JPH09270258A - Nickel-cobalt hydroxide for nonaqueous electrolyte battery active material - Google Patents

Nickel-cobalt hydroxide for nonaqueous electrolyte battery active material

Info

Publication number
JPH09270258A
JPH09270258A JP8079109A JP7910996A JPH09270258A JP H09270258 A JPH09270258 A JP H09270258A JP 8079109 A JP8079109 A JP 8079109A JP 7910996 A JP7910996 A JP 7910996A JP H09270258 A JPH09270258 A JP H09270258A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
cobalt hydroxide
active material
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8079109A
Other languages
Japanese (ja)
Other versions
JP3229544B2 (en
Inventor
Shoichiro Watanabe
庄一郎 渡邊
Shigeo Kobayashi
茂雄 小林
Hideyuki Kita
秀行 北
Takeshi Usui
臼井  猛
Arisumi Kameda
有純 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA KAGAKU KENKYUSHO KK
Panasonic Holdings Corp
Original Assignee
TANAKA KAGAKU KENKYUSHO KK
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13680744&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09270258(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TANAKA KAGAKU KENKYUSHO KK, Matsushita Electric Industrial Co Ltd filed Critical TANAKA KAGAKU KENKYUSHO KK
Priority to JP07910996A priority Critical patent/JP3229544B2/en
Publication of JPH09270258A publication Critical patent/JPH09270258A/en
Application granted granted Critical
Publication of JP3229544B2 publication Critical patent/JP3229544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive active material of lithium composite nickel cobalt oxide with excellent cycle characteristics and high rate discharge characteristics by using nickel-cobalt hydroxide whose physical property such as a particle shape and particle size is controlled. SOLUTION: When a positive active material for a nonaqueous electrolyte battery, Lix Niy CO2 , (0.90<=x<=1.05, 0.7<=y<=0.9, y+z=1) is synthesized, nickel - cobalt hydroxide represented by Niv Cow (OH)2 (v+w=1) is used as a nickel - cobalt source, and Co substitution amount (w value) is controlled to the range of 0.1 to 0.3. Nickel-cobalt hydroxide obtained forms secondary particles by aggregation of myriad primary particles having a rice grain shape as observed by SEM photograph, and the mean particle size of the secondary particles is controlled to 1.5-10μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の正極活物質のLixNiyCoz2(0.90≦x≦
1.05、0.7≦y≦0.9、y+z=1)で表され
るリチウム複合ニッケルーコバルト酸化物の合成に原材
料として用いるニッケル−コバルト水酸化物に関するも
のである。
TECHNICAL FIELD The present invention relates to Li x Ni y Co z O 2 (0.90 ≦ x ≦) of a positive electrode active material of a non-aqueous electrolyte secondary battery.
1.05, 0.7 ≦ y ≦ 0.9, y + z = 1) and a nickel-cobalt hydroxide used as a raw material for the synthesis of a lithium composite nickel-cobalt oxide.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進んでいる。現在、これら電子機
器の駆動用電源としての役割を、ニッケルーカドミウム
蓄電池あるいは密閉型小型鉛蓄電池が担っているが、ポ
ータブル化、コードレス化が進展し、定着するにしたが
い、駆動用電源となる二次電池の高エネルギー密度化、
小型軽量化の要望が強くなっている。また、近年二次電
池は、携帯電話用の電源として注目されており、急速な
市場の拡大と共に、通話時間の長期化、サイクル寿命の
改善への要望は非常に大きいものとなっている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
Cordless use is rapidly progressing. Currently, nickel-cadmium storage batteries or sealed small lead-acid batteries play a role as driving power sources for these electronic devices, but as they become more portable and cordless, they become the driving power sources. Higher energy density of secondary battery,
The demand for smaller and lighter is increasing. Further, in recent years, a secondary battery has been attracting attention as a power source for mobile phones, and along with the rapid expansion of the market, there is a great demand for extending the call time and improving the cycle life.

【0003】このような状況から、高い充放電電圧を示
すリチウム複合遷移金属酸化物、例えばLiCoO
2(例えば特開昭63−59507号公報)や、さらに
高容量を目指したLiNiO2(例えば米国特許第43
02518号)が報告されている。特にLiNiO
2は、LiCoO2に比べ高エネルギー密度が期待され、
各方面で開発が進められている。しかし、LiNiO2
は、充電時の分極が大きく、Liが十分取り出せないう
ちに電解液の酸化分解電圧に達してしまうため、期待さ
れる大きい容量が得られなかった。
Under such circumstances, a lithium composite transition metal oxide showing a high charge / discharge voltage, such as LiCoO 2.
2 (for example, Japanese Patent Laid-Open No. 63-59507) and LiNiO 2 aiming at higher capacity (for example, US Pat.
No. 02518) has been reported. Especially LiNiO
2 is expected to have a higher energy density than LiCoO 2 ,
Development is progressing in various fields. However, LiNiO 2
However, since the polarization during charging was large and the oxidative decomposition voltage of the electrolytic solution was reached before Li could be sufficiently taken out, the expected large capacity could not be obtained.

【0004】このような問題を解決するため、ニッケル
元素の一部をコバルトで置換したものを正極活物質に用
い、リチウムイオンの挿入・離脱を利用した非水電解液
二次電池が提案されている。例えば、特開昭62−25
6371号公報では、炭酸リチウムと炭酸コバルト、炭
酸ニッケルを混合し900℃で焼成することによってリ
チウム複合ニッケル−コバルト酸化物を合成している。
また、特開昭63−299056号公報では、リチウム
とコバルト、ニッケルの水酸化物、酸化物を混合する方
法が報告されている。さらに、特開平1−294364
号公報には、ニッケルイオンとコバルトイオンを含む水
溶液中から炭酸塩としてニッケルイオンとコバルトイオ
ンを共沈させ、その後炭酸リチウムと混合し、リチウム
複合ニッケル−コバルト酸化物の合成を行った例が報告
されている。
In order to solve such a problem, a non-aqueous electrolyte secondary battery has been proposed in which a part of nickel element is replaced by cobalt is used as a positive electrode active material and insertion / extraction of lithium ion is utilized. There is. For example, JP-A-62-25
In 6371, a lithium composite nickel-cobalt oxide is synthesized by mixing lithium carbonate, cobalt carbonate and nickel carbonate and firing at 900 ° C.
Further, JP-A-63-299056 reports a method of mixing hydroxides of lithium with cobalt and nickel, and oxides. Furthermore, JP-A-1-294364
In the gazette, an example of synthesizing a lithium composite nickel-cobalt oxide by coprecipitating nickel ion and cobalt ion as a carbonate from an aqueous solution containing nickel ion and cobalt ion and then mixing with lithium carbonate is reported. Has been done.

【0005】[0005]

【発明が解決しようとする課題】しかし、これまで報告
されているようなLixNiyCoz2(0.90≦x≦
1.05、0.7≦y≦0.9、y+z=1)で表され
るリチウム複合ニッケル−コバルト酸化物では、置換C
o量(z値)が大きくなるにつれて放電容量は徐々に大
きくなるものの、充放電サイクルを繰り返し行うと、そ
の電池放電容量が徐々に減少するサイクル劣化の問題が
明らかとなった。本発明者らが、十分検討を重ねた結
果、このような特性劣化は以下のことが原因であること
が解った。すなわち、サイクル劣化した電池を分解し、
極板を観察した結果、充放電サイクルを繰り返した正極
板では、正極活物質の結晶構造に変化が起こっているこ
とが判明した。
However, as reported so far, Li x Ni y Co z O 2 (0.90 ≦ x ≦
1.05, 0.7 ≦ y ≦ 0.9, y + z = 1) in the lithium composite nickel-cobalt oxide, the substitution C
Although the discharge capacity gradually increased as the o amount (z value) increased, it became clear that the cycle deterioration problem that the battery discharge capacity gradually decreased when the charge / discharge cycle was repeated. As a result of thorough investigations by the present inventors, it has been found that such characteristic deterioration is caused by the following. In other words, disassemble a battery that has undergone cycle deterioration,
As a result of observing the electrode plate, it was found that the crystal structure of the positive electrode active material was changed in the positive electrode plate that was repeatedly charged and discharged.

