JP6050403B2 - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery - Google Patents

Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Download PDF

Info

Publication number
JP6050403B2
JP6050403B2 JP2015040794A JP2015040794A JP6050403B2 JP 6050403 B2 JP6050403 B2 JP 6050403B2 JP 2015040794 A JP2015040794 A JP 2015040794A JP 2015040794 A JP2015040794 A JP 2015040794A JP 6050403 B2 JP6050403 B2 JP 6050403B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
ion battery
transition metal
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015040794A
Other languages
Japanese (ja)
Other versions
JP2016162602A (en
Inventor
博人 佐藤
博人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015040794A priority Critical patent/JP6050403B2/en
Priority to TW104137099A priority patent/TWI574451B/en
Priority to KR1020160009524A priority patent/KR20160106487A/en
Priority to CN201610069090.9A priority patent/CN105938901B/en
Publication of JP2016162602A publication Critical patent/JP2016162602A/en
Application granted granted Critical
Publication of JP6050403B2 publication Critical patent/JP6050403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Composite Materials (AREA)

Description

本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池に関する。   The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.

リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

このようなリチウムイオン電池において求められる電池特性の向上について、従来、種々の研究・開発が行われている。電池特性を向上させるための手段として、例えば、正極材の電極密度を向上させ、大小粒子を混合した材料が提案されている。当該材料では、Li含有遷移金属複合酸化物の大粒子の隙間を同材料の小粒子が埋める構成となっている。   Conventionally, various researches and developments have been made on improving the battery characteristics required for such lithium ion batteries. As means for improving battery characteristics, for example, a material in which the electrode density of a positive electrode material is improved and large and small particles are mixed has been proposed. The material is configured such that the small particles of the same material fill the gaps between the large particles of the Li-containing transition metal composite oxide.

このような技術として、例えば、特許文献1では、リチウム複合酸化物粒子の平均粒子径が0.1〜50μmの範囲内にあり、且つ該リチウム複合酸化物粒子の粒度分布にピークが2個以上存在することを特徴とする正極活物質が開示されている。そして、これによれば、優れた初期容量並びに容量保持率を有する非水電解質二次電池を提供可能な正極活物質が得られると記載されている。   As such a technique, for example, in Patent Document 1, the average particle size of the lithium composite oxide particles is in the range of 0.1 to 50 μm, and the particle size distribution of the lithium composite oxide particles has two or more peaks. A positive electrode active material characterized in that it exists is disclosed. And according to this, it is described that the positive electrode active material which can provide the nonaqueous electrolyte secondary battery which has the outstanding initial capacity and capacity | capacitance retention is obtained.

また、特許文献2では、リチウム金属複合酸化物の粉末を構成する粒子が、リチウム金属複合酸化物の一次粒子が複数集合して形成した二次粒子から主として構成され、該二次粒子の形状は球状または楕円球状であり、粒子径が実質的に1〜40μmの範囲内にあり、平均粒子径が5〜11μmで、粒子径の分布が正規分布である粒子に、粒子径1μm以下の粒子を0.5〜3.5体積%の割合で混合したものからなり、該粉末の比表面積は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末の比表面積より最大で0.3m2/g大きく、該粉末のタップ密度は、該粉末から前記粒子径1μm以下の粒子を除いて構成される粉末のタップ密度より最大で0.2g/cm3小さいことを特徴とする非水系電解質二次電池用正極活物質が開示されている。そして、これにより、非水系電解質二次電池用正極活物質を構成する前記粉末の全体を微粉化した時に粉塵発生等の製造上の不都合や、充填密度が低くなることによる容量低下が起こらず、また電解液と正極活物質の接触面積が増え、Liイオンが拡散する場所が増えることで、高出力化が可能な二次電池を提供することができると記載されている。 In Patent Document 2, the particles constituting the lithium metal composite oxide powder are mainly composed of secondary particles formed by aggregating a plurality of primary particles of the lithium metal composite oxide, and the shape of the secondary particles is A particle having a particle diameter of 1 μm or less is added to a particle having a spherical shape or an elliptical spherical shape, having a particle size substantially in the range of 1 to 40 μm, an average particle size of 5 to 11 μm, and a normal particle size distribution. The powder has a specific surface area of 0.5 to 3.5% by volume, and the specific surface area of the powder is not greater than the specific surface area of the powder formed by removing particles having a particle diameter of 1 μm or less from the powder. Non-aqueous system characterized in that the tap density of the powder is 3 m 2 / g larger, and the tap density of the powder is 0.2 g / cm 3 smaller than the tap density of the powder formed by removing particles having a particle diameter of 1 μm or less from the powder. Positive electrode active material for electrolyte secondary battery It has been disclosed. And thereby, inconvenience in production such as dust generation when the whole of the powder constituting the positive electrode active material for a non-aqueous electrolyte secondary battery is pulverized, capacity reduction due to lower packing density does not occur, Further, it is described that a secondary battery capable of increasing output can be provided by increasing the contact area between the electrolytic solution and the positive electrode active material and increasing the number of places where Li ions diffuse.

特開2000−82466号公報JP 2000-82466 A 特許第4766840号公報Japanese Patent No. 4766840

しかしながら、大粒径と小粒径のLi含有遷移金属複合酸化物を混合して正極活物質を作製する場合には以下のような問題がある。一般に、小粒径のLi含有遷移金属複合酸化物は充放電により電解液の反応等によって形成される表面変質部分の面積が体積に対して大きいために、劣化が早く、大きく充放電特性が劣る。従って、大粒径及び小粒径のLi含有遷移金属複合酸化物を混合した正極活物質を用いた場合には、電池の充放電機能の低下をもたらすおそれがある。また、小粒径のLi含有遷移金属複合酸化物は、その近傍の電解液を変質させるために、隣接した大粒径のLi含有遷移金属複合酸化物の表面の活性を低下させ、結果として全体の充放電特性を低下させるおそれがある。   However, when a positive electrode active material is produced by mixing a large particle size and a small particle size Li-containing transition metal composite oxide, there are the following problems. In general, a small particle size Li-containing transition metal composite oxide is rapidly deteriorated and greatly inferior in charge / discharge characteristics because the area of the surface-modified part formed by the reaction of the electrolytic solution by charge / discharge is large with respect to the volume. . Accordingly, when a positive electrode active material in which a Li-containing transition metal composite oxide having a large particle size and a small particle size is mixed is used, the charge / discharge function of the battery may be deteriorated. Moreover, the Li-containing transition metal composite oxide having a small particle size reduces the activity of the surface of the adjacent Li-containing transition metal composite oxide having a large particle size in order to alter the electrolyte solution in the vicinity thereof. There is a possibility that the charge / discharge characteristics of the battery may be deteriorated.

