JP2016095980A - Positive electrode active material, positive electrode, and lithium ion secondary battery - Google Patents

Positive electrode active material, positive electrode, and lithium ion secondary battery Download PDF

Info

Publication number
JP2016095980A
JP2016095980A JP2014230738A JP2014230738A JP2016095980A JP 2016095980 A JP2016095980 A JP 2016095980A JP 2014230738 A JP2014230738 A JP 2014230738A JP 2014230738 A JP2014230738 A JP 2014230738A JP 2016095980 A JP2016095980 A JP 2016095980A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014230738A
Other languages
Japanese (ja)
Other versions
JP6476776B2 (en
Inventor
孝亮 馮
Hyo-Ryang Pung
孝亮 馮
達哉 遠山
Tatsuya Toyama
達哉 遠山
章 軍司
Akira Gunji
章 軍司
翔 古月
Sho Furutsuki
翔 古月
所 久人
Hisato Tokoro
久人 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014230738A priority Critical patent/JP6476776B2/en
Publication of JP2016095980A publication Critical patent/JP2016095980A/en
Application granted granted Critical
Publication of JP6476776B2 publication Critical patent/JP6476776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a positive electrode active material for a lithium ion secondary battery with a high capacity and a superior capacity-keeping rate in cycle charge/discharge; a positive electrode arranged by use of such a positive electrode active material; and a lithium ion secondary battery including such a positive electrode.SOLUTION: A positive electrode active material comprises a layer structure for a lithium ion secondary battery, which is expressed by the following composition formula: LiNiMO. A lithium ion secondary battery comprises a positive electrode including the positive electrode active material. When the voltage to lithium metal of the positive electrode is represented by V, and the charging capacity of the lithium ion secondary battery is represented by Q in charging the lithium ion secondary battery with a current of 44 Ah/kg based on the weight of the positive electrode active material, a peak value of dQ/dV of a charge curve in a graph of which the horizontal axis shows V, and the vertical axis shows dQ/dV is 190-300 Ah(kg V).SELECTED DRAWING: Figure 4

Description

本発明は、リチウムイオン二次電池用の正極活物質、その正極活物質を用いたリチウムイオン二次電池用の正極、及びその正極を備えたリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery using the positive electrode active material, and a lithium ion secondary battery including the positive electrode.

非水系電解質が電極間の電気伝導を媒介する非水系二次電池の一種として、リチウムイオン二次電池がある。リチウムイオン二次電池は、充放電反応における電極間の電気伝導をリチウムイオンが担う二次電池であり、ニッケル・水素蓄電池やニッケル・カドミウム蓄電池等の他の二次電池と比較して、エネルギー密度が高く、メモリ効果が小さいといった特徴を有している。そのため、リチウムイオン二次電池は、携帯電子機器、家庭用電気機器等の小型電源から、電力貯蔵装置、無停電電源装置、電力平準化装置等の定置用電源や、船舶、鉄道、ハイブリット自動車、電気自動車等の駆動電源等の中型・大型電源に至るまでその用途が拡大している。   One type of non-aqueous secondary battery in which a non-aqueous electrolyte mediates electrical conduction between electrodes is a lithium ion secondary battery. A lithium ion secondary battery is a secondary battery in which lithium ions are responsible for electrical conduction between electrodes in charge and discharge reactions. Compared to other secondary batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries, the energy density Is high and the memory effect is small. Therefore, lithium ion secondary batteries can be used for small power sources such as portable electronic devices and household electric appliances, stationary power sources such as power storage devices, uninterruptible power supply devices, power leveling devices, ships, railways, hybrid vehicles, Applications are expanding to medium and large power sources such as drive power sources for electric vehicles.

特に、リチウムイオン二次電池の小型化が求められる用途では、正極のエネルギー密度の向上に対する要求が高まっている。α−NaFeO型層状構造を有するLiM1O(M1は、Ni、Mn、Coなどの元素を示す。)正極活物質は、その他の正極活物質と比較して高い充放電容量を有する。この正極活物質は、Mに含まれるNiの比率が高くなるほど容量が高くなる傾向があり、4.1V以上の高い充電電位まで充電する場合に充放電容量を向上させることができる。その一方で、充放電を繰り返すサイクル充放電により、容量維持率が低下しやすいという課題がある。 In particular, in applications where miniaturization of lithium ion secondary batteries is required, demands for improving the energy density of the positive electrode are increasing. LiM1O 2 with alpha-NaFeO 2 type layer structure (M1 is Ni, Mn, shows an element such as Co.) positive electrode active material, it has a high charge-discharge capacity as compared with other positive electrode active material. This positive electrode active material tends to increase in capacity as the proportion of Ni contained in M increases, and can improve the charge / discharge capacity when charged to a high charge potential of 4.1 V or higher. On the other hand, there is a problem that the capacity maintenance rate is likely to decrease due to cycle charge and discharge in which charge and discharge are repeated.

このような課題に対し、粒度分布が均一であり、電池に用いた場合にサイクル特性と出力特性が良好な非水系二次電池用正極活物質が開示されている(例えば、下記特許文献1を参照)。特許文献1に記載された正極活物質は、一般式:Li1+SNiCoMnCaMg(−0.05≦s≦0.20、x+y+z+t+u+v=1、0.3≦x≦0.7、0.1≦y≦0.4、0.1≦z≦0.4、0.0002≦t≦0.01、0≦u≦0.005、0.0002≦t+u+v≦0.02、Aは、Na、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表され、層状構造を有する六方晶系リチウム含有複合酸化物粒子からなり、平均粒径が3〜8μmであって、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径〕が0.60以下である。 For such a problem, a positive electrode active material for a non-aqueous secondary battery having a uniform particle size distribution and good cycle characteristics and output characteristics when used in a battery is disclosed (for example, Patent Document 1 below). reference). The positive electrode active material described in Patent Document 1 has the general formula: Li 1 + S Ni x Co y Mn z Ca t Mg u A v O 2 (-0.05 ≦ s ≦ 0.20, x + y + z + t + u + v = 1,0.3 ≦ x ≦ 0.7, 0.1 ≦ y ≦ 0.4, 0.1 ≦ z ≦ 0.4, 0.0002 ≦ t ≦ 0.01, 0 ≦ u ≦ 0.005, 0.0002 ≦ t + u + v ≦ 0.02, A is a hexagonal crystal represented by Na, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W) and a layered structure The lithium-containing composite oxide particles have an average particle diameter of 3 to 8 μm, and [(d90−d10) / average particle diameter], which is an index indicating the spread of the particle size distribution, is 0.60 or less.

特開2014−252964号公報JP 2014-252964 A

特許文献1に記載された正極活物質は、前記一般式中のNiの比率を示すxの値を高くすると、充放電容量を増加させることができる。しかし、Niの比率を高くすると、サイクル充放電によって正極活物質の相変化が進行することで、容量維持率が低下する虞がある。   The positive electrode active material described in Patent Document 1 can increase the charge / discharge capacity when the value of x indicating the ratio of Ni in the general formula is increased. However, when the ratio of Ni is increased, there is a concern that the capacity retention rate may be reduced due to the phase change of the positive electrode active material being advanced by cycle charge / discharge.

本発明は、前記課題に鑑みてなされたものであり、高容量かつサイクル充放電による容量維持率に優れたリチウムイオン二次電池用の正極活物質、その正極活物質を用いた正極、及びその正極を備えたリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above problems, and has a high capacity and a positive electrode active material for a lithium ion secondary battery excellent in capacity maintenance rate by cycle charge and discharge, a positive electrode using the positive electrode active material, and the It aims at providing the lithium ion secondary battery provided with the positive electrode.

前記目的を達成すべく、本発明の正極活物質は、組成式Li1+aNi2+α(ただし、Mは、Mn、Co、Mg、Al、Ti、Zr、Mo、Nb、Fe、Sn、V、Zn、W、Na、Bからなる群より選択される少なくともMnを含む1種以上の元素であり、a、b、c、及び、αは、−0.1≦a≦0.3、b+c=1、b/(b+c)>0.7、及び、−0.1≦α≦0.1、を満たす数である。)で表されるリチウムイオン二次電池用の層状構造を有する正極活物質であって、前記正極活物質を含む正極を備えたリチウムイオン二次電池に対して、前記正極活物質の重量を基準として44Ah/kgの電流で充電する際の、前記正極のリチウム金属に対する電圧をV、前記リチウムイオン二次電池の充電容量をQとし、横軸をV、縦軸をdQ/dVとするグラフにおける充電曲線のdQ/dVのピーク値は、190Ah・(kg・V)−1以上かつ300Ah・(kg・V)−1以下であることを特徴とする。 In order to achieve the above object, the positive electrode active material of the present invention has a composition formula Li 1 + a Ni b McO 2 + α (where M is Mn, Co, Mg, Al, Ti, Zr, Mo, Nb, Fe, Sn). , V, Zn, W, Na, B are at least one element including at least Mn, and a, b, c, and α are −0.1 ≦ a ≦ 0.3. , B + c = 1, b / (b + c)> 0.7, and −0.1 ≦ α ≦ 0.1.) The layered structure for a lithium ion secondary battery Lithium of the positive electrode when charging a lithium ion secondary battery comprising a positive electrode containing the positive electrode active material with a current of 44 Ah / kg based on the weight of the positive electrode active material. The voltage with respect to the metal is V, the charge capacity of the lithium ion secondary battery is Q, The axis V, the peak value of dQ / dV of the charging curve in the graph of the vertical axis of the dQ / dV is that this is 190Ah · (kg · V) -1 or more and 300Ah · (kg · V) -1 or less Features.

本発明の正極活物質、それを用いた正極、及びその正極を備えたリチウムイオン二次電池によれば、層状構造を有する正極活物質の結晶構造の安定性が向上し、高容量かつサイクル充放電による容量維持率に優れたリチウムイオン二次電池用の正極活物質、その正極活物質を用いた正極、及びその正極を備えたリチウムイオン二次電池を提供することができる。   According to the positive electrode active material of the present invention, the positive electrode using the same, and the lithium ion secondary battery including the positive electrode, the stability of the crystal structure of the positive electrode active material having a layered structure is improved, and the capacity and cycle charge are improved. It is possible to provide a positive electrode active material for a lithium ion secondary battery having an excellent capacity retention rate by discharge, a positive electrode using the positive electrode active material, and a lithium ion secondary battery including the positive electrode.

本発明のリチウムイオン二次電池の実施形態を示す模式部分断面図。The typical fragmentary sectional view which shows embodiment of the lithium ion secondary battery of this invention. 本発明の正極活物質を構成する粒子の一実施形態を示す模式断面図。The schematic cross section which shows one Embodiment of the particle | grains which comprise the positive electrode active material of this invention. 本発明の正極活物質を構成する粒子の他の実施形態を示す模式断面図。The schematic cross section which shows other embodiment of the particle | grains which comprise the positive electrode active material of this invention. 図2又は図3に示す正極活物質を含む正極のリチウム金属に対する電圧をV、リチウムイオン二次電池の充電容量をQとし、横軸をV、縦軸をdQ/dVとするグラフ。4 is a graph in which the voltage with respect to lithium metal of the positive electrode including the positive electrode active material shown in FIG. 2 or FIG. 3 is V, the charge capacity of the lithium ion secondary battery is Q, the horizontal axis is V, and the vertical axis is dQ / dV.

以下、図面を参照して本発明の正極活物質、それを用いた正極、及びその正極を備えたリチウムイオン二次電池の実施形態について説明する。   Hereinafter, embodiments of a positive electrode active material of the present invention, a positive electrode using the same, and a lithium ion secondary battery including the positive electrode will be described with reference to the drawings.

(正極及びリチウムイオン二次電池)
まず、リチウムイオン二次電池用の正極及びそれを備えたリチウムイオン二次電池の一実施形態について説明する。図1は、本発明のリチウムイオン二次電池用の正極及びそれを備えたリチウムイオン二次電池の一実施形態を示す模式部分断面図である。
(Positive electrode and lithium ion secondary battery)
First, a positive electrode for a lithium ion secondary battery and an embodiment of a lithium ion secondary battery including the same will be described. FIG. 1 is a schematic partial cross-sectional view showing an embodiment of a positive electrode for a lithium ion secondary battery of the present invention and a lithium ion secondary battery including the positive electrode.

本実施形態のリチウムイオン二次電池100は、例えば、円筒形の形状を有し、非水電解液を収容する有底円筒状の電池缶101と、電池缶101内に収容される捲回電極群110と、電池缶101の上部開口を封止する円板状の電池蓋102と、を備えている。電池缶101と電池蓋102は、例えば、アルミニウム等の金属材料により作製され、絶縁性を有する樹脂材料からなるシール材106を介して電池蓋102が電池缶101にかしめ等によって固定されることで、電池缶101が電池蓋102によって封止されるとともに互いに電気的に絶縁されている。なお、リチウムイオン二次電池100の形状は、円筒形に限られず、角形、ボタン形、ラミネートシート形等、他の任意の形状を採用することができる。   The lithium ion secondary battery 100 of this embodiment has, for example, a cylindrical shape, a bottomed cylindrical battery can 101 that contains a non-aqueous electrolyte, and a wound electrode that is accommodated in the battery can 101. A group 110 and a disk-shaped battery lid 102 that seals the upper opening of the battery can 101 are provided. The battery can 101 and the battery lid 102 are made of, for example, a metal material such as aluminum, and the battery lid 102 is fixed to the battery can 101 by caulking or the like via a sealing material 106 made of an insulating resin material. The battery cans 101 are sealed by the battery lid 102 and are electrically insulated from each other. The shape of the lithium ion secondary battery 100 is not limited to a cylindrical shape, and other arbitrary shapes such as a square shape, a button shape, and a laminate sheet shape can be adopted.