【0006】LiNiO2は、電池の充放電にともな
い、その格子定数が変化することが報告されており
(W.Li,J.N.Reimers and J.
R.Dahn, Solid State Ionic
s,67,123(1993))、Liを脱離するに伴
い結晶相が六方晶(Hexagonal)から単斜晶(Monoclini
c)、さらに第2六方晶(Hexagonal)、第3六方晶(He
xagonal)へと変化していくことが報告されている。こ
のような結晶相変化は、可逆性に乏しく、充放電反応を
繰り返すうちにLiを挿入・脱離できるサイトが徐々に
失われてしまうことが原因と考えられる。Niの一部を
Coで置換することによって、このような結晶相の変化
は著しく緩和される。これはCoの酸素との結合力がN
iに比べ強いため結晶構造がより安定化したためと考え
られ、Co置換しない(z=0)場合のような結晶相の
変化が起こらなくなる。このため、Co置換量(z値)
が大きくなるほど結晶相がより安定化し、放電容量、サ
イクル特性ともに改善されると考えられる。
It has been reported that the lattice constant of LiNiO 2 changes as the battery is charged and discharged (W. Li, JN Reimers and J.
R. Dahn, Solid State Ionic
s, 67 , 123 (1993)), and the crystal phase is changed from hexagonal (Hexagonal) to monoclinic (Monoclini) with the elimination of Li.
c), second hexagonal (Hexagonal), third hexagonal (He
xagonal) has been reported. Such a crystal phase change is poor in reversibility, and it is considered that the site where Li can be inserted / released is gradually lost during repeated charge / discharge reactions. By substituting a part of Ni with Co, such a change in the crystal phase is remarkably alleviated. This is because the binding force of Co with oxygen is N
Since it is stronger than i, it is considered that the crystal structure is more stabilized, and the change of the crystal phase unlike in the case where Co substitution is not performed (z = 0) does not occur. Therefore, Co substitution amount (z value)
It is considered that the larger the value becomes, the more stable the crystal phase becomes and the more the discharge capacity and the cycle characteristics are improved.

【0007】しかし、実際には特開昭62−25637
1号公報や特開昭63−299056号公報で報告され
ているようなコバルト、ニッケルの炭酸塩、水酸化物、
酸化物等のそれぞれの化合物を混合することによって合
成されたリチウム複合ニッケル−コバルト酸化物は、C
o置換量(z値)が大きくなると(z≧0.1)実際に
はニッケルとコバルトが均一に分散されておらず、部分
的にLiNiO2とLiCoO2の混合物になっているこ
とが明らかになった。このため、このような活物質で
は、放電容量はある程度大きいものの、充放電を繰り返
すと、Coが十分置換されていない部分において前述の
結晶相変化により結晶構造が破壊され、その結果、放電
容量が低下し、電池活物質として十分なものではなかっ
た。また、特開平1−294364号公報のようにニッ
ケルイオンとコバルトイオンを炭酸塩として共沈させた
場合、ニッケルとコバルトが均一に分散するため良好な
サイクル特性が確保される。しかし、この場合、塩基性
炭酸塩として析出するため、実際には不定含量のNi
(OH)2を含む複塩NiCO3・xNi(OH)2とな
っており、リチウムとの合成過程が均一でない。このた
め電池特性のばらつきが大きく、実使用上に問題があっ
た。
However, in practice, Japanese Unexamined Patent Publication No. 62-25637
Cobalt and nickel carbonates and hydroxides as reported in Japanese Patent Application Laid-Open No. 1 and Japanese Patent Application Laid-Open No. 63-299056.
The lithium composite nickel-cobalt oxide synthesized by mixing the respective compounds such as oxides is C
o When the substitution amount (z value) becomes large (z ≧ 0.1), nickel and cobalt are not actually uniformly dispersed, and it is clear that the mixture is partially LiNiO 2 and LiCoO 2. became. Therefore, in such an active material, although the discharge capacity is large to some extent, when charge and discharge are repeated, the crystal structure is destroyed by the above-described crystal phase change in the portion where Co is not sufficiently replaced, and as a result, the discharge capacity is increased. It decreased and was not sufficient as a battery active material. Further, when nickel ions and cobalt ions are coprecipitated as carbonates as in JP-A-1-294364, nickel and cobalt are uniformly dispersed and good cycle characteristics are secured. However, in this case, since it precipitates as a basic carbonate, it actually has an undefined content of Ni.
(OH) 2 has a double salt NiCO 3 · XNI (OH) 2 containing, non-uniform synthesis process of lithium. For this reason, there was a large variation in the battery characteristics, and there was a problem in actual use.

【0008】また、近年のポータブル機器の高付加価値
に伴い電池への負荷が増大するため、特に大きい電流で
放電する高率放電特性の改善が大きな課題であり、前述
の方法で合成した活物質を用いた電池では、いずれも不
十分なものであった。本発明の目的は、上記した従来の
正極に関する問題点の解決を図るものであり、充放電特
性の優れた非水電解液二次電池を与えるリチウム複合ニ
ッケル−コバルト酸化物の合成用原料のニッケル−コバ
ルト水酸化物を提供することである。
[0008] In addition, since the load on the battery increases with the high added value of portable equipment in recent years, improvement of the high rate discharge characteristics of discharging with a particularly large current is a major issue. All of the batteries using No. 1 were insufficient. An object of the present invention is to solve the above-mentioned problems relating to the conventional positive electrode, and nickel as a raw material for synthesizing a lithium composite nickel-cobalt oxide that provides a non-aqueous electrolyte secondary battery having excellent charge / discharge characteristics. -To provide a cobalt hydroxide.

【0009】[0009]

【課題を解決するための手段】このような問題を解決す
るために、本発明者らは、正極活物質の原料であるニッ
ケル、コバルト源として、共沈によって生成した水酸化
物を用いると共に、その物性について鋭意検討を行い、
粒子内におけるニッケル、コバルト原子の配列、粒子形
状、粒子径、比表面積、タップ密度、細孔の空間体積、
細孔の占有率を制御することにより、サイクル劣化を防
止すると共に、良好な高率放電特性を有する電池を得る
ことに成功した。すなわち、本発明は、LixNiyCo
z2(0.90≦x≦1.05、0.7≦y≦0.9、
y+z=1)を正極活物質として合成する際のニッケル
ーコバルト源としてNivCow(OH)2(v+w=1)
で表されるニッケル−コバルト水酸化物を用い、Co置
換量(w値)は0.1〜0.3の範囲に制御すると共
に、得られたニッケル−コバルト水酸化物は、SEM写
真観察において米粒状の一次粒子が無数に凝集し二次粒
子を形成しており、その二次粒子の平均粒子径が1.5
〜10μmになるように制御されたものである。このニ
ッケル−コバルト水酸化物は、pH、温度を調整した槽
内にニッケル塩水溶液、コバルト塩水溶液およびか性ア
ルカリ水溶液をその濃度、流量を制御しながら連続的に
供給し、槽からオーバーフローする液から生成物を採取
することによって物性を制御することができる。
In order to solve such problems, the present inventors have used a hydroxide produced by coprecipitation as a source of nickel and cobalt which are raw materials of a positive electrode active material, and The physical properties are carefully studied,
Nickel in the particle, arrangement of cobalt atoms, particle shape, particle diameter, specific surface area, tap density, spatial volume of pores,
By controlling the occupancy rate of the pores, we have succeeded in preventing the cycle deterioration and obtaining a battery having good high rate discharge characteristics. That is, the present invention relates to Li x Ni y Co.
z O 2 (0.90 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9,
y + z = 1) as a nickel-cobalt source when synthesizing as a positive electrode active material, Ni v Co w (OH) 2 (v + w = 1)
The nickel substitution amount (w value) is controlled in the range of 0.1 to 0.3 by using the nickel-cobalt hydroxide represented by, and the obtained nickel-cobalt hydroxide is observed by the SEM photograph. A large number of primary particles of rice grains are aggregated to form secondary particles, and the average particle diameter of the secondary particles is 1.5.
It is controlled so as to be 10 μm. This nickel-cobalt hydroxide is a liquid that continuously supplies an aqueous solution of nickel salt, an aqueous solution of cobalt salt and an aqueous solution of caustic alkali while controlling the concentration and flow rate in a tank whose pH and temperature are adjusted, and overflows from the tank. The physical properties can be controlled by collecting the product from.

【0010】[0010]

【発明の実施の形態】本発明のニッケル−コバルト水酸
化物は、式NivCow(OH)2(0.7≦v≦0.9、
v+w=1)で表され、SEM写真観察において米粒状
の一次粒子が無数に凝集して二次粒子を形成しており、
その二次粒子の平均粒子径が1.5〜10μmの範囲に
ある。 ニッケルーコバルト水酸化物の粒子形状は、球
状または楕円球状であると高充填性が実現できるので、
さらに望ましい。また、高率放電特性を十分満足するた
めには、ニッケル−コバルト水酸化物は、窒素ガスの吸
着により測定されるBET比表面積が8〜35m2/g
であることが望ましい。さらに、ニッケル−コバルト水
酸化物は、タップ密度が1.4〜2.3g/cm3であ
ることが望ましい。さらに、ニッケル−コバルト水酸化
物は、細孔の空間体積が0.010〜0.10cm3
gであることが望ましい。さらに、ニッケル−コバルト
水酸化物は、細孔占有率が5〜40%の範囲であるであ
ることが望ましい。
DETAILED DESCRIPTION OF THE INVENTION The nickel - cobalt hydroxide has the formula Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.9,
v + w = 1), and in the SEM photograph observation, numerous primary particles of rice grains are aggregated to form secondary particles,
The average particle size of the secondary particles is in the range of 1.5 to 10 μm. Since the particle shape of the nickel-cobalt hydroxide is spherical or elliptical, high packing property can be realized.
More desirable. Further, in order to sufficiently satisfy the high rate discharge characteristic, nickel-cobalt hydroxide has a BET specific surface area measured by adsorption of nitrogen gas of 8 to 35 m 2 / g.
It is desirable that Further, the nickel-cobalt hydroxide preferably has a tap density of 1.4 to 2.3 g / cm 3 . Further, nickel-cobalt hydroxide has a pore space volume of 0.010 to 0.10 cm 3 /
g is desirable. Further, the nickel-cobalt hydroxide preferably has a pore occupancy in the range of 5 to 40%.

