JP2005327644A - Manufacturing method for positive electrode material for lithium secondary battery, the positive electrode material, and the lithium secondary battery - Google Patents

Manufacturing method for positive electrode material for lithium secondary battery, the positive electrode material, and the lithium secondary battery Download PDF

Info

Publication number
JP2005327644A
JP2005327644A JP2004145784A JP2004145784A JP2005327644A JP 2005327644 A JP2005327644 A JP 2005327644A JP 2004145784 A JP2004145784 A JP 2004145784A JP 2004145784 A JP2004145784 A JP 2004145784A JP 2005327644 A JP2005327644 A JP 2005327644A
Authority
JP
Japan
Prior art keywords
lithium
manganese
cobalt
nickel
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004145784A
Other languages
Japanese (ja)
Inventor
Kenji Hara
賢二 原
Shoji Hirahata
昇次 平畑
Katsunori Suzuki
克典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004145784A priority Critical patent/JP2005327644A/en
Publication of JP2005327644A publication Critical patent/JP2005327644A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for positive electrode material with homogeneous crystal structure for a lithium secondary battery, which enables the lithium secondary battery to output high power, even in a low temperature environment. <P>SOLUTION: Lithium hydroxide is added to mixed water solution, containing nickel sulfate, manganese sulfate, cobalt sulfate and magnesium sulfate which are mixed as raw materials, in order to coprecipitate manganese, cobalt and magnesium. Obtained coprecipitation deposit and lithium carbonate are mixed and baked at the temperature of 900°C for 8 hours, and thereby composite oxide containing lithium with lamellar crystal structure is obtained. The composite oxide containing lithium is represented by the chemical formula LiNi<SB>a</SB>Mn<SB>b</SB>Co<SB>c</SB>Mg<SB>d</SB>O<SB>2</SB>, wherein at least some nickel, some manganese or some cobalt is replaced by magnesium, valence a>b≥c, and 0.001≤d≤0.02. Contraction of the lamellar crystal in low temperature environment is suppressed by containing of magnesium in the crystal structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はリチウム二次電池用正極材の製造方法、正極材及びリチウム二次電池に係り、特に、層状結晶構造を有しリチウム、ニッケル、マンガン、コバルトの元素を含むリチウム含有複合酸化物を用いたリチウム二次電池用正極材の製造方法、該製造方法で製造された正極材及び該正極材を用いたリチウム二次電池に関する。   The present invention relates to a method for producing a positive electrode material for a lithium secondary battery, a positive electrode material, and a lithium secondary battery, and in particular, a lithium-containing composite oxide having a layered crystal structure and containing elements of lithium, nickel, manganese, and cobalt. The present invention relates to a method for producing a positive electrode material for a lithium secondary battery, a positive electrode material produced by the production method, and a lithium secondary battery using the positive electrode material.

従来、再充電可能な二次電池の分野では、鉛電池、ニッケル−カドミウム電池、ニッケル−水素電池等の水溶液系電池が主流であった。近年、地球温暖化や燃料枯渇の問題から電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド自動車(HEV)が着目され、これらの電源となる電池には高容量、高出力が求められるようになってきた。このような要求に合致する電池として、高電圧を有するリチウム二次電池が注目されている。   Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been mainstream. In recent years, electric vehicles (EVs) and hybrid vehicles (HEVs) that assist a part of driving with electric motors have attracted attention due to problems of global warming and fuel depletion, and batteries serving as power sources have high capacity and high output. It has come to be required. As a battery that meets such requirements, a lithium secondary battery having a high voltage has attracted attention.

リチウム二次電池の正極材には、リチウム含有複合酸化物が用いられており、中でも容量やサイクル特性等のバランスからコバルト酸リチウムが用いられているが、原料であるコバルトの資源量が少なくコスト高となることから、EVやHEV用の正極材としてはマンガン酸リチウム等のマンガンを含むリチウム含有複合酸化物が有望視され開発が進められている。このリチウム含有複合酸化物がスピネル結晶構造の場合には、スピネル結晶構造が熱安定性を有するため、安全性に優れるリチウム二次電池を得ることができる。一方、層状結晶構造のリチウム含有複合酸化物では、リチウムイオンが二次元的に移動するため、三次元的に移動するスピネル結晶構造より常温環境下でのリチウムイオンの移動性が高く出力特性に優れるリチウム二次電池を得ることができる。ところが、低温環境下では層状結晶が収縮するため、リチウムイオンの移動性が低下して出力の低下を招く。   A lithium-containing composite oxide is used for the positive electrode material of a lithium secondary battery. Among them, lithium cobaltate is used because of the balance of capacity and cycle characteristics, but the cost of the raw material cobalt is small and the cost is low. Therefore, lithium-containing composite oxides containing manganese such as lithium manganate are promising as positive electrode materials for EVs and HEVs, and are being developed. When this lithium-containing composite oxide has a spinel crystal structure, since the spinel crystal structure has thermal stability, a lithium secondary battery excellent in safety can be obtained. On the other hand, in lithium-containing composite oxides with a layered crystal structure, lithium ions move two-dimensionally, so the lithium ion mobility is higher at room temperature than the spinel crystal structure that moves three-dimensionally and the output characteristics are excellent. A lithium secondary battery can be obtained. However, since the layered crystal shrinks in a low temperature environment, the mobility of lithium ions is reduced, leading to a reduction in output.

一方、負極材には、一般に、天然黒鉛や燐片状、塊状等の人造黒鉛、メソフェーズピッチ系黒鉛等の黒鉛系炭素材料、フルフリルアルコール等のフラン樹脂等を焼成した非晶質炭素材料が用いられている。非晶質炭素材料は、理論容量値が黒鉛系炭素材料より高いため、容量、サイクル特性に優れるリチウム二次電池を得ることができる。また、充放電時の電圧特性に傾きを有しているため、電圧測定で電池の状態を容易かつ正確に推定することが可能となる。ところが、非晶質炭素材料は不可逆容量が黒鉛系炭素材料より大きいため、電池での高容量化が難しく、また、負極材粒子間の電子伝導性が黒鉛系炭素材料に比べて劣る、という欠点がある。これに対して、黒鉛系炭素材料は、不可逆容量が小さく電圧特性も平坦であるため、高容量、高出力のリチウム二次電池を得ることができるが、充放電に伴う結晶の体積変化が大きいため、負極材粒子間の電子伝導性を長期間維持できず早期に寿命に至り、また、大電流密度での充電受け入れ性が非晶質炭素材料に比べて劣る、という問題がある。   On the other hand, the negative electrode material is generally an amorphous carbon material obtained by firing natural graphite, artificial graphite such as flakes or lumps, graphite carbon material such as mesophase pitch graphite, or furan resin such as furfuryl alcohol. It is used. Since the amorphous carbon material has a theoretical capacity value higher than that of the graphite-based carbon material, a lithium secondary battery excellent in capacity and cycle characteristics can be obtained. In addition, since the voltage characteristics during charging and discharging have an inclination, it is possible to easily and accurately estimate the state of the battery by voltage measurement. However, since the irreversible capacity of the amorphous carbon material is larger than that of the graphite-based carbon material, it is difficult to increase the capacity in the battery, and the electronic conductivity between the negative electrode particles is inferior to that of the graphite-based carbon material. There is. On the other hand, the graphite-based carbon material has a low irreversible capacity and flat voltage characteristics, so that a high-capacity, high-power lithium secondary battery can be obtained, but the volume change of the crystal accompanying charge / discharge is large. Therefore, there is a problem that the electron conductivity between the negative electrode material particles cannot be maintained for a long period of time and the life is reached early, and the charge acceptability at a large current density is inferior to that of the amorphous carbon material.

上述したEVやHEV用の電池では、充放電における電流密度が大きく、長寿命、高出力特性が要求されるため、複数個の単電池が接続されて用いられる。単電池の特性のバラツキが寿命や安全性を大きく左右することから、通常、制御システムを併用して単電池の電圧等を監視・制御することでバラツキの抑制が図られている。ところが、黒鉛系炭素材料では電圧特性が平坦であるため、電圧で電池の状態を正確に監視することが難しく、これを行うためには高精度な制御システムが必要となる。従って、EVやHEV用の電源に用いられるリチウム二次電池の負極材としては、非晶質炭素材料を主とすることが望ましく、正極材に層状結晶構造のリチウム含有複合酸化物を用いて、高出力化の改善を進めることが有望である。   The above-described batteries for EV and HEV have a large current density in charge / discharge, and require a long life and high output characteristics. Therefore, a plurality of single cells are connected and used. Since the variation in the characteristics of the single cells greatly affects the life and safety, usually, the variation is suppressed by monitoring and controlling the voltage of the single cells in combination with a control system. However, since the voltage characteristics of the graphite-based carbon material are flat, it is difficult to accurately monitor the state of the battery with the voltage, and in order to do this, a highly accurate control system is required. Therefore, as a negative electrode material of a lithium secondary battery used for a power source for EV or HEV, it is desirable to mainly use an amorphous carbon material, and a positive electrode material using a lithium-containing composite oxide having a layered crystal structure, It is promising to improve the output.

リチウム二次電池の性能向上を図るために、正極材では、粒子表面の改質や異種元素で構成元素の一部を置換することで、充放電に伴う結晶構造変化の低減や酸素との結合力の強化を図るための検討が種々行われている。また、リチウム二次電池の高出力化を図るためには、正負極合剤層内の電子伝導性を向上させる必要があり、正負極合剤に導電剤を添加したり、正負極合剤密度を大きくしたりして、導電ネットワークを確保する等の低抵抗化が行われている。   In order to improve the performance of lithium secondary batteries, in the cathode material, by modifying the particle surface and substituting some of the constituent elements with different elements, the crystal structure change due to charge and discharge is reduced and the bonding with oxygen Various studies have been conducted to strengthen the power. In addition, in order to increase the output of the lithium secondary battery, it is necessary to improve the electronic conductivity in the positive and negative electrode mixture layer, and a conductive agent is added to the positive and negative electrode mixture, and the positive and negative electrode mixture density is increased. For example, the resistance is reduced by securing a conductive network.

上述したように、正極材として主に用いられているコバルト酸リチウム、ニッケル酸リチウム、スピネル構造マンガン酸リチウムでは、それぞれ固有の長短所を有している。このため、例えば、層状岩塩構造ニッケル酸リチウムとスピネル構造マンガン酸リチウムとを混合して用いることでサイクル特性及び安全性を向上させる技術が開示されている(特許文献1参照)。また、コバルト、マンガン、ニッケルのうち2成分又は3成分を複合したリチウム含有複合酸化物が開発されている(例えば、特許文献2参照)。中でも、コバルト、ニッケル、マンガンの3成分系のリチウム含有複合酸化物は、熱安定性に優れるため、スピネル構造マンガン酸リチウムより若干劣る程度の安全性を有し、コバルト酸リチウムやニッケル酸リチウムと同等の容量のリチウム二次電池を得ることができる。   As described above, lithium cobaltate, lithium nickelate, and spinel structure lithium manganate, which are mainly used as positive electrode materials, each have their own advantages and disadvantages. For this reason, for example, a technique for improving cycle characteristics and safety by mixing and using a layered rock salt structure lithium nickelate and a spinel structure lithium manganate is disclosed (see Patent Document 1). Further, lithium-containing composite oxides in which two or three components of cobalt, manganese, and nickel are combined have been developed (see, for example, Patent Document 2). Among them, the three-component lithium-containing composite oxides of cobalt, nickel, and manganese are excellent in thermal stability, and therefore have safety slightly lower than that of the spinel structure lithium manganate. A lithium secondary battery having an equivalent capacity can be obtained.

