 266 266 9393 7878 8686 구분division 혼합된 LiMn2O4
함량
(중량%)
Mixed LiMn 2 O 4
content
(weight%)
1차
충전용량
(mAh/g)
Primary
Charging capacity
(mAh / g)
1차
방전용량
(mAh/g)
Primary
Discharge capacity
(mAh / g)
효율
(%, 충전/방전)
efficiency
(%, Charge / discharge)
고율특성
(%)
High rate characteristic
(%)
용량유지율
(%)
Capacity retention rate
(%)
비교예 2Comparative Example 2 2.02.0 300300 276276 9292 7878 8888 비교예 3Comparative Example 3 10.010.0 284284 261261 9292 7979 8787 고율특성(%) = 3C/0.3C
용량유지율 = 50사이클 후 용량유지율 (1C 충전 방전)
High rate characteristic (%) = 3C / 0.3C
Capacity retention rate = capacity retention rate after 50 cycles (1C charge discharge)

위 표 1에 나타난 바와 같이, 본 발명에 따른 양극 활물질의 경우, 스피넬구조의 리튬금속산화물(LiMn2O4)의 함량이 증가할수록 충전용량은 감소하지만 효율이 좋아져 방전용량이 비교예 1에 비해 향상되었음을 확인할 수 있었다. 또한, 스피넬구조의 리튬금속산화물(LiMn2O4)의 함량이 증가할수록 0.3C 용량대비 3C 용량으로 나타낸 고율특성이 향상되었으며, 50사이클 충방전 반복 후 용량유지율로 본 수명특성도 층상구조만을 갖는 양극 활물질(Li1 .17Ni0 .17Co0 .17Mn0 .49O2) 대비 향상되었음을 확인할 수 있었다.As shown in Table 1, in the case of the cathode active material according to the present invention, as the content of the lithium metal oxide (LiMn 2 O 4 ) of the spinel structure increases, the charging capacity decreases but the efficiency becomes better. . As the content of lithium metal oxide (LiMn 2 O 4 ) in the spinel structure increases, the high-rate characteristics exhibited by the 3C capacity relative to the 0.3C capacity were improved. the positive electrode active material (Li 1 .17 Ni 0 .17 Co 0 .17 Mn 0 .49 O 2) was confirmed that contrast enhancement.

한편, 비교예 2, 3과 같이 건식혼합방법을 이용하여 스피넬구조와 층상구조의 리튬금속산화물을 복합화한 양극 활물질의 경우, 충방전효율증가, 율특성향상, 수명특성 향상효과는 있었으나, 실시예 2 및 3 대비 동일함량 포함 시 특성향상 정도가 미미함을 확인할 수 있었다.On the other hand, in the case of the cathode active material in which the spinel structure and the layered lithium metal oxide were combined using the dry mixing method as in Comparative Examples 2 and 3, the charging / discharging efficiency, the rate characteristic and the lifetime characteristics were improved, 2 and 3, it was confirmed that the improvement of the characteristics was insignificant.

도 2를 참조하면, LiMn2O4의 코팅에 따라 2.8V 영역에서 평탄 구간이 발생하는 것을 볼 수 있다. 또한 비교예 2 및 3에 비하여 실시예 2 및 3의 경우 용량이 증가됨을 확인할 수 있다. Referring to FIG. 2, it can be seen that a flat region occurs in the 2.8V region due to the coating of LiMn 2 O 4 . It is also confirmed that the capacity is increased in Examples 2 and 3 as compared with Comparative Examples 2 and 3.

즉, 본 발명에 따른 실시예들의 양극 활물질들을 사용하는 리튬이차전지의 경우, 고율특성과 50사이클 이후의 용량유지율에서 공히 비교예들에 비해 높게 나타남을 확인할 수 있었다.That is, it was confirmed that the lithium secondary battery using the cathode active materials of the examples according to the present invention exhibited higher rate characteristics and capacity retention rates after 50 cycles than the comparative examples.

Claims (11)