捲回電極群110は、長尺帯状のセパレータ113を介して対向させた長尺帯状の正極111と負極112とを捲回中心軸周りに捲回することによって作製されている。捲回電極群110は、正極集電体111aが正極リード片103を介して電池蓋102と電気的に接続され、負極集電体112aが負極リード片104を介して電池缶101の底部と電気的に接続されている。捲回電極群110と電池蓋102の間及び捲回電極群110と電池缶101の底部との間には、短絡を防止する絶縁板105が配置されている。正極リード片103及び負極リード片104は、それぞれ正極集電体111a及び負極集電体112aと同様の材料によって作製された電流引出用の部材であり、それぞれ正極集電体111a及び負極集電体112aにスポット溶接又は超音波圧接等によって接合されている。   The wound electrode group 110 is produced by winding a long strip-like positive electrode 111 and a negative electrode 112 facing each other with a long strip-like separator 113 around a winding center axis. In the wound electrode group 110, the positive electrode current collector 111 a is electrically connected to the battery lid 102 via the positive electrode lead piece 103, and the negative electrode current collector 112 a is electrically connected to the bottom of the battery can 101 via the negative electrode lead piece 104. Connected. An insulating plate 105 is disposed between the wound electrode group 110 and the battery lid 102 and between the wound electrode group 110 and the bottom of the battery can 101 to prevent a short circuit. The positive electrode lead piece 103 and the negative electrode lead piece 104 are current drawing members made of the same material as the positive electrode current collector 111a and the negative electrode current collector 112a, respectively. The positive electrode current collector 111a and the negative electrode current collector 104 are respectively 112a is joined by spot welding or ultrasonic pressure welding.

本実施形態の正極111は、正極集電体111aと、正極集電体111aの表面に形成された正極合剤層111bと、を備えている。正極集電体111aとしては、例えば、アルミニウム又はアルミニウム合金等の金属箔、エキスパンドメタル、パンチングメタル等を用いることができる。金属箔は、例えば、8μm以上かつ20μm以下程度の厚さにすることができる。正極合剤層111bは、後述する実施形態に係る正極活物質を含んでいる。また、正極合剤層111bは、導電材、結着剤等を含んでいてもよい。   The positive electrode 111 of this embodiment includes a positive electrode current collector 111a and a positive electrode mixture layer 111b formed on the surface of the positive electrode current collector 111a. As the positive electrode current collector 111a, for example, a metal foil such as aluminum or an aluminum alloy, an expanded metal, a punching metal, or the like can be used. The metal foil can have a thickness of, for example, about 8 μm to 20 μm. The positive electrode mixture layer 111b includes a positive electrode active material according to an embodiment described later. The positive electrode mixture layer 111b may include a conductive material, a binder, and the like.

負極112は、負極集電体112aと、負極集電体112aの表面に形成された負極合剤層112bとを備えている。負極集電体112aとしては、銅又は銅合金、ニッケル又はニッケル合金等の金属箔、エキスパンドメタル、パンチングメタル等を用いることができる。金属箔は、例えば、5μm以上かつ20μm以下程度の厚さにすることができる。負極合剤層112bは、一般的なリチウムイオン二次電池に用いられている負極活物質を含んでいる。また、負極合剤層112bは、導電材、結着剤等を含んでいてもよい。   The negative electrode 112 includes a negative electrode current collector 112a and a negative electrode mixture layer 112b formed on the surface of the negative electrode current collector 112a. As the negative electrode current collector 112a, metal foil such as copper or copper alloy, nickel or nickel alloy, expanded metal, punching metal, or the like can be used. The metal foil can have a thickness of, for example, about 5 μm or more and 20 μm or less. The negative electrode mixture layer 112b contains a negative electrode active material used in a general lithium ion secondary battery. The negative electrode mixture layer 112b may include a conductive material, a binder, and the like.

負極活物質としては、例えば、炭素材料、金属材料、金属酸化物材料等の一種以上を用いることができる。炭素材料としては、天然黒鉛、人造黒鉛等の黒鉛類や、コークス、ピッチ等の炭化物類や、非晶質炭素や、炭素繊維等を用いることができる。また、金属材料としては、リチウム、シリコン、スズ、アルミニウム、インジウム、ガリウム、マグネシウムやこれらの合金、金属酸化物材料としては、スズ、ケイ、リチウム、チタン素等を含む金属酸化物を用いることができる。   As the negative electrode active material, for example, one or more of a carbon material, a metal material, a metal oxide material, and the like can be used. As the carbon material, graphites such as natural graphite and artificial graphite, carbides such as coke and pitch, amorphous carbon, carbon fiber, and the like can be used. Further, as the metal material, lithium, silicon, tin, aluminum, indium, gallium, magnesium and alloys thereof, and as the metal oxide material, a metal oxide containing tin, silicon, lithium, titanium, or the like is used. it can.

セパレータ113としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレン−ポリプロピレン共重合体等のポリオレフィン系樹脂、ポリアミド樹脂、アラミド樹脂等の微孔性フィルムや不織布等を用いることができる。   As the separator 113, for example, a polyolefin resin such as polyethylene, polypropylene, or a polyethylene-polypropylene copolymer, a microporous film such as a polyamide resin or an aramid resin, a nonwoven fabric, or the like can be used.

正極111及び負極112は、例えば、合剤調製工程、合剤塗工工程、及び成形工程を経て製造することができる。合剤調製工程では、例えば、プラネタリーミキサ、ディスパーミキサ、自転・公転ミキサ等の撹拌手段を用いて、正極活物質又は負極活物質を、例えば、導電材、結着剤を含む溶液とともに撹拌及び均質化して合剤スラリーを調製する。   The positive electrode 111 and the negative electrode 112 can be manufactured through, for example, a mixture preparation step, a mixture coating step, and a molding step. In the mixture preparation step, for example, using a stirring means such as a planetary mixer, a disper mixer, and a rotation / revolution mixer, the positive electrode active material or the negative electrode active material is stirred and mixed with a solution containing a conductive material and a binder, for example. Homogenize to prepare a mixture slurry.

導電材としては、一般的なリチウムイオン二次電池に用いられている導電材を用いることができる。具体的には、例えば、黒鉛粉末、アセチレンブラック、ファーネスブラック、サーマルブラック、チャンネルブラック等の炭素粒子や炭素繊維等を導電材として用いることができる。導電材は、例えば、合剤全体の質量に対して3質量%以上かつ10質量%以下程度となる量を用いることができる。   As the conductive material, a conductive material used in a general lithium ion secondary battery can be used. Specifically, for example, carbon particles such as graphite powder, acetylene black, furnace black, thermal black, and channel black, carbon fibers, and the like can be used as the conductive material. For example, the conductive material can be used in an amount of about 3% by mass to 10% by mass with respect to the total mass of the mixture.

結着剤としては、一般的なリチウムイオン二次電池に用いられている結着剤を用いることができる。具体的には、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、スチレン−ブタジエンゴム、カルボキシメチルセルロース、ポリアクリロニトリル、変性ポリアクリロニトリル等を結着剤として用いることができる。結着剤は、例えば、合剤全体の質量に対して2質量%以上かつ10質量%以下程度となる量を用いることができる。   As the binder, a binder used in a general lithium ion secondary battery can be used. Specifically, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyhexafluoropropylene, styrene-butadiene rubber, carboxymethylcellulose, polyacrylonitrile, modified polyacrylonitrile, and the like can be used as the binder. As the binder, for example, an amount of about 2% by mass to 10% by mass with respect to the mass of the entire mixture can be used.

溶液の溶媒としては、結着剤の種類に応じて、N−メチルピロリドン、水、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、ジエチレングリコール、グリセリン、ジメチルスルホキシド、テトラヒドロフラン等から選択することができる。   As the solvent of the solution, N-methylpyrrolidone, water, N, N-dimethylformamide, N, N-dimethylacetamide, methanol, ethanol, propanol, isopropanol, ethylene glycol, diethylene glycol, glycerin depending on the type of binder. , Dimethyl sulfoxide, tetrahydrofuran and the like.

合剤塗工工程では、まず、合剤調製工程で調製した正極活物質を含む合剤スラリーと負極活物質を含む合剤スラリーを、例えば、バーコーター、ドクターブレード、ロール転写機等の塗工手段によって、それぞれ正極集電体111aと負極集電体112aの表面に塗布する。次に、合剤スラリーを塗布した正極集電体111aと負極集電体112aとをそれぞれ熱処理することで、合剤スラリーに含まれる溶液の溶媒を揮発又は蒸発させて除去し、正極集電体111aと負極集電体112aの表面に、それぞれ正極合剤層111bと負極合剤層112bを形成する。   In the mixture coating process, first, the mixture slurry containing the positive electrode active material and the mixture slurry containing the negative electrode active material prepared in the mixture preparation process are applied to, for example, a bar coater, a doctor blade, a roll transfer machine, etc. By the means, it apply | coats on the surface of the positive electrode collector 111a and the negative electrode collector 112a, respectively. Next, the positive electrode current collector 111a and the negative electrode current collector 112a coated with the mixture slurry are each heat-treated to volatilize or evaporate the solvent of the solution contained in the mixture slurry, thereby removing the positive electrode current collector. A positive electrode mixture layer 111b and a negative electrode mixture layer 112b are formed on the surfaces of 111a and the negative electrode current collector 112a, respectively.

成形工程では、まず、正極集電体111aの表面に形成された正極合剤層111bと、負極集電体112aの表面に形成された負極合剤層112bとを、例えば、ロールプレス等の加圧手段を用いて、それぞれ加圧成形する。これにより、正極合剤層111bを、例えば、15μm以上かつ300μm以下程度の厚さにして、負極合剤層112bを、例えば、10μm以上かつ150μm以下程度の厚さにすることができる。その後、正極集電体111a及び正極合剤層111bと、負極集電体112a及び負極合剤層112bとを、それぞれ長尺帯状に裁断することによって、正極111と負極112を製造することができる。   In the molding step, first, the positive electrode mixture layer 111b formed on the surface of the positive electrode current collector 111a and the negative electrode mixture layer 112b formed on the surface of the negative electrode current collector 112a are subjected to, for example, a roll press or the like. Each is pressure-molded using a pressure means. Thereby, the positive electrode mixture layer 111b can be made to have a thickness of, for example, about 15 μm to 300 μm, and the negative electrode mixture layer 112b can be made to have a thickness of, for example, about 10 μm to 150 μm. Thereafter, the positive electrode current collector 111a and the positive electrode material mixture layer 111b, and the negative electrode current collector material 112a and the negative electrode material mixture layer 112b are each cut into long strips, whereby the positive electrode 111 and the negative electrode 112 can be manufactured. .

以上のように製造された正極111及び負極112は、セパレータ113を介して対向した状態で捲回中心軸周りに捲回されて捲回電極群110とされる。捲回電極群110は、負極集電体112aが負極リード片104を介して電池缶101の底部に接続され、正極集電体111aが正極リード片103を介して電池蓋102に接続され、絶縁板105等によって電池缶101及び電池蓋102と短絡が防止されて電池缶101に収容される。その後、電池缶101に非水電解液を注入し、シール材106を介して電池蓋102を電池缶101に固定し、電池缶101を密封することで、リチウムイオン二次電池100を製造することができる。   The positive electrode 111 and the negative electrode 112 manufactured as described above are wound around the winding central axis in a state of being opposed to each other with the separator 113 interposed therebetween, so that a wound electrode group 110 is formed. In the wound electrode group 110, the negative electrode current collector 112a is connected to the bottom of the battery can 101 via the negative electrode lead piece 104, and the positive electrode current collector 111a is connected to the battery lid 102 via the positive electrode lead piece 103 for insulation. A short circuit with the battery can 101 and the battery lid 102 is prevented by the plate 105 and the like, and the battery can 101 is accommodated. Thereafter, a non-aqueous electrolyte is injected into the battery can 101, the battery lid 102 is fixed to the battery can 101 via the sealing material 106, and the battery can 101 is sealed to manufacture the lithium ion secondary battery 100. Can do.

電池缶101に注入される非水電解液としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO2)等のリチウム塩を非水溶媒に溶解させた溶液を用いることができる。非水電解液におけるリチウム塩の濃度は、0.7M以上1.5M以下とすることが好ましい。 The non-aqueous electrolyte injected to the battery can 101, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO2) lithium salts such as 3 can be used a solution prepared by dissolving in a nonaqueous solvent. The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.7M or more and 1.5M or less.

非水溶媒としては、ジエチルカーボネート、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、メチルアセテート、ジメトキシエタン等を用いることができる。また、非水電解液には、電解液の酸化分解及び還元分解の抑制、金属元素の析出防止、イオン伝導性の向上、難燃性の向上等を目的として、各種の添加剤を添加することができる。このような添加剤としては、例えば、電解液の分解を抑制する1,3−プロパンサルトン、1,4−ブタンサルトン等や、電解液の保存性を向上させる不溶性ポリアジピン酸無水物、ヘキサヒドロ無水フタル酸等や、難燃性を向上させるフッ素置換アルキルホウ素等を用いることができる。   As the non-aqueous solvent, diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl acetate, dimethoxyethane and the like can be used. In addition, various additives should be added to the non-aqueous electrolyte for the purpose of suppressing oxidative decomposition and reductive decomposition of the electrolytic solution, preventing precipitation of metal elements, improving ion conductivity, and improving flame retardancy. Can do. Examples of such additives include 1,3-propane sultone and 1,4-butane sultone that suppress decomposition of the electrolytic solution, insoluble polyadipic anhydride that improves the storage stability of the electrolytic solution, and hexahydrophthalic anhydride. An acid or the like, or a fluorine-substituted alkyl boron that improves flame retardancy can be used.