このような問題に対し、本発明は、電池特性が良好なリチウムイオン電池用正極活物質を提供することを課題とする。   With respect to such a problem, an object of the present invention is to provide a positive electrode active material for a lithium ion battery having good battery characteristics.

本発明者は、このような問題を解決するため種々の検討を行った結果、Li含有遷移金属複合酸化物と、小粒径の粒子として所定量の無機セラミックスとを混合することで、電池特性が良好となるリチウムイオン電池用正極活物質が得られることを見出した。   As a result of various investigations to solve such problems, the present inventor has mixed the Li-containing transition metal composite oxide with a predetermined amount of inorganic ceramics as particles having a small particle diameter, thereby obtaining battery characteristics. It has been found that a positive electrode active material for a lithium ion battery can be obtained.

上記知見を基礎にして完成した本発明は一側面において、Li含有遷移金属複合酸化物、及び、平均粒子径が0.18〜1μmで10〜1000wtppmの無機セラミックスを含み、前記Li含有遷移金属複合酸化物が、組成式:Li1+xNi1-yMey2+z
(前記式において、MeはMn、Co、Al及びMgのいずれか一種以上であり、xは−0.1〜0.1であり、yはMeで示される金属の合計の組成を示し且つ0.1〜0.5であり、zは−0.1〜0.2である。)
で表され、前記無機セラミックスが、Al、Si、Mg、Zr、Yから選ばれる1種類以上の元素の酸化物、窒化物、炭化物、又は、これらの組合せであり、前記Li含有遷移金属複合酸化物の平均粒子径が4〜12μmであるリチウムイオン電池用正極活物質である。
The present invention completed on the basis of the above knowledge includes, in one aspect, a Li-containing transition metal composite oxide, and an inorganic ceramic having an average particle diameter of 0.18 to 1 μm and 10 to 1000 wtppm, The oxide has the composition formula: Li 1 + x Ni 1-y Me y O 2 + z
(In the above formula, Me is one or more of Mn, Co, Al, and Mg, x is −0.1 to 0.1, y is the total composition of metals represented by Me, and 0 .1 to 0.5, and z is -0.1 to 0.2.)
The inorganic ceramic is an oxide, nitride, carbide, or a combination of one or more elements selected from Al, Si, Mg, Zr, and Y, and the Li-containing transition metal composite oxide the average particle diameter of the object is positive electrode active material for lithium ion batteries Ru 4~12μm der.

本発明のリチウムイオン電池用正極活物質は別の一実施形態において、前記無機セラミックスが、Al23、SiO2、MgO、ZrO2、SiC、及び、YSZ(イットリア安定化ジルコニア)の群から選択された1種以上である。 In another embodiment of the positive electrode active material for a lithium ion battery of the present invention, the inorganic ceramic material is selected from the group consisting of Al 2 O 3 , SiO 2 , MgO, ZrO 2 , SiC, and YSZ (yttria stabilized zirconia). One or more selected.

本発明は更に別の一側面において、本発明のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。   In still another aspect, the present invention provides a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery of the present invention.

本発明は更に別の一側面において、本発明のリチウムイオン電池用正極を用いたリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery using the positive electrode for a lithium ion battery of the present invention.

本発明によれば、電池特性が良好なリチウムイオン電池用正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion batteries with a favorable battery characteristic can be provided.

(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質は、Li含有遷移金属複合酸化物、及び、平均粒子径が0.02〜1μmで10〜1000wtppmの無機セラミックスを含む。このような構成によれば、無機セラミックスが小粒径の粒子として機能し、大粒径の粒子であるLi含有遷移金属複合酸化物同士の接触を促進するため、正極活物質を用いた電池のレート特性が向上する。また、従来のようにLi含有遷移金属複合酸化物を小粒径の粒子として用いておらず、小粒径の粒子の劣化が抑制されるため、正極活物質を用いた電池のレート特性の劣化が良好に抑制される。
(Configuration of positive electrode active material for lithium ion battery)
The positive electrode active material for a lithium ion battery of the present invention includes a Li-containing transition metal composite oxide and an inorganic ceramic having an average particle diameter of 0.02 to 1 μm and 10 to 1000 wtppm. According to such a configuration, the inorganic ceramic functions as a particle having a small particle size and promotes the contact between the Li-containing transition metal composite oxides having a large particle size. Rate characteristics are improved. Moreover, since the Li-containing transition metal composite oxide is not used as a particle having a small particle size as in the prior art, and the deterioration of the particle having a small particle size is suppressed, the rate characteristics of the battery using the positive electrode active material are deteriorated. Is satisfactorily suppressed.

無機セラミックスの平均粒子径が0.02μm未満であると、上記レート特性の向上の効果が乏しく、1μmを超えると抵抗が増加するためレート特性が低下する。また、無機セラミックスの含有量が10wtppm未満であると、上記レート特性の向上の効果が乏しく、1000wtppmを超えると正極活物質を用いた電池の初期容量が低下する。無機セラミックスは、平均粒子径が0.1〜1μmであるのが好ましく、0.3〜0.9μmであるのがより好ましい。また、無機セラミックスの含有量は、50〜1000wtppmであるのが好ましく、100〜500wtppmであるのがより好ましい。   If the average particle size of the inorganic ceramic is less than 0.02 μm, the effect of improving the rate characteristic is poor, and if it exceeds 1 μm, the resistance increases and the rate characteristic deteriorates. Further, if the content of the inorganic ceramic is less than 10 wtppm, the effect of improving the rate characteristics is poor, and if it exceeds 1000 wtppm, the initial capacity of the battery using the positive electrode active material is lowered. The inorganic ceramics preferably has an average particle diameter of 0.1 to 1 μm, and more preferably 0.3 to 0.9 μm. Moreover, it is preferable that content of an inorganic ceramic is 50-1000 wtppm, and it is more preferable that it is 100-500 wtppm.