特開2000−251892号公報JP 2000-251892 A 特開2002−231246号公報JP 2002-231246 A

しかしながら、上述した層状結晶構造を有するリチウム含有複合酸化物は、常温環境下では容量、出力特性に優れるものの、低温環境下では結晶の収縮によりリチウムイオンの移動が阻害されるため、出力が低下する、という問題がある。また、上述した3成分系のリチウム含有複合酸化物を作製する上では、成分が多い分高精度の条件管理が重要となる。例えば、均一な組成のリチウム含有複合酸化物を得るためには、均一に原料を混合する必要がある。更に、焼成時の温度や時間でリチウム含有複合酸化物の結晶成長の度合いが異なるため、温度や時間のバラツキが粒度分布や粒子密度のバラツキとなる。粒度分布や粒子密度にバラツキがあると、導電剤、バインダ及び非水電解液の分布に偏りが生じて電極反応にバラツキが生じるため、容量、出力共に低下しつつ、寿命性能や安全性も低下する。これらを回避するために高温、長時間で焼成してリチウム含有複合酸化物の結晶を大きく成長させると、組成ズレが生じ、粗大な粒子や強固な凝集物が生成されるため、焼成後に粉砕しても分散させることができない上に、粒子表面に欠損を形成することとなる。   However, the lithium-containing composite oxide having the above-described layered crystal structure is excellent in capacity and output characteristics in a normal temperature environment, but the output is lowered in a low temperature environment because the movement of lithium ions is hindered due to crystal shrinkage. There is a problem. In addition, in producing the above-described three-component lithium-containing composite oxide, highly precise condition management is important because of the large amount of components. For example, in order to obtain a lithium-containing composite oxide having a uniform composition, it is necessary to uniformly mix the raw materials. Furthermore, since the degree of crystal growth of the lithium-containing composite oxide differs depending on the temperature and time during firing, variations in temperature and time become variations in particle size distribution and particle density. If there is variation in the particle size distribution or particle density, the distribution of the conductive agent, binder, and non-aqueous electrolyte will be biased, resulting in variations in the electrode reaction. To do. In order to avoid these problems, if the crystal of the lithium-containing composite oxide grows greatly by baking at a high temperature for a long time, composition deviation occurs, and coarse particles and strong aggregates are generated. However, it cannot be dispersed, and defects are formed on the particle surface.

本発明は上記事案に鑑み、均質な結晶構造を有し低温環境下でも高出力化可能なリチウム二次電池用正極材の製造方法、該製造方法で製造された正極材及び該正極材を用いたリチウム二次電池を提供することを課題とする。   In view of the above circumstances, the present invention uses a method for producing a positive electrode material for a lithium secondary battery having a homogeneous crystal structure and capable of increasing the output even in a low temperature environment, the positive electrode material produced by the production method, and the positive electrode material. It is an object of the present invention to provide a lithium secondary battery.

上記課題を解決するために、本発明の第1の態様は、層状結晶構造を有しリチウム、ニッケル、マンガン、コバルト、マグネシウムの元素を含むリチウム含有複合酸化物を用いたリチウム二次電池用正極材の製造方法であって、少なくともニッケル、マンガン、コバルト、マグネシウムをそれぞれ含む化合物のそれぞれを溶媒に混合して混合溶液を準備し、前記準備した混合溶液中の前記少なくともニッケル、マンガン、コバルト、マグネシウムを共沈させ、選択的にリチウムを含む化合物を混合して複合酸化物前駆体を調製し、前記調製した複合酸化物前駆体を焼成して下記化学式(1)で表され、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすリチウム含有複合酸化物を作製する、ステップを含むことを特徴とする。   In order to solve the above problems, a first aspect of the present invention is a positive electrode for a lithium secondary battery using a lithium-containing composite oxide having a layered crystal structure and containing elements of lithium, nickel, manganese, cobalt, and magnesium. A method for producing a material comprising preparing a mixed solution by mixing each of compounds containing at least nickel, manganese, cobalt, and magnesium in a solvent, and at least the nickel, manganese, cobalt, and magnesium in the prepared mixed solution And a compound containing lithium is selectively mixed to prepare a composite oxide precursor. The prepared composite oxide precursor is calcined and represented by the following chemical formula (1), and the valence is a. A step of producing a lithium-containing composite oxide satisfying a relationship of> b ≧ c and 0.001 ≦ d ≦ 0.02.

第1の態様の製造方法では、少なくともニッケル、マンガン、コバルト、マグネシウムをそれぞれ含む化合物を溶媒に混合して準備した混合溶液中の化合物を共沈させ、リチウムを混合していないときには共沈物にリチウムを含む化合物を混合することで、調製される複合酸化物前駆体中で各元素がほぼ均等に分布し、各元素がほぼ均等に分布した複合酸化物前駆体を焼成することで、焼成温度を低温条件としても結晶がほぼ均質に成長するので、化学式(1)で表され、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすリチウム含有複合酸化物を組成ズレが生じることなく作製することができる。   In the production method of the first aspect, the compound in the prepared mixed solution is co-precipitated by mixing a compound containing at least nickel, manganese, cobalt, and magnesium with a solvent, and the lithium is not mixed into the co-precipitate. By mixing a compound containing lithium, each element is almost evenly distributed in the prepared composite oxide precursor, and by firing the composite oxide precursor in which each element is almost evenly distributed, the firing temperature Since the crystal grows almost uniformly even under low temperature conditions, a lithium-containing composite oxide represented by the chemical formula (1) and satisfying the relationships of valences a> b ≧ c and 0.001 ≦ d ≦ 0.02 is obtained. It can be produced without causing compositional deviation.

第1の態様において、準備するステップで、ニッケル、マンガン、コバルト、マグネシウムをそれぞれ含む化合物のそれぞれを、少なくとも酸化物、水酸化物、硝酸塩、硫酸塩及び炭酸塩から選択される1種とし、調製するステップで、リチウムを含む化合物を、少なくとも酸化物、水酸化物、硝酸塩、硫酸塩及び炭酸塩から選択される1種としてもよい。また、準備するステップないし調製するステップで、リチウム、ニッケル、マンガン、コバルト、マグネシウムをそれぞれ含む化合物のそれぞれに含まれるリチウム、ニッケル、マンガン、コバルト、マグネシウムを、化学式(1)の価数に対応するモル比で混合することが好ましい。   In the first aspect, in the preparing step, each of the compounds each including nickel, manganese, cobalt, and magnesium is one selected from at least an oxide, a hydroxide, a nitrate, a sulfate, and a carbonate. In this step, the compound containing lithium may be at least one selected from oxides, hydroxides, nitrates, sulfates and carbonates. Further, in the preparing step or the preparing step, lithium, nickel, manganese, cobalt, and magnesium contained in each of the compounds containing lithium, nickel, manganese, cobalt, and magnesium correspond to the valence of chemical formula (1). It is preferable to mix at a molar ratio.

本発明の第2の態様は、層状結晶構造を有しリチウム、ニッケル、マンガン、コバルトの元素を含むリチウム含有複合酸化物を用いたリチウム二次電池用正極材において、前記リチウム含有複合酸化物は、下記化学式(1)で表され、少なくとも前記ニッケル、マンガン及びコバルトの元素の一部がマグネシウム元素で置換されており、かつ、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすことを特徴とする。   According to a second aspect of the present invention, in the positive electrode material for a lithium secondary battery using a lithium-containing composite oxide having a layered crystal structure and containing elements of lithium, nickel, manganese, and cobalt, the lithium-containing composite oxide is , Represented by the following chemical formula (1), at least part of the elements of nickel, manganese and cobalt are substituted with magnesium element, and the valences are a> b ≧ c and 0.001 ≦ d ≦ 0. It satisfies the relationship of 02.

第2の態様の正極材では、リチウム含有複合酸化物が、化学式(1)で表され、少なくともニッケル、マンガン及びコバルトの元素の一部がマグネシウム元素で置換されており、かつ、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすことで、元素半径がニッケル、マンガン、コバルトより大きいマグネシウムが結晶中に含まれているため、低温環境下でも層状結晶の収縮が抑制されるので、リチウム含有複合酸化物を用いたリチウム二次電池では低温環境下でもリチウムイオンの移動を確保することができる。   In the positive electrode material of the second aspect, the lithium-containing composite oxide is represented by the chemical formula (1), at least a part of nickel, manganese, and cobalt elements are substituted with magnesium elements, and the valence is a. > B ≧ c and 0.001 ≦ d ≦ 0.02, satisfying the relationship of nickel, manganese, and magnesium larger than cobalt in the crystal, so the layered crystal shrinks even in a low temperature environment Therefore, in the lithium secondary battery using the lithium-containing composite oxide, movement of lithium ions can be ensured even in a low temperature environment.

本発明の第3の態様は、層状結晶構造を有しリチウム、ニッケル、マンガン、コバルトの元素を含むリチウム含有複合酸化物を用いた正極材及び導電剤を含む正極板と、リチウムイオンを吸蔵、放出可能な負極材を含む負極板とを備えたリチウム二次電池において、前記リチウム含有複合酸化物は、下記化学式(1)で表され、少なくとも前記ニッケル、マンガン及びコバルトの元素の一部がマグネシウム元素で置換されており、かつ、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすことを特徴とする。   A third aspect of the present invention is a positive electrode plate having a layered crystal structure and using a lithium-containing composite oxide containing lithium, nickel, manganese, and cobalt elements and a conductive agent, and occlusion of lithium ions. In the lithium secondary battery including a negative electrode plate including a releasable negative electrode material, the lithium-containing composite oxide is represented by the following chemical formula (1), and at least some of the elements of nickel, manganese, and cobalt are magnesium. It is substituted with an element, and the valence satisfies the relationship of a> b ≧ c and 0.001 ≦ d ≦ 0.02.

第3の態様のリチウム二次電池では、リチウム含有複合酸化物が、化学式(1)で表され、少なくともニッケル、マンガン及びコバルトの元素の一部がマグネシウム元素で置換されており、かつ、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすことで、元素半径がニッケル、マンガン、コバルトより大きいマグネシウムが結晶中に含まれているため、低温環境下でも層状結晶の収縮が抑制されるので、リチウムイオンの移動を確保して高出力を発揮することができる。   In the lithium secondary battery of the third aspect, the lithium-containing composite oxide is represented by the chemical formula (1), and at least a part of nickel, manganese, and cobalt elements are substituted with magnesium elements, and the valence Satisfies the relationship of a> b ≧ c and 0.001 ≦ d ≦ 0.02, and the element radius is nickel, manganese, and magnesium larger than cobalt is contained in the crystal. Therefore, the movement of lithium ions can be secured and high output can be exhibited.

本発明によれば、リチウム含有複合酸化物を構成する少なくともニッケル、マンガン、コバルト、マグネシウムのそれぞれを含む化合物を混合し少なくともニッケル、マンガン、コバルト、マグネシウムを共沈させ、選択的にリチウムを含む化合物を混合して焼成することで、焼成温度を低温条件としても結晶がほぼ均質に成長するので、化学式(1)で表され、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすリチウム含有複合酸化物を組成ズレが生じることなく均質に作製することができ、作製されたリチウム含有複合酸化物では、元素半径がニッケル、マンガン、コバルトより大きいマグネシウムが結晶中に含まれているため、低温環境下でも層状結晶の収縮を抑制することができ、リチウム含有複合酸化物を用いたリチウム二次電池では、低温環境下でもリチウムイオンの移動を確保して高出力を発揮することができる、という効果を得ることができる。   According to the present invention, a compound containing at least nickel, manganese, cobalt and magnesium constituting a lithium-containing composite oxide is mixed and at least nickel, manganese, cobalt and magnesium are co-precipitated, and a compound containing lithium selectively. Since the crystals grow almost uniformly even when the firing temperature is set to a low temperature condition, the valence is expressed by the chemical formula (1), and the valences are a> b ≧ c and 0.001 ≦ d ≦ 0. Lithium-containing composite oxide satisfying the relationship of 02 can be produced uniformly without causing composition deviation. In the produced lithium-containing composite oxide, magnesium having an element radius greater than nickel, manganese, and cobalt is present in the crystal. Therefore, the shrinkage of the layered crystal can be suppressed even in a low temperature environment, and the lithium-containing composite oxide is used. The Um secondary battery, it is possible to obtain an effect that can exert a high output to ensure the movement of lithium ions even in a low temperature environment.

