JP2016100064A - Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module - Google Patents

Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module Download PDF

Info

Publication number
JP2016100064A
JP2016100064A JP2014233483A JP2014233483A JP2016100064A JP 2016100064 A JP2016100064 A JP 2016100064A JP 2014233483 A JP2014233483 A JP 2014233483A JP 2014233483 A JP2014233483 A JP 2014233483A JP 2016100064 A JP2016100064 A JP 2016100064A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
particles
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014233483A
Other languages
Japanese (ja)
Inventor
所 久人
Hisato Tokoro
久人 所
崇 中林
Takashi Nakabayashi
崇 中林
秀一 高野
Shuichi Takano
秀一 高野
章 軍司
Akira Gunji
章 軍司
達哉 遠山
Tatsuya Toyama
達哉 遠山
孝亮 馮
Hyo-Ryang Pung
孝亮 馮
翔 古月
Sho Furutsuki
翔 古月
心 高橋
Shin Takahashi
高橋  心
小林 満
Mitsuru Kobayashi
満 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014233483A priority Critical patent/JP2016100064A/en
Publication of JP2016100064A publication Critical patent/JP2016100064A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material which enables the achievement of both of satisfactory cycle and high-capacity characteristics in a nonaqueous secondary battery.SOLUTION: A positive an electrode active material for a nonaqueous secondary battery comprises: active material particles of a layered structure, each having a core portion and a surface layer portion which differ in composition from each other. The active material particles have a composition expressed by the following formula (1), of which the a zeta potential isoelectric point is 5-7: LiNiMnCoMO(1). In the formula (1), M is at least one element selected from a group consisting of Mg, Al, Ti, Mo and Nb; "a", "b", "c", "d" and "e" are numbers satisfying: -0.1≤a≤0.3, 0.5≤b≤0.95, 0<c≤0.95, 0≤d≤0.6, 0≤e≤0.1, and b+c+d+e=1.SELECTED DRAWING: Figure 1A

Description

本発明は、非水系二次電池に用いられる正極活物質及びその製造方法、並びに、その正極活物質を用いた正極、非水系二次電池、及び二次電池モジュールに関する。   The present invention relates to a positive electrode active material used in a non-aqueous secondary battery, a method for producing the same, and a positive electrode, a non-aqueous secondary battery, and a secondary battery module using the positive electrode active material.

非水系電解質が電極間の電気伝導を媒介する非水系二次電池の一種として、リチウムイオン二次電池がある。リチウムイオン二次電池は、充放電反応における電極間の電気伝導をリチウムイオンが担う二次電池であり、ニッケル・水素蓄電池やニッケル・カドミウム蓄電池等の他の二次電池と比較して、エネルギー密度が高く、メモリ効果が小さいといった特徴を有している。そのため、リチウムイオン二次電池は、携帯電子機器、家庭用電気機器等の小型電源から、電力貯蔵装置、無停電電源装置、電力平準化装置等の定置用電源や、船舶、鉄道、ハイブリット自動車、電気自動車等の駆動電源等の中型・大型電源に至るまでその用途が拡大している。このような広範な分野に用いられるリチウムイオン二次電池に対して、電池性能のさらなる向上が求められており、例えば、ハイブリッド自動車や電気自動車等の車載用途においては、航続距離の長距離化を実現する高エネルギー密度化が要求されている。   One type of non-aqueous secondary battery in which a non-aqueous electrolyte mediates electrical conduction between electrodes is a lithium ion secondary battery. A lithium ion secondary battery is a secondary battery in which lithium ions are responsible for electrical conduction between electrodes in charge and discharge reactions. Compared to other secondary batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries, the energy density Is high and the memory effect is small. Therefore, lithium ion secondary batteries can be used for small power sources such as portable electronic devices and household electric appliances, stationary power sources such as power storage devices, uninterruptible power supply devices, power leveling devices, ships, railways, hybrid vehicles, Applications are expanding to medium and large power sources such as drive power sources for electric vehicles. Lithium ion secondary batteries used in such a wide range of fields are required to further improve battery performance. For example, in in-vehicle applications such as hybrid vehicles and electric vehicles, the cruising distance must be increased. Realization of higher energy density is required.

例えば、安定性が高く、高容量でかつ高エネルギーのカソード材料の必要性に鑑みて、O3結晶構造を有する層状リチウム金属酸化物を含むコアと、コアを取り囲むO3結晶構造を有し、酸素欠損を有する層状リチウム金属酸化物を含むシェル層と、を含む複合粒子が開発されている(下記特許文献1を参照)。特許文献1において、コアは、複合粒子の原子の総モルに対して30〜85モルパーセントの複合粒子を含む。また、コアは、層状リチウム金属酸化物がリチウムイオン電池のカソードに組み込まれ、リチウムイオン電池Li/Liに対して少なくとも4.6ボルトまで充電された後に放電される場合には、層状リチウム金属酸化物は3.5ボルト未満にdQ/dVピークを示さない。 For example, in view of the need for a cathode material with high stability, high capacity, and high energy, a core including a layered lithium metal oxide having an O3 crystal structure, an O3 crystal structure surrounding the core, and an oxygen deficiency A composite particle including a shell layer including a layered lithium metal oxide having a surface area has been developed (see Patent Document 1 below). In Patent Document 1, the core includes 30 to 85 mole percent composite particles based on the total moles of atoms of the composite particles. The core also has a layered lithium metal oxide when the layered lithium metal oxide is incorporated into the cathode of a lithium ion battery and discharged after being charged to at least 4.6 volts relative to the lithium ion battery Li / Li + . The oxide shows no dQ / dV peak below 3.5 volts.