以上の構成を有するリチウムイオン二次電池100は、電池蓋102を正極外部端子、電池缶101の底部を負極外部端子として、外部から供給された電力を捲回電極群110に蓄積するとともに、捲回電極群110に蓄積した電力を外部の装置等に供給することができる。このように、本実施形態のリチウムイオン二次電池100は、例えば、携帯電子機器や家庭用電気機器等の小型電源、無停電電源や電力平準化装置等の定置用電源、船舶、鉄道、ハイブリット自動車、電気自動車等の駆動電源として使用することができる。   The lithium ion secondary battery 100 having the above configuration uses the battery lid 102 as a positive external terminal and the bottom of the battery can 101 as a negative external terminal. The electric power accumulated in the rotating electrode group 110 can be supplied to an external device or the like. As described above, the lithium ion secondary battery 100 according to the present embodiment includes, for example, small power sources such as portable electronic devices and household electric devices, stationary power sources such as uninterruptible power sources and power leveling devices, ships, railways, and hybrids. It can be used as a drive power source for automobiles, electric cars and the like.

(正極活物質)
以下、前述のリチウムイオン二次電池100が備える正極111の正極合剤層111bに含まれる本実施形態の正極活物質について詳細に説明する。図2及び図3は、それぞれ本発明の一実施形態に係る正極活物質1A,1Bを構成する粒子を示す模式的な断面図である。
(Positive electrode active material)
Hereinafter, the positive electrode active material of the present embodiment included in the positive electrode mixture layer 111b of the positive electrode 111 included in the lithium ion secondary battery 100 will be described in detail. 2 and 3 are schematic cross-sectional views showing particles constituting the positive electrode active materials 1A and 1B according to one embodiment of the present invention.

本実施形態の正極活物質1A,1Bは、下記の組成式(1)によって表される。
Li1+aNi2+α …(1)
The positive electrode active materials 1A and 1B of the present embodiment are represented by the following composition formula (1).
Li 1 + a Ni b McO 2 + α (1)

ただし、式(1)中、Mは、Mn、Co、Mg、Al、Ti、Zr、Mo、Nb、Fe、Sn、V、Zn、W、Na、Bからなる群より選択される少なくともMnを含む1種以上の元素であり、a、b、c、及び、αは、−0.1≦a≦0.3、b+c=1、b/(b+c)>0.7、及び、−0.1≦α≦0.1、を満たす数である。   However, in Formula (1), M is at least Mn selected from the group consisting of Mn, Co, Mg, Al, Ti, Zr, Mo, Nb, Fe, Sn, V, Zn, W, Na, and B. A, b, c, and α are −0.1 ≦ a ≦ 0.3, b + c = 1, b / (b + c)> 0.7, and −0. It is a number that satisfies 1 ≦ α ≦ 0.1.

前記組成式(1)で表わされる正極活物質1A,1Bは、電極反応に伴ってリチウムイオンの挿入及び脱離をすることができる層状酸化物であって、主としてα−NaFeO型の層状の結晶構造を有し、X線回折法による回折ピークは、空間群R3−m(「−」は「3」の上付きバーである)に帰属され得るパターンを示すリチウム金属複合酸化物である。 The positive electrode active materials 1A and 1B represented by the composition formula (1) are layered oxides capable of inserting and desorbing lithium ions in accordance with electrode reactions, and are mainly α-NaFeO 2 type layered oxides. A diffraction peak by a X-ray diffraction method having a crystal structure is a lithium metal composite oxide showing a pattern that can be assigned to the space group R3-m (“-” is a superscript bar of “3”).

前記組成式(1)中のLiの過不足量を示すaは、−0.1≦a≦0.3を満たす数であり、Liの組成比は0.9以上かつ1.3以下とされる。すなわち、正極活物質1A,1Bは、Liがα−NaFeO型の結晶構造における3aサイトのみに配置される酸化物に限られず、リチウムが化学量論比より過剰である、所謂、層状固溶体酸化物(Li(Li1−p)O(0<p<1)、LiMO−LiMO等と表される。)であってもよい。正極活物質1A,1Bにおけるリチウムの組成比をこのような範囲とすることによって、高い放電容量を確保することができる。 In the composition formula (1), a indicating the excess or deficiency of Li is a number satisfying −0.1 ≦ a ≦ 0.3, and the composition ratio of Li is 0.9 or more and 1.3 or less. The That is, the positive electrode active materials 1A and 1B are not limited to oxides in which Li is arranged only at the 3a site in the α-NaFeO 2 type crystal structure, and so-called layered solid solution oxidation in which lithium is in excess of the stoichiometric ratio. objects may be (Li (Li p M 1- p) O 2 (0 <p <1), is expressed as Li 2 MO 3 -LiMO 2 etc..). By setting the composition ratio of lithium in the positive electrode active materials 1A and 1B in such a range, a high discharge capacity can be ensured.

前記組成式(1)中のNiの比率を示すbと、Li及びNi以外の遷移金属元素であるMの比率を示すcは、b+c=1、b/(b+c)>0.7を満たす。すなわち、前記組成式(1)中のLi以外の遷移金属元素中のNiの比率は、7割を超えている。これにより、前記組成式(1)で表される正極活物質1A,1Bの高容量化が可能になる。   In the composition formula (1), b indicating the ratio of Ni and c indicating the ratio of M which is a transition metal element other than Li and Ni satisfy b + c = 1 and b / (b + c)> 0.7. That is, the ratio of Ni in the transition metal element other than Li in the composition formula (1) exceeds 70%. Thereby, the capacity of the positive electrode active materials 1A and 1B represented by the composition formula (1) can be increased.

また、前記組成式(1)中のMは、Mn、Co、Mg、Al、Ti、Zr、Mo、Nb、Fe、Sn、V、Zn、W、Na、Bからなる群より選択される少なくともMnを含む1種以上の元素である。例えば、Mは、Mnのみであってもよく、Mnとそれ以外の金属元素を含んでもよい。MがMnを含むことで、正極活物質1A,1Bの層状構造を安定させることができる。   M in the composition formula (1) is at least selected from the group consisting of Mn, Co, Mg, Al, Ti, Zr, Mo, Nb, Fe, Sn, V, Zn, W, Na, and B. One or more elements including Mn. For example, M may be Mn alone or may contain Mn and other metal elements. When M contains Mn, the layered structure of the positive electrode active materials 1A and 1B can be stabilized.

前記組成式(1)中のMがCoを含む場合には、正極活物質1A,1Bの層状構造を安定させるだけでなく、レート特性の改善、充放電に伴う価数変化による充放電容量の増加等が可能になる。ただし、Coは、供給が不安定で価格が高いため、MにおけるCoの比率は0.05以上かつ0.3以下の範囲であることが好ましい。Mは、MnとCoの2種類の元素を含むことが特に好ましい。   When M in the composition formula (1) contains Co, not only the layered structure of the positive electrode active materials 1A and 1B is stabilized, but also the charge characteristics of the charge characteristics due to the improvement of the rate characteristics and the valence change accompanying the charge and discharge. Increase is possible. However, since Co is unstable in supply and expensive, the ratio of Co in M is preferably in the range of 0.05 to 0.3. It is particularly preferable that M contains two kinds of elements, Mn and Co.

前記組成式(1)中のMがMg、Al、Ti、Zr、Mo、Nb、Fe、Sn、V、Zn、W、Na、B等の金属元素を含む場合には、正極活物質1A,1Bの層状構造を安定させることができる。また、例えば、前記式(1)中のLi以外の金属元素中のNiの比率が7割を超えかつ層状構造を有するNiリッチ層状化合物の層状構造を安定化する観点から、Mは、Mg、Al、Tiを含むことが好ましい。   In the case where M in the composition formula (1) includes a metal element such as Mg, Al, Ti, Zr, Mo, Nb, Fe, Sn, V, Zn, W, Na, and B, the positive electrode active material 1A, The layered structure of 1B can be stabilized. Further, for example, from the viewpoint of stabilizing the layered structure of the Ni-rich layered compound having a layered structure in which the ratio of Ni in the metal element other than Li in the formula (1) exceeds 70%, M is Mg, Al and Ti are preferably included.

前記組成式(1)中のMがAlを含む場合には、Li以外の金属元素中のAlの比率、すなわち前記組成式(1)中のb+c=1としたときのAlの比率は、0.04未満であることが好ましい。前記組成式(1)で表される正極活物質1A,1Bにおいて、Li以外の金属元素中のAlが0.04以上になると、リチウムイオン二次電池の1C放電容量及び容量維持率が低下するからである。   When M in the composition formula (1) includes Al, the ratio of Al in the metal element other than Li, that is, the ratio of Al when b + c = 1 in the composition formula (1) is 0. Is preferably less than 0.04. In the positive electrode active materials 1A and 1B represented by the composition formula (1), when Al in the metal element other than Li is 0.04 or more, the 1C discharge capacity and the capacity maintenance rate of the lithium ion secondary battery are lowered. Because.

また、前記組成式(1)中のMがMgを含む場合には、Li以外の金属元素中のMgの比率、すなわち前記式(1)中のb+c=1としたときのMgの比率は、0.02未満であることが好ましい。Li以外の金属元素中のMgの比率が0.02以上になると、リチウムイオン二次電池の1C放電容量及び容量維持率が低下するからである。   When M in the composition formula (1) includes Mg, the ratio of Mg in the metal element other than Li, that is, the ratio of Mg when b + c = 1 in the formula (1) is Preferably it is less than 0.02. This is because when the ratio of Mg in the metal element other than Li is 0.02 or more, the 1C discharge capacity and the capacity retention rate of the lithium ion secondary battery are lowered.

前記組成式(1)中のαは、酸素の過不足量を示す数値であり、−0.1≦α≦0.1を満たす。すなわち、前記組成式(1)中の酸素の比率は、1.9以上かつ2.1以下である。酸素量は、分析条件、組成条件等によって量論組成から多少ずれることが知られている。したがって、前記組成式(1)で表される正極活物質1A,1Bは、層状構造を維持可能な範囲で酸素量が前後することがある。なお、正極活物質1A,1Bの層状構造を維持可能である場合には、酸素量は、5%程度の範囲内であれば前後してもよい。また、前記組成式(1)で表される正極活物質1A,1Bは、結晶構造上にサイト間の置換や欠損を有していてもよい。   Α in the composition formula (1) is a numerical value indicating an excess or deficiency of oxygen and satisfies −0.1 ≦ α ≦ 0.1. That is, the ratio of oxygen in the composition formula (1) is 1.9 or more and 2.1 or less. It is known that the amount of oxygen deviates somewhat from the stoichiometric composition depending on analysis conditions, composition conditions, and the like. Therefore, the positive electrode active materials 1A and 1B represented by the composition formula (1) may have an oxygen amount that is within a range in which the layered structure can be maintained. In addition, when the layered structure of the positive electrode active materials 1A and 1B can be maintained, the amount of oxygen may be changed as long as it is within a range of about 5%. Moreover, the positive electrode active materials 1A and 1B represented by the composition formula (1) may have substitution between sites or defects on the crystal structure.

なお、本実施形態に係る正極活物質1A,1Bの粒子の結晶構造は、X線回折法(X-ray diffraction; XRD)等で確認することができる。また、本実施形態に係る正極活物質1A,1Bの粒子の平均組成は、高周波誘導結合プラズマ(Inductively Coupled Plasma; ICP)、原子吸光分析(Atomic Absorption Spectrometry; AAS)等で確認することができる。また、本実施形態に係る正極活物質1A,1Bの粒子における元素分布は、飛行時間型二次イオン質量分析法(Time of flight - secondary ion mass spectrometer; TOF-SIMS)、オージェ電子分光(Auger Electron Spectroscopy; AES)、X線光電子分光(X-ray Photoelectron Spectroscopy; XPS)、透過電子顕微鏡−電子エネルギー損失分光(Transmission Electron Microscopy - Electron Energy Loss Spectroscopy; TEM-EELS)等で確認することができる。   In addition, the crystal structure of the particles of the positive electrode active materials 1A and 1B according to the present embodiment can be confirmed by X-ray diffraction (XRD) or the like. The average composition of the particles of the positive electrode active materials 1A and 1B according to this embodiment can be confirmed by high frequency inductively coupled plasma (ICP), atomic absorption spectrometry (AAS), or the like. In addition, the element distribution in the particles of the positive electrode active materials 1A and 1B according to the present embodiment includes time-of-flight secondary ion mass spectrometry (TOF-SIMS), Auger Electron Spectroscopy (Auger Electron Spectroscopy). Spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), transmission electron microscope-electron energy loss spectroscopy (TEM-EELS), and the like.