【0011】このような、ニッケルとコバルトを水酸化
物として共沈させる方法は、ニッケルーカドミウム電池
用正極に使用される水酸化ニッケルの製法として報告が
なされている。例えば、特開昭63−16556号公
報、特開昭64−42330号公報では、水酸化ニッケ
ルの製造方法としてpH、温度を調整した槽内にニッケ
ル塩水溶液、コバルト塩水溶液、およびか性アルカリ水
溶液をその濃度、流量を制御しながら連続的に供給し、
採取する方法が報告されている。さらに、特開昭63−
152866号公報、特開平5−41212号公報、特
開平7−73877号公報では、反応槽内にCoを含む
多種の金属元素を共沈法により水酸化ニッケル中に固溶
させる方法が報告されている。しかし、これらの発明に
おけるCoの添加は、いずれも水溶液系のニッケルーカ
ドミウム電池もしくはニッケルー水素吸蔵合金電池等の
アルカリ蓄電池の特性改良が目的であり、以下の理由に
よって行われている。
Such a method of coprecipitating nickel and cobalt as hydroxides has been reported as a method for producing nickel hydroxide used for a positive electrode for nickel-cadmium batteries. For example, in JP-A-63-16556 and JP-A-64-42330, as a method for producing nickel hydroxide, a nickel salt aqueous solution, a cobalt salt aqueous solution, and a caustic alkaline aqueous solution are placed in a bath whose pH and temperature are adjusted. Is continuously supplied while controlling its concentration and flow rate,
The method of collection is reported. Further, JP-A-63-
No. 152866, JP-A-5-41212, and JP-A-7-73877 report a method of solid-dissolving various metal elements containing Co in nickel hydroxide in a reaction tank by a coprecipitation method. There is. However, the addition of Co in these inventions is aimed at improving the characteristics of alkaline storage batteries such as aqueous solution nickel-cadmium batteries or nickel-hydrogen storage alloy batteries, and is carried out for the following reasons.

【0012】電池の放電容量の低下をもたらすγ−N
iOOHの生成を抑制させる。(例えば M.Oshitani,
K.Takashima, and Y.Matsumara,Proceedings of the S
ymp.on Nickel Hydroxide Electrodes, Volume 90-4 /T
he Electrochemical Soc.,197 (1989) 、特開平5−4
1212号公報)
Γ-N that causes a decrease in the discharge capacity of the battery
Suppress the production of iOOH. (For example, M. Oshitani,
K. Takashima, and Y. Matsumara, Proceedings of the S
ymp.on Nickel Hydroxide Electrodes, Volume 90-4 / T
he Electrochemical Soc., 197 (1989), JP-A-5-4
No. 1212)

【0013】水酸化ニッケル表面における水素のイオ
ン化速度や、水酸化ニッケル中のプロトン伝導の促進に
よる利用率、高率充放電効率の向上。(例えばI.Matsum
oto,M.Ikeyama,T.Iwaki,Y.Umeo and Y.Ogawa,Denkikaga
ku,54,159〜164 (1986)等)
Improving the ionization rate of hydrogen on the surface of nickel hydroxide, the utilization rate by promoting proton conduction in nickel hydroxide, and the high rate charge / discharge efficiency. (For example I. Matsum
oto, M.Ikeyama, T.Iwaki, Y.Umeo and Y.Ogawa, Denkikaga
ku, 54,159〜164 (1986) etc.)

【0014】以上のようにこれらの発明におけるCoの
役割は、いずれも触媒的作用を目的としており、水酸化
ニッケル結晶マトリックス内での活物質として添加され
ているわけではない。このため、あまりCo添加量が増
すと逆に活物質の利用率が小さくなるため、通常添加さ
れる量はNivCow(OH)2(v+w=1)においてw
≦0.1である場合がほとんどである。本発明は、非水
電解液電池の特性改良を目的としたものであり、活物質
LixNiyCoz2(0.90≦x≦1.05、0.7
≦y≦0.9、y+z=1)で表されるリチウム複合ニ
ッケル−コバルト酸化物の合成に原材料として用いるニ
ッケル−コバルト水酸化物NivCow(OH)2(0.7
≦v≦0.9、v+w=1)の物性を制御したものであ
る。当然のことながら、Coは活物質の結晶マトリック
ス中に固溶しており、活物質として作用するため、前述
のアルカリ蓄電池の特性改善とは全く異なるものであ
る。
As described above, the role of Co in these inventions is not intended to be added as an active material in the nickel hydroxide crystal matrix, for the purpose of catalytic action. For this reason, if the amount of Co added increases too much, the utilization factor of the active material decreases. Therefore, the amount usually added is w in Ni v Co w (OH) 2 (v + w = 1).
In most cases, ≦ 0.1. The present invention is intended to improve the characteristics of a non-aqueous electrolyte battery, and includes the active material Li x Ni y Co z O 2 (0.90 ≦ x ≦ 1.05, 0.7
≤ y ≤ 0.9, y + z = 1) nickel-cobalt hydroxide Ni v Co w (OH) 2 (0.7) used as a raw material for the synthesis of the lithium composite nickel-cobalt oxide
≦ v ≦ 0.9, v + w = 1) is controlled. As a matter of course, Co is solid-dissolved in the crystal matrix of the active material and acts as an active material, which is completely different from the above-mentioned characteristic improvement of the alkaline storage battery.

【0015】LiNiO2の合成反応は、熱処理を加え
ることによりニッケル塩の結晶中にリチウム原子が拡散
する形で進行し、LiNiO2が合成される。従来から
報告されている炭酸ニッケル、酸化ニッケル等は、粒子
中における結晶はランダムに配列したいわゆる多結晶状
態であり、このためこれらを原料に用いたLiNiO2
は同様の多結晶状態となる。このような多結晶構造を持
つLiNiO2を用いて二次電池を構成し、充放電を行
った場合、充放電に伴う結晶相の転移の繰り返しにより
Liを収容できるサイトが破壊されると共に、微細な結
晶が膨張・収縮を繰り返し粒子が微細化し、電池集電体
から脱離する。その結果、電池の放電容量が低下しサイ
クル劣化を引き起こしてしまう。また、Co添加方法と
して合成時に酸化コバルトや炭酸コバルト、水酸化コバ
ルトを添加した場合、共沈法で得られるような原子レベ
ルでの固溶は実現できず、部分的にLiNiO2やLi
CoO2として存在するようになるため、同様の理由に
よりサイクル劣化を引き起こす。
The reaction of synthesizing LiNiO 2 proceeds in a form in which lithium atoms are diffused in the nickel salt crystal by heat treatment, and LiNiO 2 is synthesized. Conventionally reported nickel carbonate, nickel oxide, etc. are in a so-called polycrystal state in which crystals in particles are randomly arranged. Therefore, LiNiO 2 using them as a raw material is used.
Becomes a similar polycrystalline state. When a rechargeable battery is constructed by using LiNiO 2 having such a polycrystal structure and charging / discharging is carried out, the site capable of accommodating Li is destroyed due to repeated crystal phase transition accompanying charging / discharging, Such crystals repeatedly expand and contract, resulting in finer particles, and detachment from the battery current collector. As a result, the discharge capacity of the battery is reduced and cycle deterioration is caused. When cobalt oxide, cobalt carbonate, or cobalt hydroxide is added at the time of synthesis as a method of adding Co, solid solution at the atomic level as obtained by the coprecipitation method cannot be realized, and LiNiO 2 or Li is partially added.
Since it exists as CoO 2, it causes cycle deterioration for the same reason.