以下、図面を参照して、本発明を円筒型リチウムイオン二次電池に適用した実施の形態について説明する。   Embodiments in which the present invention is applied to a cylindrical lithium ion secondary battery will be described below with reference to the drawings.

(構成)
本実施形態の円筒型リチウムイオン二次電池20は、図1に示すように、電池容器となるニッケルメッキが施されたスチール製で有底円筒状の電池缶7及びポリプロピレン樹脂製で中空円筒状の巻き芯1の周囲に帯状の正極板及び負極板がセパレータを介して断面渦巻状に捲回された極板群6を有している。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 20 of the present embodiment is made of nickel-plated steel battery-bottomed battery can 7 and a polypropylene resin hollow cylinder as shown in FIG. Around the winding core 1, there is an electrode plate group 6 in which a strip-like positive electrode plate and a negative electrode plate are wound in a spiral shape with a separator interposed therebetween.

極板群6の上側には、正極板からの電位を集電するためのリング状の正極集電リング4が配置されている。正極集電リング4は、正極集電リング4を支持する正極集電リング支えを介して巻き芯1の上端部に固定されている。正極集電リング4の周縁には、正極板から延出された正極リード片2の端部が超音波溶接されている。正極集電リング4の上方には、中央部が凸状に成形された円盤状の電池蓋13が配置されている。正極集電リング4の上部には、アルミニウム製でリボン状の正極リード板9の一端が固定されている。正極リード板9の他端は、蓋リード板を介して電池蓋13の下部に溶接で接合されている。   On the upper side of the electrode plate group 6, a ring-shaped positive electrode current collecting ring 4 for collecting the electric potential from the positive electrode plate is disposed. The positive electrode current collecting ring 4 is fixed to the upper end portion of the winding core 1 via a positive electrode current collecting ring support that supports the positive electrode current collecting ring 4. The edge of the positive electrode lead piece 2 extended from the positive electrode plate is ultrasonically welded to the periphery of the positive electrode current collecting ring 4. Above the positive electrode current collecting ring 4, a disk-shaped battery lid 13 having a central portion formed in a convex shape is disposed. One end of a ribbon-like positive electrode lead plate 9 made of aluminum is fixed to the upper part of the positive electrode current collecting ring 4. The other end of the positive electrode lead plate 9 is joined to the lower portion of the battery lid 13 by welding via the lid lead plate.

一方、極板群6の下側には負極板からの電位を集電するためのリング状の負極集電リング5が配置されており、負極集電リング5は負極集電リング5を支持する負極集電リング支えを介して巻き芯1の下端部に固定されている。負極集電リング5の周縁には、負極板から延出された負極リード片3の端部が溶接されている。負極集電リング5の下部には負極リード板8が溶接されており、負極リード板8は電池缶7の内底部に溶接されている。電池缶7は、外径40mm、内径39mmに設定されている。   On the other hand, a ring-shaped negative electrode current collecting ring 5 for collecting a potential from the negative electrode plate is disposed below the electrode plate group 6, and the negative electrode current collecting ring 5 supports the negative electrode current collecting ring 5. It is fixed to the lower end portion of the winding core 1 via a negative electrode current collecting ring support. The edge of the negative electrode lead piece 3 extending from the negative electrode plate is welded to the periphery of the negative electrode current collecting ring 5. A negative electrode lead plate 8 is welded to the lower part of the negative electrode current collecting ring 5, and the negative electrode lead plate 8 is welded to the inner bottom portion of the battery can 7. The battery can 7 has an outer diameter of 40 mm and an inner diameter of 39 mm.

電池蓋13は、絶縁性及び耐熱性のEPDM樹脂製ガスケットを介して電池缶7の上部にカシメられて固定されている。このため、リチウムイオン二次電池20の内部は密封されている。また、電池缶7内には、図示しない非水電解液が所定量注液されている。非水電解液には、例えば、エチレンカーボネートとジメチルカーボネートとの混合溶媒中に6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解して使用することができる。なお、電池蓋13には、リチウムイオン二次電池20の内圧上昇により開裂する開裂弁(内圧開放機構)が配置されており、開裂圧は約9×10Paに設定されている。また、リチウムイオン二次電池20には、電池温度の上昇に応じて電気的に作動する、例えば、PTC素子や、電池内圧の上昇に応じて正極又は負極の電気的リードが切断される電流遮断機構は配置されていない。 The battery cover 13 is crimped and fixed to the upper part of the battery can 7 through an insulating and heat resistant EPDM resin gasket. For this reason, the inside of the lithium ion secondary battery 20 is sealed. Further, a predetermined amount of non-aqueous electrolyte (not shown) is injected into the battery can 7. For the non-aqueous electrolyte, for example, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) can be used by dissolving in a mixed solvent of ethylene carbonate and dimethyl carbonate. The battery lid 13 is provided with a cleavage valve (internal pressure release mechanism) that cleaves when the internal pressure of the lithium ion secondary battery 20 increases, and the cleavage pressure is set to about 9 × 10 5 Pa. Further, the lithium ion secondary battery 20 is electrically operated in response to an increase in battery temperature, for example, a PTC element, or a current interruption in which a positive or negative electrical lead is disconnected in response to an increase in battery internal pressure. The mechanism is not arranged.

極板群6は、正極板と負極板とがこれら両極板が直接接触しないように、幅90mm、厚さ40μmのポリエチレン製セパレータを介して捲き芯1の周囲に捲回されている。正極リード片2と負極リード片3とは、それぞれ極板群6の互いに反対側の両端面に配置されている。極板群6及び正極集電リング4の外周面全周には、絶縁被覆が施されている。絶縁被覆には、ポリイミド製の基材の片面にヘキサメタアクリレートの粘着剤が塗布された粘着テープが用いられている。正極板、負極板、セパレータの長さを調整することで、極板群6の直径が38±0.1mmに設定されている。   In the electrode plate group 6, the positive electrode plate and the negative electrode plate are wound around the core 1 through a polyethylene separator having a width of 90 mm and a thickness of 40 μm so that the two electrode plates do not directly contact each other. The positive electrode lead piece 2 and the negative electrode lead piece 3 are respectively disposed on opposite end surfaces of the electrode plate group 6. An insulating coating is applied to the entire outer peripheral surfaces of the electrode plate group 6 and the positive electrode current collecting ring 4. For the insulation coating, an adhesive tape in which a hexamethacrylate adhesive is applied to one side of a polyimide base material is used. The diameter of the electrode plate group 6 is set to 38 ± 0.1 mm by adjusting the lengths of the positive electrode plate, the negative electrode plate, and the separator.

極板群6を構成する負極板は、負極集電体として厚さ10μmの圧延銅箔を有している。圧延銅箔の両面には、負極活物質としてリチウムイオンを吸蔵、放出可能な平均粒子径5〜20μmの非晶質炭素粉末を含む負極合剤がほぼ均等かつ均質に塗着されている。負極合剤には、導電剤のアセチレンブラック及びバインダ(結着材)のポリフッ化ビニリデン(PVDF)が配合されており、負極活物質、導電剤、バインダの配合比は、質量比100:5:10に設定されている。圧延銅箔に負極合剤を塗着するときには、分散溶媒としてN−メチルピロリドン(NMP)が用いられ、ロール・ツー・ロールによる転写で塗着される。圧延銅箔の長寸方向一側の側縁には、幅30mmの負極合剤の未塗着部が形成されている。未塗着部は櫛状に切り欠かれており、切り欠き残部で負極リード片3が形成されている。負極板は、負極合剤密度が1.0g/cmとなるように、加熱可能なロールプレス機でプレス加工され、幅85mmに裁断されている。 The negative electrode plate constituting the electrode plate group 6 has a rolled copper foil having a thickness of 10 μm as a negative electrode current collector. On both surfaces of the rolled copper foil, a negative electrode mixture containing amorphous carbon powder having an average particle diameter of 5 to 20 μm capable of occluding and releasing lithium ions as a negative electrode active material is applied almost uniformly and uniformly. In the negative electrode mixture, acetylene black as a conductive agent and polyvinylidene fluoride (PVDF) as a binder (binder) are blended, and the blend ratio of the negative electrode active material, the conductive agent, and the binder is 100: 5: 10 is set. When applying the negative electrode mixture to the rolled copper foil, N-methylpyrrolidone (NMP) is used as a dispersion solvent, and is applied by transfer by roll-to-roll. An uncoated portion of a negative electrode mixture having a width of 30 mm is formed on the side edge on one side in the longitudinal direction of the rolled copper foil. The uncoated part is notched in a comb shape, and the negative electrode lead piece 3 is formed in the notch remaining part. The negative electrode plate is pressed by a heatable roll press so that the negative electrode mixture density is 1.0 g / cm 3 and is cut into a width of 85 mm.

一方、正極板は、正極集電体として厚さ20μmのアルミニウム箔を有している。アルミニウム箔の両面には、正極活物質として層状結晶構造を有するリチウム含有複合酸化物粉末を含む正極合剤がほぼ均等かつ均質に塗着されている。正極合剤には、導電剤の燐片状黒鉛及びバインダのPVDFが配合されている。正極活物質、導電剤、バインダの配合比は、質量比100:10:5に設定されている。アルミニウム箔に正極合剤を塗着するときには、分散溶媒としてNMPが用いられ、ロール・ツー・ロールによる転写で塗着される。アルミニウム箔の長寸方向一側の側縁には、負極板と同様に正極合剤の未塗着部が形成されており、正極リード片2が形成されている。正極板は、正極合剤密度が2.70g/cmとなるように、負極板と同様にプレス加工され、幅80mmに裁断されている。 On the other hand, the positive electrode plate has an aluminum foil having a thickness of 20 μm as a positive electrode current collector. A positive electrode mixture containing a lithium-containing composite oxide powder having a layered crystal structure as a positive electrode active material is applied to both surfaces of the aluminum foil almost uniformly and uniformly. In the positive electrode mixture, flaky graphite as a conductive agent and PVDF as a binder are blended. The compounding ratio of the positive electrode active material, the conductive agent, and the binder is set to a mass ratio of 100: 10: 5. When the positive electrode mixture is applied to the aluminum foil, NMP is used as a dispersion solvent and is applied by transfer by roll-to-roll. An uncoated portion of the positive electrode mixture is formed on the side edge on one side in the longitudinal direction of the aluminum foil in the same manner as the negative electrode plate, and the positive electrode lead piece 2 is formed. The positive electrode plate is pressed in the same manner as the negative electrode plate so as to have a positive electrode mixture density of 2.70 g / cm 3 and cut into a width of 80 mm.

(正極材の作製)
上述したリチウム含有複合酸化物は、下記化学式(1)で表され、価数がa>b≧c及び0.001≦d≦0.02の関係を満たしており、リチウム、ニッケル、マンガン、コバルト、マグネシウムを含む原料を混合・焼成することで作製する。価数b(マンガンの割合)が大きくなると単一相のリチウム含有複合酸化物が合成しにくくなり、価数c(コバルトの割合)が大きくなるとコスト高となり電池容量も著しく低下する。なお、化学式(1)のリチウムの価数は1に限定されるものではなく、若干の欠損又は過剰になってもよく、酸素の価数は2に限定されるものではなく、若干の酸素欠損が生じてもよい。
(Preparation of positive electrode material)
The lithium-containing composite oxide described above is represented by the following chemical formula (1), and the valence satisfies the relationship of a> b ≧ c and 0.001 ≦ d ≦ 0.02, and lithium, nickel, manganese, cobalt It is prepared by mixing and firing raw materials containing magnesium. When the valence b (manganese ratio) increases, it becomes difficult to synthesize a single-phase lithium-containing composite oxide, and when the valence c (cobalt ratio) increases, the cost increases and the battery capacity significantly decreases. Note that the valence of lithium in the chemical formula (1) is not limited to 1, but may be slightly deficient or excessive, and the valence of oxygen is not limited to 2, but is slightly deficient in oxygen. May occur.