また、活物質の熱的安定性、高容量特性、低温度特性、エネルギー密度、寿命特性、電導性、放電容量、高率特性等の改善を課題とし、金属組成が連続的な濃度勾配を有するリチウム電池用正極活物質を提供することが検討されている(下記特許文献2を参照)。特許文献2には、内部バルク部とそれを囲む外部バルク部を含み、外部バルク部と内部バルク部との接する境界面から活物質表面に金属組成が連続的な濃度勾配で存在する正極活物質が記載されている。特許文献2では、前記の正極活物質は、金属成分が位置に応じて連続的な濃度分布を有し、寿命、容量のような電気化学的特性と熱的安定性に優れる、としている。   In addition, the metal composition has a continuous concentration gradient with the objective of improving the thermal stability, high capacity characteristics, low temperature characteristics, energy density, life characteristics, conductivity, discharge capacity, and high rate characteristics of the active material. Providing a positive electrode active material for a lithium battery has been studied (see Patent Document 2 below). Patent Document 2 discloses a positive electrode active material that includes an inner bulk portion and an outer bulk portion surrounding the inner bulk portion, and a metal composition exists in a continuous concentration gradient from the boundary surface between the outer bulk portion and the inner bulk portion to the active material surface. Is described. In Patent Document 2, the positive electrode active material has a metal component having a continuous concentration distribution depending on the position, and is excellent in electrochemical characteristics such as life and capacity, and thermal stability.

特表2014−505992号公報Special table 2014-505992 gazette 特表2009−525578号公報Special table 2009-525578

特許文献1に記載された複合粒子において、シェル層を構成する酸素欠損を有する層状リチウム金属酸化物は、Li[Li0.2Mn0.54Ni0.13Co0.13]Oで表されるLi過剰正極材料である場合がある。このようなLi過剰正極材料は、リチウムイオン二次電池の正極に用いられた場合、リチウムイオン二次電池の初充電で、電池電圧で4.5V(vs Li/Li)に電位プラトー領域を持つ固溶体である。シェル層が、初充電で4.5Vにプラトーを持つ固溶体である場合、低電位(電池電圧で4.3V(vs.Li/Li+)以下、正極単極で4.4V(vs.Li/Li+)以下)まで利用する場合の考慮がされていない。また、50℃では高容量が得られるが、常温では低容量であるという問題もある。したがって、高いサイクル特性と高容量とを両立することは困難である。 In the composite particle described in Patent Document 1, a layered lithium metal oxide having an oxygen vacancy constituting a shell layer is represented by Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ] O 2 . Li-rich positive electrode material. When such a Li-excess positive electrode material is used for a positive electrode of a lithium ion secondary battery, the battery plate voltage has a potential plateau region of 4.5 V (vs Li / Li + ) upon initial charging of the lithium ion secondary battery. It has a solid solution. When the shell layer is a solid solution having a plateau at 4.5 V at the first charge, the battery voltage is 4.3 V (vs. Li / Li + ) or lower, and the positive electrode is 4.4 V (vs. Li / Li + ) or less) is not considered. Further, although a high capacity can be obtained at 50 ° C., there is a problem that the capacity is low at room temperature. Therefore, it is difficult to achieve both high cycle characteristics and high capacity.

また、特許文献2に記載されたリチウム電池用正極活物質は、内部バルク材が、LiNi1−x−y−zCoMn2−δδ(0.95≦a≦1.2、0.01≦x≦0.4、0.01≦y≦0.5、0.005≦z≦0.3、0.05≦x+y+z≦0.4、MはMg、Al、Cr、V、Ti、Cr、Fe、Zr、Zn、Si、Y、Nb、Ga、Sn、Mo、W及びこれらの組み合わせからなる群より選択される少なくとも1種以上の元素、XはF、Cl、Br、Iなどのハロゲン元素、0≦δ≦0.1)からなり、Niの組成比が0.6以上の高Ni層状材料を含む。特許文献2に記載された正極活物質について、サイクル劣化を抑制するためには、外部バルク材の割合を大きくする必要がある。しかし、外部バルク材はNiの組成比が0.6未満であるため、外部バルク材の割合を大きくすると高容量が得られない。 The positive electrode active material for lithium battery described in Patent Document 2, the internal bulk material, Li a Ni 1-x- y-z Co x Mn y M z O 2-δ X δ (0.95 ≦ a ≦ 1.2, 0.01 ≦ x ≦ 0.4, 0.01 ≦ y ≦ 0.5, 0.005 ≦ z ≦ 0.3, 0.05 ≦ x + y + z ≦ 0.4, M Is at least one element selected from the group consisting of Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W and combinations thereof, X is composed of a halogen element such as F, Cl, Br, or I, 0 ≦ δ ≦ 0.1), and includes a high Ni layered material having a Ni composition ratio of 0.6 or more. About the positive electrode active material described in patent document 2, in order to suppress cycle deterioration, it is necessary to enlarge the ratio of an external bulk material. However, since the external bulk material has a Ni composition ratio of less than 0.6, a high capacity cannot be obtained if the proportion of the external bulk material is increased.

本発明は、前記課題に鑑みてなされたものであり、非水系二次電池の良好なサイクル特性と高容量特性の両立が可能な正極活物質及びその製造方法、並びに、それを用いた正極、非水系二次電池及び二次電池モジュールを提供することを目的とする。   The present invention has been made in view of the above problems, and a positive electrode active material capable of achieving both good cycle characteristics and high capacity characteristics of a non-aqueous secondary battery, a manufacturing method thereof, and a positive electrode using the same, An object is to provide a non-aqueous secondary battery and a secondary battery module.