本発明のリチウムイオン電池用正極活物質は、無機セラミックスが、Al、Si、Mg、Zr、Yから選ばれる1種類以上の元素の酸化物、窒化物、炭化物、又は、これらの組合せであるのが好ましく、Al23、SiO2、MgO、ZrO2、SiC、及び、YSZ(イットリア安定化ジルコニア)の群から選択された1種以上であるのが好ましい。 In the positive electrode active material for a lithium ion battery according to the present invention, the inorganic ceramic is an oxide, nitride, carbide or combination of one or more elements selected from Al, Si, Mg, Zr, and Y. It is preferable that it is at least one selected from the group consisting of Al 2 O 3 , SiO 2 , MgO, ZrO 2 , SiC, and YSZ (yttria stabilized zirconia).

本発明のリチウムイオン電池用正極活物質は、Li含有遷移金属複合酸化物の平均粒子径が4〜12μmであるのが好ましい。Li含有遷移金属複合酸化物の平均粒子径が4μm未満であると、添加したセラミックス粒子の粒度がLi含有遷移金属複合酸化物の粒度に比べ相対的に増大するため、添加したセラミックス粒子がLi含有遷移金属複合酸化物同士の接触を逆に妨げる効果が生じるおそれがある。また、Li含有遷移金属複合酸化物の平均粒子径が12μmを超えると、Li含有遷移金属複合酸化物粒子間の隙間が大きくなってLi含有遷移金属複合酸化物粒子同士の接触を促進するためには多量のセラミックス粒子を添加する必要があり、電池の放電容量を低下させるという問題が生じるおそれがある。Li含有遷移金属複合酸化物の平均粒子径は、4〜10μmであるのがより好ましく、6〜10μmであるのが更により好ましい。   In the positive electrode active material for a lithium ion battery of the present invention, the Li-containing transition metal composite oxide preferably has an average particle size of 4 to 12 μm. When the average particle size of the Li-containing transition metal composite oxide is less than 4 μm, the added ceramic particles have a relatively larger particle size than the Li-containing transition metal composite oxide, so that the added ceramic particles contain Li. There is a possibility that the effect of hindering the contact between the transition metal composite oxides may occur. In addition, when the average particle size of the Li-containing transition metal composite oxide exceeds 12 μm, the gap between the Li-containing transition metal composite oxide particles is increased to promote the contact between the Li-containing transition metal composite oxide particles. Needs to add a large amount of ceramic particles, which may cause a problem of reducing the discharge capacity of the battery. The average particle size of the Li-containing transition metal composite oxide is more preferably 4 to 10 μm, and even more preferably 6 to 10 μm.

本発明のリチウムイオン電池用正極活物質は、Li含有遷移金属複合酸化物が、組成式:Li1+xNi1-yMey2+z
(前記式において、MeはMn、Co、Al及びMgのいずれか一種以上であり、xは−0.1〜0.1であり、yはMeで示される金属の合計の組成を示し且つ0.1〜0.5であり、zは−0.1〜0.2である。)
で表されるのが好ましい。
In the positive electrode active material for a lithium ion battery of the present invention, the Li-containing transition metal composite oxide has a composition formula: Li 1 + x Ni 1-y Me y O 2 + z
(In the above formula, Me is one or more of Mn, Co, Al, and Mg, x is −0.1 to 0.1, y is the total composition of metals represented by Me, and 0 .1 to 0.5, and z is -0.1 to 0.2.)
It is preferable to be represented by

リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が0.9〜1.1であるが、これは、0.9未満では、安定した結晶構造を保持し難く、1.1超では電池の高容量が確保できなくなるおそれがあるためである。また、リチウムイオン電池用正極活物質におけるニッケルの組成が0.5〜0.9であるため、当該リチウムイオン電池用正極活物質を用いたリチウムイオン電池の容量、出力、安全性の三つがバランスよく向上する。   The ratio of lithium to all metals in the positive electrode active material for a lithium ion battery is 0.9 to 1.1. If the ratio is less than 0.9, it is difficult to maintain a stable crystal structure. This is because there is a risk that it will not be possible to secure a high capacity. In addition, since the composition of nickel in the positive electrode active material for lithium ion batteries is 0.5 to 0.9, the capacity, output, and safety of the lithium ion battery using the positive electrode active material for lithium ion batteries are balanced. Improve well.

(リチウムイオン電池用正極活物質の製造方法)
本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
−Li含有遷移金属複合酸化物粉体の作製−
まず、金属原子が所定量になるように硝酸ニッケル、必要に応じて硝酸コバルト、硝酸マンガン、硝酸アルミニウム、硝酸マグネシウムを純水に溶解した金属塩溶液を作製する。次に、炭酸リチウムを、リチウムと前記金属元素合計とのモル数が0.9〜1.1:1になるように純水に添加して分散させた溶液を撹拌しながら前記金属塩溶液を滴下し、Li、Ni、場合によってはCo、Mn、Al、Mgを含むスラリーを作製する。
次に、前記スラリーを、例えば、三流体ノズルを有するマイクロミストドライヤーを用いて噴霧乾燥し、Li、Ni、場合によってはCo、Mn、Al、Mgを含む粉体を得る。
次に、前記粉体がNiを全金属量に対して70%以上90%以下含む場合は、例えばローラーハースキルンを用いて、当該粉体を880℃で2時間焼成後、1時間かけて700℃まで降温して2時間保持した後、3時間かけて室温まで冷却する。また、前記粉体がNiを全金属量に対して50%以上70%未満含む場合は、例えばローラーハースキルンを用いて、当該粉体を900℃で2時間焼成後、1時間かけて700℃まで降温して2時間保持した後、3時間かけて室温まで冷却する。
次に、得られた焼成物を、例えばロールミルとパルベライザーを用いて解砕し、Li含有遷移金属複合酸化物粉体を得る。
(Method for producing positive electrode active material for lithium ion battery)
The manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.
-Production of Li-containing transition metal composite oxide powder-
First, a metal salt solution is prepared by dissolving nickel nitrate and, if necessary, cobalt nitrate, manganese nitrate, aluminum nitrate, and magnesium nitrate in pure water so that a predetermined amount of metal atoms is present. Next, while stirring a solution in which lithium carbonate is added and dispersed in pure water so that the molar number of lithium and the total of the metal elements is 0.9 to 1.1: 1, the metal salt solution is stirred. The slurry is dropped to prepare a slurry containing Li, Ni, and in some cases Co, Mn, Al, and Mg.
Next, the slurry is spray-dried using, for example, a micro mist dryer having a three-fluid nozzle to obtain a powder containing Li, Ni, and optionally Co, Mn, Al, and Mg.
Next, when the powder contains 70% or more and 90% or less of Ni with respect to the total amount of metal, for example, using a roller hearth kiln, the powder is fired at 880 ° C. for 2 hours, and then 700 hours over 1 hour. The temperature is lowered to 0 ° C. and held for 2 hours, and then cooled to room temperature over 3 hours. When the powder contains Ni of 50% or more and less than 70% with respect to the total amount of metal, for example, using a roller hearth kiln, the powder is fired at 900 ° C. for 2 hours and then 700 ° C. over 1 hour. The temperature is lowered to 2 hours and held for 2 hours, and then cooled to room temperature over 3 hours.
Next, the obtained fired product is pulverized using, for example, a roll mill and a pulverizer to obtain a Li-containing transition metal composite oxide powder.