【0016】本発明におけるニッケル−コバルト水酸化
物の製造方法を用いた場合、コバルト濃度、槽温度、攪
拌速度、pH等を制御することにより、槽内で生成した
微細な結晶が成長する形でニッケルーコバルト水酸化物
粒子を形成するため、Co置換量(w値)が0.1以上
と大きくても、ニッケルとコバルトが原子レベルで固溶
すると共に、結晶が非常に良く同一方向に配列する。し
かも、結晶構造がLixNiyCoz2と同じ六方晶であ
るため、リチウム塩と混合し合成を行っても、原子の配
列は維持される。なお、Co置換量(w値)が0.3を
越えると、結晶成長が困難となり、多結晶のNivCow
(OH)2が生成してしまう。このためCo置換量は0.
1≦w≦0.3であることが望ましい。
When the method for producing nickel-cobalt hydroxide according to the present invention is used, fine crystals produced in the bath grow by controlling the cobalt concentration, bath temperature, stirring speed, pH and the like. Since nickel-cobalt hydroxide particles are formed, even if the Co substitution amount (w value) is as large as 0.1 or more, nickel and cobalt are solid-solved at the atomic level, and the crystals are very well aligned in the same direction. To do. Moreover, the crystal structure is the same hexagonal as Li x Ni y Co z O 2 , even if the mixture is combined with lithium salt, the atomic arrangement is maintained. If the Co substitution amount (w value) exceeds 0.3, it becomes difficult to grow crystals, and polycrystalline Ni v Co w
(OH) 2 is produced. Therefore, the Co substitution amount is 0.
It is desirable that 1 ≦ w ≦ 0.3.

【0017】この結果、結晶粒界の非常に少ないLix
NiyCoz2の合成が可能となる。このような構造を
持つNivCow(OH)2(0.7≦v≦0.9、v+w
=1)を合成の原材料としたLixNiyCoz2(0.
90≦x≦1.05、0.7≦y≦0.9、y+z=
1)を用いて二次電池を構成し、充放電を行った場合、
Coを添加することによって結晶の安定性が向上し、充
放電に伴う結晶相の転移がなくなると共に、粒子構造破
壊の原因となる結晶粒界が非常に少ないため、粒子の微
細化、脱落が防止でき、良好なサイクル特性を実現する
ことができる。また、本発明によるニッケル−コバルト
水酸化物粒子の粒径、BET比表面積、タップ密度、細
孔の空間体積、細孔占有率を制御することによって、電
池を構成した場合にリチウムイオンを受け渡しする電解
液との接触面積が増大し、高効率放電特性を実現でき
る。
As a result, Li x having very few crystal grain boundaries
It becomes possible to synthesize Ni y Co z O 2 . Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.9 having such a structure, v + w
= 1) was used as a synthetic raw material for Li x Ni y Co z O 2 (0.
90 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9, y + z =
When a secondary battery is constructed using 1) and charging / discharging is performed,
Addition of Co improves the crystal stability, eliminates the transition of the crystal phase due to charge and discharge, and has very few crystal grain boundaries that cause grain structure destruction, preventing grain refinement and dropping. Therefore, good cycle characteristics can be realized. Further, by controlling the particle size, BET specific surface area, tap density, pore spatial volume, and pore occupancy of the nickel-cobalt hydroxide particles according to the present invention, lithium ions are transferred when a battery is constructed. The contact area with the electrolyte is increased, and high efficiency discharge characteristics can be realized.

【0018】[0018]

【実施例】以下、図面とともに本発明を具体的な実施例
に沿って説明する。 《実施例1》図1に本実施例および比較例でニッケル−
コバルト水酸化物を原料として合成した非水二次電池用
活物質の評価に用いた円筒形電池の縦断面図を示す。耐
有機電解液性のステンレス鋼板を加工した電池ケース1
内には、正極板5と負極板6とをセパレータ7を介して
渦巻状に巻回した極板群4が上下に絶縁板8、9を配し
て収納されている。電池ケース1の開口部は、安全弁を
設けた組立封口板2および絶縁パッキング3により密封
されている。そして、上記正極板5からはアルミ製正極
リード5aが引き出されて封口板2に接続され、負極板
6からはニッケル製負極リード6aが引き出されて電池
ケース1の底部に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings. << Example 1 >> FIG.
1 is a vertical cross-sectional view of a cylindrical battery used for evaluation of a non-aqueous secondary battery active material synthesized from cobalt hydroxide. Battery case 1 made of stainless steel sheet with organic electrolyte resistance
An electrode plate group 4 in which a positive electrode plate 5 and a negative electrode plate 6 are spirally wound via a separator 7 is housed therein with insulating plates 8 and 9 arranged vertically. The opening of the battery case 1 is sealed by an assembly sealing plate 2 provided with a safety valve and an insulating packing 3. An aluminum positive electrode lead 5a is drawn out from the positive electrode plate 5 and connected to the sealing plate 2, and a nickel negative electrode lead 6a is drawn out from the negative electrode plate 6 and connected to the bottom of the battery case 1.

【0019】以下、負極板6、電解液等について詳しく
説明する。負極板6は以下のようにして製造した。ま
ず、黒鉛粉100重量部に、フッ素樹脂系結着剤10重
量部を混合し、この混合物をカルボキシメチルセルロー
ス水溶液に懸濁させてペースト状にした。そして、この
ペーストを厚さ0.015mmの銅箔の表面に塗着し、
乾燥した後0.2mmに圧延し、幅37mm、長さ28
0mmの大きさに切り出して負極板とした。電解液に
は、炭酸エチレンと炭酸ジエチルの等容積混合溶媒に、
六フッ化リン酸リチウム1モル/リットル(L)の割合
で溶解したものを用いた。この電解液は、極板群4に注
入した後、電池を密封口し、試験電池とした。
The negative electrode plate 6, the electrolytic solution and the like will be described in detail below. The negative electrode plate 6 was manufactured as follows. First, 100 parts by weight of graphite powder was mixed with 10 parts by weight of a fluororesin-based binder, and this mixture was suspended in a carboxymethyl cellulose aqueous solution to form a paste. Then, this paste is applied to the surface of a copper foil having a thickness of 0.015 mm,
After dried, rolled to 0.2 mm, width 37 mm, length 28
It was cut into a size of 0 mm to obtain a negative electrode plate. For the electrolyte, use an equal volume mixed solvent of ethylene carbonate and diethyl carbonate,
What was melt | dissolved in the ratio of 1 mol / liter (L) of lithium hexafluorophosphate was used. After pouring this electrolytic solution into the electrode plate group 4, the battery was sealed and used as a test battery.

【0020】次に、本発明のニッケル−コバルト水酸化
物を用いたリチウム複合ニッケル−コバルト酸化物の製
造法について詳しく説明する。ニッケル−コバルト水酸
化物を製造する析出槽として、容積100Lのタンクを
用いた。ニッケル塩水溶液として金属ニッケル量が60
g/L相当の硫酸ニッケル水溶液を用い、これにニッケ
ルに対するコバルトのモル比が0、5、10、20、3
0、40%になるように硫酸コバルトを添加、溶解して
硫酸ニッケル−コバルト混合水溶液を調製した。また、
か性アルカリ水溶液として25重量%の水酸化ナトリウ
ム水溶液を用いた。上記の析出槽内へニッケルーコバル
ト混合水溶液を10L/hの一定流量で導入し、十分攪
拌しながら、水酸化ナトリウム溶液を導入し、生成する
ニッケル−コバルト水酸化物の平均粒径が3〜5μmの
範囲になるように反応槽のpH値を制御した。得られた
ニッケル−コバルト水酸化物を、水中で水洗した後、8
0℃で乾燥してニッケル−コバルト水酸化物とした。
Next, the method for producing a lithium composite nickel-cobalt oxide using the nickel-cobalt hydroxide of the present invention will be described in detail. A tank having a volume of 100 L was used as a deposition tank for producing nickel-cobalt hydroxide. The amount of metallic nickel is 60 as the nickel salt aqueous solution.
An aqueous solution of nickel sulfate corresponding to g / L was used, and the molar ratio of cobalt to nickel was 0, 5, 10, 20, 3
Cobalt sulfate was added and dissolved so as to be 0% and 40% to prepare a nickel sulfate-cobalt mixed aqueous solution. Also,
A 25% by weight aqueous solution of sodium hydroxide was used as the caustic aqueous solution. The nickel-cobalt mixed aqueous solution was introduced into the above precipitation tank at a constant flow rate of 10 L / h, and the sodium hydroxide solution was introduced with sufficient stirring, and the nickel-cobalt hydroxide produced had an average particle size of 3 to The pH value of the reaction tank was controlled so as to be in the range of 5 μm. After washing the obtained nickel-cobalt hydroxide in water, 8
It was dried at 0 ° C. to obtain nickel-cobalt hydroxide.