原料には、各元素の酸化物、水酸化物、硝酸塩、硫酸塩、炭酸塩等を用いることができる。例えば、リチウム源としては、炭酸リチウム、硝酸リチウム、水酸化リチウム等を挙げることができる。ニッケル源としては、炭酸ニッケル、硫酸ニッケル、水酸化ニッケル、酸化ニッケル、過酸化ニッケル等を挙げることができる。マンガン源としては、二酸化マンガン、三酸化ニマンガン、四酸化三マンガン、炭酸マンガン、硝酸マンガン、硫酸マンガン等を挙げることができる。コバルト源としては、酸化コバルト、三酸化ニコバルト、四酸化三コバルト、水酸化コバルト、硝酸コバルト、硫酸コバルト等を挙げることができる。マグネシウム源としては、炭酸マグネシウム、硫酸マグネシウム、水酸化マグネシウム、硝酸マグネシウム等を挙げることができる。   As raw materials, oxides, hydroxides, nitrates, sulfates, carbonates and the like of each element can be used. For example, examples of the lithium source include lithium carbonate, lithium nitrate, and lithium hydroxide. Examples of the nickel source include nickel carbonate, nickel sulfate, nickel hydroxide, nickel oxide, nickel peroxide and the like. Examples of manganese sources include manganese dioxide, nimanganese trioxide, trimanganese tetroxide, manganese carbonate, manganese nitrate, and manganese sulfate. Examples of the cobalt source include cobalt oxide, niobium trioxide, tricobalt tetroxide, cobalt hydroxide, cobalt nitrate, and cobalt sulfate. Examples of the magnesium source include magnesium carbonate, magnesium sulfate, magnesium hydroxide, magnesium nitrate and the like.

これらニッケル源、マンガン源、コバルト源、マグネシウム源を湿式で混合後、共沈させて乾燥・粉砕し、リチウム源を乾式で混合する2段階方式(乾式混合法)で焼成原料(複合酸化物前駆体)を得る。また、リチウム源、ニッケル源、マンガン源、コバルト源、マグネシウム源の全てを湿式で混合後、共沈させて(湿式混合法)焼成原料を得ることもできる。以下、本実施形態では、乾式混合法について説明するが、湿式混合法はリチウム源を混合溶液準備ステップで混合する以外は乾式混合法と同様に行うことができる。   These nickel source, manganese source, cobalt source, and magnesium source are wet mixed, then co-precipitated, dried and pulverized, and then the lithium source is mixed in a dry method (dry mixing method) as a firing raw material (composite oxide precursor) Body). Alternatively, a lithium source, a nickel source, a manganese source, a cobalt source, and a magnesium source can all be wet mixed and then coprecipitated (wet mixing method) to obtain a fired raw material. Hereinafter, in this embodiment, a dry mixing method will be described. However, the wet mixing method can be performed in the same manner as the dry mixing method except that the lithium source is mixed in the mixed solution preparation step.

まず、混合溶液準備ステップでは、ニッケル源、マンガン源、コバルト源、マグネシウム源の各化合物に含まれるニッケル、マンガン、コバルト、マグネシウムを、上述した化学式(1)で表される価数に対応するモル比で混合して混合溶液を準備する。このとき、各原料の湿式混合には溶媒として水又は有機溶媒を用いることができるが、水を用いることが好ましい。混合機及び分散機としてはビーズミル、ボールミル、ジェットミル等の装置が代表的である。   First, in the mixed solution preparation step, nickel, manganese, cobalt, and magnesium contained in each compound of a nickel source, a manganese source, a cobalt source, and a magnesium source are converted into moles corresponding to the valence represented by the above chemical formula (1). Prepare a mixed solution by mixing at a ratio. At this time, water or an organic solvent can be used as a solvent for wet mixing of the raw materials, but water is preferably used. Representative examples of the mixer and the disperser include a bead mill, a ball mill, and a jet mill.

次に、前駆体調製ステップでは、準備ステップで準備した混合溶液に共沈用の溶液を添加することで、混合溶液中のニッケル、マンガン、コバルト、マグネシウムを共沈させる。得られた共沈物を乾燥させ、種々の平均粒子径となるように粉砕した後、リチウム源の化合物に含まれるリチウムを、上述した化学式(1)で表される価数に対応するモル比で混合して焼成原料を調製する。共沈物の乾燥方法としては、特に限定するものではないが、適正な乾燥温度と噴霧量で容易に乾燥可能な噴霧乾燥方式を採用することができる。噴霧ガスには空気や不活性ガスを使用することができるが、通常、空気が使用される。乾燥温度が低い場合には、乾燥不良や炉内結露が発生する原因となるため、60°C以上とすることが好ましい。   Next, in the precursor preparation step, nickel, manganese, cobalt, and magnesium in the mixed solution are coprecipitated by adding a coprecipitation solution to the mixed solution prepared in the preparation step. After the obtained coprecipitate is dried and pulverized to have various average particle sizes, the lithium contained in the compound of the lithium source is converted into a molar ratio corresponding to the valence represented by the above chemical formula (1). To prepare a firing raw material. The method for drying the coprecipitate is not particularly limited, and a spray drying method that can be easily dried at an appropriate drying temperature and spray amount can be employed. Air or an inert gas can be used as the atomizing gas, but air is usually used. When the drying temperature is low, it may cause poor drying or dew condensation in the furnace.

次の焼成ステップでは、得られた焼成原料を電気炉内に静置して焼成する。焼成は、温度700〜1100°Cで8〜24時間かけて行う。昇温速度は特に限定されるものではないが、単一の結晶相を生成させるため、焼成温度に保持する時間は少なくとも4時間以上が必要である。焼成温度が低い場合には、焼成時間が長くなると共に結晶成長が不十分なため、得られたリチウム含有複合酸化物の二次粒子中の一次粒子の充填密度も小さくなる。反対に、焼成温度が高い場合には、別の結晶相が生成したり、欠陥が増加したりする。また、リチウム源が昇華して組成ズレが生じることもある。焼成後の冷却でも、別の結晶相の生成や欠陥の多いリチウム含有複合酸化物の生成を抑制するため、冷却速度を制限して徐冷することが望ましく、例えば、300°C/h以下の冷却速度で行うことが望ましい。焼成装置としては、電気炉以外に、ガス炉、トンネル炉、ロータリーキルン等を使用することもできる。   In the next firing step, the obtained firing material is left standing in an electric furnace and fired. Firing is performed at a temperature of 700 to 1100 ° C. for 8 to 24 hours. The rate of temperature increase is not particularly limited, but it is necessary to keep the firing temperature at least 4 hours in order to form a single crystal phase. When the firing temperature is low, the firing time becomes long and the crystal growth is insufficient, so that the packing density of the primary particles in the secondary particles of the obtained lithium-containing composite oxide is also reduced. On the other hand, when the firing temperature is high, another crystal phase is formed or defects are increased. Further, the lithium source may sublimate and compositional deviation may occur. Even in the cooling after firing, in order to suppress the formation of another crystal phase and the generation of a lithium-containing composite oxide having many defects, it is desirable to slowly cool by limiting the cooling rate, for example, 300 ° C./h or less It is desirable to carry out at a cooling rate. As a baking apparatus, a gas furnace, a tunnel furnace, a rotary kiln, etc. can be used besides an electric furnace.

焼成したリチウム含有複合酸化物について、ICP(inductively coupled plasma)発光分光分析で組成を分析し、上述した化学式(1)で表され、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすことを確認した。また、層状結晶構造であることを粉末X線回折測定で確認した。   The composition of the calcined lithium-containing composite oxide was analyzed by ICP (inductively coupled plasma) emission spectroscopic analysis, represented by the above chemical formula (1), and the valences were a> b ≧ c and 0.001 ≦ d ≦ 0. .02 satisfying the relationship. The layered crystal structure was confirmed by powder X-ray diffraction measurement.

次に、本実施形態に従い、ニッケル、マンガン、コバルト、マグネシウムのモル比を変え、焼成温度、電気炉内の温度バラツキの異なる焼成条件で作製したリチウム含有複合酸化物を用いたリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。   Next, in accordance with this embodiment, a lithium ion secondary battery using a lithium-containing composite oxide produced by changing the molar ratio of nickel, manganese, cobalt, and magnesium and firing conditions with different firing temperatures and temperature variations in the electric furnace. Twenty examples will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.

(実施例1)
下表1に示すように、実施例1では、原料の混合に湿式混合法を用い、各元素のモル比がLi:Ni:Mn:Co:Mg=1:0.34:0.33:0.33:0.001で菱面体晶の層状結晶構造を有するリチウム含有複合酸化物を合成して用いた。原料として、平均粒子径1μmの硫酸ニッケル・6水和物の89.4g、平均粒子径1μmの硫酸コバルト・7水和物の92.8g、平均粒子径1μmの硫酸マンガン・6水和物の79.6g、硫酸マグネシウム・7水和物の0.25g、及び、炭酸リチウムの74gを1リットルのイオン交換水に溶解・分散させた後、400メッシュのフィルタを通して凝集塊を取り除いた。得られた溶液に0.5モル/リットルの水酸化リチウム水溶液を徐々に加えて、リチウム・ニッケル・コバルト・マンガン・マグネシウム混合の水酸化物を共沈させた。アコーディオン型のフィルタプレス装置で共沈物をろ過し、120°Cで1時間撹拌しながら乾燥させた後、ジェットミルで種々の平均粒子径となるように粉砕して焼成原料とした。ジルコニア製の容器に入れた焼成原料を電気炉内に静置して昇温速度5°C/分で焼成温度900°Cに昇温し8時間保持した。このとき、電気炉内の温度バラツキは5°Cであった。焼成後、5°C/分の冷却速度で徐冷した。次いで、得られたリチウム含有複合酸化物を気流衝突式の粉砕機で粉砕し、分級して平均粒子径5μmの正極材を得た。なお、表1において、マグネシウム、ニッケル、マンガン、コバルトの量(モル)は、リチウムの量を1モルとしたときの量を示している。また、原料の混合の湿式はリチウム、ニッケル、コバルト、マンガン、マグネシウムの全てを混合した溶液で共沈させる湿式混合法を、乾式はニッケル、コバルト、マンガン、マグネシウムを共沈させた共沈物にリチウムを乾式で混合する乾式混合法を示している。
(Example 1)
As shown in Table 1 below, in Example 1, a wet mixing method was used for mixing raw materials, and the molar ratio of each element was Li: Ni: Mn: Co: Mg = 1: 0.34: 0.33: 0. .33: 0.001 A lithium-containing composite oxide having a rhombohedral layered crystal structure was synthesized and used. As raw materials, 89.4 g of nickel sulfate hexahydrate having an average particle diameter of 1 μm, 92.8 g of cobalt sulfate heptahydrate having an average particle diameter of 1 μm, and manganese sulfate hexahydrate having an average particle diameter of 1 μm 79.6 g, 0.25 g of magnesium sulfate heptahydrate, and 74 g of lithium carbonate were dissolved and dispersed in 1 liter of ion exchange water, and then aggregates were removed through a 400-mesh filter. A 0.5 mol / liter aqueous lithium hydroxide solution was gradually added to the resulting solution to coprecipitate a lithium / nickel / cobalt / manganese / magnesium mixed hydroxide. The coprecipitate was filtered with an accordion type filter press, dried with stirring at 120 ° C. for 1 hour, and then pulverized with a jet mill to have various average particle diameters to obtain a calcined raw material. The firing raw material placed in a zirconia container was left in an electric furnace, heated to a firing temperature of 900 ° C. at a heating rate of 5 ° C./min, and held for 8 hours. At this time, the temperature variation in the electric furnace was 5 ° C. After firing, it was gradually cooled at a cooling rate of 5 ° C / min. Next, the obtained lithium-containing composite oxide was pulverized by an airflow collision type pulverizer and classified to obtain a positive electrode material having an average particle diameter of 5 μm. In Table 1, the amounts (moles) of magnesium, nickel, manganese, and cobalt indicate amounts when the amount of lithium is 1 mol. In addition, wet mixing of raw materials is a wet mixing method in which all of lithium, nickel, cobalt, manganese and magnesium are co-precipitated, and dry is a co-precipitate in which nickel, cobalt, manganese and magnesium are co-precipitated. A dry mixing method in which lithium is mixed by a dry method is shown.