−無機セラミックス粉の準備−
無機セラミックス粉を適宜、例えばジェットミル等で粉砕し所定の粒度の物を作製しておく。
-Preparation of inorganic ceramic powder-
The inorganic ceramic powder is appropriately pulverized by, for example, a jet mill to prepare a product having a predetermined particle size.

−正極活物質の作製−
上述のLi含有遷移金属複合酸化物の粉体に、上述の無機セラミックス粉を添加し、例えばボールミルを用いて混合することで、本発明のリチウムイオン電池用正極活物質が得られる。
-Production of positive electrode active material-
The positive electrode active material for a lithium ion battery of the present invention is obtained by adding the above-mentioned inorganic ceramic powder to the above-mentioned Li-containing transition metal composite oxide powder and mixing the powder using, for example, a ball mill.

(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery using the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like. The current collector has a structure provided on one side or both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

−Li含有遷移金属複合酸化物粉体の作製−
(実施例1〜7、9〜23、比較例1〜14、参考例1〜3、9
まず、Ni、Mn、Co原子のモル比がそれぞれ8:1:1になるように硝酸ニッケル、硝酸マンガン、硝酸コバルトを純水に溶解した金属塩溶液を作製した。次に、炭酸リチウムを、リチウムと前記金属元素合計とのモル比が1.04:1になるように純水に添加して分散させた溶液を撹拌しながら前記金属塩溶液を滴下し、Li、Ni、Co及びMnを含むスラリーを作製した。次に、前記スラリーを、三流体ノズルを有するマイクロミストドライヤーを用いて噴霧乾燥し、Li、Ni、Co及びMnを含む粉体を得た。次に、ローラーハースキルンを用いて、当該粉体を室温から880℃まで1時間かけて昇温し、2時間保持することで焼成を行った後、1時間かけて700℃まで降温して2時間保持した後、3時間かけて室温まで冷却した。次に、得られた焼成物を、ロールミルとパルベライザーを用いて解砕し、パルベライザーにおける解砕強度を調整し3種類の粒度のLi含有遷移金属複合酸化物粉体Aを得た。
-Production of Li-containing transition metal composite oxide powder-
(Examples 1-7 , 9-23 , Comparative Examples 1-14, Reference Examples 1-3 , 9 )
First, a metal salt solution was prepared by dissolving nickel nitrate, manganese nitrate, and cobalt nitrate in pure water so that the molar ratios of Ni, Mn, and Co atoms were 8: 1: 1, respectively. Next, the metal salt solution is dropped while stirring a solution in which lithium carbonate is added and dispersed in pure water so that the molar ratio of lithium to the total of the metal elements is 1.04: 1. A slurry containing Ni, Co and Mn was prepared. Next, the slurry was spray-dried using a micro mist dryer having a three-fluid nozzle to obtain a powder containing Li, Ni, Co and Mn. Next, using a roller hearth kiln, the powder was heated from room temperature to 880 ° C. over 1 hour and held for 2 hours. After firing, the temperature was lowered to 700 ° C. over 1 hour. After maintaining the time, it was cooled to room temperature over 3 hours. Next, the obtained fired product was pulverized using a roll mill and a pulverizer, and the pulverization strength in the pulverizer was adjusted to obtain three types of particle sizes of Li-containing transition metal composite oxide powder A.

(実施例24〜25、比較例15、参考例4)
Ni、Mn原子のモル比がそれぞれ8:2になるように硝酸ニッケル、硝酸マンガンを純水に溶解した金属塩溶液を作製した。次に、炭酸リチウムを、リチウムと前記金属元素合計とのモル比が1.02:1になるように純水に添加して分散させた溶液を撹拌しながら前記金属塩溶液を滴下し、Li、Ni、Mnを含むスラリーを作製した。次に、前記スラリーを、三流体ノズルを有するマイクロミストドライヤーを用いて噴霧乾燥し、Li、Ni、Mnを含む粉体を得た。次に、ローラーハースキルンを用いて、当該粉体を室温から880℃まで1時間かけて昇温し、2時間保持することで焼成を行った後、1時間かけて700℃まで降温して2時間保持した後、3時間かけて室温まで冷却した。次に、得られた焼成物を、ロールミルとパルベライザーを用いて解砕し、Li含有遷移金属複合酸化物粉体Bを得た。
(Examples 24 to 25, Comparative Example 15, Reference Example 4)
A metal salt solution was prepared by dissolving nickel nitrate and manganese nitrate in pure water so that the molar ratio of Ni and Mn atoms was 8: 2, respectively. Next, the metal salt solution is dropped while stirring a solution in which lithium carbonate is added and dispersed in pure water so that the molar ratio of lithium to the total of the metal elements is 1.02: 1. A slurry containing Ni, Ni and Mn was prepared. Next, the slurry was spray-dried using a micro mist dryer having a three-fluid nozzle to obtain a powder containing Li, Ni, and Mn. Next, using a roller hearth kiln, the powder was heated from room temperature to 880 ° C. over 1 hour and held for 2 hours. After firing, the temperature was lowered to 700 ° C. over 1 hour. After maintaining the time, it was cooled to room temperature over 3 hours. Next, the obtained fired product was pulverized using a roll mill and a pulverizer to obtain a Li-containing transition metal composite oxide powder B.