【0021】なお、平均粒径はレーザー法によって測定
し、累積50%に相当する値を平均粒径とした。また、
比表面積は窒素を用いたBET法で測定した。タップ密
度は20cm3のメスシリンダー(重量Ag)にニッケル
−コバルト水酸化物を充填し、200回タッピング後、
メスシリンダーの重量(Bg)、ニッケル−コバルト水
酸化物の体積(Dcm3)を測定し、次式により求めた。 タップ密度(g/cm3)=(B−A)/D
The average particle size was measured by the laser method, and the value corresponding to a cumulative 50% was taken as the average particle size. Also,
The specific surface area was measured by the BET method using nitrogen. A graduated cylinder (weight Ag) with a tap density of 20 cm 3 was filled with nickel-cobalt hydroxide, and after tapping 200 times,
The weight (Bg) of the graduated cylinder and the volume of nickel-cobalt hydroxide (Dcm 3 ) were measured and determined by the following formula. Tap density (g / cm 3 ) = (B−A) / D

【0022】ニッケル−コバルト水酸化物の細孔分布お
よび細孔の空間体積は、窒素吸着を用いたBJH法を用
いて10〜200オングストロームの範囲の細孔を測定
した。なお、10オングストローム未満の細孔分布は、
窒素ガス吸着による方法では測定が困難であり、実際に
は10オングストローム未満の細孔を有する空間は存在
すると考えられる。また、ニッケル−コバルト水酸化物
の細孔占有率を窒素を用いたBJH法によって測定した
細孔の空間体積の値(cm3/g)と、ピクノメーターを
用いたアルコール法によって測定した真密度(g/cm
3)の値から次式により算出した。 細孔占有率(%)=細孔の空間体積値(cm3/g)×
真密度(g/cm3) また、原子吸光分析によりニッケル−コバルト水酸化物
中に含まれるCo量を分析した。以上の条件で作成した
ニッケル−コバルト水酸化物A〜Fの物性を表1に示
す。
Regarding the pore distribution of nickel-cobalt hydroxide and the spatial volume of the pores, the pores in the range of 10 to 200 angstrom were measured by the BJH method using nitrogen adsorption. The pore size distribution of less than 10 Å is
The method using nitrogen gas adsorption is difficult to measure, and it is considered that there are actually spaces having pores of less than 10 angstroms. In addition, the pore occupancy of nickel-cobalt hydroxide is measured by the BJH method using nitrogen, and the space volume value of the pores (cm 3 / g) and the true density measured by the alcohol method using a pycnometer. (G / cm
It was calculated from the value in 3 ) by the following formula. Pore occupancy (%) = pore volume value (cm 3 / g) ×
True density (g / cm 3 ) The amount of Co contained in nickel-cobalt hydroxide was analyzed by atomic absorption spectrometry. Table 1 shows the physical properties of the nickel-cobalt hydroxides A to F produced under the above conditions.

【0023】[0023]

【表1】 [Table 1]

【0024】次に、LixNiyCoz2の合成方法につ
いて説明する。上記の方法で作製したニッケル−コバル
ト水酸化物A〜Fを、水酸化リチウムと(ニッケル+コ
バルト)が原子比で1.05対1になるように混合し、
酸化雰囲気下において700℃で10時間焼成してLi
xNiyCoz2(y+z=1)を合成した。ニッケル−
コバルト水酸化物A〜Fから得られた活物質をそれぞれ
活物質A〜Fとする。また、比較例として、ニッケル−
コバルト水酸化物AにCo置換量(z値)が0.2とな
るように酸化コバルトを添加、混合した後、水酸化リチ
ウムと(ニッケル+コバルト)が原子比で1.05対1
になるように混合し、同様の条件で合成を行い活物質G
とした。合成されたLixNiyCoz2は、比較的ほぐ
れやすい凝集塊状物として得られるので、乳鉢を用いて
粉砕した。
Next, a method of synthesizing Li x Ni y Co z O 2 will be described. The nickel-cobalt hydroxides A to F produced by the above method were mixed so that lithium hydroxide and (nickel + cobalt) had an atomic ratio of 1.05: 1.
Li after firing at 700 ° C. for 10 hours in an oxidizing atmosphere
x Ni y Co z O 2 (y + z = 1) was synthesized. Nickel-
The active materials obtained from cobalt hydroxides A to F are referred to as active materials A to F, respectively. As a comparative example, nickel-
Cobalt oxide was added to and mixed with cobalt hydroxide A such that the Co substitution amount (z value) was 0.2, and then lithium hydroxide and (nickel + cobalt) were in an atomic ratio of 1.05: 1.
And mixed under the same conditions to synthesize active material G
And Since the synthesized Li x Ni y Co z O 2 is obtained as an aggregated substance that is relatively easy to loosen, it was crushed using a mortar.

【0025】以下に、正極板の製造法を説明する。ま
ず、正極活物質であるLixNiyCoz2(y+z=
1)の粉末100重量部に、アセチレンブラック3重量
部、およびフッ素樹脂系結着剤5重量部を混合し、この
混合物を前記結着剤の溶媒N−メチルー2ーピロリドン
に懸濁させてペースト状にした。このペーストを厚さ
0.020mmのアルミ箔の両面に塗着し、乾燥した
後、厚み0.130mm、幅35mm、長さ270mm
の正極板5を作製した。そして正極板と負極板を、セパ
レータを介して渦巻き状に巻回し、直径13.8mm、
高さ50mmの電池ケース内に収納した。電解液には炭
酸エチレンと炭酸ジエチルの等容積混合溶媒に、六フッ
化リン酸リチウム1モル/Lの割合で溶解したものを用
いて極板群4に注入した後、電池を密封口し、試験電池
とした。上記正極活物質A〜Gを用いた電池をそれぞれ
電池A〜Gとした。
The method for manufacturing the positive electrode plate will be described below. First, the positive electrode active material Li x Ni y Co z O 2 (y + z =
100 parts by weight of the powder of 1) was mixed with 3 parts by weight of acetylene black and 5 parts by weight of a fluororesin binder, and the mixture was suspended in the solvent N-methyl-2-pyrrolidone of the binder to form a paste. I chose This paste is applied to both sides of an aluminum foil having a thickness of 0.020 mm and dried, and then a thickness of 0.130 mm, a width of 35 mm, and a length of 270 mm.
The positive electrode plate 5 of was produced. Then, the positive electrode plate and the negative electrode plate are spirally wound with a separator interposed therebetween to have a diameter of 13.8 mm,
It was stored in a battery case with a height of 50 mm. The electrolyte solution was dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate at a ratio of 1 mol / L of lithium hexafluorophosphate, and was injected into the electrode plate group 4, and then the battery was sealed. The test battery was used. The batteries using the positive electrode active materials A to G were referred to as batteries A to G, respectively.

【0026】これらの電池について以下の条件下で試験
を行った。20℃の環境下で120mAの電流で4.2
Vまで充電した後、1時間休止し、その後同様に120
mAの電流で3Vまで放電した。この方法で充放電を3
回繰り返し、3回目の放電容量を初期容量とした。ま
た、初期容量を電池内に含まれるリチウム複合ニッケル
−コバルト酸化物の重量で割ることによって活物質の利
用率(mAh/g)を算出した。更に、120mAの電
流で4.2Vまで充電した後、1200mAの電流で放
電したときの容量を高率放電容量とし、高率放電率=1
00×(1200mA放電容量/120mA放電容量)
(%)の式を用いて高率放電率を算出した。また、20
℃の環境下で120mAの電流で4.2Vまで充電した
後、1時間休止し、その後同様に120mAの電流で3
Vまで放電する充放電サイクルを繰り返し、放電容量が
初期の半分に減少するまでのサイクル数をもって寿命と
した。表2に、電池A〜Gの120mA放電容量、活物
質の利用率、高率放電率および寿命を調べた結果を示
す。
Tests were performed on these batteries under the following conditions. 4.2 at a current of 120 mA in an environment of 20 ° C
After charging to V, rest for 1 hour, then 120
It was discharged to 3 V with a current of mA. Charge and discharge 3 times with this method
Repeated three times, the discharge capacity at the third time was used as the initial capacity. In addition, the utilization rate (mAh / g) of the active material was calculated by dividing the initial capacity by the weight of the lithium composite nickel-cobalt oxide contained in the battery. Further, the capacity at the time of discharging at a current of 1200 mA after being charged to 4.2 V at a current of 120 mA is defined as the high rate discharge capacity, and the high rate discharge rate = 1
00 x (1200mA discharge capacity / 120mA discharge capacity)
The high rate discharge rate was calculated using the formula (%). Also, 20
After charging to 4.2V with 120mA current in the environment of ℃, rested for 1 hour, and then 3 hours with 120mA current.
The charging / discharging cycle of discharging to V was repeated, and the life was defined as the number of cycles until the discharge capacity decreased to half of the initial value. Table 2 shows the results of examining the 120 mA discharge capacity, the utilization rate of the active material, the high rate discharge rate and the life of each of the batteries A to G.