本実施形態に係る正極活物質1A,1Bを構成する個々の粒子である一次粒子の平均粒径は、0.1μm以上かつ2μm以下であることが好ましい。一次粒子の平均粒径を2μm以下とすることによって、リチウムイオン二次電池の正極における正極活物質1A,1Bの充填性が向上し、良好なエネルギー密度を達成することができる。また、正極活物質1A,1Bを構成する粒子は、一次粒子を乾式造粒又は湿式造粒によって造粒することで、複数の一次粒子を結合させた二次粒子であってもよい。造粒手段としては、例えば、スプレードライヤや転動流動層装置等の造粒機を用いることができる。二次粒子の平均粒径は、3μm以上かつ50μm以下であることが好ましい。   The average particle diameter of primary particles, which are individual particles constituting the positive electrode active materials 1A and 1B according to the present embodiment, is preferably 0.1 μm or more and 2 μm or less. By setting the average particle size of the primary particles to 2 μm or less, the filling properties of the positive electrode active materials 1A and 1B in the positive electrode of the lithium ion secondary battery are improved, and a good energy density can be achieved. Further, the particles constituting the positive electrode active materials 1A and 1B may be secondary particles obtained by combining primary particles by granulating primary particles by dry granulation or wet granulation. As a granulation means, granulators, such as a spray dryer and a rolling fluidized bed apparatus, can be used, for example. The average particle size of the secondary particles is preferably 3 μm or more and 50 μm or less.

本実施形態の正極活物質1A,1Bを構成する粒子の平均粒径は、例えば、走査型電子顕微鏡(Scanning Electron Microscope; SEM)、透過型電子顕微鏡(Transmission Electron Microscope; TEM)等による粒子の観察に基づいて測定することができる。粒子の観察により、例えば、粒子径が中央値に近い順に10個の一次粒子又は二次粒子を抽出し、これらの粒子径の加重平均を算出して平均粒径とすることができる。なお、粒子径は、電子顕微鏡像における粒子の長径と短径の平均値として求めることができる。   The average particle size of the particles constituting the positive electrode active materials 1A and 1B of the present embodiment is, for example, the observation of particles by a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. Can be measured based on By observing the particles, for example, 10 primary particles or secondary particles can be extracted in the order of the particle size being closer to the median value, and a weighted average of these particle sizes can be calculated to obtain an average particle size. In addition, a particle diameter can be calculated | required as an average value of the long diameter and short diameter of a particle | grain in an electron microscope image.

正極活物質1Bの粒子は、表層部12とコア部11Bとを有している。前記組成式(1)中のMがAlを含む場合、表層部12のAlの質量モル濃度は、コア部11BのAlの質量モル濃度よりも高いことが好ましい。これにより、少量の元素置換で表面近傍の構造の変化を抑制することができる。また、前記組成式(1)中のMがMgを含む場合、表層部12のMgの質量モル濃度は、前記コア部11BのMgの質量モル濃度よりも高いことが好ましい。これにより、少量の元素置換で表面近傍の構造の変化を抑制することができる。   The particles of the positive electrode active material 1B have a surface layer portion 12 and a core portion 11B. When M in the composition formula (1) includes Al, the molar mass concentration of Al in the surface layer portion 12 is preferably higher than the molar molar concentration of Al in the core portion 11B. Thereby, the change of the structure near the surface can be suppressed with a small amount of element substitution. When M in the composition formula (1) includes Mg, the Mg molar concentration of the surface layer portion 12 is preferably higher than the Mg molar concentration of the core portion 11B. Thereby, the change of the structure near the surface can be suppressed with a small amount of element substitution.

また、正極活物質1A,1Bの粒子は、個々の粒子が分離した一次粒子である場合と、複数の粒子が結合した二次粒子である場合がある。それぞれの場合に、一次粒子又は二次粒子は、表層部12とコア部11Bとを有していることが好ましい。この場合、表層部12のLiとMnのモル比率Li/Mnは、コア部11BのLiとMnのモル比率Li/Mnよりも低いことが好ましい。これにより、表面近傍の構造の変化を抑制することができる。   Moreover, the particles of the positive electrode active materials 1A and 1B may be primary particles in which individual particles are separated or secondary particles in which a plurality of particles are bonded. In each case, the primary particles or secondary particles preferably have a surface layer portion 12 and a core portion 11B. In this case, the molar ratio Li / Mn of Li and Mn in the surface layer part 12 is preferably lower than the molar ratio Li / Mn of Li and Mn in the core part 11B. Thereby, the change of the structure near the surface can be suppressed.

図4は、本実施形態の正極活物質1A,1Bを含む正極111を備えたリチウムイオン二次電池100に対して、正極活物質1A,1Bの重量を基準として44Ah/kgの電流で充電する際の、正極111のリチウム金属に対する電圧をV、リチウムイオン二次電池100の充電容量をQとし、横軸をV、縦軸をdQ/dVとするグラフである。   In FIG. 4, the lithium ion secondary battery 100 including the positive electrode 111 including the positive electrode active materials 1A and 1B of the present embodiment is charged with a current of 44 Ah / kg based on the weight of the positive electrode active materials 1A and 1B. In this case, the voltage with respect to the lithium metal of the positive electrode 111 is V, the charge capacity of the lithium ion secondary battery 100 is Q, the horizontal axis is V, and the vertical axis is dQ / dV.

図4中、曲線L1からL3は、本実施形態の正極活物質1A,1Bを用いた本実施形態のリチウムイオン二次電池100を示す曲線であり、曲線L0は、従来の正極活物質を用いた従来のリチウムイオン二次電池を示す曲線である。   In FIG. 4, curves L1 to L3 are curves showing the lithium ion secondary battery 100 of the present embodiment using the cathode active materials 1A and 1B of the present embodiment, and the curve L0 uses a conventional cathode active material. 2 is a curve showing a conventional lithium ion secondary battery.

図4中、曲線L1からL3で示される本実施形態の正極活物質1A,1Bは、図4に示すグラフにおけるdQ/dVのピーク値が、190Ah・(kg・V)−1以上かつ300Ah・(kg・V)−1以下であることを特徴としている。以下に、その作用を本実施形態の正極活物質1A,1Bを例として説明する。 4, the positive electrode active materials 1A and 1B of the present embodiment indicated by the curves L1 to L3 have a peak value of dQ / dV of 190 Ah · (kg · V) −1 or more and 300 Ah · in the graph shown in FIG. (Kg · V) −1 or less. The operation will be described below using the positive electrode active materials 1A and 1B of the present embodiment as an example.

図1に示すリチウムイオン二次電池100を、例えば、電気自動車や民生用電気機器に採用する場合、高容量が得られること、および、充放電回数が増加しても放電容量の低下が小さいこと、すなわち放電のサイクル容量維持率の低下を抑制することが要求される。   When the lithium ion secondary battery 100 shown in FIG. 1 is employed in, for example, an electric vehicle or a consumer electric device, a high capacity can be obtained, and a decrease in discharge capacity is small even when the number of charge / discharge cycles increases. That is, it is required to suppress a decrease in the discharge cycle capacity maintenance rate.

LiM1Oで表される層状化合物からなる従来の正極活物質を用いた従来のリチウムイオン二次電池は、特にLi金属基準で4.3Vの高電位まで充電する際に、正極活物質の粒子の表面近傍から開始する構造変化が生じ、サイクル充放電の容量維持率が低下する。この原因として、少なくとも充放電に伴う正極活物質の結晶構造の不安定化が挙げられる。LiM1Oで表される層状化合物のM1中のNiの比率が高くなるほど、リチウムイオン二次電池の充放電容量が増加し、挿入脱離するLiの割合が増加する。しかし、M1中のNiの比率が0.7を超えるNiリッチ層状化合物は、充放電に伴う格子体積の変化が大きくなり、従来の層状構造を保ち難くなる。 A conventional lithium ion secondary battery using a conventional positive electrode active material composed of a layered compound represented by LiM1O 2 , particularly when charged to a high potential of 4.3 V on the basis of Li metal, Structural changes starting from the vicinity of the surface occur, and the capacity maintenance rate of cycle charge / discharge decreases. The cause is at least destabilization of the crystal structure of the positive electrode active material accompanying charge / discharge. As the ratio of Ni in the M1 of lamellar compound represented by LiM1O 2 increases, increased charge and discharge capacity of the lithium ion secondary battery, the proportion of Li is increased to intercalation and deintercalation. However, a Ni-rich layered compound in which the ratio of Ni in M1 is greater than 0.7 has a large change in lattice volume accompanying charge / discharge, and it is difficult to maintain a conventional layered structure.

Niリッチ層状化合物からなる正極活物質を用いたリチウムイオン二次電池は、Ni比率が0.7以下の層状化合物からなる正極活物質を用いたリチウムイオン二次電池と比較して、Li金属を基準する電位で4.1Vから4.3Vまでの範囲の充電曲線のdQ/dVにおいて、顕著な反応ピークが現れる。このピークは、充電容量の増加と共に、正極活物質に不可逆な相変化が生じていることを示唆している。更に、このピークの強度は、正極活物質の相変化量と関連があり、ピークが高いほど相変化がより進んでいると考えられる。その結果、リチウムイオン二次電池のサイクル充放電の容量維持率が大幅に低下する。   A lithium ion secondary battery using a positive electrode active material made of a Ni-rich layered compound is made of Li metal compared to a lithium ion secondary battery using a positive electrode active material made of a layered compound having a Ni ratio of 0.7 or less. A remarkable reaction peak appears at dQ / dV of the charging curve in the range from 4.1 V to 4.3 V at the reference potential. This peak suggests that an irreversible phase change occurs in the positive electrode active material as the charge capacity increases. Further, the intensity of this peak is related to the amount of phase change of the positive electrode active material, and it is considered that the higher the peak, the more advanced the phase change. As a result, the capacity maintenance rate of cycle charge / discharge of the lithium ion secondary battery is significantly reduced.

特に、図4中の曲線L0のように、正極活物質の重量を基準として、リチウムイオン二次電池を44Ah/kgの電流で充電する際の正極のリチウム金属に対する電圧をV、リチウムイオン二次電池の充電容量をQとし、横軸をV、縦軸をdQ/dVとするグラフにおける充電曲線のdQ/dVのピーク値が、300Ah・(kg・V)−1を超えると、リチウムイオン二次電池の容量の低下とサイクル充放電の容量維持率の低下が顕著になる。また、dQ/dVのピーク値が190Ah・(kg・V)−1未満になると、リチウムイオン二次電池の容量の低下が顕著になる。 In particular, as shown by a curve L0 in FIG. 4, the voltage with respect to the lithium metal of the positive electrode when charging the lithium ion secondary battery at a current of 44 Ah / kg based on the weight of the positive electrode active material is V, the lithium ion secondary. When the peak value of dQ / dV in the graph in which the charge capacity of the battery is Q, the horizontal axis is V, and the vertical axis is dQ / dV exceeds 300 Ah · (kg · V) −1 , The decrease in the capacity of the secondary battery and the decrease in the capacity maintenance rate of cycle charge / discharge are remarkable. Further, when the peak value of dQ / dV is less than 190 Ah · (kg · V) −1 , the capacity of the lithium ion secondary battery is significantly reduced.

また、Niリッチ層状化合物からなる正極活物質の粒子の表面近傍は、Liの挿入脱離が容易な領域であるため、結晶構造は最も不安定と考えられる。したがって、Niリッチ層状化合物からなる正極活物質のサイクル特性の改善には、正極活物質の粒子の構造、特に表面近傍の構造の変化を抑制する必要がある。   In addition, the vicinity of the surface of the positive electrode active material particles made of the Ni-rich layered compound is a region where Li can be easily inserted and desorbed, so the crystal structure is considered to be the most unstable. Therefore, in order to improve the cycle characteristics of the positive electrode active material composed of the Ni-rich layered compound, it is necessary to suppress changes in the structure of the particles of the positive electrode active material, particularly the structure near the surface.

上記のdQ/dVのピーク値は、例えば、正極活物質1A,1Bに対する元素置換や表面被覆によって実現することができる。   The peak value of dQ / dV can be realized by, for example, element substitution or surface coating on the positive electrode active materials 1A and 1B.

図2は、元素置換を行った正極活物質1Aの粒子の模式断面図であり、図3は、表面被覆を行った正極活物質1Bの粒子の模式断面図である。   FIG. 2 is a schematic cross-sectional view of particles of the positive electrode active material 1A subjected to element substitution, and FIG. 3 is a schematic cross-sectional view of particles of the positive electrode active material 1B subjected to surface coating.

元素置換とは、前記式(1)中のLi以外の金属元素中のNiの比率が7割を超え、かつ層状構造を有するNiリッチ層状化合物である本実施形態の正極活物質1Aにおいて、一部の元素が置換元素で置換されていることをいう。元素置換では、正極活物質1Aの一部の元素を不活性元素で置換することによる容量低下を抑制するため、充放電に寄与しない元素を置換することが好ましい。例えば、正極活物質1A中のMnの一部を、置換元素で置換することができる。置換元素としては、例えば、Al、Mg等の金属元素を用いることができる。なお、正極活物質1Aの粒子11A中の置換元素の濃度は、表面と中心で異なっていてもよい。   In the positive electrode active material 1A of the present embodiment, the element substitution is a Ni-rich layered compound in which the ratio of Ni in the metal element other than Li in the formula (1) exceeds 70% and has a layered structure. This means that the element of the part is substituted with a substitute element. In the element replacement, it is preferable to replace an element that does not contribute to charging / discharging in order to suppress a decrease in capacity caused by replacing a part of the positive electrode active material 1A with an inert element. For example, a part of Mn in the positive electrode active material 1A can be substituted with a substitution element. As the substitution element, for example, a metal element such as Al or Mg can be used. The concentration of the substitution element in the particles 11A of the positive electrode active material 1A may be different between the surface and the center.