(実施例2)
表1に示すように、実施例2では、マグネシウム量を0.005モルとする以外は実施例1と同様にした。
(Example 2)
As shown in Table 1, Example 2 was the same as Example 1 except that the amount of magnesium was 0.005 mol.

(実施例3)
表1に示すように、実施例3では、マグネシウム量を0.01モルとし、焼成温度を750°Cとする以外は実施例1と同様にした。温度バラツキは2°Cであった。
(Example 3)
As shown in Table 1, Example 3 was the same as Example 1 except that the amount of magnesium was 0.01 mol and the firing temperature was 750 ° C. The temperature variation was 2 ° C.

(実施例4)
表1に示すように、実施例4では、マグネシウム量を0.01モルとする以外は実施例1と同様にした。
Example 4
As shown in Table 1, Example 4 was the same as Example 1 except that the amount of magnesium was 0.01 mol.

(実施例5)
表1に示すように、実施例5では、焼成温度を1050°Cとする以外は実施例3と同様にした。温度バラツキは10°Cであった。
(Example 5)
As shown in Table 1, Example 5 was the same as Example 3 except that the firing temperature was 1050 ° C. The temperature variation was 10 ° C.

(実施例6)
表1に示すように、実施例6では、マグネシウム量を0.02モルとする以外は実施例1と同様にした。
(Example 6)
As shown in Table 1, Example 6 was the same as Example 1 except that the amount of magnesium was 0.02 mol.

(比較例1〜比較例3)
表1に示すように、比較例1〜比較例3ではマグネシウムを混合せずにリチウム含有複合酸化物を作製した。マグネシウムを混合しない以外は、比較例1では実施例3と同様にし、比較例2では実施例4と同様にし、比較例3では実施例5と同様にした。
(Comparative Examples 1 to 3)
As shown in Table 1, in Comparative Examples 1 to 3, lithium-containing composite oxides were produced without mixing magnesium. Except for not mixing magnesium, Comparative Example 1 was the same as Example 3, Comparative Example 2 was the same as Example 4, and Comparative Example 3 was the same as Example 5.

(比較例4〜比較例5)
表1に示すように、比較例4では、マグネシウム量を0.03モルとする以外は実施例1と同様にし、比較例5では、ニッケル量を0.4モル、マンガン量を0.4モル、コバルト量を0.2モルとする以外は比較例2と同様にした。
(Comparative Example 4 to Comparative Example 5)
As shown in Table 1, Comparative Example 4 was the same as Example 1 except that the amount of magnesium was 0.03 mol. In Comparative Example 5, the amount of nickel was 0.4 mol and the amount of manganese was 0.4 mol. The same procedure as in Comparative Example 2 was conducted except that the amount of cobalt was 0.2 mol.

(実施例7〜実施例9)
表1に示すように、実施例7〜実施例9では、ニッケル、マンガン、コバルトのモル比を変える以外は実施例4と同様にした。実施例7ではニッケル量を0.4モル、マンガン量を0.4モル、コバルト量を0.2モルとし、実施例8ではニッケル量を0.45モル、マンガン量を0.4モル、コバルト量を0.15モルとし、実施例9ではニッケル量を0.6モル、マンガン量を0.3モル、コバルト量を0.1モルとした。
(Example 7 to Example 9)
As shown in Table 1, Examples 7 to 9 were the same as Example 4 except that the molar ratio of nickel, manganese, and cobalt was changed. In Example 7, the amount of nickel was 0.4 mol, the amount of manganese was 0.4 mol, and the amount of cobalt was 0.2 mol. In Example 8, the amount of nickel was 0.45 mol, the amount of manganese was 0.4 mol, cobalt In Example 9, the amount of nickel was 0.6 mol, the amount of manganese was 0.3 mol, and the amount of cobalt was 0.1 mol.

(比較例6〜比較例7)
表1に示すように、比較例6〜比較例7では、ニッケル、マンガン、コバルトのモル比を変える以外は実施例4と同様にした。比較例6ではニッケル量を0.3モル、マンガン量を0.5モル、コバルト量を0.2モルとし、比較例7ではニッケル量を0.3モル、マンガン量を0.3モル、コバルト量を0.4モルとした。
(Comparative Example 6 to Comparative Example 7)
As shown in Table 1, Comparative Example 6 to Comparative Example 7 were the same as Example 4 except that the molar ratio of nickel, manganese, and cobalt was changed. In Comparative Example 6, the amount of nickel was 0.3 mol, the amount of manganese was 0.5 mol, and the amount of cobalt was 0.2 mol. In Comparative Example 7, the amount of nickel was 0.3 mol, the amount of manganese was 0.3 mol, cobalt The amount was 0.4 mol.

(実施例10)
表1に示すように、実施例10では、原料の混合に乾式混合法を用い、各元素のモル比がLi:Ni:Mn:Co:Mg=1:0.34:0.33:0.33:0.01で菱面体晶の層状結晶構造を有するリチウム含有複合酸化物を合成して用いた。原料として、平均粒子径1μmの硫酸ニッケル・6水和物の89.4g、平均粒子径1μmの硫酸コバルト・7水和物の92.8g、平均粒子径1μmの硫酸マンガン・6水和物の79.6g、硫酸マグネシウム・7水和物の2.5g、を1リットルのイオン交換水に溶解・分散させた後、400メッシュのフィルタを通して凝集塊を取り除いた。得られた溶液に0.5モル/リットルの水酸化リチウム水溶液を徐々に加えて、ニッケル・コバルト・マンガン・マグネシウム混合の水酸化物を共沈させた。アコーディオン型のフィルタプレス装置で共沈物をろ過し、120°Cで1時間撹拌しながら乾燥させた後、ジェットミルで種々の平均粒子径となるように粉砕したニッケル・コバルト・マンガン・マグネシウム混合の水酸化物に炭酸リチウムの74gを乾式で加えてジェットミルで混合し、焼成原料とした。ジルコニア製の容器に入れた焼成原料を電気炉内に静置して昇温速度5°C/分で焼成温度900°Cに昇温し8時間保持した。このとき、電気炉内の温度バラツキは5°Cであった。焼成後、5°C/分の冷却速度で徐冷した。次いで、得られたリチウム含有複合酸化物を気流衝突式の粉砕機で粉砕し、分級して平均粒子径5μmの正極材を得た。
(Example 10)
As shown in Table 1, in Example 10, a dry mixing method was used for mixing raw materials, and the molar ratio of each element was Li: Ni: Mn: Co: Mg = 1: 0.34: 0.33: 0. A lithium-containing composite oxide having a rhombohedral layered crystal structure at 33: 0.01 was synthesized and used. As raw materials, 89.4 g of nickel sulfate hexahydrate having an average particle diameter of 1 μm, 92.8 g of cobalt sulfate heptahydrate having an average particle diameter of 1 μm, and manganese sulfate hexahydrate having an average particle diameter of 1 μm 79.6 g and 2.5 g of magnesium sulfate heptahydrate were dissolved and dispersed in 1 liter of ion-exchanged water, and then aggregates were removed through a 400-mesh filter. A 0.5 mol / liter aqueous lithium hydroxide solution was gradually added to the resulting solution to coprecipitate a nickel / cobalt / manganese / magnesium mixed hydroxide. The coprecipitate is filtered with an accordion-type filter press, dried at 120 ° C for 1 hour with stirring, and then mixed with nickel, cobalt, manganese, and magnesium that are pulverized to various average particle sizes with a jet mill. 74 g of lithium carbonate was added to the hydroxide in a dry manner and mixed with a jet mill to obtain a calcined raw material. The firing raw material placed in a zirconia container was left in an electric furnace, heated to a firing temperature of 900 ° C. at a heating rate of 5 ° C./min, and held for 8 hours. At this time, the temperature variation in the electric furnace was 5 ° C. After firing, it was gradually cooled at a cooling rate of 5 ° C / min. Next, the obtained lithium-containing composite oxide was pulverized by an airflow collision type pulverizer and classified to obtain a positive electrode material having an average particle diameter of 5 μm.

(実施例11)
表1に示すように、実施例11では、マグネシウム量を0.005モルとする以外は実施例10と同様にした。
(Example 11)
As shown in Table 1, Example 11 was the same as Example 10 except that the amount of magnesium was 0.005 mol.

(実施例12)
表1に示すように、実施例12では、焼成温度を750°Cとする以外は実施例10と同様にした。温度バラツキは2°Cであった。
(Example 12)
As shown in Table 1, Example 12 was the same as Example 10 except that the firing temperature was 750 ° C. The temperature variation was 2 ° C.

<評価、試験>
実施例及び比較例で作製したリチウム含有複合酸化物について、測定容器に入れたリチウム含有複合酸化物に振動(タッピング)を加えた後の見かけ密度を表すタップ密度を粉体特性測定装置(ホソカワミクロン株式会社製、パウダーテスタPT−R型)で測定した。測定では、100ccのタッピングセルを用い、タッピング高さ3mm、タッピング回数5分間で180回に設定した。また、比表面積を窒素ガス吸着法(BET法)により測定した。タップ密度、比表面積の測定結果を下表2に示す。
<Evaluation, test>
For the lithium-containing composite oxides produced in the examples and comparative examples, the tap density representing the apparent density after applying vibration (tapping) to the lithium-containing composite oxide placed in a measurement container is measured with a powder characteristic measuring device (Hosokawa Micron Corporation) It was measured with a powder tester PT-R type manufactured by company. In the measurement, a 100 cc tapping cell was used, the tapping height was 3 mm, and the tapping frequency was set to 180 times for 5 minutes. The specific surface area was measured by a nitrogen gas adsorption method (BET method). The measurement results of tap density and specific surface area are shown in Table 2 below.

表2に示すように、上述した化学式(1)で表される層状結晶構造を有し、少なくともニッケル、マンガン、コバルトの一部をマグネシウムで置換した実施例1〜実施例12のリチウム含有複合酸化物では、タップ密度が1.7〜2.2g/cm、比表面積が0.7〜1.0m/gであった。このことから、低温(実施例3)や電気炉内の温度バラツキが大きい(実施例5)焼成条件でも一次粒子が十分に結晶成長しており、二次粒子中の一次粒子充填密度も大きいことが判明した。更に、低温で焼成することができるため、別の結晶相の生成や欠陥が少なく、組成ズレも小さいことが判明した。得られたリチウム含有複合酸化物の粉砕、分級も低圧の気流で行うことができ、作業性にも優れていた。 As shown in Table 2, the lithium-containing composite oxides of Examples 1 to 12 having a layered crystal structure represented by the above-described chemical formula (1) and at least a part of nickel, manganese, and cobalt substituted with magnesium. The product had a tap density of 1.7 to 2.2 g / cm 3 and a specific surface area of 0.7 to 1.0 m 2 / g. For this reason, primary particles are sufficiently grown even under low-temperature conditions (Example 3) and temperature variations in the electric furnace (Example 5) under firing conditions, and the primary particle packing density in the secondary particles is also large. There was found. Further, since it can be fired at a low temperature, it has been found that there are few generations and defects of another crystal phase and a small compositional deviation. The obtained lithium-containing composite oxide was pulverized and classified in a low-pressure air stream, and the workability was excellent.