【0027】[0027]

【表2】 [Table 2]

【0028】表2から明らかなように、Coを置換して
いない活物質を用いた電池Aや置換量の少ない活物質を
用いた電池Bは、充放電の際に前述したような結晶相変
化が観察され、このような結晶相変化が可逆性に乏し
く、充放電反応を繰り返すうちにLiを挿入・脱離でき
るサイトが徐々に失われてしまうことが原因でサイクル
特性が劣化したことが考えられる。これに対し電池C〜
Eのリチウム複合ニッケル−コバルト酸化物は、いずれ
も利用率170mAh/g以上を示し、高率放電、サイ
クル特性共に良好な結果が得られた。これはNiの一部
をCoで置換することによって、結晶相の変化が著しく
緩和されたためである。しかし、Co添加量(w値)が
0.4である電池Fでは、寿命が250サイクルと逆に
劣化していることがわかる。これはCo置換量(z値)
が0.4以上に大きくなると、ニッケル−コバルト水酸
化物の結晶成長が困難となり、多結晶のNivCow(O
H)2が生成してしまう。このため、合成によって得られ
るリチウム複合ニッケル−コバルト酸化物も多結晶とな
り、充放電サイクルを重ねることにより結晶粒界が成長
し、活物質が微粉化し極板から脱落して容量の低下を招
いたものと考えられる。
As is clear from Table 2, the battery A using the active material in which Co is not substituted and the battery B using the active material with a small amount of substitution change the crystalline phase as described above during charging and discharging. It is considered that the cycle characteristics are deteriorated due to the fact that such a crystal phase change is poorly reversible, and that sites for Li insertion / desorption are gradually lost during repeated charge / discharge reactions. To be On the other hand, battery C ~
Each of the lithium composite nickel-cobalt oxides of E showed a utilization rate of 170 mAh / g or more, and good results were obtained in both high rate discharge and cycle characteristics. This is because the change of the crystal phase was remarkably relaxed by substituting a part of Ni with Co. However, in the battery F in which the amount of Co added (w value) is 0.4, it can be seen that the life is deteriorated contrary to 250 cycles. This is the Co substitution amount (z value)
Of 0.4 or more, it becomes difficult to grow crystals of nickel-cobalt hydroxide, and polycrystalline Ni v Co w (O
H) 2 is generated. For this reason, the lithium composite nickel-cobalt oxide obtained by the synthesis also became polycrystalline, and the grain boundaries grew due to repeated charge and discharge cycles, and the active material became fine powder and fell off from the electrode plate, leading to a decrease in capacity. It is considered to be a thing.

【0029】また、Co添加量(w値)が0.4以上に
大きくなると、このような共沈法を用いてもニッケルと
コバルトが均一に分散されておらず、部分的にLiNi
2とLiCoO2の混合物になっているものと考えら
れ、Coが十分置換されていない部分において前述の結
晶相変化により結晶構造が破壊され、放電容量が低下し
たものと考えられる。また、Co置換量が小さくとも、
活物質Gのように、共沈法を用いない場合、コバルトが
均一に分散されておらず、同様の理由でサイクル特性が
劣化している。以上の結果より、リチウム複合ニッケル
−コバルト酸化物の原料としてのニッケル−コバルト水
酸化物は、NivCow(OH)2(0.7≦v≦0.9、
v+w=1)で表されるニッケル−コバルト水酸化物で
ある場合に、放電容量、サイクル特性に優れた非水電解
液二次電池が得られる。
Further, when the Co addition amount (w value) is increased to 0.4 or more, nickel and cobalt are not uniformly dispersed even when such a coprecipitation method is used, and LiNi is partially dispersed.
It is considered to be a mixture of O 2 and LiCoO 2 , and it is considered that the crystal structure was destroyed by the above-mentioned crystal phase change in the portion where Co was not sufficiently replaced, and the discharge capacity was lowered. Moreover, even if the Co substitution amount is small,
When the coprecipitation method is not used like the active material G, cobalt is not uniformly dispersed, and the cycle characteristics are deteriorated for the same reason. From the above results, the nickel-cobalt hydroxide as the raw material of the lithium composite nickel-cobalt oxide is Ni v Co w (OH) 2 (0.7 ≦ v ≦ 0.9,
When the nickel-cobalt hydroxide represented by v + w = 1), a non-aqueous electrolyte secondary battery having excellent discharge capacity and cycle characteristics can be obtained.

【0030】《実施例2》金属ニッケル量が60g/L
相当の硫酸ニッケル水溶液に、ニッケルに対するコバル
トのモル比が20%になるように硫酸コバルトを添加、
溶解して硫酸ニッケル−コバルト混合水溶液を調製し
た。このニッケル−コバルト混合水溶液を容積100L
の析出槽へ10L/hの一定流量で導入し、、槽内温度
を50℃に保ち、十分攪拌しながら、25重量%の水酸
化ナトリウム溶液を導入し、反応槽のpH値を制御し、
種々の粒径を持つニッケル−コバルト水酸化物を生成さ
せた。これを水洗、乾燥した。得られたニッケル−コバ
ルト水酸化物は、全てSEM写真観察において一次粒子
が無数に凝集した二次粒子を形成しており、その形状は
球状もしくは楕円球状であった。また、得られたリチウ
ム複合ニッケル−コバルト酸化物の平均粒径も原料であ
るニッケル−コバルト水酸化物の粒径とほぼ一致してい
た。作製したニッケル−コバルト水酸化物の物性を表3
に示す。
Example 2 The amount of metallic nickel is 60 g / L
Cobalt sulfate is added to a corresponding nickel sulfate aqueous solution so that the molar ratio of cobalt to nickel is 20%,
It melt | dissolved and the nickel sulfate-cobalt mixed aqueous solution was prepared. This nickel-cobalt mixed aqueous solution has a volume of 100 L.
Was introduced into the precipitation tank at a constant flow rate of 10 L / h, the temperature inside the tank was kept at 50 ° C., while sufficiently stirring, a 25 wt% sodium hydroxide solution was introduced to control the pH value of the reaction tank.
Nickel-cobalt hydroxides with various particle sizes were produced. This was washed with water and dried. All of the obtained nickel-cobalt hydroxides formed secondary particles in which primary particles were aggregated innumerable by SEM photograph observation, and the shape was spherical or elliptical spherical. Further, the average particle size of the obtained lithium composite nickel-cobalt oxide was almost the same as the particle size of the nickel-cobalt hydroxide as the raw material. Table 3 shows the physical properties of the produced nickel-cobalt hydroxide.
Shown in

【0031】[0031]

【表3】 [Table 3]

【0032】平均粒径の異なるニッケル−コバルト水酸
化物H〜Lを原料としてリチウム複合ニッケル−コバル
ト酸化物を合成する他は全て実施例1と同様にして電池
を作製した。ニッケル−コバルト水酸化物H〜Lを用い
た電池をそれぞれ電池H〜Lとした。表4に、電池H〜
Lの120mA放電容量、活物質の利用率、高率放電率
および寿命を調べた結果を示す。
A battery was prepared in the same manner as in Example 1 except that lithium composite nickel-cobalt oxides were synthesized using nickel-cobalt hydroxides H to L having different average particle diameters as raw materials. Batteries using nickel-cobalt hydroxides HL were designated as batteries HL, respectively. In Table 4, battery H ~
The results of examining the 120 mA discharge capacity of L, the utilization rate of the active material, the high rate discharge rate and the life are shown.

【0033】[0033]

【表4】 [Table 4]

【0034】ニッケル−コバルト水酸化物の粒径は、リ
チウム複合ニッケル−コバルト酸化物の粒径と相関関係
があると共に、タップ密度や、BET比表面積とも相関
があり、電極への充填性に大きな影響を与えるため重要
である。活物質Hの様に平均粒径が小さく、タップ密度
が小さい場合、リチウム複合ニッケル−コバルト酸化物
の電極への充填密度、すなわち容量密度が低下し、実質
的な電池容量が低下する。また、平均粒径が10μmよ
りも大きくなると、充填性は十分であるものの、活物質
の利用率や、高率放電率が低下していることがわかる。
これは、ニッケル−コバルト水酸化物の粒径が大きくな
ると、比表面積が小さくなり、リチウム複合ニッケル−
コバルト酸化物合成の際の、リチウムとの反応速度が小
さくなり、合成反応が十分に進行しなかったことが考え
られる。さらに、合成されたリチウム複合ニッケル−コ
バルト酸化物の粒径も大きいため、電解液との反応界面
の面積が小さく、高率放電特性が低下したものと考えら
れる。
The particle size of the nickel-cobalt hydroxide has a correlation with the particle size of the lithium composite nickel-cobalt oxide, and also has a correlation with the tap density and the BET specific surface area. It is important because it has an impact. When the average particle diameter is small and the tap density is small like the active material H, the packing density of the lithium composite nickel-cobalt oxide into the electrode, that is, the capacity density is decreased, and the substantial battery capacity is decreased. Further, it can be seen that when the average particle diameter is larger than 10 μm, the fillability is sufficient, but the utilization rate of the active material and the high rate discharge rate are reduced.
This is because as the particle size of nickel-cobalt hydroxide increases, the specific surface area decreases, and lithium composite nickel-
It is considered that the reaction rate with lithium during the synthesis of cobalt oxide was low and the synthesis reaction did not proceed sufficiently. Furthermore, it is considered that since the synthesized lithium composite nickel-cobalt oxide also has a large particle diameter, the area of the reaction interface with the electrolytic solution is small and the high rate discharge characteristics are deteriorated.