図4中、黒三角印を結ぶ点線で示される曲線L1は、前記式(1)中のMに含まれるMnをAlによって元素置換した正極活物質1Aを用いたリチウムイオン二次電池100を示している。また、図4中、黒四角印の点を結ぶ一点鎖線で示される曲線L2は、前記式(1)中のMに含まれるMnをMgによって元素置換した正極活物質1Aを用いたリチウムイオン二次電池100を示している。   In FIG. 4, a curve L1 indicated by a dotted line connecting black triangle marks indicates a lithium ion secondary battery 100 using a positive electrode active material 1A in which Mn contained in M in the formula (1) is element-substituted by Al. ing. In addition, in FIG. 4, a curve L2 indicated by a one-dot chain line connecting the points indicated by black squares represents a lithium ion 2 using a positive electrode active material 1A in which Mn contained in M in the formula (1) is elementally substituted by Mg. The secondary battery 100 is shown.

表面被覆とは、前記Niリッチ層状化合物をコア部11Bとし、コア部11Bを表層部12によって被覆することをいう。充放電に伴うコア部11Bの体積変化を抑制する観点から、表層部12には、充放電に伴う格子体積変化率がコア部11Bを構成する前記Niリッチ層状化合物より低い化合物を用いることが好ましい。表層部12によってコア部11Bが被覆された粒子からなる正極活物質1Bの容量低下を抑制するため、充放電活性を有するLi含有複合化合物を可能な限り用いることが好ましい。表層部12としては、例えば、LiMnOやLi1.2Ni0.2Mn0.6を用いることができる。なお、表面被覆と元素置換の双方を行ってもよい。表層部をLi過剰組成とすることにより、高電位でサイクル劣化をより抑制することができる。 The surface coating means that the Ni-rich layered compound is used as the core portion 11B and the core portion 11B is covered with the surface layer portion 12. From the viewpoint of suppressing the volume change of the core portion 11B accompanying charge / discharge, it is preferable to use a compound having a lower lattice volume change rate accompanying charge / discharge than the Ni-rich layered compound constituting the core portion 11B. . In order to suppress a decrease in capacity of the positive electrode active material 1 </ b> B composed of particles in which the core portion 11 </ b> B is covered with the surface layer portion 12, it is preferable to use a Li-containing composite compound having charge / discharge activity as much as possible. For example, Li 2 MnO 3 or Li 1.2 Ni 0.2 Mn 0.6 O 2 can be used as the surface layer portion 12. Both surface coating and element substitution may be performed. By setting the surface layer portion to a Li-excess composition, cycle deterioration can be further suppressed at a high potential.

表面被覆を行う場合、コア部11Bの全体が表層部12によって覆われていてもよいが、コア部11Bの一部が表層部12から露出していてもよい。すなわち、表層部12は、必ずしもコア部11Bの全体を覆う必要はない。リチウムイオン二次電池100のサイクル劣化を抑制する観点から、正極活物質1Bの粒子において、コア部11Bの表面の表層部12によって覆われている割合である形成率は、70%以上であることが好ましい。また、リチウムイオン二次電池100のサイクル劣化を抑制する観点から、正極活物質1Bを構成する粒子のうち、コア部11Bの少なくとも一部が表層部12によって覆われている粒子の割合である形成粒子率は、50%であることが好ましい。   When performing the surface coating, the entire core portion 11B may be covered with the surface layer portion 12, but a part of the core portion 11B may be exposed from the surface layer portion 12. That is, the surface layer portion 12 does not necessarily need to cover the entire core portion 11B. From the viewpoint of suppressing cycle deterioration of the lithium ion secondary battery 100, the formation rate, which is the ratio of the particles of the positive electrode active material 1B covered by the surface layer portion 12 on the surface of the core portion 11B, is 70% or more. Is preferred. In addition, from the viewpoint of suppressing cycle deterioration of the lithium ion secondary battery 100, the formation is a ratio of particles in which at least a part of the core portion 11B is covered with the surface layer portion 12 among the particles constituting the positive electrode active material 1B. The particle ratio is preferably 50%.

また、表層部12の平均厚さは、20nm以上かつ200nm以下であることが好ましい。表層部12の平均厚さが20nm未満であると、リチウムイオン二次電池のサイクル劣化を抑制する効果が低下する虞がある。また、表層部12の平均厚さが200nmよりも厚いと、高容量化に寄与するコア部11Bの割合が低下し、リチウムイオン二次電池100の容量が低下する虞がある。   Moreover, it is preferable that the average thickness of the surface layer part 12 is 20 nm or more and 200 nm or less. There exists a possibility that the effect which suppresses the cycle deterioration of a lithium ion secondary battery may fall that the average thickness of the surface layer part 12 is less than 20 nm. Moreover, when the average thickness of the surface layer part 12 is thicker than 200 nm, the ratio of the core part 11B which contributes to high capacity | capacitance falls, and there exists a possibility that the capacity | capacitance of the lithium ion secondary battery 100 may fall.

図4中、白丸印の点を結ぶ破線で示される曲線L3は、前記組成式(1)で表されるコア部11Bが、組成式LiMnOで表される表層部12によって表面被覆された粒子からなる正極活物質1Bを用いたリチウムイオン二次電池100を示している。また、黒丸印を結ぶ実線で表される曲線L0は、元素置換及び表面被覆を行っていない正極活物質を用いたリチウムイオン二次電池100を示している。 In FIG. 4, a curve L3 indicated by a broken line connecting dots with white circles indicates that the core portion 11B represented by the composition formula (1) is surface-coated by the surface layer portion 12 represented by the composition formula Li 2 MnO 3. 1 shows a lithium ion secondary battery 100 using a positive electrode active material 1B made of fine particles. A curve L0 represented by a solid line connecting the black circles indicates the lithium ion secondary battery 100 using a positive electrode active material that is not subjected to element substitution and surface coating.

次に、本実施形態の正極活物質1A,1Bの製造方法について説明する。本実施形態の正極活物質1A,1Bは、一般的な正極活物質の製造方法に準じて製造することができ、例えば、固相法、共沈法、ゾルゲル法、水熱法等によって製造することができる。   Next, the manufacturing method of positive electrode active material 1A, 1B of this embodiment is demonstrated. The positive electrode active materials 1A and 1B of the present embodiment can be manufactured according to a general method for manufacturing a positive electrode active material, for example, by a solid phase method, a coprecipitation method, a sol-gel method, a hydrothermal method, or the like. be able to.

固相法によって本実施形態の正極活物質1A,1Bを製造する場合、まず、原料のLi含有化合物、Ni含有化合物、Mn含有化合物、及び、前記式(1)中のMに含まれるMn以外の元素を含有するM含有化合物等を所定の元素組成となる比率で秤量し、粉砕及び混合して原料粉末を調製する原料粉末調製工程を実施することができる。原料粉末の調製には、乾式粉砕及び湿式粉砕のいずれの方式も用いることができる。粉砕手段としては、例えば、ボールミル、ビーズミル、遊星型ボールミル、アトライター、ジェットミル等の粉砕機を利用することができる。   When the positive electrode active materials 1A and 1B of the present embodiment are manufactured by the solid phase method, first, other than the raw material Li-containing compound, Ni-containing compound, Mn-containing compound, and Mn contained in M in the formula (1) A raw material powder preparation step of preparing a raw material powder by weighing, mixing, and pulverizing and mixing an M-containing compound containing the above elements at a ratio of a predetermined elemental composition can be performed. For the preparation of the raw material powder, either dry pulverization or wet pulverization can be used. As the pulverizing means, for example, a pulverizer such as a ball mill, a bead mill, a planetary ball mill, an attritor, or a jet mill can be used.

原料粉末調製工程で用いるLi含有化合物としては、例えば、酢酸リチウム、硝酸リチウム、炭酸リチウム、水酸化リチウム、塩化リチウム、硫酸リチウム等を用いることができ、特に、炭酸リチウム、水酸化リチウムを用いることが好ましい。Ni含有化合物及びMn含有化合物としては、例えば、酸化物、水酸化物、炭酸塩、硫酸塩、酢酸塩等を用いることができ、特に、酸化物、水酸化物、炭酸塩を用いることが好ましい。また、前記式(1)中のMに含まれるMn以外の元素を含有するM含有化合物としては、例えば、酢酸塩、硝酸塩、炭酸塩、硫酸塩、酸化物、水酸化物等を用いることができ、特に、炭酸塩、酸化物、水酸化物を用いることが好ましい。   As the Li-containing compound used in the raw material powder preparation step, for example, lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide, lithium chloride, lithium sulfate and the like can be used, and in particular, lithium carbonate and lithium hydroxide are used. Is preferred. As the Ni-containing compound and the Mn-containing compound, for example, oxides, hydroxides, carbonates, sulfates, acetates, and the like can be used. In particular, oxides, hydroxides, and carbonates are preferably used. . Further, as the M-containing compound containing an element other than Mn contained in M in the formula (1), for example, acetate, nitrate, carbonate, sulfate, oxide, hydroxide, or the like is used. In particular, it is preferable to use carbonates, oxides, and hydroxides.

前述の図2に示す正極活物質1Aの粒子のように、製造する正極活物質1Aの元素置換を行う場合には、原料粉末調製工程において、置換元素を含む化合物を原料粉末に混合する。例えば、正極活物質1A中のMnを、Al、Mg等の置換元素によって置換するには、原料粉末調製工程において、原料のLi含有化合物、Ni含有化合物、Mn含有化合物、及び、前記式(1)中のMに含まれるMn以外の元素を含有するM含有化合物とともに、Alの酸化物、Mgの酸化物等を混合することができる。   When the element substitution of the positive electrode active material 1A to be produced is performed like the particles of the positive electrode active material 1A shown in FIG. 2, the compound containing the substitution element is mixed with the raw material powder in the raw material powder preparation step. For example, in order to replace Mn in the positive electrode active material 1A with a substitution element such as Al or Mg, in the raw material powder preparation step, the raw material Li-containing compound, the Ni-containing compound, the Mn-containing compound, and the formula (1) Al), an oxide of Mg, an oxide of Mg, and the like can be mixed together with an M-containing compound containing an element other than Mn contained in M.

次に、原料粉末調製工程で調製された原料粉末を焼成して正極活物質1A又はコア部11Bの前駆体粒子を得る焼成工程を実施することができる。焼成工程では、原料粉末を仮焼成することによって原料化合物を熱分解させ、仮焼成を経た原料粉末を本焼成することで焼結させることが好ましい。本焼成の前に、仮焼成を経た原料粉末を適宜解砕及び分級してもよい。   Next, the raw material powder prepared in the raw material powder preparation step can be fired to perform a firing step in which the precursor particles of the positive electrode active material 1A or the core portion 11B are obtained. In the firing step, it is preferable to thermally sinter the raw material compound by pre-firing the raw material powder and to sinter the raw material powder after the pre-firing by main firing. Prior to the main firing, the raw powder subjected to the preliminary firing may be appropriately crushed and classified.

仮焼成における加熱温度は、例えば、400℃以上かつ700℃以下程度、本焼成における加熱温度は、例えば、700℃以上かつ900℃以下程度、好ましくは720℃以上かつ820℃以下とすることができる。このような温度範囲であれば、正極活物質1Aの粒子又はコア部11Bの前駆体粒子の分解や成分の揮発を避けつつ、結晶性を向上させることができる。   The heating temperature in the pre-baking can be, for example, about 400 ° C. to 700 ° C., and the heating temperature in the main baking can be, for example, about 700 ° C. to 900 ° C., preferably 720 ° C. to 820 ° C. . If it is such a temperature range, crystallinity can be improved, avoiding decomposition | disassembly of the particle | grains of the positive electrode active material 1A or the precursor particle | grains of the core part 11B, and volatilization of a component.

また、仮焼成における焼成時間は、2時間以上かつ24時間以下、好ましくは4時間以上かつ16時間以下であり、本焼成における焼成時間は、2時間以上かつ24時間以下、好ましくは4時間以上かつ16時間以下とする。焼成工程は、複数回を繰り返し行ってもよい。   The calcining time in the preliminary calcination is 2 hours or more and 24 hours or less, preferably 4 hours or more and 16 hours or less, and the calcination time in the main calcination is 2 hours or more and 24 hours or less, preferably 4 hours or more and 16 hours or less. The firing process may be repeated a plurality of times.

焼成工程における雰囲気は、不活性ガス雰囲気及び酸化ガス雰囲気のいずれとしてもよいが、酸素、空気等の酸化ガス雰囲気とすることが好ましい。酸化ガス雰囲気で焼成を行うことによって、原料化合物の不完全な熱分解による不純物の混入を避けることができ、また、結晶性を向上させることができる。なお、焼成された正極活物質1Aの粒子又はコア部11Bの前駆体粒子は、除冷や空冷してもよく、液体窒素等を用いて急冷してもよい。   The atmosphere in the firing step may be either an inert gas atmosphere or an oxidizing gas atmosphere, but is preferably an oxidizing gas atmosphere such as oxygen or air. By performing firing in an oxidizing gas atmosphere, it is possible to avoid contamination by impurities due to incomplete thermal decomposition of the raw material compound and to improve crystallinity. Note that the fired positive electrode active material 1A particles or core portion 11B precursor particles may be cooled or air-cooled, or may be rapidly cooled using liquid nitrogen or the like.

前述の図3に示す正極活物質1Bの粒子のように、製造する正極活物質1Bの表面被覆を行う場合には、焼成工程を経たコア部11Bの前駆体粒子と、表層部12の前駆体粒子とを混合して、コア部11Bが表層部12によって被覆された粒子からなる正極活物質1Bを得る被覆工程を実施することができる。表層部12の前駆体粒子の組成は、例えば、LiMnOやLi1.2Ni0.2Mn0.6とすることができる。 When the surface coating of the positive electrode active material 1B to be manufactured is performed like the particles of the positive electrode active material 1B shown in FIG. 3 described above, the precursor particles of the core portion 11B and the precursor of the surface layer portion 12 that have undergone the firing process. The coating step of mixing the particles to obtain the positive electrode active material 1 </ b> B composed of particles in which the core portion 11 </ b> B is covered with the surface layer portion 12 can be performed. The composition of the precursor particles of the surface layer portion 12 can be, for example, Li 2 MnO 3 or Li 1.2 Ni 0.2 Mn 0.6 O 2 .