Li1.17Ni0.17Co0.17Mn0.49O2, Li1.17Ni0.33Co0.05Mn0.46O2 또는 Li1.17Ni0.34Co0.03Mn0.47O2 로 표시되는 층상구조의 리튬금속산화물을 함유하는 기재물질; 및 상기 기재물질의 표면에 코팅된 하기 화학식 2로 표시되는 스피넬구조의 리튬금속산화물을 함유하는 표층물질을 포함하는 리튬이차전지용 양극 활물질:
LiM'yMn2-yO4 (2)
(상기 식에서, 0 < y ≤ 0.5, M'은 Co, Ni, Mn, Zr, Cr, V, Ti, Fe 및 Cu 로 이루어진 군에서 선택된 1종 이상의 전이금속임)
A base material containing a layered lithium metal oxide represented by Li 1.17 Ni 0.17 Co 0.17 Mn 0.49 O 2 , Li 1.17 Ni 0.33 Co 0.05 Mn 0.46 O 2 or Li 1.17 Ni 0.34 Co 0.03 Mn 0.47 O 2 ; And a surface layer material containing a lithium metal oxide having a spinel structure represented by the following formula (2) coated on the surface of the base material:
LiM 'y Mn 2-y O 4 (2)
Wherein 0 < y &lt; 0.5 and M 'is at least one transition metal selected from the group consisting of Co, Ni, Mn, Zr, Cr, V, Ti, Fe and Cu.
제 1 항에 있어서, 상기 표층물질이 상기 양극 활물질 총중량을 기준으로 0.5 내지 10중량%로 포함되는 것을 특징으로 하는 리튬이차전지용 양극 활물질.The positive electrode active material for a lithium secondary battery according to claim 1, wherein the surface layer material is contained in an amount of 0.5 to 10% by weight based on the total weight of the positive electrode active material. 제 1 항에 있어서, 상기 양극 활물질이 2 내지 5㎡/g의 비표면적을 갖는 것을 특징으로 하는 리튬이차전지용 양극 활물질.The positive electrode active material for a lithium secondary battery according to claim 1, wherein the positive electrode active material has a specific surface area of 2 to 5 m 2 / g. 삭제delete 삭제delete 제1항에 있어서, 상기 화학식 2의 리튬금속산화물은 LiMn2O4 또는 LiNi0.5Mn1.5O4인 것을 특징으로 하는 리튬이차전지용 양극 활물질.The positive electrode active material for a lithium secondary battery according to claim 1, wherein the lithium metal oxide represented by Formula 2 is LiMn 2 O 4 or LiNi 0.5 Mn 1.5 O 4 . 리튬화합물 및 제1 전이금속화합물을 혼합한 후 1차 소성하여 층상구조의 리튬금속산화물을 함유하는 기재물질을 형성하는 단계;
상기 기재물질의 표면에 제2 전이금속층을 형성하는 단계; 및
상기 제2 전이금속층이 형성된 기재물질을 리튬화합물과 혼합한 후 2차 소성하여 스피넬구조의 리튬금속산화물을 함유하는 표층물질을 형성하는 단계;
를 포함하는 제 1 항 내지 제 3 항 및 제 6 항 중 어느 한 항에 기재된 리튬이차전지용 양극 활물질의 제조방법.
Mixing a lithium compound and a first transition metal compound and then performing a first calcination to form a base material containing a layered lithium metal oxide;
Forming a second transition metal layer on a surface of the base material; And
Mixing a base material on which the second transition metal layer is formed with a lithium compound and then performing secondary firing to form a surface layer material containing a lithium metal oxide having a spinel structure;
The method of producing a cathode active material for a lithium secondary battery according to any one of claims 1 to 3,
제 7 항에 있어서, 상기 리튬화합물과 제1 전이금속화합물의 혼합은 리튬과 전이금속의 화학당량비가 1.20:1 내지 1.50:1가 되도록 행하는 것을 특징으로 하는 리튬이차전지용 양극 활물질의 제조방법.8. The method of claim 7, wherein the mixing of the lithium compound and the first transition metal compound is performed such that the chemical equivalent ratio of lithium to transition metal is 1.20: 1 to 1.50: 1. 제 7 항에 있어서, 상기 1차 소성은 700 내지 900℃의 온도에서 15 내지 35시간 동안 행하는 것을 특징으로 하는 리튬이차전지용 양극 활물질의 제조방법.8. The method of claim 7, wherein the primary firing is performed at a temperature of 700 to 900 DEG C for 15 to 35 hours. 제 7 항에 있어서, 상기 2차 소성은 300 내지 700℃의 온도에서 5 내지 35시간 동안 행하는 것을 특징으로 하는 리튬이차전지용 양극 활물질의 제조방법.8. The method of claim 7, wherein the secondary firing is performed at a temperature of 300 to 700 DEG C for 5 to 35 hours. 제 1 항 내지 제 3 항 및 제 6 항 중의 어느 한 항에 따른 양극 활물질을 포함하는 것을 특징으로 하는 리튬이차전지.A lithium secondary battery comprising the cathode active material according to any one of claims 1 to 3 and 6.
KR1020120134821A 2012-11-26 2012-11-26 Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same KR101458676B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120134821A KR101458676B1 (en) 2012-11-26 2012-11-26 Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120134821A KR101458676B1 (en) 2012-11-26 2012-11-26 Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
KR20140067508A KR20140067508A (en) 2014-06-05
KR101458676B1 true KR101458676B1 (en) 2014-11-05