前記目的を達成すべく、本発明の正極活物質は、組成の異なるコア部と表層部とを有する層状構造の活物質粒子からなる非水系二次電池用の正極活物質であって、前記活物質粒子は、組成が下記式(1)で表され、ゼータ電位の等電点が5以上かつ7以下であることを特徴とする。   In order to achieve the above object, the positive electrode active material of the present invention is a positive electrode active material for a non-aqueous secondary battery comprising active material particles having a layered structure having a core portion and a surface layer portion having different compositions. The substance particles have a composition represented by the following formula (1) and have an isoelectric point of zeta potential of 5 or more and 7 or less.

Li1+aNiMnCo …(1) Li 1 + a Ni b Mn c Co d M e O 2 ... (1)

ただし、前記式(1)中、Mは、Mg、Al、Ti、Mo、Nbからなる群より選択される少なくとも1種の元素であり、a、b、c、d、及びeは、−0.1≦a≦0.3、0.5≦b≦0.95、0<c≦0.95、0≦d≦0.6、0≦e≦0.1、及び、b+c+d+e=1を満たす数である。   In the above formula (1), M is at least one element selected from the group consisting of Mg, Al, Ti, Mo, and Nb, and a, b, c, d, and e are −0. 0.1 ≦ a ≦ 0.3, 0.5 ≦ b ≦ 0.95, 0 <c ≦ 0.95, 0 ≦ d ≦ 0.6, 0 ≦ e ≦ 0.1, and b + c + d + e = 1 Is a number.

本発明の正極活物質並びにそれを用いた正極、非水系二次電池及び二次電池モジュールによれば、非水系二次電池の良好なサイクル特性と高容量特性を両立することができる。   According to the positive electrode active material and the positive electrode, non-aqueous secondary battery, and secondary battery module using the positive electrode active material of the present invention, both good cycle characteristics and high capacity characteristics of the non-aqueous secondary battery can be achieved.

本発明の正極活物質の実施形態1に係る活物質粒子の模式断面図。The schematic cross section of the active material particle which concerns on Embodiment 1 of the positive electrode active material of this invention. 図1Aに示す活物質粒子の模式外観図。The schematic external view of the active material particle shown to FIG. 1A. 本発明の正極活物質の実施形態2に係る活物質粒子の模式断面図。The schematic cross section of the active material particle which concerns on Embodiment 2 of the positive electrode active material of this invention. 本発明の正極活物質の実施形態3に係る活物質粒子の模式断面図。The schematic cross section of the active material particle which concerns on Embodiment 3 of the positive electrode active material of this invention. 本発明の正極活物質の実施形態4に係る活物質粒子の模式断面図。The schematic cross section of the active material particle which concerns on Embodiment 4 of the positive electrode active material of this invention. 図4Aに示す活物質粒子の模式外観図。4B is a schematic external view of the active material particles shown in FIG. 4A. FIG. 本発明の正極活物質の実施形態5に係る活物質粒子の模式断面図。The schematic cross section of the active material particle which concerns on Embodiment 5 of the positive electrode active material of this invention. 本発明の正極活物質の実施形態6に係る活物質粒子の模式断面図。The schematic cross section of the active material particle which concerns on Embodiment 6 of the positive electrode active material of this invention. 本発明の正極活物質製造方法の実施形態を示すフロー図。The flowchart which shows embodiment of the positive electrode active material manufacturing method of this invention. 本発明の非水系二次電池の実施形態を示す模式部分断面図。The typical fragmentary sectional view which shows embodiment of the non-aqueous secondary battery of this invention. 本発明の二次電池モジュールを示す概略構成図。The schematic block diagram which shows the secondary battery module of this invention. 本発明の正極活物質の実施例に係る活物質粒子のTEM−EDXの測定位置の一例を示すTEM画像。The TEM image which shows an example of the measurement position of TEM-EDX of the active material particle which concerns on the Example of the positive electrode active material of this invention. 本発明の正極活物質の実施例1に係る活物質粒子のTEM−EDX測定結果を示すグラフ。The graph which shows the TEM-EDX measurement result of the active material particle which concerns on Example 1 of the positive electrode active material of this invention. 本発明の正極活物質の実施例2に係る活物質粒子のTEM−EDX測定結果を示すグラフ。The graph which shows the TEM-EDX measurement result of the active material particle which concerns on Example 2 of the positive electrode active material of this invention. 本発明の正極活物質の実施例3に係る活物質粒子のTEM−EDX測定結果を示すグラフ。The graph which shows the TEM-EDX measurement result of the active material particle which concerns on Example 3 of the positive electrode active material of this invention.

以下、図面を参照して本発明の正極活物質及びその製造方法、並びに、正極、非水系二次電池及び二次電池モジュールの実施形態について説明する。   Hereinafter, embodiments of a positive electrode active material and a method for producing the same, and a positive electrode, a non-aqueous secondary battery, and a secondary battery module will be described with reference to the drawings.

(正極活物質:実施形態1)
図1Aは、本発明の実施形態1に係る正極活物質10Aを構成する活物質粒子1Aの模式断面図である。図1Bは、図1Aに示す活物質粒子1Aの模式外観図である。
(Positive electrode active material: Embodiment 1)
FIG. 1A is a schematic cross-sectional view of an active material particle 1A constituting a positive electrode active material 10A according to Embodiment 1 of the present invention. FIG. 1B is a schematic external view of the active material particle 1A shown in FIG. 1A.

本実施形態の正極活物質10Aは、組成の異なるコア部11と表層部12とを有する層状構造の活物質粒子1Aからなる非水系二次電池用の正極活物質である。活物質粒子1Aは、組成が下記式(1)で表され、ゼータ電位の等電点が5以上かつ7以下である。   10 A of positive electrode active materials of this embodiment are positive electrode active materials for non-aqueous secondary batteries which consist of the active material particle 1A of the layered structure which has the core part 11 and the surface layer part 12 from which a composition differs. The active material particle 1A has a composition represented by the following formula (1), and has an isoelectric point of zeta potential of 5 or more and 7 or less.