(実施例26〜27、比較例16、参考例5)
Ni、Co、Al原子のモル比がそれぞれ8:1:1になるように硝酸ニッケル、硝酸コバルト、硝酸アルミニウムを純水に溶解した金属塩溶液を作製した。次に、炭酸リチウムを、リチウムと前記金属元素合計とのモル比が1.00:1になるように純水に添加して分散させた溶液を撹拌しながら前記金属塩溶液を滴下し、Li、Ni、Co、Alを含むスラリーを作製した。次に、前記スラリーを、三流体ノズルを有するマイクロミストドライヤーを用いて噴霧乾燥し、Li、Ni、Co、Alを含む粉体を得た。次に、ローラーハースキルンを用いて、当該粉体を室温から880℃まで1時間かけて昇温し、2時間保持することで焼成を行った後、1時間かけて700℃まで降温して2時間保持した後、3時間かけて室温まで冷却した。次に、得られた焼成物を、ロールミルとパルベライザーを用いて解砕し、Li含有遷移金属複合酸化物粉体Cを得た。
(Examples 26 to 27, Comparative Example 16, Reference Example 5)
A metal salt solution was prepared by dissolving nickel nitrate, cobalt nitrate, and aluminum nitrate in pure water so that the molar ratios of Ni, Co, and Al atoms were 8: 1: 1, respectively. Next, the metal salt solution is dropped while stirring a solution in which lithium carbonate is added and dispersed in pure water so that the molar ratio of lithium to the total of the metal elements is 1.00: 1. A slurry containing Ni, Co, and Al was prepared. Next, the slurry was spray-dried using a micro mist dryer having a three-fluid nozzle to obtain a powder containing Li, Ni, Co, and Al. Next, using a roller hearth kiln, the powder was heated from room temperature to 880 ° C. over 1 hour and held for 2 hours. After firing, the temperature was lowered to 700 ° C. over 1 hour. After maintaining the time, it was cooled to room temperature over 3 hours. Next, the obtained fired product was pulverized using a roll mill and a pulverizer to obtain a Li-containing transition metal composite oxide powder C.

(実施例28〜29、比較例17、参考例6)
Ni、Co、Mg原子のモル比がそれぞれ8:1:1になるように硝酸ニッケル、硝酸コバルト、硝酸マグネシウムを純水に溶解した金属塩溶液を作製した。次に、炭酸リチウムを、リチウムと前記金属元素合計とのモル比が1.04:1になるように純水に添加して分散させた溶液を撹拌しながら前記金属塩溶液を滴下し、Li、Ni、Co、Mgを含むスラリーを作製した。次に、前記スラリーを、三流体ノズルを有するマイクロミストドライヤーを用いて噴霧乾燥し、Li、Ni、Co、Mgを含む粉体を得た。次に、ローラーハースキルンを用いて、当該粉体を室温から880℃まで1時間かけて昇温し、2時間保持することで焼成を行った後、1時間かけて700℃まで降温して2時間保持した後、3時間かけて室温まで冷却した。次に、得られた焼成物を、ロールミルとパルベライザーを用いて解砕し、Li含有遷移金属複合酸化物粉体Dを得た。
(Examples 28 to 29, Comparative Example 17, Reference Example 6)
A metal salt solution was prepared by dissolving nickel nitrate, cobalt nitrate, and magnesium nitrate in pure water so that the molar ratios of Ni, Co, and Mg atoms were 8: 1: 1, respectively. Next, the metal salt solution is dropped while stirring a solution in which lithium carbonate is added and dispersed in pure water so that the molar ratio of lithium to the total of the metal elements is 1.04: 1. A slurry containing Ni, Co, and Mg was prepared. Next, the slurry was spray-dried using a micro mist dryer having a three-fluid nozzle to obtain a powder containing Li, Ni, Co, and Mg. Next, using a roller hearth kiln, the powder was heated from room temperature to 880 ° C. over 1 hour and held for 2 hours. After firing, the temperature was lowered to 700 ° C. over 1 hour. After maintaining the time, it was cooled to room temperature over 3 hours. Next, the obtained fired product was pulverized using a roll mill and a pulverizer to obtain a Li-containing transition metal composite oxide powder D.

(実施例30〜31、比較例18、参考例7)
Ni、Mn、Co原子のモル比がそれぞれ5:3:2になるように硝酸ニッケル、硝酸マンガン、硝酸コバルトを純水に溶解した金属塩溶液を作製した。次に、炭酸リチウムを、リチウムと前記金属元素合計とのモル比が1.04:1になるように純水に添加して分散させた溶液を撹拌しながら前記金属塩溶液を滴下し、Li、Ni、Mn、Coを含むスラリーを作製した。次に、前記スラリーを、三流体ノズルを有するマイクロミストドライヤーを用いて噴霧乾燥し、Li、Ni、Mn、Coを含む粉体を得た。次に、ローラーハースキルンを用いて、当該粉体を室温から900℃まで1時間かけて昇温し、2時間保持することで焼成を行った後、1時間かけて700℃まで降温して2時間保持した後、3時間かけて室温まで冷却した。次に、得られた焼成物を、ロールミルとパルベライザーを用いて解砕し、Li含有遷移金属複合酸化物粉体Eを得た。
(Examples 30 to 31, Comparative Example 18, Reference Example 7)
A metal salt solution was prepared by dissolving nickel nitrate, manganese nitrate, and cobalt nitrate in pure water so that the molar ratios of Ni, Mn, and Co atoms were 5: 3: 2, respectively. Next, the metal salt solution is dropped while stirring a solution in which lithium carbonate is added and dispersed in pure water so that the molar ratio of lithium to the total of the metal elements is 1.04: 1. A slurry containing Ni, Mn, and Co was prepared. Next, the slurry was spray-dried using a micro mist dryer having a three-fluid nozzle to obtain a powder containing Li, Ni, Mn, and Co. Next, using a roller hearth kiln, the powder was heated from room temperature to 900 ° C. over 1 hour, held for 2 hours, fired, and then cooled to 700 ° C. over 1 hour. After maintaining the time, it was cooled to room temperature over 3 hours. Next, the obtained fired product was pulverized using a roll mill and a pulverizer to obtain a Li-containing transition metal composite oxide powder E.