Family

ID=51123727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120134821A KR101458676B1 (en) 2012-11-26 2012-11-26 Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same

Country Status (1)

Country Link
KR (1) KR101458676B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290862B2 (en) 2015-12-31 2019-05-14 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery including the composite cathode active material, and method of preparing the composite cathode active material
WO2019117531A1 (en) * 2017-12-11 2019-06-20 주식회사 엘지화학 Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery cathode and lithium secondary battery which comprise same
US11081693B2 (en) 2017-08-30 2021-08-03 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the same, and cathode and lithium battery including the composite cathode active material
US11799078B2 (en) 2017-06-30 2023-10-24 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery including the same, and method of preparing the composite cathode active material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053054A1 (en) * 2014-10-02 2016-04-07 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, preparation method for same, and lithium secondary battery comprising same
KR101787199B1 (en) 2014-10-02 2017-10-18 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
KR101758992B1 (en) 2014-10-02 2017-07-17 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
KR101777466B1 (en) * 2014-10-02 2017-09-11 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
WO2016053056A1 (en) * 2014-10-02 2016-04-07 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, preparation method for same, and lithium secondary battery comprising same
WO2016053051A1 (en) * 2014-10-02 2016-04-07 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2017003197A1 (en) * 2015-06-30 2017-01-05 주식회사 엘지화학 Cathode active material particles and secondary battery including same
KR102007496B1 (en) 2015-06-30 2019-08-06 주식회사 엘지화학 Positive electrode active particle and secondary batterty comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120121235A (en) * 2011-04-26 2012-11-05 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20120124779A (en) * 2011-05-04 2012-11-14 삼성전자주식회사 Electrode active material, preparation method thereof, and electrode and lithium battery containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120121235A (en) * 2011-04-26 2012-11-05 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101316053B1 (en) 2011-04-26 2013-10-11 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20120124779A (en) * 2011-05-04 2012-11-14 삼성전자주식회사 Electrode active material, preparation method thereof, and electrode and lithium battery containing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290862B2 (en) 2015-12-31 2019-05-14 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery including the composite cathode active material, and method of preparing the composite cathode active material
US11799078B2 (en) 2017-06-30 2023-10-24 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery including the same, and method of preparing the composite cathode active material
US11081693B2 (en) 2017-08-30 2021-08-03 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the same, and cathode and lithium battery including the composite cathode active material
WO2019117531A1 (en) * 2017-12-11 2019-06-20 주식회사 엘지화학 Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery cathode and lithium secondary battery which comprise same

Also Published As

Publication number Publication date
KR20140067508A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
KR101458676B1 (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
KR101689213B1 (en) Positive electrode active material for lithium secondary battery, preparing method thereof, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
KR101622352B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
KR20170071945A (en) Cathode active material, cathode and lithium battery including the same, and method of preparing the cathode active material
KR101992760B1 (en) Positive electrode active material for lithium secondary battery and positive electrode comprising the same
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
KR101490852B1 (en) Precursor for Preparation of Lithium Composite Transition Metal Oxide, Method for Preparation of the Same, and Lithium Composite Transition
EP3595059A1 (en) Positive electrode active material, and cell
KR20150134161A (en) Composite cathode active material, lithium battery comprising the same, and preparation method thereof
KR102175578B1 (en) Positive active material, method of manufacturing the same and rechargeable lithium battery incluidng the same
KR20090006898A (en) Lithium nickel-based oxide for cathode active material of secondary battery and method for preparation of the same
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
KR20160002200A (en) Composite cathode active material, cathode and lithium battery containing the material, and preparation method thereof
KR20190077160A (en) Positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
KR102192085B1 (en) Cathode active material, cathode and lithium battery containing the material and preparation method thereof
KR101848979B1 (en) Transition metal oxide precursor, lithium composite transition metal hydroxide, secondary battery and cathode comprising the same
KR20150133552A (en) Composite precursor and preparing method thereof
KR101708362B1 (en) Composite, mamufacturing method, anode active material, anode including the anode active material, and lithium secondary battery including the anode
KR101785264B1 (en) Composite precursor, composite prepared therefrom, preparing method thereof, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
KR101392525B1 (en) Positive active material, method of preparing the same, and lithium battery using the same
KR101449813B1 (en) Positive active material for a lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
KR20200018147A (en) Lithium Secondary Battery Comprising Si Anode and Method of Making the Same
KR20200017823A (en) Lithium Secondary Battery Comprising Si Anode
KR20150008006A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20170920

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180917

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 6