Li1+aNiMnCo …(1) Li 1 + a Ni b Mn c Co d M e O 2 ... (1)

ただし、前記式(1)中、Mは、Mg、Al、Ti、Mo、Nbからなる群より選択される少なくとも1種の元素であり、a、b、c、d、及びeは、−0.1≦a≦0.3、0.5≦b≦0.95、0<c≦0.95、0≦d≦0.6、0≦e≦0.1、及び、b+c+d+e=1を満たす数である。   In the above formula (1), M is at least one element selected from the group consisting of Mg, Al, Ti, Mo, and Nb, and a, b, c, d, and e are −0. 0.1 ≦ a ≦ 0.3, 0.5 ≦ b ≦ 0.95, 0 <c ≦ 0.95, 0 ≦ d ≦ 0.6, 0 ≦ e ≦ 0.1, and b + c + d + e = 1 Is a number.

すなわち、活物質粒子1Aのコア部11と表層部12とは、双方が前記式(1)で表され、少なくともLi、Ni及びMnを含む異なる組成を有し、双方とも、例えば、層状岩塩型(α−NaFeO型)構造を有している。 That is, the core portion 11 and the surface layer portion 12 of the active material particle 1A are both represented by the above formula (1) and have different compositions including at least Li, Ni, and Mn. (Α-NaFeO 2 type) structure.

なお、組成式(1)中のbは、非水系二次電池の高容量化の観点からは、0.6≦b≦0.9の範囲であることが好ましい。また、組成式(1)中のcは、0.05≦c≦0.3であることが好ましい。cが0.05以上であると、非水系二次電池のサイクル劣化をより抑制でき、cが0.3以下であると、非水系二次電池の高容量化が可能になる。また、組成式(1)中のdは、0.05≦d≦0.2であることが好ましい。dが0.05以上であると、カチオンミキシングが抑制でき、非水系二次電池の高容量化が可能になる。dが0.2より大きいと高価なCoの量が過大となり、コストが増大する。   Note that b in the composition formula (1) is preferably in the range of 0.6 ≦ b ≦ 0.9 from the viewpoint of increasing the capacity of the non-aqueous secondary battery. Further, c in the composition formula (1) is preferably 0.05 ≦ c ≦ 0.3. When c is 0.05 or more, cycle deterioration of the non-aqueous secondary battery can be further suppressed, and when c is 0.3 or less, the capacity of the non-aqueous secondary battery can be increased. Further, d in the composition formula (1) is preferably 0.05 ≦ d ≦ 0.2. When d is 0.05 or more, cation mixing can be suppressed, and the capacity of the non-aqueous secondary battery can be increased. If d is larger than 0.2, the amount of expensive Co becomes excessive and the cost increases.

また、組成式(1)中の酸素は、活物質粒子1Aのコア部11と表層部12における層状構造が維持される範囲であれば、欠損してもかまわない。   Moreover, oxygen in the composition formula (1) may be lost as long as the layered structure in the core portion 11 and the surface layer portion 12 of the active material particle 1A is maintained.

コア部11のNiの原子濃度は、表層部12のNiの原子濃度よりも高いことが好ましい。すなわち、コア部11のNiの原子濃度をCcとし、表層部12のNiの原子濃度をCsとしたときに、Cs<Ccの関係が成立することが好ましい。これにより、正極活物質10Aが非水系二次電池の正極に用いられたときに、相対的にNiの原子濃度が高い活物質粒子1Aのコア部11によって、非水系二次電池の高容量化を実現することができる。また、相対的にNiの原子濃度が低い活物質粒子1Aの表層部12によって非水系二次電池のサイクル劣化を抑制し、非水系二次電池のサイクル特性を向上させることができる。なお、Niの原子濃度とは、組成式(1)におけるLi以外の金属元素中のNiの原子濃度である。   The atomic concentration of Ni in the core portion 11 is preferably higher than the atomic concentration of Ni in the surface layer portion 12. That is, it is preferable that the relationship Cs <Cc is established, where the atomic concentration of Ni in the core portion 11 is Cc and the atomic concentration of Ni in the surface layer portion 12 is Cs. Thereby, when the positive electrode active material 10A is used for the positive electrode of the non-aqueous secondary battery, the capacity of the non-aqueous secondary battery is increased by the core portion 11 of the active material particles 1A having a relatively high atomic concentration of Ni. Can be realized. In addition, the surface layer portion 12 of the active material particles 1A having a relatively low atomic concentration of Ni can suppress cycle deterioration of the non-aqueous secondary battery and improve the cycle characteristics of the non-aqueous secondary battery. The atomic concentration of Ni is the atomic concentration of Ni in a metal element other than Li in the composition formula (1).

活物質粒子1Aの表層部12のLiの原子濃度は、コア部11のLiの原子濃度よりも高いことが好ましい。非水系二次電池の正極を構成する正極活物質10Aの活物質粒子1Aにおいて、Liの原子濃度が高くなると、非水系二次電池の高電位でのサイクル劣化が抑制されるが、非水系二次電池のレート特性は悪化する。   The atomic concentration of Li in the surface layer portion 12 of the active material particle 1 </ b> A is preferably higher than the atomic concentration of Li in the core portion 11. In the active material particles 1A of the positive electrode active material 10A constituting the positive electrode of the non-aqueous secondary battery, when the atomic concentration of Li increases, cycle deterioration at a high potential of the non-aqueous secondary battery is suppressed. The rate characteristics of the secondary battery deteriorate.