(実施例32〜33、比較例19、参考例8)
Ni、Co、Al、Mg原子のモル比がそれぞれ5:3:1:1になるように硝酸ニッケル、硝酸コバルト、硝酸アルミニウム、硝酸マグネシウムを純水に溶解した金属塩溶液を作製した。次に、炭酸リチウムを、リチウムと前記金属元素合計とのモル比が1.04:1になるように純水に添加して分散させた溶液を撹拌しながら前記金属塩溶液を滴下し、Li、Ni、Co、Al、Mgを含むスラリーを作製した。次に、前記スラリーを、三流体ノズルを有するマイクロミストドライヤーを用いて噴霧乾燥し、Li、Ni、Co、Al、Mgを含む粉体を得た。次に、ローラーハースキルンを用いて、当該粉体を室温から900℃まで1時間かけて昇温し、2時間保持することで焼成を行った後、1時間かけて700℃まで降温して2時間保持した後、3時間かけて室温まで冷却した。次に、得られた焼成物を、ロールミルとパルベライザーを用いて解砕し、Li含有遷移金属複合酸化物粉体Fを得た。
(Examples 32-33, Comparative Example 19, Reference Example 8)
A metal salt solution was prepared by dissolving nickel nitrate, cobalt nitrate, aluminum nitrate, and magnesium nitrate in pure water so that the molar ratios of Ni, Co, Al, and Mg atoms were 5: 3: 1: 1, respectively. Next, the metal salt solution is dropped while stirring a solution in which lithium carbonate is added and dispersed in pure water so that the molar ratio of lithium to the total of the metal elements is 1.04: 1. A slurry containing Ni, Co, Al, and Mg was prepared. Next, the slurry was spray-dried using a micro mist dryer having a three-fluid nozzle to obtain a powder containing Li, Ni, Co, Al, and Mg. Next, using a roller hearth kiln, the powder was heated from room temperature to 900 ° C. over 1 hour, held for 2 hours, fired, and then cooled to 700 ° C. over 1 hour. After maintaining the time, it was cooled to room temperature over 3 hours. Next, the obtained fired product was pulverized using a roll mill and a pulverizer to obtain a Li-containing transition metal composite oxide powder F.

−無機セラミックス粉の準備−
実施例で用いるために、市販の無機セラミックス粉を適宜ジェットミルで粉砕し所定の粒度の物を作製した。粒度はレーザー回折・散乱式粒子径分布測定装置(日機装株式会社製マイクロトラック)で測定し、得られた粒度分布曲線における体積累積頻度50%の粒径を平均粒径とした。なお、比較例3で用いたAl23は本機での測定範囲より小さい粒度であったため、走査型電子顕微鏡で観察したところ0.01μm程度であった。
-Preparation of inorganic ceramic powder-
In order to use in Examples, commercially available inorganic ceramic powder was appropriately pulverized by a jet mill to prepare a product having a predetermined particle size. The particle size was measured with a laser diffraction / scattering particle size distribution measuring device (Microtrack manufactured by Nikkiso Co., Ltd.), and the particle size with a volume cumulative frequency of 50% in the obtained particle size distribution curve was defined as the average particle size. Since Al 2 O 3 used in Comparative Example 3 had a particle size smaller than the measurement range of this machine, it was about 0.01 μm when observed with a scanning electron microscope.

−小粒径のLi含有遷移金属複合酸化物の作製−
比較例で用いるために、前記パルベライザーで粉砕後のLi含有遷移金属複合酸化物の粉体を、さらにジェットミルで粉砕し比較例で添加用の小粒径のLi含有遷移金属複合酸化物を作製した。
-Preparation of small particle size Li-containing transition metal composite oxide-
For use in a comparative example, the Li-containing transition metal composite oxide powder pulverized by the pulverizer is further pulverized by a jet mill to produce a small-sized Li-containing transition metal composite oxide for addition in the comparative example. did.

(評価)
−Li含有遷移金属複合酸化物組成の評価−
各Li含有遷移金属複合酸化物中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成を測定した。また、リチウム含有量はイオンクロマト法で、酸素含有量はLECO法で測定した。
実施例1〜7、9〜23、比較例1〜14、参考例1〜3、9で用いたLi含有遷移金属複合酸化物Aの組成はLi1.04Ni0.80Mn0.10Co0.102.15であった。
実施例24〜25、比較例15、参考例4で用いたLi含有遷移金属複合酸化物Bの組成はLi1.02Ni0.80Mn0.202.12であった。
実施例26〜27、比較例16、参考例5で用いたLi含有遷移金属複合酸化物Cの組成はLi1.00Ni0.80Co0.10Al0.102.04であった。
実施例28〜29、比較例17、参考例6で用いたLi含有遷移金属複合酸化物Dの組成はLi1.04Ni0.80Co0.10Mg0.102.07であった。
実施例30〜31、比較例18、参考例7で用いたLi含有遷移金属複合酸化物Eの組成はLi1.04Ni0.50Mn0.30Co0.202.12であった。
実施例32〜33、比較例19、参考例8で用いたLi含有遷移金属複合酸化物Fの組成はLi1.04Ni0.50Co0.30Al0.10Mg0.102.16であった。
(Evaluation)
-Evaluation of Li-containing transition metal composite oxide composition-
The metal content in each Li-containing transition metal composite oxide was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition of each metal was measured. The lithium content was measured by ion chromatography, and the oxygen content was measured by LECO.
Example 1 7,9~ 23, Comparative Examples 1 to 14, Reference Examples 1 to 3, the composition of the Li-containing transition metal composite oxide A used in 9 was Li 1.04 Ni 0.80 Mn 0.10 Co 0.10 O 2.15 .
The composition of the Li-containing transition metal composite oxide B used in Examples 24 to 25, Comparative Example 15, and Reference Example 4 was Li 1.02 Ni 0.80 Mn 0.20 O 2.12 .
The composition of the Li-containing transition metal composite oxide C used in Examples 26 to 27, Comparative Example 16, and Reference Example 5 was Li 1.00 Ni 0.80 Co 0.10 Al 0.10 O 2.04 .
The composition of the Li-containing transition metal composite oxide D used in Examples 28 to 29, Comparative Example 17, and Reference Example 6 was Li 1.04 Ni 0.80 Co 0.10 Mg 0.10 O 2.07 .
The composition of the Li-containing transition metal composite oxide E used in Examples 30 to 31, Comparative Example 18, and Reference Example 7 was Li 1.04 Ni 0.50 Mn 0.30 Co 0.20 O 2.12 .
The composition of the Li-containing transition metal composite oxide F used in Examples 32-33, Comparative Example 19, and Reference Example 8 was Li 1.04 Ni 0.50 Co 0.30 Al 0.10 Mg 0.10 O 2.16 .

−平均粒径の評価−
大粒径のLi含有遷移金属複合酸化物の粒度分布、及び、小粒径のLi含有遷移金属複合酸化物の粒度分布(比較例のみ)を、それぞれレーザー回折・散乱式粒子径分布測定装置(日機装株式会社製マイクロトラック)によって測定し、得られた粒度分布曲線における体積累積頻度50%の粒径を平均粒径とした。
-Evaluation of average particle size-
Laser diffraction / scattering type particle size distribution measuring device (larger particle size Li-containing transition metal composite oxide particle size distribution and smaller particle size Li-containing transition metal complex oxide particle size distribution (only for comparative examples)) Nikkiso Co., Ltd. Microtrac) measured, and the particle size distribution curve obtained in the particle size distribution curve, the particle size of the volume cumulative frequency 50% was taken as the average particle size.