次に、各実施例及び比較例の電池について、以下の試験を実施した。まず、室温(25°C)雰囲気下にて3時間率(0.33C)で定電流定電圧充電(設定電圧4.1V)を5時間行った後、1時間率(1C)で放電終止電圧2.7Vに至るまで放電し、再度同条件で充電した。次に、日本工業規格(JIS C 8711)に準じ、放電電流1、3、6Aの各電流値で放電して5秒目電圧を測定し、この電流−電圧特性から初期出力を求めた。初期出力を測定した電池を低温(−25°C)の恒温槽内に24時間静置して電池全体が−25°Cとなるように冷却し、上述した室温雰囲気下での初期出力の測定と同条件で、低温雰囲気下での出力を測定した。更に、充放電サイクルによる出力低下を測定するため、室温に24時間静置した後、25°Cの雰囲気下にて3時間率(0.33C)で定電流定電圧充電(設定電圧4.1V)を5時間行った後、1時間率(1C)で放電終止電圧2.7Vに至るまで放電する充放電を繰り返した。100サイクル経過後、初期出力の測定と同様に電池の出力を測定し、初期出力に対する100サイクル後の出力の割合を百分率で求め、維持率とした。室温、低温雰囲気下での出力及び維持率の測定結果を下表3に示す。   Next, the following tests were performed on the batteries of the examples and comparative examples. First, a constant-current / constant-voltage charge (set voltage 4.1 V) is performed for 5 hours at a 3-hour rate (0.33 C) in a room temperature (25 ° C.) atmosphere, and then a discharge end voltage is set at a 1-hour rate (1 C). The battery was discharged to 2.7 V and charged again under the same conditions. Next, in accordance with Japanese Industrial Standard (JIS C 8711), discharge was performed at each current value of discharge current 1, 3, 6A, the voltage at the 5th second was measured, and the initial output was obtained from this current-voltage characteristic. The battery whose initial output was measured was left in a low temperature (−25 ° C.) constant temperature bath for 24 hours to cool the entire battery to −25 ° C., and the initial output was measured in the room temperature atmosphere described above. The output in a low temperature atmosphere was measured under the same conditions. Furthermore, in order to measure the decrease in output due to the charge / discharge cycle, the sample was allowed to stand at room temperature for 24 hours and then charged at a constant current and constant voltage (set voltage 4.1 V) at a rate of 3 hours (0.33 C) in an atmosphere of 25 ° C. ) Was performed for 5 hours, and charging and discharging were repeated at a rate of 1 hour (1C) until the discharge final voltage reached 2.7V. After 100 cycles, the output of the battery was measured in the same manner as the measurement of the initial output, and the ratio of the output after 100 cycles to the initial output was obtained as a percentage to obtain the maintenance rate. Table 3 below shows the measurement results of the output and the maintenance factor in a room temperature and low temperature atmosphere.

表3に示すように、化学式(1)で表され、少なくともニッケル、マンガン又はコバルトの元素の一部をマグネシウム元素で置換したリチウム含有複合酸化物を正極材に用いた実施例1〜実施例12のリチウムイオン二次電池20では、低温環境下での出力が330W以上確保され、また、充放電サイクルを100回繰り返した後でも、初期出力の85%以上の出力が維持されていることが判明した。これに対して、リチウム含有複合酸化物の構成元素をマグネシウム元素で置換することなく、低温で焼成したリチウム含有複合酸化物を正極材に用いた比較例1のリチウムイオン二次電池では、室温環境下、低温環境下共に出力が著しく低下した。このことから、各比較例で用いたリチウム含有複合酸化物では一次粒子の結晶成長が不十分であるため、二次粒子内部まで導電ネットワークを形成することができず、また、充放電を繰り返すことに伴う体積変化により、二次粒子構造が徐々に崩壊して電子伝導性の低下や電極反応の不均一が起こっていると考えられる。   As shown in Table 3, Examples 1 to 12 using a lithium-containing composite oxide represented by the chemical formula (1) and having at least a part of nickel, manganese, or cobalt elements substituted with magnesium elements were used as positive electrode materials. In the lithium ion secondary battery 20, it was found that an output of 330 W or more in a low temperature environment was secured, and an output of 85% or more of the initial output was maintained even after 100 charge / discharge cycles were repeated. did. On the other hand, in the lithium ion secondary battery of Comparative Example 1 in which the lithium-containing composite oxide fired at a low temperature without replacing the constituent element of the lithium-containing composite oxide with the magnesium element as the positive electrode material, the room temperature environment The output decreased significantly in both low and low temperature environments. From this, the lithium-containing composite oxide used in each comparative example has insufficient crystal growth of the primary particles, so that it is impossible to form a conductive network up to the inside of the secondary particles, and charge / discharge is repeated. It is considered that the secondary particle structure gradually collapses due to the volume change accompanying the decrease in the electron conductivity and the nonuniformity of the electrode reaction.

また、マンガンやコバルトの割合を大きくしたリチウム含有複合酸化物を正極材に用いた比較例6、比較例7のリチウムイオン二次電池でも、室温環境下、低温環境下共に出力が著しく低下した。マンガンの割合が大きくなると、単一相のリチウム含有複合酸化物を得にくくなり、焼成時の温度バラツキにより生じる粉体粒子(粗大粒子や凝集物)の物性が電池性能を悪化させているものと推察される。   In addition, in the lithium ion secondary batteries of Comparative Example 6 and Comparative Example 7 in which the lithium-containing composite oxide in which the ratio of manganese or cobalt was increased was used as the positive electrode material, the output was remarkably reduced in both the room temperature environment and the low temperature environment. When the proportion of manganese increases, it becomes difficult to obtain a single-phase lithium-containing composite oxide, and the physical properties of powder particles (coarse particles and aggregates) caused by temperature variations during firing deteriorate battery performance. Inferred.

更に、焼成温度を高くして一次粒子の結晶を過剰に成長させたリチウム含有複合酸化物を正極材に用いた比較例3のリチウムイオン二次電池では、低温環境下での出力低下が著しく、過充電試験において、電池が破裂して安全性を著しく損ねていることが確認された。これは、正極合剤中の非水電解液の分布が不均一なため、非水電解液の存在する部分に電極反応が集中して、その部分が早期から過充電状態に到ったものと考えられる。また、焼成後のリチウム含有複合酸化物の粉砕が非常に困難であり、分級にも長時間を要するため、粒子表面に欠損を与えたことや粒度分布、二次粒子中の一次粒子密度にバラツキが増大したことで、出力が著しく低下しつつ、寿命性能や安全性も著しく低下したものと考えられる。   Furthermore, in the lithium ion secondary battery of Comparative Example 3 in which the lithium-containing composite oxide in which the primary temperature crystal is excessively grown by increasing the firing temperature is used as the positive electrode material, the output drop under a low temperature environment is significantly reduced. In the overcharge test, it was confirmed that the battery ruptured and the safety was significantly impaired. This is because the non-aqueous electrolyte distribution in the positive electrode mixture is non-uniform, so the electrode reaction is concentrated on the portion where the non-aqueous electrolyte is present, and that portion has reached an overcharged state from an early stage. Conceivable. In addition, the pulverization of the lithium-containing composite oxide after firing is extremely difficult and requires a long time for classification. Therefore, the surface of the particle is damaged, the particle size distribution, and the primary particle density in the secondary particles vary. It can be considered that the life performance and safety are significantly reduced while the output is significantly reduced.

以上のように、共沈法(乾式混合法、湿式混合法)を用いて調製した焼成原料で作製した、化学式(1)で表され、少なくともニッケル、マンガン及びコバルトの元素の一部がマグネシウム元素で置換されており、かつ、価数がa>b≧c、0.001≦d≦0.02の関係を満たす層状結晶構造を有するリチウム含有複合酸化物では、低温でも粒子の結晶成長を促進し、かつ、粒度分布や二次粒子中の一次粒子密度のバラツキを低減することができることが判明した。このリチウム含有複合酸化物を正極材に用いたリチウムイオン二次電池20では、高出力化、特に低温での高出力化を図り、寿命性能及び安全性の改善できることが判明した。   As described above, at least part of nickel, manganese, and cobalt elements represented by the chemical formula (1), which is prepared from the firing raw material prepared using the coprecipitation method (dry mixing method, wet mixing method), is a magnesium element. And lithium-containing composite oxides having a layered crystal structure satisfying the relationship of valence a> b ≧ c and 0.001 ≦ d ≦ 0.02 promotes crystal growth of particles even at low temperatures In addition, it has been found that variations in the particle size distribution and the primary particle density in the secondary particles can be reduced. In the lithium ion secondary battery 20 using this lithium-containing composite oxide as the positive electrode material, it has been found that it is possible to improve the life performance and safety by increasing the output, particularly at a low temperature.

(作用等)
次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

焼成原料を焼成して得られる、コバルト、ニッケル、マンガンの3成分系のリチウム含有複合酸化物では、一次粒子が凝集した二次粒子が形成されており、均一な組成の正極材を得るためには、より均一に原料を混合する必要がある。また、焼成原料の乾燥条件、焼成温度及び時間により一次粒子の結晶成長の度合いが異なるため、これらの条件のバラツキが粒度分布や二次粒子中の一次粒子密度(二次粒子の空隙)のバラツキとなる。更に、一次粒子の結晶を著しく成長させると、粗大な二次粒子や非常に強固な二次粒子相互の凝集物が生成し、焼成後に粉砕しても凝集を解くことができない上に、粒子表面に欠損を形成することとなる。焼成温度は700〜1100°Cで焼成するが、焼成中の温度バラツキを抑制するため、昇温速度を遅くする、又は、段階ごとに一定温度で保持する多段階焼成が不可欠となり、焼成に要する時間が著しく長くなる。二次粒子の粒度分布や空隙にバラツキのある正極材を用いたリチウムイオン二次電池では、導電剤、バインダ及び非水電解液の分布に偏りが生じるため、正極合剤中の緻密な導電ネットワークを形成しにくくなり、容量、出力共に著しく低下する。また、二次粒子内での電極反応にバラツキが生じて部分的に集中するため、リチウム含有複合酸化物が劣化して寿命が低下し、集中した部分が早期に過充電状態に到り安全性を損なう。特に、低温環境下ではリチウム含有複合酸化物の層状結晶が収縮するため、リチウムイオン拡散性が低下し電極反応のバラツキが顕著となる。   In the ternary lithium-containing composite oxide of cobalt, nickel, and manganese obtained by firing a firing raw material, secondary particles in which primary particles are aggregated are formed, and in order to obtain a positive electrode material having a uniform composition It is necessary to mix the raw materials more uniformly. In addition, since the degree of crystal growth of the primary particles varies depending on the drying conditions, firing temperature and time of the firing raw material, the variation in these conditions varies in the particle size distribution and the primary particle density in the secondary particles (secondary particle voids). It becomes. In addition, if the primary particle crystals grow significantly, coarse secondary particles and very strong aggregates of secondary particles are generated, and the aggregates cannot be released even if pulverized after firing. A deficiency will be formed. The firing temperature is 700 to 1100 ° C. However, in order to suppress temperature variation during firing, it is necessary to slow the temperature increase rate or to maintain at a constant temperature for each step, which is necessary for firing. Time is significantly increased. In a lithium ion secondary battery using a positive electrode material with particle size distribution of secondary particles and variation in voids, the distribution of conductive agent, binder and non-aqueous electrolyte is biased, so a dense conductive network in the positive electrode mixture And the capacity and output are significantly reduced. In addition, the electrode reaction in the secondary particles varies and concentrates partially, so the lithium-containing composite oxide deteriorates and the service life decreases, and the concentrated part reaches an overcharged state early and safety Damage. In particular, since the layered crystal of the lithium-containing composite oxide shrinks under a low temperature environment, the lithium ion diffusibility is lowered and the variation in electrode reaction becomes remarkable.