そこで、活物質粒子1Aの表層部12におけるLiの原子濃度をコア部11のLiの原子濃度よりも高くすることで、Liの原子濃度が相対的に高い表層部12によって、非水系二次電池の高電位でのサイクル劣化を抑制し、Liの原子濃度が相対的に低いコア部11によって、非水系二次電池のレート特性を維持することができる。すなわち、表層部12のLiの原子濃度がコア部11のLiの原子濃度よりも高い活物質粒子1Aからなる正極化物質を用いることで、非水系二次電池のレート特性を維持しつつ、非水系二次電池の高電位でのサイクル劣化を抑制することができる。   Therefore, by making the Li atom concentration in the surface layer portion 12 of the active material particle 1 </ b> A higher than the Li atom concentration in the core portion 11, the surface layer portion 12 having a relatively high Li atom concentration allows the non-aqueous secondary battery. Of the non-aqueous secondary battery can be maintained by the core 11 having a relatively low atomic concentration of Li. That is, by using the positive electrode material composed of the active material particles 1A in which the atomic concentration of Li in the surface layer portion 12 is higher than the atomic concentration of Li in the core portion 11, while maintaining the rate characteristics of the non-aqueous secondary battery, Cycle degradation at a high potential of the water-based secondary battery can be suppressed.

また、表層部12は、下記式(2)で表される組成を有することが好ましい。   Moreover, it is preferable that the surface layer part 12 has a composition represented by following formula (2).

Li1+aNiMnCo …(2) Li 1 + a Ni b Mn c Co d M e O 2 ... (2)

ただし、前記式(2)中、Mは、Mg、Al、Ti、Mo、Nbからなる群より選択される少なくとも1種の元素であり、a、b、c、d、及びeは、0<a≦0.3、0.2≦b≦0.95、0<c≦0.95、0≦d≦0.6、0≦e≦0.1、及び、b+c+d+e=1を満たす数である。   In the above formula (2), M is at least one element selected from the group consisting of Mg, Al, Ti, Mo, and Nb, and a, b, c, d, and e are 0 < It is a number that satisfies a ≦ 0.3, 0.2 ≦ b ≦ 0.95, 0 <c ≦ 0.95, 0 ≦ d ≦ 0.6, 0 ≦ e ≦ 0.1, and b + c + d + e = 1. .

前記式(2)中のaを0よりも大きくすることで、活物質粒子1Aの表層部12は、Liの組成比が1よりも大きいLi過剰組成となる。これにより、活物質粒子1Aからなる正極活物質10Aを用いた非水系二次電池において、高電位でのサイクル劣化を抑制し、サイクル特性を向上させることができる。   By making a in Formula (2) larger than 0, the surface layer portion 12 of the active material particle 1 </ b> A has a Li excess composition in which the Li composition ratio is larger than 1. Thereby, in the non-aqueous secondary battery using the positive electrode active material 10 </ b> A made of the active material particles 1 </ b> A, cycle deterioration at a high potential can be suppressed and cycle characteristics can be improved.

本実施形態において、ゼータ電位(以下、ζ電位と表記する)とは、界面動電電位を意味する。具体的には、液体中に活物質粒子1Aを分散させると、活物質粒子1Aの表面近傍に拡散電気二重層が形成されて電位差が生じる。活物質粒子1Aが液体中を移動すると、活物質粒子1Aの表面にイオンが強く引き寄せられて固定された固定層とともに、その周囲でイオンが徐々に拡散した拡散層の一部も移動する。この拡散層の移動が起こる面を滑り面とし、活物質粒子1Aから十分に離れた電気的に中性である領域の電位をゼロとし、このゼロ点を基準として計測した滑り面の電位を、ζ電位と定義することができる。   In the present embodiment, the zeta potential (hereinafter referred to as ζ potential) means an electrokinetic potential. Specifically, when the active material particles 1A are dispersed in a liquid, a diffusion electric double layer is formed in the vicinity of the surface of the active material particles 1A, and a potential difference is generated. When the active material particles 1A move in the liquid, a part of the diffusion layer in which ions are gradually diffused moves together with the fixed layer in which ions are strongly attracted and fixed to the surface of the active material particles 1A. The surface where the movement of the diffusion layer occurs is defined as a sliding surface, the potential of an electrically neutral region sufficiently separated from the active material particle 1A is set to zero, and the potential of the sliding surface measured with reference to this zero point is It can be defined as ζ potential.

また、活物質粒子1Aを分散させた液体のpH値を変化させると、ζ電位が変動し、ある特定のpH値で活物質粒子1Aの表面電位がゼロとなり、活物質粒子1Aが電気泳動などの界面動電現象を示さなくなる。このときのpH値を、活物質粒子1Aのζ電位の等電点という。活物質粒子1Aのζ電位の等電点は、例えば、ζ電位測定装置等を用いて以下のように測定することができる。   Further, when the pH value of the liquid in which the active material particles 1A are dispersed is changed, the ζ potential fluctuates, the surface potential of the active material particles 1A becomes zero at a certain specific pH value, and the active material particles 1A undergo electrophoresis or the like. No electrokinetic phenomenon is exhibited. The pH value at this time is referred to as an isoelectric point of the ζ potential of the active material particle 1A. The isoelectric point of the ζ potential of the active material particle 1A can be measured as follows using, for example, a ζ potential measuring device.