被覆工程では、コア部11Bの前駆体粒子と、表層部12の前駆体粒子とを混合した後に、熱処理を行うことが好ましい。熱処理を行うことで、正極活物質1Bの粒子の表面近傍に固溶相が形成される。被覆工程における熱処理の加熱温度は、焼成工程における本焼成の加熱温度以下であればよい。このような温度範囲であれば、正極活物質1Bの粒子の分解や成分の揮発を避けつつ、表面近傍で被覆粒子を固溶させることができる。また、被覆工程の熱処理時間は、10分以上かつ12時間以下、好ましくは30分以上かつ6時間以下である。被覆工程の熱処理は、複数回を繰り返し行ってもよい。   In the coating step, it is preferable to perform heat treatment after the precursor particles of the core portion 11B and the precursor particles of the surface layer portion 12 are mixed. By performing the heat treatment, a solid solution phase is formed in the vicinity of the surface of the particles of the positive electrode active material 1B. The heating temperature of the heat treatment in the coating process may be equal to or lower than the heating temperature of the main baking in the baking process. Within such a temperature range, the coated particles can be dissolved in the vicinity of the surface while avoiding the decomposition of the particles of the positive electrode active material 1B and the volatilization of the components. The heat treatment time in the coating step is 10 minutes or more and 12 hours or less, preferably 30 minutes or more and 6 hours or less. The heat treatment in the coating process may be repeated a plurality of times.

以上説明したように、本実施形態によれば、高容量かつサイクル充放電による容量維持率に優れたリチウムイオン二次電池用の正極活物質1A,1B、その正極活物質1A,1Bを用いた正極111、及びその正極111を備えたリチウムイオン二次電池100を提供することができる。   As described above, according to the present embodiment, the positive electrode active materials 1A and 1B for a lithium ion secondary battery and the positive electrode active materials 1A and 1B, which have a high capacity and an excellent capacity retention rate by cycle charge and discharge, are used. The positive electrode 111 and the lithium ion secondary battery 100 including the positive electrode 111 can be provided.

(実施例及び比較例)
以下、本発明の正極活物質、正極及びリチウムイオン二次電池の実施例と、その比較例について説明する。
(Examples and Comparative Examples)
Examples of the positive electrode active material, the positive electrode, and the lithium ion secondary battery of the present invention and comparative examples thereof will be described below.

(元素置換)
表1に、元素置換を行った実施例1及び実施例2の正極活物質と、元素置換を行っていない比較例1の正極活物質と、元素置換を行った比較例2及び比較例3の正極活物質の原料中の組成のモル濃度比と正極活物質の組成比を示す。
(Element substitution)
Table 1 shows positive electrode active materials of Example 1 and Example 2 in which element substitution was performed, positive electrode active materials in Comparative Example 1 in which element substitution was not performed, and Comparative Examples 2 and 3 in which element substitution was performed. The molar concentration ratio of the composition in the raw material of the positive electrode active material and the composition ratio of the positive electrode active material are shown.

Figure 2016095980
Figure 2016095980

元素置換を行っていない比較例1の正極活物質は、以下の手順で作製した。まず、原料の炭酸リチウム、水酸化ニッケル、炭酸コバルト、及び炭酸マンガンを、Li:Ni:Co:Mnが、モル濃度比で、1.03:0.80:0.10:0.10となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。次に、得られた原料粉末を、乾燥させた後、高純度アルミナ容器に投入し、酸素気流下において650℃で12時間の仮焼成を行った。次に、得られた仮焼成体を空冷し、解砕した後、再び高純度アルミナ容器に投入して、酸素気流下において770℃で8時間の本焼成を行った。そして、得られた焼成体を空冷し、解砕及び分級し、比較例1の正極活物質を得た。   The positive electrode active material of Comparative Example 1 in which element substitution was not performed was prepared by the following procedure. First, the raw material lithium carbonate, nickel hydroxide, cobalt carbonate, and manganese carbonate have a molar ratio of Li: Ni: Co: Mn of 1.03: 0.80: 0.10: 0.10. And weighed and mixed them to prepare a raw material powder. Next, after drying the obtained raw material powder, it was put into a high-purity alumina container and pre-baked at 650 ° C. for 12 hours in an oxygen stream. Next, after the obtained temporary fired body was air-cooled and crushed, it was again put into a high-purity alumina container and subjected to main firing at 770 ° C. for 8 hours under an oxygen stream. And the obtained sintered body was air-cooled, crushed and classified, and the positive electrode active material of Comparative Example 1 was obtained.

得られた比較例1の正極活物質の粒子の元素分析を行ったところ、Li:Ni:Co:Mnは、1.00:0.80:0.10:0.10であった。次に、正極活物質の結晶構造を分析した。X線回折装置(リガク製 RINTIII)を用い、CuKα線を用いて正極活物質の結晶構造を測定した結果、R3−mに帰属する層状構造のピークが確認できた。よって、比較例1の正極活物質の元素組成は、Li1.0Ni0.8Co0.1Mn0.12.0であると推定した。 When the elemental analysis of the particle | grains of the obtained positive electrode active material of the comparative example 1 was conducted, Li: Ni: Co: Mn was 1.00: 0.80: 0.10: 0.10. Next, the crystal structure of the positive electrode active material was analyzed. As a result of measuring the crystal structure of the positive electrode active material using CuKα rays using an X-ray diffractometer (RINTIII manufactured by Rigaku), a peak of a layered structure belonging to R3-m was confirmed. Therefore, the elemental composition of the positive electrode active material of Comparative Example 1 was estimated to be Li 1.0 Ni 0.8 Co 0.1 Mn 0.1 O 2.0 .

また、元素置換を行った実施例1及び実施例2、並びに比較例2及び比較例3の正極活物質は、以下の手順で作製した。まず、原料の炭酸リチウム、水酸化ニッケル、炭酸コバルト、及び炭酸マンガンに加えて、置換元素であるAl又はMgの酸化物を、表1に示す原料中のモル濃度比となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。その後、比較例1と同様に、得られた原料粉末を乾燥させて仮焼成した後、本焼成を行って、得られた焼成体を空冷、解砕及び分級して、実施例1及び実施例2、並びに比較例2及び比較例3の正極活物質を得た。   Moreover, the positive electrode active material of Example 1 and Example 2 which performed element substitution, and Comparative Example 2 and Comparative Example 3 was produced in the following procedures. First, in addition to the raw material lithium carbonate, nickel hydroxide, cobalt carbonate, and manganese carbonate, the substitution element Al or Mg oxide is weighed so as to have a molar concentration ratio in the raw material shown in Table 1, These were wet pulverized and mixed to prepare a raw material powder. Thereafter, as in Comparative Example 1, the obtained raw material powder was dried and temporarily fired, followed by main firing, and the obtained fired body was air-cooled, crushed and classified, and Example 1 and Example 2, and positive electrode active materials of Comparative Examples 2 and 3 were obtained.

得られた実施例1及び実施例2、並びに比較例2及び比較例3の正極活物質の粒子の元素分析を行ったところ、Li:Ni:Co:Mn:Al:Mgの組成比は、表1に示す通りであった。次に、比較例1と同様に、正極活物質の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。よって、実施例1及び実施例2、並びに比較例2及び比較例3の正極活物質の正極活物質の元素組成は、Li:Ni:Co:Mn:Al:Mgが表1に示す組成比であると推定した。   Elemental analysis of the obtained positive electrode active material particles of Example 1 and Example 2 and Comparative Example 2 and Comparative Example 3 was performed. The composition ratio of Li: Ni: Co: Mn: Al: Mg was As shown in FIG. Next, as in Comparative Example 1, as a result of analyzing the crystal structure of the positive electrode active material, a layered structure peak attributable to R3-m was confirmed. Therefore, the element composition of the positive electrode active materials of the positive electrode active materials of Example 1 and Example 2 and Comparative Example 2 and Comparative Example 3 is as follows: Li: Ni: Co: Mn: Al: Mg is the composition ratio shown in Table 1. Presumed to be.

(表面被覆)
表2に、表面被覆を行った実施例3から実施例7、並びに比較例4及び比較例5の正極活物質のコア部の組成比、正極活物質の粒子100g中のコア部の重量、表層部の組成比、及び正極活物質の粒子100g中の表層部の重量を示す。なお、表2では、表面被覆を行っていない前述の比較例1の正極活物質を、コア部のみの正極活物質として示している。
(Surface coating)
Table 2 shows the composition ratio of the core portions of the positive electrode active materials of Examples 3 to 7 and Comparative Examples 4 and 5 subjected to surface coating, the weight of the core portion in 100 g of the positive electrode active material particles, and the surface layer. The composition ratio of the parts and the weight of the surface layer part in 100 g of the positive electrode active material particles are shown. In Table 2, the positive electrode active material of Comparative Example 1 which is not subjected to surface coating is shown as a positive electrode active material having only a core portion.

Figure 2016095980
Figure 2016095980

表面被覆を行った実施例3から実施例7、並びに比較例4及び比較例5の正極活物質は、以下の手順で作製した。まず、比較例1の正極活物質と同様に、原料の炭酸リチウム、水酸化ニッケル、炭酸コバルト、及び炭酸マンガンを、Li:Ni:Co:Mnが、モル濃度比で、1.03:0.80:0.10:0.10となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。次に、比較例1と同様に、得られた原料粉末を乾燥させて仮焼成した後、本焼成を行い、得られた焼成体を空冷、解砕及び分級して、コア部の前駆体粒子を作製した。   The positive electrode active materials of Examples 3 to 7 and Comparative Examples 4 and 5 subjected to surface coating were prepared by the following procedure. First, similarly to the positive electrode active material of Comparative Example 1, the raw material lithium carbonate, nickel hydroxide, cobalt carbonate, and manganese carbonate were mixed at a molar concentration ratio of Li: Ni: Co: Mn of 1.03: 0. The raw material powder was prepared by weighing to 80: 0.10: 0.10 and wet crushing and mixing them. Next, similarly to Comparative Example 1, the obtained raw material powder was dried and temporarily fired, followed by main firing, and the obtained fired body was air-cooled, crushed and classified, and core part precursor particles. Was made.

次に、実施例3から実施例6及び比較例4の正極活物質を構成する粒子の表層部の前駆体粒子と、実施例7及び比較例5の正極活物質を構成する粒子の表層部の前駆体粒子の2種類の表層部の前駆体粒子を作製した。   Next, precursor particles of the surface layer portion of the particles constituting the positive electrode active material of Example 3 to Example 6 and Comparative Example 4, and the surface layer portion of the particles constituting the positive electrode active material of Example 7 and Comparative Example 5 Two kinds of precursor particles of the surface layer portion of the precursor particles were produced.

実施例3から実施例6及び比較例4の正極活物質を構成する粒子の表層部の前駆体粒子を作製する際には、まず、原料の炭酸リチウム、炭酸マンガンを、Li:Mnがモル濃度比で2.02:1.0となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。得られた原料粉末を、乾燥させた後、高純度アルミナ容器に投入し、大気中において700℃で12時間の仮焼成を行った。そして、得られた仮焼成体を空冷し、解砕して表層部の前駆体粒子を得た。得られた表層部の前駆体粒子の元素分析を行ったところ、Li:Mnは、2.00:1.0であった。次に、比較例1と同様に、表層部の前駆体粒子の結晶構造を分析した結果、C2/mに帰属する単斜晶構造のピークが確認できた。よって、表層部の前駆体粒子の元素組成は、LiMnOであると推定した。 When preparing precursor particles for the surface layer portion of the particles constituting the positive electrode active materials of Example 3 to Example 6 and Comparative Example 4, first, lithium carbonate and manganese carbonate as raw materials were mixed in a molar concentration of Li: Mn. Weighed so that the ratio was 2.02: 1.0, and wet pulverized and mixed them to prepare raw material powder. After drying the obtained raw material powder, it was put into a high-purity alumina container and pre-baked at 700 ° C. for 12 hours in the air. The obtained calcined product was air-cooled and crushed to obtain precursor particles of the surface layer portion. When elemental analysis of the obtained precursor particles of the surface layer portion was performed, Li: Mn was 2.00: 1.0. Next, as in Comparative Example 1, as a result of analyzing the crystal structure of the precursor particles in the surface layer portion, a monoclinic structure peak attributed to C2 / m could be confirmed. Therefore, the elemental composition of the precursor particles in the surface layer portion was estimated to be Li 2 MnO 3 .