本実施形態のリチウムイオン二次電池20では、正極材のリチウム含有複合酸化物を次のように製造して用いる。すなわち、ニッケル、マンガン、コバルト、マグネシウムの元素をそれぞれ含む化合物を混合した混合溶液中のニッケル、マンガン、コバルト、マグネシウムを共沈させた共沈物にリチウム元素を含む化合物を混合するか、又は、リチウム、ニッケル、マンガン、コバルト、マグネシウムの元素をそれぞれ含む化合物を混合し、リチウム、ニッケル、マンガン、コバルト、マグネシウムを共沈させる。このため、各元素がほぼ均質に分布した焼成原料を調製することができる。この焼成原料を焼成することで、焼成温度を低温条件や電気炉内の温度バラツキが大きい焼成条件としても結晶がほぼ均質に成長するので、二次粒子中の一次粒子充填密度が大きく非水電解液が浸透可能な空隙を適正に形成することができる。また、低温で焼成することができるため、別の結晶相の生成や欠陥が少なく、組成ズレが生じることなく化学式(1)で表され、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすリチウム含有複合酸化物を作製することができる。このリチウム含有複合酸化物の結晶中には、元素半径がニッケル、マンガン、コバルトより大きいマグネシウムが含まれているため、低温環境下でも層状結晶の収縮を抑制することができる。更に、粗大な二次粒子や非常に強固な二次粒子相互の凝集物が生成しないため、得られるリチウム含有複合酸化物の粉砕、分級も低圧の気流で行うことができ、作業性を改善することができる。   In the lithium ion secondary battery 20 of the present embodiment, the lithium-containing composite oxide of the positive electrode material is manufactured and used as follows. That is, a compound containing lithium element is mixed in a coprecipitate obtained by coprecipitation of nickel, manganese, cobalt, and magnesium in a mixed solution in which compounds containing elements of nickel, manganese, cobalt, and magnesium are mixed, or A compound containing each of lithium, nickel, manganese, cobalt, and magnesium elements is mixed to co-precipitate lithium, nickel, manganese, cobalt, and magnesium. For this reason, the baking raw material in which each element was distributed substantially uniformly can be prepared. By firing this firing material, the crystals grow almost uniformly even if the firing temperature is low or the firing conditions with large temperature fluctuations in the electric furnace, so the primary particle packing density in the secondary particles is large and non-aqueous electrolysis. It is possible to appropriately form voids through which the liquid can permeate. In addition, since it can be fired at a low temperature, it is represented by the chemical formula (1) without generation of another crystal phase and defects, and without compositional deviation, and the valences are a> b ≧ c and 0.001 ≦ d. A lithium-containing composite oxide satisfying the relationship of ≦ 0.02 can be manufactured. The crystal of the lithium-containing composite oxide contains magnesium whose element radius is greater than nickel, manganese, and cobalt, and therefore, the shrinkage of the layered crystal can be suppressed even in a low temperature environment. Furthermore, since coarse secondary particles and very strong aggregates of secondary particles are not generated, the resulting lithium-containing composite oxide can be pulverized and classified in a low-pressure air stream, improving workability. be able to.

このリチウム含有複合酸化物を用いた本実施形態のリチウムイオン二次電池20では、リチウム含有複合酸化物が低温環境下でも層状結晶の収縮を抑制することができ、リチウム含有複合酸化物の二次粒子中に非水電解液の浸透可能な空隙が形成されているため、低温環境下でもリチウム含有複合酸化物と非水電解液との電極反応のバラツキを抑制することができる。従って、電極反応がほぼ一様に進行するので、電極反応が集中することなく寿命の低下を抑制し安全性を確保することができると共に、低温環境下でもリチウム含有複合酸化物中のリチウムイオンの移動を確保して高出力を発揮することができる。   In the lithium ion secondary battery 20 of the present embodiment using this lithium-containing composite oxide, the lithium-containing composite oxide can suppress the shrinkage of the layered crystal even in a low temperature environment, Since the voids into which the non-aqueous electrolyte can permeate are formed in the particles, variations in the electrode reaction between the lithium-containing composite oxide and the non-aqueous electrolyte can be suppressed even in a low temperature environment. Therefore, since the electrode reaction proceeds almost uniformly, it is possible to suppress the reduction of the life without concentrating the electrode reaction and ensure safety, and the lithium ions in the lithium-containing composite oxide can be maintained even in a low temperature environment. A high output can be demonstrated while securing the movement.

なお、本実施形態では、ニッケル源、マンガン源、コバルト源、マグネシウム源を湿式で混合後共沈させ、共沈物とリチウム源とを乾式で混合して焼成原料を調製する乾式混合法、及び、リチウム源、ニッケル源、マンガン源、コバルト源、マグネシウム源を湿式で混合後共沈させて焼成原料を調製する湿式混合法を例示したが、リチウムイオン二次電池20に用いることができるリチウム含有複合酸化物の製造方法はこれに制限されるものではない。例えば、各原料を乾式で混合して粉砕する方法、各原料を湿式で混合して造粒・乾燥する方法でも焼成原料を得ることはできるが、均一な焼成原料を得るためには、共沈法を用いることが好ましい。   In this embodiment, a nickel source, a manganese source, a cobalt source, and a magnesium source are wet-mixed and then co-precipitated, and the co-precipitate and the lithium source are dry-mixed to prepare a calcined raw material, and The lithium source, the nickel source, the manganese source, the cobalt source, and the magnesium source are mixed in a wet manner and then co-precipitated to prepare a fired raw material, but the lithium-containing secondary battery 20 can be used. The method for producing the composite oxide is not limited to this. For example, it is possible to obtain a calcined raw material by a method in which each raw material is mixed and pulverized, or by a method in which each raw material is mixed in a wet manner and granulated and dried. The method is preferably used.

また、本実施形態では、ニッケル源、マンガン源、コバルト源、マグネシウム源に各元素の硫酸塩を用い、共沈用の溶液に水酸化リチウムを用いる例を示したが、本発明はこれに限定されるものではない。例えば、各元素の酸化物、水酸化物、硝酸塩、炭酸塩を用いてもよい。また、共沈用の溶液は、それぞれの化合物を混合した混合溶液の性質により選定すればよく、例えば、塩基性のときには酸性の溶液を用いればよい。   Further, in this embodiment, an example is shown in which sulfates of each element are used for the nickel source, manganese source, cobalt source, and magnesium source, and lithium hydroxide is used for the coprecipitation solution. However, the present invention is limited to this. Is not to be done. For example, oxides, hydroxides, nitrates, and carbonates of each element may be used. The coprecipitation solution may be selected depending on the properties of the mixed solution in which the respective compounds are mixed. For example, when the solution is basic, an acidic solution may be used.

更に、本実施形態では、リチウム含有複合酸化物の組成に具体的数値、例えば、LiNi0.34Mn0.33Co0.33Mg0.01を例示したが、本発明はこれに限定されるものではなく、ニッケル、マンガン、コバルトの元素の価数がa>b≧c、マグネシウム元素の価数が0.001≦d≦0.02の関係を満たし、層状結晶構造を有する比率であればよい。 Further, in the present embodiment, specific numerical values, for example, LiNi 0.34 Mn 0.33 Co 0.33 Mg 0.01 O 2 are exemplified in the composition of the lithium-containing composite oxide, but the present invention is not limited thereto. The ratio of the valence of nickel, manganese and cobalt satisfying the relationship of a> b ≧ c and the valence of magnesium element 0.001 ≦ d ≦ 0.02, and having a layered crystal structure. I just need it.

また更に、本実施形態では、正負極板を捲回して有底円筒状の電池缶に収容した円筒型リチウムイオン二次電池20を例示したが、本発明は電池の形状や構造に限定されるものではなく、例えば、角形、その他の多角形の電池や正負極板を積層した積層タイプの電池にも適用可能である。また、本発明の適用可能な電池の構造としては、例えば、正負外部端子が電池蓋を貫通し電池容器内で捲き芯を介して押し合っている構造の電池を挙げることができる。   Furthermore, in the present embodiment, the cylindrical lithium ion secondary battery 20 is illustrated in which the positive and negative electrode plates are wound and accommodated in a bottomed cylindrical battery can, but the present invention is limited to the shape and structure of the battery. For example, the present invention can be applied to a rectangular or other polygonal battery or a stacked type battery in which positive and negative electrode plates are stacked. Moreover, as a battery structure to which the present invention can be applied, for example, a battery having a structure in which positive and negative external terminals pass through a battery lid and are pressed through a winding core in a battery container can be exemplified.

更にまた、本実施形態のリチウムイオン二次電池20では、負極活物質に非晶質炭素を用いる例を示したが、本発明はこれに限定されるものではない。例えば、天然黒鉛、人造の各種黒鉛材、コークス等の黒鉛系炭素材を用いてもよく、粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, an example in which amorphous carbon is used as the negative electrode active material has been shown, but the present invention is not limited to this. For example, graphite-based carbon materials such as natural graphite, various artificial graphite materials, and coke may be used, and the particle shape is not particularly limited, such as scaly, spherical, fibrous, or massive.

また、本実施形態のリチウムイオン二次電池20では、バインダにPVDFを用いる例を示したが、本発明はこれに限定されるものではなく、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体を用いてもよい。   Moreover, in the lithium ion secondary battery 20 of this embodiment, although the example which uses PVDF for a binder was shown, this invention is not limited to this, For example, polytetrafluoroethylene (PTFE), polyethylene, polystyrene , Polymers such as polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride and the like Mixtures may be used.

更に、本実施形態のリチウムイオン二次電池20では、正極の導電剤に鱗片状黒鉛を例示したが、本発明はこれに限定されるものではなく、黒鉛系炭素材であればよい。本実施形態以外で用いることのできる正極導電剤としては、天然黒鉛、人造の各種黒鉛材、コークス等を挙げることができ、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。また、負極の導電剤にも特に制限はなく、例えば、ケッチェンブラック等の無定形炭素を用いることができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, scaly graphite is exemplified as the positive electrode conductive agent, but the present invention is not limited to this, and any graphite-based carbon material may be used. Examples of the positive electrode conductive agent that can be used other than in the present embodiment include natural graphite, various artificial graphite materials, coke, and the like. Also in the particle shape, scaly, spherical, fibrous, massive, etc. It is not limited. Moreover, there is no restriction | limiting in particular also in the electrically conductive agent of a negative electrode, For example, amorphous carbon, such as ketjen black, can be used.

また更に、本実施形態のリチウムイオン二次電池20では、非水電解液にエチレンカーボネートとジメチルカーボネートとの混合溶媒中へ6フッ化リン酸リチウムを溶解したものを例示したが、本発明はこれに限定されるものではなく、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解して用いることができる。用いられるリチウム塩や有機溶媒にも特に制限はない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いてもよい。また、有機溶媒としては、例えば、プロピレンカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等、又はこれら2種以上の混合溶媒を用いてもよい。混合配合比についても制限されるものではない。 Furthermore, in the lithium ion secondary battery 20 of the present embodiment, a lithium hexafluorophosphate dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate is exemplified in a nonaqueous electrolyte solution. However, the present invention is not limited thereto, and a general lithium salt can be used as an electrolyte, which is dissolved in an organic solvent. There are no particular limitations on the lithium salt or organic solvent used. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof may be used. Examples of the organic solvent include propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, or a mixed solvent of two or more of these may be used. The mixing ratio is not limited.

本発明は、均質な結晶構造を有し低温環境下でも高出力化可能なリチウム二次電池用正極材の製造方法、該製造方法で製造された正極材及び該正極材を用いたリチウム二次電池を提供するものであり、製造、販売に寄与し、産業上利用することができる。   The present invention relates to a method for producing a positive electrode material for a lithium secondary battery having a homogeneous crystal structure and capable of increasing the output even in a low temperature environment, a positive electrode material produced by the production method, and a lithium secondary material using the positive electrode material It provides batteries, contributes to manufacturing and sales, and can be used industrially.

本発明を適用可能な実施形態の円筒型リチウムイオン二次電池を示す断面図である。It is sectional drawing which shows the cylindrical lithium ion secondary battery of embodiment which can apply this invention.