まず、1000質量部の純水に1質量部の正極活物質10Aを加えて攪拌し、純水を分散媒として活物質粒子1Aを分散させる。次に、水酸化ナトリウムと塩酸を用いて分散媒のpH値を調整することで、pH値を11、10、9、7、5、4、3と、順次低下させて、各pH値におけるζ電位を測定する。得られたpH値毎のζ電位を、縦軸をζ電位、横軸をpHとするグラフにプロットし、ζ電位が負で絶対値が最も小さい点と、ζ電位が正で絶対値が最も小さい点を直線で結び、ζ電位が0となるpH値を求める。この求めたpH値を、ζ電位の等電点とする。   First, 1 part by mass of positive electrode active material 10A is added to 1000 parts by mass of pure water and stirred to disperse active material particles 1A using pure water as a dispersion medium. Next, by adjusting the pH value of the dispersion medium using sodium hydroxide and hydrochloric acid, the pH value is sequentially decreased to 11, 10, 9, 7, 5, 4, 3, and ζ at each pH value. Measure the potential. The obtained ζ potential for each pH value is plotted on a graph in which the ordinate is ζ potential and the abscissa is pH, and the ζ potential is negative and the absolute value is the smallest, and the ζ potential is positive and the absolute value is the most. The small points are connected by a straight line, and the pH value at which the ζ potential is 0 is obtained. This determined pH value is taken as the isoelectric point of the ζ potential.

このように測定した活物質粒子1Aのζ電位の等電点が、5以上かつ7以下あり、かつ活物質粒子1Aが前記式(1)で表される組成の異なるコア部11と表層部12とを有する層状構造を有する場合には、次のような効果が得られることが分かった。すなわち、その活物質粒子1Aからなる正極活物質10Aを正極に用いた非水系二次電池は、低電位から高電位までサイクル劣化が抑制されてサイクル特性が向上するだけでなく、常温においても高容量を得ることができる。ここで、低電位とは、例えば、電池電圧で4.3V(vs Li/Li)以下、正極単極で4.4V(vs Li/Li)以下であり、高電位とは、例えば、電池電圧で4.5V(vs Li/Li)以下、正極単極で4.6V(vs Li/Li)以下である。 The active material particles 1A thus measured have a zeta potential isoelectric point of 5 or more and 7 or less, and the active material particles 1A have different compositions represented by the above formula (1). It has been found that the following effects can be obtained when a layered structure having That is, the non-aqueous secondary battery using the positive electrode active material 10A made of the active material particles 1A as the positive electrode not only improves cycle characteristics by suppressing cycle deterioration from a low potential to a high potential, but is also high at room temperature. Capacity can be obtained. Here, the low potential is, for example, a battery voltage of 4.3 V (vs Li / Li + ) or less, a positive electrode single electrode of 4.4 V (vs Li / Li + ) or less, and the high potential is, for example, The battery voltage is 4.5 V (vs Li / Li + ) or less, and the positive electrode single electrode is 4.6 V (vs Li / Li + ) or less.

すなわち、本実施形態の正極活物質10Aは、活物質粒子1Aが前記式(1)で表される組成の異なるコア部11と表層部12とを有する層状構造を有し、活物質粒子1Aのζ電位の等電点をpH値で5以上7以下の範囲に調整することで、表層部12の固溶条件及び固溶状態を調整している。ζ電位の等電点と、粒子表面の電気陰性度とは相関関係があることが知られており、ζ電位の等電点は粒子表面の状態を把握できる。活物質粒子1Aのζ電位の等電点をpH値で5以上7以下の範囲に調整することで、表層部12の表面性状及び固溶状態を調整でき、低電位から高電位までサイクル劣化が抑制されてサイクル特性が向上し、常温においても高容量を得ることができる。活物質粒子1Aのζ電位の等電点を調製する方法については、後述する正極活物質製造方法、並びに実施例及び比較例で詳細に説明する。   That is, the positive electrode active material 10A of the present embodiment has a layered structure in which the active material particle 1A has the core portion 11 and the surface layer portion 12 having different compositions represented by the formula (1), and the active material particle 1A The solid solution condition and the solid solution state of the surface layer portion 12 are adjusted by adjusting the isoelectric point of the ζ potential to a pH value in the range of 5 to 7. It is known that there is a correlation between the isoelectric point of the ζ potential and the electronegativity of the particle surface, and the isoelectric point of the ζ potential can grasp the state of the particle surface. By adjusting the isoelectric point of the ζ potential of the active material particle 1A to a pH value in the range of 5 or more and 7 or less, the surface property and the solid solution state of the surface layer portion 12 can be adjusted, and cycle deterioration from a low potential to a high potential can be achieved. It is suppressed and the cycle characteristics are improved, and a high capacity can be obtained even at room temperature. The method for preparing the isoelectric point of the ζ potential of the active material particle 1A will be described in detail in a positive electrode active material manufacturing method, examples and comparative examples described later.

前記特許文献1に記載された複合粒子は、低Ni層状材料である固溶体である。低Ni層状材料である固溶体では、ζ電位の等電点がpH値で7よりも高くなる。したがって、低電位から高電位までサイクル劣化を抑制することは困難である。また、50℃では高容量が得られるが常温では低容量であるという問題もある。   The composite particle described in Patent Document 1 is a solid solution that is a low Ni layered material. In the solid solution which is a low Ni layered material, the isoelectric point of ζ potential is higher than 7 in pH value. Therefore, it is difficult to suppress cycle deterioration from a low potential to a high potential. There is also a problem that a high capacity can be obtained at 50 ° C., but a low capacity at room temperature.

また、前記特許文献2に記載されたリチウム電池用正極活物質は、外部バルク材がNiの組成比が0.6未満の低Ni層状材料であり、低Ni層状材料である固溶体と異なり、ζ電位の等電点がpH値で5よりも低くなる。したがって、サイクル劣化の抑制と高容量化の両立は困難である。   Further, the positive electrode active material for a lithium battery described in Patent Document 2 is a low Ni layered material in which the external bulk material has a Ni composition ratio of less than 0.6, and unlike a solid solution that is a low Ni layered material, ζ The isoelectric point of the potential is lower than 5 at the pH value. Therefore, it is difficult to achieve both suppression of cycle deterioration and increase in capacity.