実施例7及び比較例5の正極活物質を構成する粒子の表層部の前駆体粒子を作製する際には、まず、原料の炭酸リチウム、炭酸ニッケル、炭酸マンガンを、Li:Ni:Mnがモル濃度比で1.21:0.2:0.6となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。得られた原料粉末を、乾燥させた後、高純度アルミナ容器に投入し、大気中において700℃で12時間の熱処理を行った。そして、得られた仮焼成体を空冷し、解砕して表層部の前駆体粒子を得た。得られた表層部の前駆体粒子の元素分析を行ったところ、Li:Ni:Mnは、1.2:0.2:0.6であった。次に、比較例1と同様に、表層部の前駆体粒子の結晶構造を分析した結果、R3−mに帰属する層状構造のピークが確認できた。よって、表層部の前駆体粒子の元素組成は、Li1.2Ni0.2Mn0.62.0であると推定した。 In preparing the precursor particles of the surface layer portion of the particles constituting the positive electrode active material of Example 7 and Comparative Example 5, first, lithium carbonate, nickel carbonate, and manganese carbonate as raw materials were mixed in a molar ratio of Li: Ni: Mn. Weighed so that the concentration ratio was 1.21: 0.2: 0.6, and wet pulverized and mixed them to prepare raw material powder. After drying the obtained raw material powder, it was put into a high-purity alumina container and heat-treated at 700 ° C. for 12 hours in the atmosphere. The obtained calcined product was air-cooled and crushed to obtain precursor particles of the surface layer portion. When the elemental analysis of the precursor particle | grains of the obtained surface layer part was performed, Li: Ni: Mn was 1.2: 0.2: 0.6. Next, as in Comparative Example 1, as a result of analyzing the crystal structure of the precursor particles in the surface layer portion, the peak of the layered structure belonging to R3-m could be confirmed. Therefore, the elemental composition of the precursor particles in the surface layer portion was estimated to be Li 1.2 Ni 0.2 Mn 0.6 O 2.0 .

次に、実施例3から実施例7、並びに比較例4及び比較例5の正極活物質を作製するために、コア部の前駆体粒子と表層部の前駆体粒子を、それぞれ表2に示す重量比で秤量し、これらを湿式混合した後、混合物を乾燥させて、コア部の前駆体粒子の表面に表層部の前駆体粒子を付着させた。続いて、これらを高純度アルミナ容器に投入し、酸素気流下において770℃で1時間の熱処理を行って、コア部と表層部を有する粒子からなる実施例3から実施例7、並びに比較例4及び比較例5の正極活物質を得た。   Next, in order to produce the positive electrode active materials of Example 3 to Example 7 and Comparative Example 4 and Comparative Example 5, the weight of the core part precursor particles and the surface layer part precursor particles shown in Table 2, respectively. These were weighed in a ratio and wet mixed, and then the mixture was dried to attach the precursor particles in the surface layer portion to the surface of the precursor particles in the core portion. Subsequently, these were put into a high-purity alumina container and subjected to heat treatment at 770 ° C. for 1 hour under an oxygen stream, and Examples 3 to 7 and Comparative Example 4 consisting of particles having a core part and a surface layer part. And the positive electrode active material of the comparative example 5 was obtained.

次に、実施例1から実施例7、並びに比較例1から比較例5の正極活物質を用いて、それぞれ、実施例1から実施例7、並びに比較例1から比較例5のリチウムイオン二次電池を、以下の手順で試作した。   Next, using the positive electrode active materials of Example 1 to Example 7 and Comparative Example 1 to Comparative Example 5, the lithium ion secondary of Examples 1 to 7 and Comparative Example 1 to Comparative Example 5, respectively. A battery was prototyped according to the following procedure.

まず、各実施例及び各比較例の正極活物質と導電剤とバインダとを均一に混合して正極スラリーを作製した。次に、正極スラリーを厚さ20μmのアルミ集電体箔上に塗布し、120℃で乾燥し、プレスにて電極密度が2.60g/cmになるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き、各実施例及び各比較例の正極を作製した。負極は、金属リチウムを用いて作製し、作製した各実施例、各比較例の正極及び負極と、非水電解液によって、各実施例及び各比較例のリチウムイオン二次電池を試作した。なお、非水電解液としては、エチレンカーボネートとジメチルカーボネートとを体積比1:2で混合した溶媒に、LiPFを1.0mol/Lの濃度となるように溶解させたものを用いた。 First, the positive electrode active material of each Example and each comparative example, the electrically conductive agent, and the binder were mixed uniformly, and the positive electrode slurry was produced. Next, the positive electrode slurry was applied onto an aluminum current collector foil having a thickness of 20 μm, dried at 120 ° C., and compression-molded so as to have an electrode density of 2.60 g / cm 3 by pressing to obtain an electrode plate. It was. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm, and positive electrodes of the examples and comparative examples were produced. The negative electrode was produced using metallic lithium, and the lithium ion secondary battery of each example and each comparative example was prototyped using the produced positive electrode and negative electrode of each example, each comparative example, and a non-aqueous electrolyte. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 to a concentration of 1.0 mol / L in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2 was used.

次に、作製した実施例1から実施例7、並びに比較例1から比較例5のリチウムイオン二次電池について、充放電試験を行い、放電容量特性及び充放電サイクル特性を評価した。なお、充放電試験は、25℃の環境温度下で行った。   Next, a charge / discharge test was performed on the manufactured lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 5, and the discharge capacity characteristics and the charge / discharge cycle characteristics were evaluated. The charge / discharge test was performed at an environmental temperature of 25 ° C.

放電容量特性については、正極活物質の重量を基準として1C=220Ah/kgとし、以下の手順で求めた。充放電の条件は、充電については、0.2C相当の電流で上限電圧4.6Vまで定電流低電圧充電とし、放電については、充電後に30分間休止した後、0.2C相当の定電流で下限電圧3.3Vまでの放電とした。この初期充放電を計3サイクル繰り返した。この0.2Cでの3サイクル目の充電曲線からdQ/dV値を算出した。リチウム金属基準の電圧で4.1Vから4.3Vまでの範囲のdQ/dVピーク値(以下dQ/dV4.1〜4.3Vと略す)を、以下の表3及び表4に示す。 The discharge capacity characteristics were determined by the following procedure with 1C = 220 Ah / kg based on the weight of the positive electrode active material. The charging and discharging conditions are a constant current and low voltage charge up to an upper limit voltage of 4.6 V at a current equivalent to 0.2 C for charging, and a constant current equivalent to 0.2 C for a discharge after resting for 30 minutes after charging. The discharge was set to a lower limit voltage of 3.3V. This initial charge / discharge was repeated for a total of 3 cycles. The dQ / dV value was calculated from the charge curve of the third cycle at 0.2C. DQ / dV peak value in the range of 4.1V at a voltage of the lithium metal reference to 4.3V (hereinafter referred to as dQ / dV 4.1~4.3V), shown in Tables 3 and 4 below.

Figure 2016095980
Figure 2016095980

Figure 2016095980
Figure 2016095980

表3は、正極活物質の元素置換を行った実施例1及び実施例2、並びに比較例2及び比較例3と、正極活物質の元素置換を行っていない比較例1リチウムイオン二次電池の結果を示している。また、表4は、正極活物質の粒子の表面被覆を行った実施例3から実施例7、並びに比較例4及び比較例5と、正極活物質の粒子の表面被覆を行っていない比較例1のリチウムイオン二次電池の結果を示している。   Table 3 shows Example 1 and Example 2 in which the element substitution of the positive electrode active material was performed, Comparative Example 2 and Comparative Example 3, and Comparative Example 1 in which the element substitution of the positive electrode active material was not performed. Results are shown. Table 4 shows Examples 3 to 7, and Comparative Examples 4 and 5 in which the surface coating of the positive electrode active material particles was performed, and Comparative Example 1 in which the surface coating of the positive electrode active material particles was not performed. The result of the lithium ion secondary battery is shown.

実施例1から実施例7、並びに比較例1から比較例5のリチウムイオン二次電池の充放電サイクル特性については、以下の手順で求めた。初期充放電を実施後、1C相当の電流で上限電圧4.6Vまで定電流定電圧充電し、10分間の休止の後、1.0C相当の定電流で下限電圧3.3Vまで放電した。この充放電サイクルを計90サイクル繰り返した。この90サイクル充放電の90サイクル目の放電容量と1回目の放電容量の比率をサイクル容量維持率として算出して、充放電サイクル特性を評価した。各実施例及び各比較例の二次電池のサイクル特性評価の1サイクル目の1C放電容量と90サイクル充放電の容量維持率は、表3および表4に示す結果となった。   The charge / discharge cycle characteristics of the lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 5 were obtained by the following procedure. After the initial charge / discharge, the battery was charged at a constant current and a constant voltage with a current corresponding to 1 C to a maximum voltage of 4.6 V, and after a pause of 10 minutes, the battery was discharged with a constant current equivalent to 1.0 C to a lower limit voltage of 3.3 V. This charge / discharge cycle was repeated 90 times in total. The ratio between the discharge capacity at the 90th cycle of the 90 cycle charge / discharge and the discharge capacity at the first time was calculated as the cycle capacity retention rate, and the charge / discharge cycle characteristics were evaluated. Table 1 and Table 4 show the 1C discharge capacity and the 90th cycle charge / discharge capacity retention ratio in the first cycle of the cycle characteristics evaluation of the secondary batteries of each Example and each Comparative Example.

表1に示すように、実施例1の正極活物質は、Li以外の金属元素全体を1として、Mnの一部を0.02のAlで元素置換している。また、実施例2の正極活物質は、Li以外の金属元素全体を1として、Mnの一部を0.01のAlで元素置換している。表3に示すように、実施例1及び実施例2のリチウムイオン二次電池では、dQ/dV4.1〜4.3Vの値を、300Ah・(kg・V)−1以下に抑制することで、正極活物質の層状構造が維持され、1C放電容量を174.3Ah/kg以上の高容量にしつつ、容量維持率を68.8%以上として良好なサイクル特性を得ることができた。 As shown in Table 1, in the positive electrode active material of Example 1, the whole metal element other than Li is set to 1, and a part of Mn is element-substituted with 0.02 Al. In the positive electrode active material of Example 2, the whole metal element other than Li is set to 1, and a part of Mn is element-substituted with 0.01 Al. As shown in Table 3, in the lithium ion secondary batteries of Example 1 and Example 2, the value of dQ / dV 4.1 to 4.3 V is suppressed to 300 Ah · (kg · V) −1 or less. Thus, the layered structure of the positive electrode active material was maintained, and it was possible to obtain good cycle characteristics by setting the capacity maintenance rate to 68.8% or more while increasing the 1C discharge capacity to a high capacity of 174.3 Ah / kg or more.

これに対し、元素置換を行っていない比較例1の正極活物質を用いた比較例1のリチウムイオン二次電池では、dQ/dV4.1〜4.3Vの値が300Ah・(kg・V)−1を超えたため、正極活物質の相変化が進行して容量維持率が低下したと考えられる。 In contrast, in the lithium ion secondary battery of Comparative Example 1 using the positive electrode active material of Comparative Example 1 in which element substitution was not performed, the value of dQ / dV 4.1 to 4.3 V was 300 Ah · (kg · V ) Since it exceeded -1 , it is considered that the phase change of the positive electrode active material progressed and the capacity retention rate decreased.

また、表1に示すように、比較例2及び比較例3の正極活物質は、元素置換を行っているが、前記組成式(1)中のLi以外の金属元素全体の比率b+c=1として、Mnの一部を、それぞれ0.1のAl、0.08のMgで置換している。すなわち、比較例2及び比較例3の正極活物質では、前記組成式(1)中のLi以外の金属元素全体の比率b+c=1として、置換元素であるAl又はMgの比率は、Alの比率が0.04以上、Mgの比率が0.02以上と、高い比率になっている。この場合、表3に示すように、比較例2及び比較例3のリチウムイオン二次電池では、dQ/dV4.1〜4.3Vの値が大幅に減少して190Ah・(kg・V)−1未満になることで、1C放電容量が大幅に低下し、サイクル容量維持率も大幅に低下した。 Moreover, as shown in Table 1, the positive electrode active materials of Comparative Example 2 and Comparative Example 3 were subjected to element substitution, but the ratio b + c = 1 of the total metal elements other than Li in the composition formula (1) , Mn is partially replaced with 0.1 Al and 0.08 Mg, respectively. That is, in the positive electrode active materials of Comparative Example 2 and Comparative Example 3, the ratio of Al or Mg as the substitution element is the ratio of Al, where the ratio of the whole metal element other than Li in the composition formula (1) is b + c = 1. Is as high as 0.04 or more and the ratio of Mg is 0.02 or more. In this case, as shown in Table 3, in the lithium ion secondary batteries of Comparative Example 2 and Comparative Example 3, the value of dQ / dV 4.1 to 4.3 V was significantly reduced to 190 Ah · (kg · V). By being less than −1 , the 1C discharge capacity was significantly reduced, and the cycle capacity retention rate was also significantly reduced.

表2に示すように、実施例3から実施例7までの正極活物質は、表面被覆によって粒子がコア部と表層部を有し、コア部は、組成がLi1.0Ni0.8Co0.1Mn0.1で表されるNiリッチ層状化合物であり、表層部の組成は、LiMnO又はLi1.2Ni0.2Mn0.62.0で表される。正極活物質100gあたりのコア部の重量は、85gから97.5gの範囲であり、正極活物質100gあたりの表層部の重量は、2.5gから15gの範囲である。 As shown in Table 2, the positive electrode active materials of Example 3 to Example 7 have particles having a core part and a surface part by surface coating, and the core part has a composition of Li 1.0 Ni 0.8 Co. It is a Ni-rich layered compound represented by 0.1 Mn 0.1 O 2 , and the composition of the surface layer part is represented by Li 2 MnO 3 or Li 1.2 Ni 0.2 Mn 0.6 O 2.0. The The weight of the core part per 100 g of the positive electrode active material is in the range of 85 g to 97.5 g, and the weight of the surface layer part per 100 g of the positive electrode active material is in the range of 2.5 g to 15 g.