符号の説明Explanation of symbols

6 極板群
20 円筒型リチウムイオン二次電池(リチウム二次電池)
6 electrode plate group 20 cylindrical lithium ion secondary battery (lithium secondary battery)

Claims (5)

層状結晶構造を有しリチウム、ニッケル、マンガン、コバルト、マグネシウムの元素を含むリチウム含有複合酸化物を用いたリチウム二次電池用正極材の製造方法であって、
少なくともニッケル、マンガン、コバルト、マグネシウムをそれぞれ含む化合物のそれぞれを溶媒に混合して混合溶液を準備し、
前記準備した混合溶液中の前記少なくともニッケル、マンガン、コバルト、マグネシウムを共沈させ、選択的にリチウムを含む化合物を混合して複合酸化物前駆体を調製し、
前記調製した複合酸化物前駆体を焼成して下記化学式(1)で表され、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすリチウム含有複合酸化物を作製する、
ステップを含むことを特徴とする製造方法。
A method for producing a positive electrode material for a lithium secondary battery using a lithium-containing composite oxide having a layered crystal structure and containing elements of lithium, nickel, manganese, cobalt, and magnesium,
Prepare a mixed solution by mixing each of compounds containing at least nickel, manganese, cobalt, and magnesium in a solvent,
Co-precipitating the at least nickel, manganese, cobalt and magnesium in the prepared mixed solution, and selectively mixing a compound containing lithium to prepare a composite oxide precursor;
The prepared composite oxide precursor is fired to produce a lithium-containing composite oxide represented by the following chemical formula (1) and satisfying the relationship of valence a> b ≧ c and 0.001 ≦ d ≦ 0.02. To
The manufacturing method characterized by including a step.
前記準備するステップでは、前記ニッケル、マンガン、コバルト、マグネシウムをそれぞれ含む化合物のそれぞれが、少なくとも酸化物、水酸化物、硝酸塩、硫酸塩及び炭酸塩から選択される1種であり、前記調製するステップでは、前記リチウムを含む化合物が、少なくとも酸化物、水酸化物、硝酸塩、硫酸塩及び炭酸塩から選択される1種であることを特徴とする請求項1に記載の製造方法。   In the preparing step, each of the compounds each including nickel, manganese, cobalt, and magnesium is at least one selected from an oxide, a hydroxide, a nitrate, a sulfate, and a carbonate, and the preparing step Then, the compound containing lithium is at least one selected from oxides, hydroxides, nitrates, sulfates and carbonates. 前記準備するステップないし調製するステップでは、前記リチウム、ニッケル、マンガン、コバルト、マグネシウムをそれぞれ含む化合物のそれぞれに含まれるリチウム、ニッケル、マンガン、コバルト、マグネシウムが、前記化学式(1)の価数に対応するモル比で混合されることを特徴とする請求項1に記載の製造方法。   In the preparing step or the preparing step, lithium, nickel, manganese, cobalt, and magnesium contained in each of the compounds each containing lithium, nickel, manganese, cobalt, and magnesium correspond to the valence of the chemical formula (1). The manufacturing method according to claim 1, wherein the mixture is mixed in a molar ratio. 層状結晶構造を有しリチウム、ニッケル、マンガン、コバルトの元素を含むリチウム含有複合酸化物を用いたリチウム二次電池用正極材において、前記リチウム含有複合酸化物は、下記化学式(1)で表され、少なくとも前記ニッケル、マンガン及びコバルトの元素の一部がマグネシウム元素で置換されており、かつ、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすことを特徴とする正極材。
In the positive electrode material for a lithium secondary battery using a lithium-containing composite oxide having a layered crystal structure and including elements of lithium, nickel, manganese, and cobalt, the lithium-containing composite oxide is represented by the following chemical formula (1). , At least a part of the elements of nickel, manganese and cobalt is substituted with magnesium element, and the valence satisfies the relationship of a> b ≧ c and 0.001 ≦ d ≦ 0.02. Positive electrode material.
層状結晶構造を有しリチウム、ニッケル、マンガン、コバルトの元素を含むリチウム含有複合酸化物を用いた正極材及び導電剤を含む正極板と、リチウムイオンを吸蔵、放出可能な負極材を含む負極板とを備えたリチウム二次電池において、前記リチウム含有複合酸化物は、下記化学式(1)で表され、少なくとも前記ニッケル、マンガン及びコバルトの元素の一部がマグネシウム元素で置換されており、かつ、価数がa>b≧c及び0.001≦d≦0.02の関係を満たすことを特徴とするリチウム二次電池。
A positive electrode plate having a layered crystal structure and using a lithium-containing composite oxide containing lithium, nickel, manganese, and cobalt elements, a positive electrode plate containing a conductive agent, and a negative electrode plate containing a negative electrode material capable of inserting and extracting lithium ions And the lithium-containing composite oxide is represented by the following chemical formula (1), and at least a part of the nickel, manganese and cobalt elements are substituted with a magnesium element, and A lithium secondary battery having a valence satisfying a relationship of a> b ≧ c and 0.001 ≦ d ≦ 0.02.
JP2004145784A 2004-05-17 2004-05-17 Manufacturing method for positive electrode material for lithium secondary battery, the positive electrode material, and the lithium secondary battery Pending JP2005327644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145784A JP2005327644A (en) 2004-05-17 2004-05-17 Manufacturing method for positive electrode material for lithium secondary battery, the positive electrode material, and the lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145784A JP2005327644A (en) 2004-05-17 2004-05-17 Manufacturing method for positive electrode material for lithium secondary battery, the positive electrode material, and the lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2005327644A true JP2005327644A (en) 2005-11-24

Family

ID=35473812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145784A Pending JP2005327644A (en) 2004-05-17 2004-05-17 Manufacturing method for positive electrode material for lithium secondary battery, the positive electrode material, and the lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2005327644A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242288A (en) * 2006-03-06 2007-09-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP2007280723A (en) * 2006-04-05 2007-10-25 Hitachi Metals Ltd Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it
WO2009099158A1 (en) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. Method for producing granular powder for positive electrode active material of lithium ion secondary battery
WO2009099156A1 (en) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. Method for producing granular powder for positive electrode active material of lithium ion secondary battery
WO2009145494A1 (en) * 2008-04-03 2009-12-03 주식회사 엘지화학 Precursor for production of lithium transition-metal oxide
US20110291042A1 (en) * 2010-06-01 2011-12-01 Hon Hai Precision Industry Co., Ltd. Cathode active material for lithium battery and method for making the same
WO2011136550A3 (en) * 2010-04-30 2012-03-01 주식회사 엘지화학 Cathode active material and lithium secondary battery using same
EP2518802A1 (en) * 2009-12-22 2012-10-31 JX Nippon Mining & Metals Corporation Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
JP2013032283A (en) * 2005-06-28 2013-02-14 Toda Kogyo Europe Gmbh Inorganic compound
WO2013109038A1 (en) * 2012-01-17 2013-07-25 주식회사 엘지화학 Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
JP2016184497A (en) * 2015-03-26 2016-10-20 株式会社豊田中央研究所 Nonaqueous lithium secondary battery
KR101669112B1 (en) 2012-05-08 2016-10-25 삼성에스디아이 주식회사 Composite metal precursor, positive electrode active material prepared therefrom, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
US9780371B2 (en) 2010-09-17 2017-10-03 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
CN112408503A (en) * 2020-11-17 2021-02-26 新乡天力锂能股份有限公司 Fluorinated high-nickel ternary material and preparation method and application thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032283A (en) * 2005-06-28 2013-02-14 Toda Kogyo Europe Gmbh Inorganic compound
JP2007242288A (en) * 2006-03-06 2007-09-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method
JP2007280723A (en) * 2006-04-05 2007-10-25 Hitachi Metals Ltd Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it
WO2009099158A1 (en) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. Method for producing granular powder for positive electrode active material of lithium ion secondary battery
WO2009099156A1 (en) * 2008-02-06 2009-08-13 Agc Seimi Chemical Co., Ltd. Method for producing granular powder for positive electrode active material of lithium ion secondary battery
JPWO2009099158A1 (en) * 2008-02-06 2011-05-26 Agcセイミケミカル株式会社 Method for producing granulated powder for positive electrode active material of lithium ion secondary battery
JPWO2009099156A1 (en) * 2008-02-06 2011-05-26 Agcセイミケミカル株式会社 Method for producing granulated powder for positive electrode active material of lithium ion secondary battery
WO2009145494A1 (en) * 2008-04-03 2009-12-03 주식회사 엘지화학 Precursor for production of lithium transition-metal oxide
US8268198B2 (en) 2008-04-03 2012-09-18 Lg Chem, Ltd. Precursor for preparation of lithium transition metal oxide
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
EP2518802A4 (en) * 2009-12-22 2014-11-26 Jx Nippon Mining & Metals Corp Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
EP2518802A1 (en) * 2009-12-22 2012-10-31 JX Nippon Mining & Metals Corporation Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9786911B2 (en) 2010-04-30 2017-10-10 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
WO2011136550A3 (en) * 2010-04-30 2012-03-01 주식회사 엘지화학 Cathode active material and lithium secondary battery using same
KR101240174B1 (en) * 2010-04-30 2013-03-07 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Comprising the Same
US10559821B2 (en) 2010-04-30 2020-02-11 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US20110291042A1 (en) * 2010-06-01 2011-12-01 Hon Hai Precision Industry Co., Ltd. Cathode active material for lithium battery and method for making the same
US8431050B2 (en) * 2010-06-01 2013-04-30 Tsinghua University Cathode active material for lithium battery and method for making the same
US9780371B2 (en) 2010-09-17 2017-10-03 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2013109038A1 (en) * 2012-01-17 2013-07-25 주식회사 엘지화학 Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
US10096831B2 (en) 2012-01-17 2018-10-09 Lg Chem, Ltd. Cathode active material and lithium secondary battery for controlling impurity or swelling including the same and method of preparing cathode active material with enhanced productivity
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
KR101669112B1 (en) 2012-05-08 2016-10-25 삼성에스디아이 주식회사 Composite metal precursor, positive electrode active material prepared therefrom, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
JP2016184497A (en) * 2015-03-26 2016-10-20 株式会社豊田中央研究所 Nonaqueous lithium secondary battery
CN112408503B (en) * 2020-11-17 2023-08-25 新乡天力锂能股份有限公司 Fluorinated high-nickel ternary material and preparation method and application thereof
CN112408503A (en) * 2020-11-17 2021-02-26 新乡天力锂能股份有限公司 Fluorinated high-nickel ternary material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2005327644A (en) Manufacturing method for positive electrode material for lithium secondary battery, the positive electrode material, and the lithium secondary battery
US20230163295A1 (en) Positive Electrode Active Material for Lithium Secondary Battery and Preparation Method Thereof
JP5175826B2 (en) Active material particles and use thereof
JP5299719B2 (en) Lithium secondary battery
US20170155167A1 (en) Lithium ion secondary battery and a method for producing the same
WO2015001631A1 (en) Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
KR101966494B1 (en) Lithium ion secondary battery
JP2007165224A (en) Nonaqueous electrolytic secondary battery
JP2016095980A (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP2016081626A (en) Cathode active material for nonaqueous secondary battery, manufacturing method thereof, cathode for nonaqueous secondary battery, nonaqueous secondary battery and on-vehicle nonaqueous secondary battery module
JP2007258187A (en) Cathode material and lithium secondary battery using the same
WO2017085907A1 (en) Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode material for non-aqueous electrolyte secondary battery, and method for producing lithium ion secondary battery
JP2010021113A (en) Method for manufacturing lithium-ion secondary battery
JP3996554B2 (en) Lithium secondary battery
JP4534559B2 (en) Lithium secondary battery and positive electrode material for lithium secondary battery
US20120156558A1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
EP4144702A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2017068985A1 (en) Lithium-ion cell
JP2005158624A (en) Positive electrode material for lithium secondary battery and lithium secondary battery
WO2021172445A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101657265B1 (en) Porous manganese-based cathode active material, a method of making the same and lithium secondary battery comprising the same
WO2021172446A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2023145630A1 (en) Nonaqueous electrolyte secondary battery
WO2024070385A1 (en) Nonaqueous electrolyte secondary battery
WO2024042897A1 (en) Negative electrode for secondary batteries and nonaqueous electrolyte secondary battery