【0035】このように、リチウム複合ニッケル−コバ
ルト酸化物を用いた非水電解液二次電池の特性が、その
原料であるニッケル−コバルト水酸化物の物性によって
著しく左右されることがわかる。従って、非水電解液二
次電池用正極活物質であるLixNiyCoz2(0.9
0≦x≦1.05、0.7≦y≦0.9、y+z=1)
で表されるリチウム複合ニッケルーコバルト酸化物の合
成に原材料として用いるNivCow(OH)2(0.7≦
v≦0.9、v+w=1)で表されるニッケル−コバル
ト水酸化物は、平均粒子径が1.5〜10μm、窒素ガ
スの吸着により測定されるBET比表面積が8〜35m
2/g、タップ密度が1.4〜2.3g/cm3、細孔の
空間体積が0.010〜0.10cm3/g、細孔占有
率が5〜40%の範囲であることが望ましい。
As described above, it can be seen that the characteristics of the non-aqueous electrolyte secondary battery using the lithium composite nickel-cobalt oxide are significantly influenced by the physical properties of the nickel-cobalt hydroxide as the raw material. Therefore, Li x Ni y Co z O 2 (0.9%), which is a positive electrode active material for a non-aqueous electrolyte secondary battery,
0 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9, y + z = 1)
Ni v Co w (OH) 2 (0.7 ≦) used as a raw material for the synthesis of the lithium composite nickel-cobalt oxide represented by
The nickel-cobalt hydroxide represented by v ≦ 0.9, v + w = 1) has an average particle diameter of 1.5 to 10 μm and a BET specific surface area measured by adsorption of nitrogen gas of 8 to 35 m.
2 / g, the tap density is 1.4 to 2.3 g / cm 3 , the spatial volume of pores is 0.010 to 0.10 cm 3 / g, and the pore occupancy is in the range of 5 to 40%. desirable.

【0036】《比較例1】粒子の形状が塊状であるニッ
ケルーコバルト複合水酸化物を原材料として、実施例1
と同様にしてリチウム複合ニッケルーコバルト酸化物M
を合成した。得られたニッケルーコバルト複合酸化物の
化学組成はLiNi0.85Co0.152であった。合成さ
れたリチウム複合ニッケルーコバルト酸化物は、平均粒
径が4μmの塊状の粒子として得られた。このリチウム
複合ニッケルーコバルト酸化物Mを正極活物質として用
いる他は実施例1と同様にして電池を作製した。表5
に、この電池の初期放電容量、活物質の利用率、効率放
電率、および寿命末期サイクル数を調べた結果を示す。
Comparative Example 1 A nickel-cobalt composite hydroxide having a lumpy particle shape was used as a raw material and Example 1 was used.
Similarly to lithium composite nickel-cobalt oxide M
Was synthesized. The chemical composition of the obtained nickel-cobalt composite oxide was LiNi 0.85 Co 0.15 O 2 . The synthesized lithium composite nickel-cobalt oxide was obtained as massive particles having an average particle size of 4 μm. A battery was produced in the same manner as in Example 1 except that this lithium composite nickel-cobalt oxide M was used as the positive electrode active material. Table 5
The results of examining the initial discharge capacity, active material utilization rate, efficient discharge rate, and end-of-life cycle number of this battery are shown in FIG.

【0037】[0037]

【表5】 [Table 5]

【0038】表5から明らかなように、原料のニッケル
−コバルト水酸化物が塊状である活物質Mを用いた電池
では、塊状粒子であるために特に比表面積が小さく、極
板への充填性も小さくなる。また、充放電の際の分極が
大きいために、活物質の利用率も小さくなっている。以
上の結果より、リチウム複合ニッケル酸化物の原料とな
るニッケル−コバルト水酸化物は、球状もしくは楕円球
状であることが望ましい。
As is clear from Table 5, in the battery using the active material M in which the nickel-cobalt hydroxide as the raw material is in the form of lumps, the specific surface area is particularly small because of the lumpy particles, and the filling property in the electrode plate is good. Also becomes smaller. Further, since the polarization during charging / discharging is large, the utilization rate of the active material is also small. From the above results, it is desirable that the nickel-cobalt hydroxide, which is the raw material of the lithium composite nickel oxide, be spherical or elliptical spherical.

【0039】上記実施例では、ニッケル−コバルト水酸
化物を製造する方法として、硫酸ニッケル−コバルト混
合水溶液とか性アルカリ水溶液を用いる方法を示した
が、本発明はこれに限定されるものではない。例えば、
金属イオンを安定化させるためにアンモニウムイオンな
どの錯化剤等を添加することがあるが、得られるニッケ
ル−コバルト水酸化物が同様の物性を持っていれば同様
の効果が得られる。また、上記実施例においては、円筒
型の電池を用いて評価したが、角型やコイン型など電池
形状が異なっても同様の効果が得られる。更に、上記実
施例において、負極には炭素質材料を用いたが、本発明
における効果は正極板において作用するため、リチウム
金属や、リチウム合金、Fe23、WO2、WO3等の酸
化物など、他の負極材料を用いても同様の効果が得られ
る。また、上記実施例において、電解質として六フッ化
リン酸リチウムを使用したが、他のリチウム含有塩、例
えば過塩素酸リチウム、四フッ化ホウ酸リチウム、トリ
フルオロメタンスルホン酸リチウム、六フッ化ヒ酸リチ
ウムなどでも同様の効果が得られる。さらに、上記実施
例では、炭酸エチレンと炭酸ジエチルの混合溶媒を用い
たが、他の非水溶媒例えば、プロピレンカーボネートな
どの環状エステル、テトラヒドロフランなどの環状エー
テル、ジメトキシエタンなどの鎖状エーテル、プロピオ
ン酸メチルなどの鎖状エステルなどの非水溶媒や、これ
らの多元系混合溶媒を用いても同様の効果が得られる。
In the above embodiments, the method of using the nickel sulfate-cobalt mixed aqueous solution and the alkaline aqueous solution is shown as the method of producing the nickel-cobalt hydroxide, but the present invention is not limited to this. For example,
A complexing agent such as ammonium ion may be added in order to stabilize the metal ion, but the same effect can be obtained if the obtained nickel-cobalt hydroxide has similar physical properties. Further, in the above examples, the evaluation was performed using a cylindrical battery, but the same effect can be obtained even if the battery shape is different, such as a prismatic type or a coin type. Furthermore, although a carbonaceous material was used for the negative electrode in the above-mentioned examples, the effect of the present invention works on the positive electrode plate, and therefore oxidation of lithium metal, lithium alloys, Fe 2 O 3 , WO 2 , WO 3, etc. The same effect can be obtained by using another negative electrode material such as a material. Although lithium hexafluorophosphate was used as the electrolyte in the above examples, other lithium-containing salts such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and hexafluoroarsenic acid were used. The same effect can be obtained with lithium or the like. Furthermore, although a mixed solvent of ethylene carbonate and diethyl carbonate was used in the above examples, other non-aqueous solvents such as cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, chain ethers such as dimethoxyethane, and propionic acid. The same effect can be obtained by using a non-aqueous solvent such as a chain ester such as methyl or a multi-component mixed solvent thereof.

【0040】[0040]