これに対し、本実施形態の正極活物質10Aを構成する活物質粒子1Aは、前記式(1)で表される組成の異なるコア部11と表層部12とを有する層状構造を有し、活物質粒子1Aのζ電位の等電点をpH値で5以上7以下の範囲に調整されている。これにより、活物質粒子1Aの表層部12を前記固溶体とも前記高Ni層状材料とも異なるこれらの中間の固溶状態にすることができる。したがって、本実施形態の正極活物質10Aを非水系二次電池の正極材料に用いることで、非水系二次電池の良好なサイクル特性と高容量特性を両立することが可能になる。   On the other hand, the active material particle 1A constituting the positive electrode active material 10A of the present embodiment has a layered structure including the core portion 11 and the surface layer portion 12 having different compositions represented by the formula (1), The isoelectric point of the ζ potential of the substance particle 1A is adjusted to a range of 5 to 7 in terms of pH value. Thereby, the surface layer part 12 of 1 A of active material particles can be made into the solid solution state of these different from the said solid solution and the said high Ni layered material. Therefore, by using the positive electrode active material 10A of the present embodiment as the positive electrode material of the non-aqueous secondary battery, it is possible to achieve both good cycle characteristics and high capacity characteristics of the non-aqueous secondary battery.

なお、活物質粒子1Aの表層部12の厚さは、例えば、20nm以上かつ200nm以下であることが好ましい。表層部12の厚さを20nm以上とすることで、サイクル劣化をより効果的に抑制できる。一方、表面部の厚さを200nm以下とすることで、非水系二次電池の高容量化を担う活物質粒子1Aのコア部11の割合を多くすることができ、非水系二次電池をより高容量化することができる。   In addition, it is preferable that the thickness of the surface layer part 12 of 1 A of active material particles is 20 nm or more and 200 nm or less, for example. By setting the thickness of the surface layer portion 20 to 20 nm or more, cycle deterioration can be more effectively suppressed. On the other hand, by setting the thickness of the surface portion to 200 nm or less, the ratio of the core portion 11 of the active material particles 1A responsible for increasing the capacity of the non-aqueous secondary battery can be increased, and the non-aqueous secondary battery can be made more The capacity can be increased.

また、活物質粒子1Aのコア部11は、図1Aに示すように、表層部12によって完全に覆われていてもよいが、図1Bに示すように、コア部11が表層部12によって完全には覆われず、コア部11の一部が表層部12から露出していてもよい。すなわち、表層部12は、コア部11の周囲全体に形成されていてもよく、コア部11の周囲の一部に形成されていてもよい。なお、表層部12によるコア部11の被覆率、すなわち、コア部11となる材料の表面に表層部12が形成されている割合は、非水系二次電池のサイクル劣化を抑制する観点から、80%以上であることが好ましい。また、正極活物質10A中のコア部11と表層部12とを有する活物質粒子1Aの割合は、非水系二次電池のサイクル劣化を抑制する観点から、50%以上であることが好ましい。   Further, the core portion 11 of the active material particle 1A may be completely covered by the surface layer portion 12 as shown in FIG. 1A, but the core portion 11 is completely covered by the surface layer portion 12 as shown in FIG. 1B. The core portion 11 may be partly exposed from the surface layer portion 12 without being covered. That is, the surface layer portion 12 may be formed on the entire periphery of the core portion 11 or may be formed on a part of the periphery of the core portion 11. In addition, the coverage of the core part 11 by the surface layer part 12, ie, the ratio in which the surface layer part 12 is formed on the surface of the material to be the core part 11, is 80 from the viewpoint of suppressing cycle deterioration of the non-aqueous secondary battery. % Or more is preferable. Moreover, it is preferable that the ratio of 1 A of active material particles which have the core part 11 and the surface layer part 12 in 10A of positive electrode active materials is 50% or more from a viewpoint of suppressing the cycle deterioration of a non-aqueous secondary battery.

(正極活物質:実施形態2)
図2は、本発明の実施形態2に係る正極活物質10Bを構成する活物質粒子1Bの模式断面図である。
(Positive electrode active material: Embodiment 2)
FIG. 2 is a schematic cross-sectional view of the active material particles 1B constituting the positive electrode active material 10B according to Embodiment 2 of the present invention.

本実施形態の正極活物質10Bは、コア部11と表層部12とを有する複数の粒子が焼結された複合粒子である点で、前述の実施形態1で説明した正極活物質10Aと異なっている。本実施形態の正極活物質10Bのその他の点は、前述の実施形態1で説明した正極活物質10Aと同様であるので、同一の部分には同一の符号を付して説明を省略する。   The positive electrode active material 10B of the present embodiment is different from the positive electrode active material 10A described in the first embodiment in that the positive electrode active material 10B is a composite particle obtained by sintering a plurality of particles having the core portion 11 and the surface layer portion 12. Yes. Since the other points of the positive electrode active material 10B of this embodiment are the same as those of the positive electrode active material 10A described in the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の活物質粒子1Bを構成する粒子は、前述の実施形態1で説明した活物質粒子1Aに相当する粒子である。すなわち、本実施形態の正極活物質10Bは、実施形態1の正極活物質10Aと同様に、組成の異なるコア部11と表層部12とを有する層状構造の活物質粒子1Bからなる非水系二次電池用の正極活物質である。活物質粒子1Bは、組成が前記式(1)で表され、ゼータ電位の等電点が5以上かつ7以下である。したがって、本実施形態の正極活物質10Bによれば、実施形態1の正極活物質10Aと同様の効果を得ることができる。なお、本実施形態の正極活物質10Bを構成する活物質粒子1Bは、表面近傍の一部に実施形態1の活物質粒子1Aに相当する粒子と異なる粒子を含んでいてもよい。   The particles constituting the active material particles 1B of the present embodiment are particles corresponding to the active material particles 1A described in the first embodiment. That is, the positive electrode active material 10B of the present embodiment, like the positive electrode active material 10A of the first embodiment, is a non-aqueous secondary material composed of active material particles 1B having a layered structure having a core portion 11 and a surface layer portion 12 having different compositions. It is a positive electrode active material for batteries. The active material particle 1B has a composition represented by the formula (1), and has an isoelectric point of zeta potential of 5 or more and 7 or less. Therefore, according to the positive electrode active material 10B of the present embodiment, the same effect as that of the positive electrode active material 10A of the first embodiment can be obtained. Note that the active material particles 1B constituting the positive electrode active material 10B of the present embodiment may include particles different from the particles corresponding to the active material particles 1A of the first embodiment in a part near the surface.