表4に示すように、実施例3から実施例7までの正極活物質を用いた実施例3から実施例7のリチウムイオン二次電池では、dQ/dV4.1〜4.3Vの値を、300Ah・(kg・V)−1以下に抑制することで、正極活物質の層状構造が維持され、1C放電容量を170.1Ah/kg以上の高容量にしつつ、容量維持率を63.2%以上として良好なサイクル特性を得ることができた。 As shown in Table 4, in the lithium ion secondary batteries of Examples 3 to 7 using the positive electrode active materials of Examples 3 to 7, the values of dQ / dV 4.1 to 4.3 V were , 300 Ah · (kg · V) −1 or less, the layered structure of the positive electrode active material is maintained, and the capacity retention rate is 63.2 while the 1C discharge capacity is set to a high capacity of 170.1 Ah / kg or more. As a result, good cycle characteristics could be obtained.

これに対し、表面被覆を行っていない比較例1の正極活物質を用いた比較例1のリチウムイオン二次電池では、dQ/dV4.1〜4.3Vの値が300Ah・(kg・V)−1を超えたため、正極活物質の相変化が進行して容量維持率が低下したと考えられる。 On the other hand, in the lithium ion secondary battery of Comparative Example 1 using the positive electrode active material of Comparative Example 1 without surface coating, the value of dQ / dV 4.1 to 4.3 V is 300 Ah · (kg · V ) Since it exceeded -1 , it is considered that the phase change of the positive electrode active material progressed and the capacity retention rate decreased.

また、表2に示すように、比較例4及び比較例5の正極活物質は、表面被覆を行うことで粒子がコア部と表層部を有しているが、表層部の重量比が過大である。そのため、表4に示すように、比較例4及び比較例5の正極活物質を用いた比較例4及び比較例5のリチウムイオン二次電池では、サイクル容量維持率は比較的良好な結果が得られたが、dQ/dV4.1〜4.3Vの値が大幅に減少して190Ah・(kg・V)−1未満になることで、1C放電容量が大幅に低下した。 In addition, as shown in Table 2, the positive electrode active materials of Comparative Example 4 and Comparative Example 5 have a core portion and a surface layer portion by performing surface coating, but the weight ratio of the surface layer portion is excessive. is there. Therefore, as shown in Table 4, in the lithium ion secondary batteries of Comparative Example 4 and Comparative Example 5 using the positive electrode active materials of Comparative Example 4 and Comparative Example 5, the cycle capacity retention rate was relatively good. However, the value of dQ / dV 4.1 to 4.3 V was significantly reduced to be less than 190 Ah · (kg · V) −1 , thereby greatly reducing the 1C discharge capacity.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1A,1B 正極活物質(粒子)、11B コア部、12 表層部、100 リチウムイオン二次電池、111 正極、111a 正極集電体、111b 正極合剤層 1A, 1B Positive electrode active material (particles), 11B Core portion, 12 Surface layer portion, 100 Lithium ion secondary battery, 111 Positive electrode, 111a Positive electrode current collector, 111b Positive electrode mixture layer

Claims (10)

層状構造を有し、組成式:Li1+aNi2+α(ただし、Mは、Mn、Co、Mg、Al、Ti、Zr、Mo、Nb、Fe、Sn、V、Zn、W、Na、Bからなる群より選択される少なくともMnを含む1種以上の元素であり、a、b、c、及び、αは、−0.1≦a≦0.3、b+c=1、b/(b+c)>0.7、及び、−0.1≦α≦0.1、を満たす数である。)で表されるリチウムイオン二次電池用の正極活物質であって、
前記正極活物質を含む正極を備えたリチウムイオン二次電池に対して、前記正極活物質の重量を基準として44Ah/kgの電流で充電する際の、前記正極のリチウム金属に対する電圧をV、前記リチウムイオン二次電池の充電容量をQとし、横軸をV、縦軸をdQ/dVとするグラフにおける充電曲線のdQ/dVのピーク値は、190Ah・(kg・V)−1以上300Ah・(kg・V)−1以下であることを特徴とするリチウムイオン二次電池用の正極活物質。
It has a layered structure and has a composition formula: Li 1 + a Ni b M c O 2 + α (where M is Mn, Co, Mg, Al, Ti, Zr, Mo, Nb, Fe, Sn, V, Zn, W, Na And at least one element selected from the group consisting of B, a, b, c, and α are −0.1 ≦ a ≦ 0.3, b + c = 1, b / ( b + c)> 0.7 and −0.1 ≦ α ≦ 0.1)), a positive electrode active material for a lithium ion secondary battery,
The voltage with respect to the lithium metal of the positive electrode when charging the lithium ion secondary battery including the positive electrode containing the positive electrode active material with a current of 44 Ah / kg based on the weight of the positive electrode active material is V, The peak value of dQ / dV of the charging curve in a graph in which the charging capacity of the lithium ion secondary battery is Q, the horizontal axis is V, and the vertical axis is dQ / dV is 190 Ah · (kg · V) −1 or more and 300 Ah · (Kg · V) −1 or less A positive electrode active material for a lithium ion secondary battery.
前記組成式中のMがAlを含むことを特徴とする請求項1に記載のリチウムイオン二次電池用の正極活物質。   The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein M in the composition formula includes Al. 前記組成式中のMは、b+c=1として0.04未満の比率でAlを含むことを特徴とする請求項2に記載のリチウムイオン二次電池用の正極活物質。   3. The positive electrode active material for a lithium ion secondary battery according to claim 2, wherein M in the composition formula includes Al at a ratio of less than 0.04 where b + c = 1. 前記正極活物質の粒子は、表層部とコア部とを有し、
前記表層部のAlの質量モル濃度は、前記コア部のAlの質量モル濃度よりも高いことを特徴とする請求項3に記載のリチウムイオン二次電池用の正極活物質。
The positive electrode active material particles have a surface layer portion and a core portion,
4. The positive electrode active material for a lithium ion secondary battery according to claim 3, wherein the molar mass concentration of Al in the surface layer portion is higher than the molar molar concentration of Al in the core portion.
前記組成式中のMがMgを含むことを特徴とする請求項1に記載のリチウムイオン二次電池用の正極活物質。   The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein M in the composition formula contains Mg. 前記組成式中のMは、b+c=1として0.02未満の比率でMgを含むことを特徴とする請求項5に記載のリチウムイオン二次電池用の正極活物質。   The positive electrode active material for a lithium ion secondary battery according to claim 5, wherein M in the composition formula includes Mg at a ratio of less than 0.02 where b + c = 1. 前記正極活物質の粒子は、表層部とコア部とを有し、
前記表層部のMgの質量モル濃度は、前記コア部のMgの質量モル濃度よりも高いことを特徴とする請求項6に記載のリチウムイオン二次電池用の正極活物質。
The positive electrode active material particles have a surface layer portion and a core portion,
The positive electrode active material for a lithium ion secondary battery according to claim 6, wherein the molar mass concentration of Mg in the surface layer portion is higher than the molar molar concentration of Mg in the core portion.
前記正極活物質の粒子は、個々の粒子が分離した一次粒子又は複数の粒子が結合した二次粒子であり、
前記一次粒子又は前記二次粒子は、表層部とコア部とを有し、
前記表層部のLiとMnのモル比率Li/Mnは、前記コア部のLiとMnのモル比率Li/Mnよりも低いことを特徴とする請求項1に記載のリチウムイオン二次電池用の正極活物質。
The positive electrode active material particles are primary particles in which individual particles are separated or secondary particles in which a plurality of particles are bonded,
The primary particles or the secondary particles have a surface layer portion and a core portion,
2. The positive electrode for a lithium ion secondary battery according to claim 1, wherein a molar ratio Li / Mn of Li and Mn in the surface layer portion is lower than a molar ratio Li / Mn of Li and Mn in the core portion. Active material.
正極集電体と、前記正極集電体の表面に形成された正極合剤層とを備えたリチウムイオン二次電池用の正極であって、
前記正極合剤層は、請求項1から請求項8のいずれか一項に記載の正極活物質を含むことを特徴とするリチウムイオン二次電池用の正極。
A positive electrode for a lithium ion secondary battery comprising a positive electrode current collector and a positive electrode mixture layer formed on a surface of the positive electrode current collector,
The said positive mix layer contains the positive electrode active material as described in any one of Claim 1-8, The positive electrode for lithium ion secondary batteries characterized by the above-mentioned.
請求項9に記載の正極を備えることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the positive electrode according to claim 9.
JP2014230738A 2014-11-13 2014-11-13 Positive electrode active material, positive electrode, and lithium ion secondary battery Active JP6476776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014230738A JP6476776B2 (en) 2014-11-13 2014-11-13 Positive electrode active material, positive electrode, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014230738A JP6476776B2 (en) 2014-11-13 2014-11-13 Positive electrode active material, positive electrode, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016095980A true JP2016095980A (en) 2016-05-26
JP6476776B2 JP6476776B2 (en) 2019-03-06

Family

ID=56071903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014230738A Active JP6476776B2 (en) 2014-11-13 2014-11-13 Positive electrode active material, positive electrode, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6476776B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018088383A (en) * 2016-11-30 2018-06-07 住友金属鉱山株式会社 Cathode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2019032954A (en) * 2017-08-07 2019-02-28 株式会社半導体エネルギー研究所 Manufacturing method for cathode active material, and secondary battery
JP2019036455A (en) * 2017-08-14 2019-03-07 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2020195790A1 (en) * 2019-03-25 2020-10-01 日立金属株式会社 Lithium ion secondary battery positive electrode active material, method for manufacturing same, and lithium ion secondary battery
CN113675381A (en) * 2020-05-15 2021-11-19 深圳市比亚迪锂电池有限公司 Lithium ion battery positive electrode material, positive electrode plate and lithium ion battery
JP2022105709A (en) * 2017-08-07 2022-07-14 株式会社半導体エネルギー研究所 Lithium-ion secondary battery
WO2023209474A1 (en) * 2022-04-25 2023-11-02 株式会社半導体エネルギー研究所 Positive electrode active material, lithium-ion battery, electronic device, and vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023335A (en) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023335A (en) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018088383A (en) * 2016-11-30 2018-06-07 住友金属鉱山株式会社 Cathode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP7081908B2 (en) 2017-08-07 2022-06-07 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP2019032954A (en) * 2017-08-07 2019-02-28 株式会社半導体エネルギー研究所 Manufacturing method for cathode active material, and secondary battery
JP7237221B2 (en) 2017-08-07 2023-03-10 株式会社半導体エネルギー研究所 lithium ion secondary battery
JP2022105709A (en) * 2017-08-07 2022-07-14 株式会社半導体エネルギー研究所 Lithium-ion secondary battery
JP2019036455A (en) * 2017-08-14 2019-03-07 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2020195790A1 (en) * 2019-03-25 2020-10-01 日立金属株式会社 Lithium ion secondary battery positive electrode active material, method for manufacturing same, and lithium ion secondary battery
JPWO2020195790A1 (en) * 2019-03-25 2021-05-20 日立金属株式会社 Positive electrode active material for lithium ion secondary batteries, their manufacturing methods, and lithium ion secondary batteries
CN112654585A (en) * 2019-03-25 2021-04-13 日立金属株式会社 Positive electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
KR20210035300A (en) * 2019-03-25 2021-03-31 히다찌긴조꾸가부시끼가이사 Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
KR102628617B1 (en) * 2019-03-25 2024-01-24 가부시키가이샤 프로테리아루 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
CN113675381A (en) * 2020-05-15 2021-11-19 深圳市比亚迪锂电池有限公司 Lithium ion battery positive electrode material, positive electrode plate and lithium ion battery
CN113675381B (en) * 2020-05-15 2024-03-19 深圳市比亚迪锂电池有限公司 Lithium ion battery positive electrode material, positive electrode plate and lithium ion battery
WO2023209474A1 (en) * 2022-04-25 2023-11-02 株式会社半導体エネルギー研究所 Positive electrode active material, lithium-ion battery, electronic device, and vehicle

Also Published As

Publication number Publication date
JP6476776B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6589339B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6341318B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6601593B1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
KR101852792B1 (en) Method for manufacturing cathode electrode materials
JP6476776B2 (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP5450284B2 (en) Lithium titanate particles and manufacturing method thereof, negative electrode for lithium ion battery, and lithium battery
JP7272345B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
US10388944B2 (en) Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP6737289B2 (en) Positive electrode active material for lithium-ion secondary battery, method for producing the same, and lithium-ion secondary battery
US20220166019A1 (en) Positive electrode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
WO2020195790A1 (en) Lithium ion secondary battery positive electrode active material, method for manufacturing same, and lithium ion secondary battery
JP2016081626A (en) Cathode active material for nonaqueous secondary battery, manufacturing method thereof, cathode for nonaqueous secondary battery, nonaqueous secondary battery and on-vehicle nonaqueous secondary battery module
JP6493408B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2017208703A1 (en) Positive electrode active material for lithium ion secondary cell and positive electrode containing same, and lithium ion secondary cell provided with said positive electrode
JP2011129442A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery
JP2016100064A (en) Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module
JP2016051504A (en) Positive electrode active material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and on-vehicle nonaqueous secondary battery module
JP2016081716A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP2015130272A (en) Positive electrode for nonaqueous secondary battery, positive electrode active material for nonaqueous secondary battery, nonaqueous secondary battery and on-vehicle nonaqueous secondary battery
JP7194493B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2016039117A (en) Positive electrode active material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and on-vehicle nonaqueous secondary battery module
WO2014181455A1 (en) Positive electrode active material for non-aqueous secondary cell, positive electrode for non-aqueous secondary cell using same, non-aqueous secondary cell, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6476776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350