【発明の効果】以上の説明から明らかなように、本発明
による粒子形状、粒径等の物性を制御したニッケル−コ
バルト水酸化物を用いると、サイクル特性、および高率
放電特性の優れた非水電解液二次電池を与える正極活物
質リチウム複合ニッケル−コバルト酸化物を得ることが
できる。
As is apparent from the above description, when the nickel-cobalt hydroxide having controlled physical properties such as particle shape and particle size according to the present invention is used, excellent cycle characteristics and high rate discharge characteristics can be obtained. It is possible to obtain a positive electrode active material lithium composite nickel-cobalt oxide that provides a water electrolyte secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の円筒型電池の縦断面図であ
る。
FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8、9 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulating packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8, 9 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北 秀行 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 (72)発明者 臼井 猛 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 (72)発明者 亀田 有純 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideyuki Kita, 45, Shirakata-cho, Fukui-shi, Fukui Prefecture 5-10 Sunamawari, Tanaka Chemical Research Institute (72) Inventor Takeshi Usui 45, Shirakata-cho, Fukui-shi, Fukui Prefecture Character sand beach 5-10 shares in Tanaka Chemical Research Institute (72) Inventor Yusumi Kameda 45 Shirakata-cho, Fukui City, Fukui Prefecture Character sand beach 5-10 shares in Tanaka Chemical Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非水電解液電池活物質LixNiyCoz
2(0.90≦x≦1.05、0.7≦y≦0.9、y
+z=1)で表されるリチウム複合ニッケルーコバルト
酸化物の合成に原材料として用いるニッケル−コバルト
水酸化物であって、NivCow(OH)2(0.7≦v≦
0.9、v+w=1)で表され、SEM写真観察におい
て一次粒子が無数に凝集して二次粒子を形成しており、
その二次粒子の平均粒子径が1.5〜10μmであるこ
とを特徴とする非水電解液電池活物質用ニッケルーコバ
ルト水酸化物。
1. A non-aqueous electrolyte battery active material Li x Ni y Co z
O 2 (0.90 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.9, y
+ Z = 1), which is a nickel-cobalt hydroxide used as a raw material for the synthesis of a lithium composite nickel-cobalt oxide, wherein Ni v Co w (OH) 2 (0.7 ≦ v ≦
0.9, v + w = 1), and in the SEM photograph observation, primary particles are aggregated innumerably to form secondary particles,
A nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material, wherein the secondary particles have an average particle diameter of 1.5 to 10 μm.
【請求項2】 ニッケル−コバルト水酸化物は、球状ま
たは楕円球状である請求項1記載の非水電解液電池活物
質用ニッケルーコバルト水酸化物。
2. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide has a spherical shape or an elliptic spherical shape.
【請求項3】 ニッケル−コバルト水酸化物は、窒素ガ
スの吸着により測定されるBET比表面積が8〜35m
2/gである請求項1記載の非水電解液電池活物質用ニ
ッケルーコバルト水酸化物。
3. The nickel-cobalt hydroxide has a BET specific surface area measured by adsorption of nitrogen gas of 8 to 35 m.
The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, which is 2 / g.
【請求項4】 ニッケル−コバルト水酸化物は、タップ
密度が1.4〜2.3g/cm3である請求項1記載の
非水電解液電池活物質用ニッケルーコバルト水酸化物。
4. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide has a tap density of 1.4 to 2.3 g / cm 3 .
【請求項5】 ニッケル−コバルト水酸化物は、細孔の
空間体積が0.010〜0.10cm3/gである請求
項1記載の非水電解液電池活物質用ニッケルーコバルト
水酸化物。
5. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide has a pore volume of 0.010 to 0.10 cm 3 / g. .
【請求項6】 ニッケル−コバルト水酸化物は、細孔占
有率が5〜40%の範囲である請求項1記載の非水電解
液電池活物質用ニッケルーコバルト水酸化物。
6. The nickel-cobalt hydroxide for a non-aqueous electrolyte battery active material according to claim 1, wherein the nickel-cobalt hydroxide has a pore occupancy rate in the range of 5 to 40%.
JP07910996A 1996-04-01 1996-04-01 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material Expired - Lifetime JP3229544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07910996A JP3229544B2 (en) 1996-04-01 1996-04-01 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07910996A JP3229544B2 (en) 1996-04-01 1996-04-01 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material

Publications (2)

Publication Number Publication Date
JPH09270258A true JPH09270258A (en) 1997-10-14
JP3229544B2 JP3229544B2 (en) 2001-11-19

Family

ID=13680744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07910996A Expired - Lifetime JP3229544B2 (en) 1996-04-01 1996-04-01 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material

Country Status (1)

Country Link
JP (1) JP3229544B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064355A1 (en) * 1998-06-10 1999-12-16 Sakai Chemical Industries, Ltd. Nickel hydroxide particles and production and use thereof
KR100307163B1 (en) * 1999-06-12 2001-11-01 김순택 Method of preparing positive active material of lithium secondary battery
JP2005123179A (en) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp Lithium compound oxide particle for lithium secondary battery positive electrode material, and lithium secondary battery positive electrode using the same, and the lithium secondary battery
JP2007257985A (en) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method and nonaqueous electrolyte secondary battery using it
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2013018705A (en) * 2006-03-31 2013-01-31 Cs Energy Materials Ltd POWDERED Ni AND Co-MIXED HYDROXIDE, AND USE THEREOF
WO2014051089A1 (en) * 2012-09-28 2014-04-03 住友金属鉱山株式会社 Nickel-cobalt compound hydroxide and method and device for producing same, positive electrode active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP2014156397A (en) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide and methods of producing them
JP2014237573A (en) * 2013-06-10 2014-12-18 住友金属鉱山株式会社 Method for producing nickel cobalt compound hydroxide for nonaqueous electrolyte secondary battery positive electrode active substance and nickel cobalt compound hydroxide particle
KR20150115831A (en) 2013-01-30 2015-10-14 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel-cobalt composite hydroxide and process for manufacturing same
US9947916B2 (en) 2010-02-09 2018-04-17 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery manufacturing method thereof, and non-aqueous electrolyte secondary battery
CN113421781A (en) * 2021-06-25 2021-09-21 上海理工大学 Preparation method of nickel-cobalt oxide @ nickel-cobalt hydroxide core-shell structure electrode material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064355A1 (en) * 1998-06-10 1999-12-16 Sakai Chemical Industries, Ltd. Nickel hydroxide particles and production and use thereof
US6306787B1 (en) 1998-06-10 2001-10-23 Sakai Chemical Industry Co., Ltd. Nickel hydroxide particles and production and use thereof
KR100307163B1 (en) * 1999-06-12 2001-11-01 김순택 Method of preparing positive active material of lithium secondary battery
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2005123179A (en) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp Lithium compound oxide particle for lithium secondary battery positive electrode material, and lithium secondary battery positive electrode using the same, and the lithium secondary battery
JP2007257985A (en) * 2006-03-23 2007-10-04 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method and nonaqueous electrolyte secondary battery using it
JP2013018705A (en) * 2006-03-31 2013-01-31 Cs Energy Materials Ltd POWDERED Ni AND Co-MIXED HYDROXIDE, AND USE THEREOF
US9947916B2 (en) 2010-02-09 2018-04-17 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery manufacturing method thereof, and non-aqueous electrolyte secondary battery
US10629891B2 (en) 2010-02-09 2020-04-21 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery
CN104661963A (en) * 2012-09-28 2015-05-27 住友金属矿山株式会社 Nickel-cobalt compound hydroxide and method and device for producing same, positive electrode active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JPWO2014051089A1 (en) * 2012-09-28 2016-08-25 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide and its production method and production apparatus, positive electrode active material for non-aqueous electrolyte secondary battery, its production method, and non-aqueous electrolyte secondary battery
WO2014051089A1 (en) * 2012-09-28 2014-04-03 住友金属鉱山株式会社 Nickel-cobalt compound hydroxide and method and device for producing same, positive electrode active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
US10141571B2 (en) 2012-09-28 2018-11-27 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt composite hydroxide and method and device for producing same, cathode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
US10236510B2 (en) 2012-09-28 2019-03-19 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt composite hydroxide and method and device for producing same, cathode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
KR20150115831A (en) 2013-01-30 2015-10-14 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel-cobalt composite hydroxide and process for manufacturing same
US9543580B2 (en) 2013-01-30 2017-01-10 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt composite hydroxide and process for manufacturing same
US9876228B2 (en) 2013-01-30 2018-01-23 Sumitomo Metal Mining Co., Ltd. Nickel-cobalt composite hydroxide and process for manufacturing same
JP2014237573A (en) * 2013-06-10 2014-12-18 住友金属鉱山株式会社 Method for producing nickel cobalt compound hydroxide for nonaqueous electrolyte secondary battery positive electrode active substance and nickel cobalt compound hydroxide particle
JP2014156397A (en) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide and methods of producing them
CN113421781A (en) * 2021-06-25 2021-09-21 上海理工大学 Preparation method of nickel-cobalt oxide @ nickel-cobalt hydroxide core-shell structure electrode material

Also Published As

Publication number Publication date
JP3229544B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5079951B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, its manufacturing method, non-aqueous electrolyte secondary battery, and positive electrode manufacturing method
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP3362564B2 (en) Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate
JP6773047B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste, non-aqueous electrolyte secondary battery.
CN110817972B (en) Fluorine modified high-voltage lithium cobaltate, preparation method thereof and battery
JP3606290B2 (en) Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery
JPH11135119A (en) Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JPH09231973A (en) Positive electrode active material for nonaqueous electrolyte battery, positive electrode, and nonaqueous electrolyte battery
JP6693415B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4177574B2 (en) Lithium secondary battery
JP3394364B2 (en) Cobalt hydroxide and tricobalt tetroxide as raw materials for non-aqueous electrolyte battery active material LiCoO2 and method for producing the same
JP4454052B2 (en) Method for producing nickel electrode active material for alkaline storage battery, and method for producing nickel positive electrode
JP3229544B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
JP4374930B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell
KR19990034749A (en) Lithium-ion secondary battery employing a lithium composite oxide, a method of manufacturing the same, and a positive electrode using the same
JP3986148B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials
JP3954668B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active materials
JP2010218855A (en) Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP3751133B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH087894A (en) Positive active material for nonaqueous lithium secondary battery, and lithium secondary battery
JP4519959B2 (en) Positive electrode material for lithium secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term