−正極活物質の作製−
上述のLi含有遷移金属複合酸化物の粉体に、上述の無機セラミックス粉(実施例及び比較例)或いは上述の小粒径のLi含有遷移金属複合酸化物(比較例)を添加し、ボールミルを用いて混合することで、リチウムイオン電池用正極活物質を作製した。
-Production of positive electrode active material-
Add the above-mentioned inorganic ceramic powder (Examples and Comparative Examples) or the above-mentioned small particle size Li-containing transition metal composite oxide (Comparative Example) to the above-mentioned Li-containing transition metal composite oxide powder, By using and mixing, the positive electrode active material for lithium ion batteries was produced.

−電池特性の評価−
正極活物質96wt%、PVDF1.6wt%、カーボンブラック2.4wt%を秤量し、PVDFをN−メチルピロリドンに溶解したものに、正極活物質とカーボンブラックを混合したものを添加して得られたスラリーをAl箔上に塗布して乾燥後にプレスして正極とした。対極をLi金属、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて評価用の2032型コインセルを作製した。25℃恒温槽中で、充放電電圧範囲は3.0V〜4.3Vとし、すべてのサイクルで充電は0.1Cで行い、放電は1サイクル目と21サイクル目は0.1Cで行い、その他のサイクルは1Cで行った。2サイクル目1Cにおける放電容量を1サイクル目0.1Cにおける放電容量で除して初期レート特性、22サイクル目1Cにおける放電容量を21サイクル目0.1Cにおける放電容量で除して21サイクル後のレート特性を算出した。
これらの結果を表1、2に示す。
-Evaluation of battery characteristics-
Obtained by weighing 96 wt% of the positive electrode active material, 1.6 wt% of PVDF, and 2.4 wt% of carbon black and adding PVDF dissolved in N-methylpyrrolidone to a mixture of the positive electrode active material and carbon black. The slurry was applied on an Al foil, dried and pressed to obtain a positive electrode. A 2032 type coin cell for evaluation was produced using Li metal as a counter electrode and 1M-LiPF6 dissolved in EC-DMC (1: 1) in an electrolytic solution. In a constant temperature bath at 25 ° C., the charge / discharge voltage range is 3.0 V to 4.3 V, the charge is performed at 0.1 C in all cycles, the discharge is performed at 0.1 C in the first and 21st cycles, and others The cycle was performed at 1C. The discharge capacity at the second cycle 1C is divided by the discharge capacity at the first cycle 0.1C and the initial rate characteristic, and the discharge capacity at the 22nd cycle 1C is divided by the discharge capacity at the 21st cycle 0.1C and after 21 cycles. Rate characteristics were calculated.
These results are shown in Tables 1 and 2.

(評価結果)
表1及び2は、ベースとなる大粒径のLi含有遷移金属複合酸化物の組成によって整理されている。なお、参考例1〜8は、ベースとなる大粒子のみのサンプルである。正極活物質は、一般に組成によって特性が異なる。例えば、Niが多い方が容量は高いが、レート、サイクル経過後のレートが悪くなるという特徴を有している。
ベースとなる大粒径のLi含有遷移金属複合酸化物の組成ごとに比較した場合、セラミックス粒子添加により、1サイクル目の容量はほぼ変わらずに、サイクル経過後のレートが向上していることがわかる。また、同じ組成の小粒径のLi含有遷移金属複合酸化物粒子を添加した場合、初回のレートはわずかに改善が見られるものの、サイクル経過後は、添加しない場合より大きく劣化していることがわかる。
また、実施例1〜7、9〜33、参考例9は、いずれも、Li含有遷移金属複合酸化物、及び、平均粒子径が0.02〜1μmで10〜1000wtppmの無機セラミックスを含むため、電池特性がいずれも良好であった。
また、比較例1〜19は、いずれも、小粒子として無機セラミックスを含まない、或いは、小粒子として無機セラミックスを含むが、その平均粒子径が0.02〜1μm且つ10〜1000wtppmの範囲外であったため、電池特性の少なくともいずれかが不良であった。
(Evaluation results)
Tables 1 and 2 are arranged according to the composition of the large-particle-size Li-containing transition metal composite oxide as a base. Reference Examples 1 to 8 are samples with only large particles as a base. The positive electrode active material generally has different characteristics depending on the composition. For example, although the capacity is higher when the amount of Ni is higher, the rate and the rate after elapse of the cycle are deteriorated.
When compared for each composition of the Li-containing transition metal composite oxide having a large particle size as a base, the rate after the cycle elapses without any change in the capacity of the first cycle due to the addition of ceramic particles. Recognize. In addition, when Li-containing transition metal composite oxide particles having the same composition and small particle diameter are added, the initial rate is slightly improved, but after the cycle, it is greatly deteriorated compared to the case where it is not added. Recognize.
Moreover, since Examples 1-7 , 9-33 , and Reference Example 9 all include Li-containing transition metal composite oxide and inorganic ceramics having an average particle diameter of 0.02-1 μm and 10-1000 wtppm, The battery characteristics were all good.
In addition, Comparative Examples 1 to 19 do not include inorganic ceramics as small particles, or include inorganic ceramics as small particles, but the average particle diameter is outside the range of 0.02 to 1 μm and 10 to 1000 wtppm. As a result, at least one of the battery characteristics was defective.

Claims (4)

Li含有遷移金属複合酸化物、及び、
平均粒子径が0.18〜1μmで10〜1000wtppmの無機セラミックス
を含み、
前記Li含有遷移金属複合酸化物が、組成式:Li1+xNi1-yMey2+z
(前記式において、MeはMn、Co、Al及びMgのいずれか一種以上であり、xは−0.1〜0.1であり、yはMeで示される金属の合計の組成を示し且つ0.1〜0.5であり、zは−0.1〜0.2である。)
で表され
前記無機セラミックスが、Al、Si、Mg、Zr、Yから選ばれる1種類以上の元素の酸化物、窒化物、炭化物、又は、これらの組合せであり、
前記Li含有遷移金属複合酸化物の平均粒子径が4〜12μmであるリチウムイオン電池用正極活物質。
Li-containing transition metal composite oxide, and
Including 10 to 1000 wtppm inorganic ceramics having an average particle size of 0.18 to 1 μm,
The Li-containing transition metal complex oxide has a composition formula: Li 1 + x Ni 1-y Me y O 2 + z
(In the above formula, Me is one or more of Mn, Co, Al, and Mg, x is −0.1 to 0.1, y is the total composition of metals represented by Me, and 0 .1 to 0.5, and z is -0.1 to 0.2.)
In expressed,
The inorganic ceramic is an oxide, nitride, carbide, or a combination of one or more elements selected from Al, Si, Mg, Zr, Y;
The positive electrode active material for an average particle diameter of the lithium-ion battery Ru 4~12μm der of the Li-containing transition metal composite oxide.
前記無機セラミックスが、Al23、SiO2、MgO、ZrO2、SiC、及び、YSZ(イットリア安定化ジルコニア)の群から選択された1種以上である請求項に記載のリチウムイオン電池用正極活物質。 2. The lithium ion battery according to claim 1 , wherein the inorganic ceramic is at least one selected from the group of Al 2 O 3 , SiO 2 , MgO, ZrO 2 , SiC, and YSZ (yttria stabilized zirconia). Positive electrode active material. 請求項1または2に記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。 The positive electrode for lithium ion batteries using the positive electrode active material for lithium ion batteries of Claim 1 or 2 . 請求項に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。 The lithium ion battery using the positive electrode for lithium ion batteries of Claim 3 .
JP2015040794A 2015-03-02 2015-03-02 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery Active JP6050403B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015040794A JP6050403B2 (en) 2015-03-02 2015-03-02 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TW104137099A TWI574451B (en) 2015-03-02 2015-11-11 A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
KR1020160009524A KR20160106487A (en) 2015-03-02 2016-01-26 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
CN201610069090.9A CN105938901B (en) 2015-03-02 2016-02-01 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040794A JP6050403B2 (en) 2015-03-02 2015-03-02 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Publications (2)

Publication Number Publication Date
JP2016162602A JP2016162602A (en) 2016-09-05
JP6050403B2 true JP6050403B2 (en) 2016-12-21

Family

ID=56847137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040794A Active JP6050403B2 (en) 2015-03-02 2015-03-02 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery

Country Status (4)

Country Link
JP (1) JP6050403B2 (en)
KR (1) KR20160106487A (en)
CN (1) CN105938901B (en)
TW (1) TWI574451B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7091608B2 (en) * 2017-03-22 2022-06-28 株式会社村田製作所 Positive electrodes, batteries and their manufacturing methods, battery packs, electronic devices, electric vehicles, power storage devices and power systems
KR102327530B1 (en) 2018-05-21 2021-11-17 주식회사 엘지화학 Positive electrode for secondary battery and secondary battery comprising the same
CN108777296A (en) * 2018-06-04 2018-11-09 国联汽车动力电池研究院有限责任公司 A kind of surface is modified nickelic tertiary cathode material and its prepares and its manufactured battery
CN109065858B (en) * 2018-07-25 2020-08-04 国联汽车动力电池研究院有限责任公司 Surface modified ternary positive electrode material, preparation method thereof and battery prepared from surface modified ternary positive electrode material
US20230033554A1 (en) * 2019-12-26 2023-02-02 Zeon Corporation Binder composition for secondary battery, slurry composition for secondary battery, solid electrolyte-containing layer, all-solid-state secondary battery, and method of producing all-solid-state secondary battery
CN115425196A (en) * 2022-08-30 2022-12-02 山东大学 Oxide-coated sodium battery positive electrode material and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69802597T2 (en) * 1997-03-13 2002-08-01 Matsushita Electric Ind Co Ltd Lithium secondary polymer battery
JP2000082466A (en) 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery
JP2005276454A (en) * 2004-03-23 2005-10-06 Sumitomo Metal Mining Co Ltd Positive electrode active material for lithium-ion secondary battery and its manufacturing method
JP4766840B2 (en) 2004-04-12 2011-09-07 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4798964B2 (en) * 2004-05-28 2011-10-19 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2008041502A (en) * 2006-08-08 2008-02-21 Sony Corp Positive electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous secondary battery
TW200840121A (en) * 2007-03-30 2008-10-01 Nippon Chemical Ind Lithium transition metal complex oxide for lithium ion secondary battery cathode active material and method for producing the same, lithium ion secondary battery cathode active material, and lithium ion secondary battery
JP4466674B2 (en) * 2007-03-30 2010-05-26 Tdk株式会社 Electrode and electrochemical device
JP2009099523A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Lithium secondary battery
JP2011181386A (en) * 2010-03-02 2011-09-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN105514420A (en) * 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery

Also Published As

Publication number Publication date
CN105938901A (en) 2016-09-14
KR20160106487A (en) 2016-09-12
JP2016162602A (en) 2016-09-05
TW201633588A (en) 2016-09-16
TWI574451B (en) 2017-03-11
CN105938901B (en) 2022-03-22

Similar Documents

Publication Publication Date Title
JP6050403B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI423504B (en) A positive electrode for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
JP6407754B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery
JP6533733B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery, and method for manufacturing positive electrode active material for lithium ion battery
WO2011108389A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP2018523277A (en) Cathode active material for lithium ion secondary battery, its preparation method and use
US20130327979A1 (en) Lithium-Manganese-Type Solid Solution Positive Electrode Material
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JPWO2014051148A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP7292574B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2004235144A (en) Nonaqueous electrolyte secondary battery and negative electrode active substance therefor
KR20180059736A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6399737B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2014238960A (en) Metal oxide, negative electrode active material for sodium ion battery, negative electrode for sodium ion battery, and sodium ion battery
JP2016122626A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5997087B2 (en) Method for producing positive electrode material for lithium secondary battery
JP2015041600A (en) Method of producing lithium-containing composite oxide for lithium ion secondary battery
JP6294219B2 (en) Method for producing lithium cobalt composite oxide
WO2015072093A1 (en) Positive electrode active material for lithium ion secondary batteries, method for producing same and lithium ion secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPWO2013125668A1 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
JP5876739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR101285171B1 (en) Method for manufacturing lithium titanium oxide, lithium titanium oxide manufactured by the same and lithium secondary battery comprising the lithium titanium oxide
JP2011187419A (en) Positive electrode for lithium ion battery, and lithium ion battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6050403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250