なお、活物質粒子1B(二次粒子)は、コア部11と表層部12とを有する複数の粒子(一次粒子)が物理的な力で凝集していてもよいが、活物質粒子1Bを構成する粒子が焼結していることが好ましい。活物質粒子1Bを構成する粒子が焼結していることにより、活物質粒子1Bの強度が高くなり、正極作製時の許容剪断力が高くなり、正極作製が容易になる。   The active material particles 1B (secondary particles) may be composed of a plurality of particles (primary particles) having a core portion 11 and a surface layer portion 12 by physical force, but constitute the active material particles 1B. It is preferable that the particles to be sintered are sintered. Since the particles constituting the active material particles 1B are sintered, the strength of the active material particles 1B is increased, the allowable shear force during the production of the positive electrode is increased, and the production of the positive electrode is facilitated.

(正極活物質:実施形態3)
図3は、本発明の実施形態3に係る正極活物質10Cを構成する活物質粒子1Cの模式断面図である。
(Positive electrode active material: Embodiment 3)
FIG. 3 is a schematic cross-sectional view of the active material particles 1C constituting the positive electrode active material 10C according to Embodiment 3 of the present invention.

本実施形態の正極活物質10Cを構成する活物質粒子1Cは、コア部11が複数の粒子が焼結された焼結体であり、表層部12が焼結体の表面に形成されている点で、前述の実施形態1で説明した正極活物質10Aと異なっている。本実施形態の正極活物質10Cのその他の点は、前述の実施形態1で説明した正極活物質10Aと同様であるので、同一の部分には同一の符号を付して説明を省略する。   In the active material particle 1C constituting the positive electrode active material 10C of the present embodiment, the core portion 11 is a sintered body obtained by sintering a plurality of particles, and the surface layer portion 12 is formed on the surface of the sintered body. Thus, it is different from the positive electrode active material 10A described in the first embodiment. Since the other points of the positive electrode active material 10C of the present embodiment are the same as those of the positive electrode active material 10A described in the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の正極活物質10Cは、実施形態1の正極活物質10Aと同様に、組成の異なるコア部11と表層部12とを有する層状構造の活物質粒子1Cからなる非水系二次電池用の正極活物質である。本実施形態において、活物質粒子1Cのコア部11は、複数の粒子が焼結された焼結体である。活物質粒子1Cは、実施形態1の正極活物質10Aと同様に、コア部11と表層部12の組成が前記式(1)で表され、ゼータ電位の等電点が5以上かつ7以下である。したがって、本実施形態の正極活物質10Cによれば、実施形態1の正極活物質10Aと同様の効果を得ることができる。   10 C of positive electrode active materials of this embodiment are the same as the positive electrode active material 10A of Embodiment 1, For non-aqueous secondary batteries which consist of the active material particle 1C of the layer structure which has the core part 11 and the surface layer part 12 from which a composition differs. The positive electrode active material. In the present embodiment, the core portion 11 of the active material particle 1 </ b> C is a sintered body in which a plurality of particles are sintered. In the active material particle 1C, the composition of the core portion 11 and the surface layer portion 12 is represented by the above formula (1), and the isoelectric point of the zeta potential is 5 or more and 7 or less, as in the positive electrode active material 10A of Embodiment 1. is there. Therefore, according to the positive electrode active material 10C of the present embodiment, the same effects as those of the positive electrode active material 10A of the first embodiment can be obtained.

なお、活物質粒子1C(二次粒子)は、コア部11を構成する複数の粒子(一次粒子)が物理的な力で凝集していてもよいが、コア部11を構成する粒子が焼結していることが好ましい。コア部11を構成する粒子が焼結していることにより、活物質粒子1Cの強度が高くなり、正極作製時の許容剪断力が高くなり、正極作製が容易になる。   In the active material particle 1C (secondary particle), a plurality of particles (primary particles) constituting the core part 11 may be aggregated by physical force, but the particles constituting the core part 11 are sintered. It is preferable. Since the particles constituting the core portion 11 are sintered, the strength of the active material particles 1C is increased, the allowable shear force during the production of the positive electrode is increased, and the production of the positive electrode is facilitated.

(正極活物質:実施形態4)
図4Aは、本発明の実施形態4に係る正極活物質10Dを構成する活物質粒子1Dの模式断面図である。図4Bは、図4Aに示す活物質粒子1Dの模式外観図である。
(Positive electrode active material: Embodiment 4)
FIG. 4A is a schematic cross-sectional view of active material particles 1D constituting a positive electrode active material 10D according to Embodiment 4 of the present invention. FIG. 4B is a schematic external view of the active material particle 1D shown in FIG. 4A.

本実施形態の正極活物質10Dを構成する活物質粒子1Dは、コア部11と表層部12との間に中間部13を有する点で、前述の実施形態1で説明した正極活物質10Aと異なっている。本実施形態の正極活物質10Dのその他の点は、前述の実施形態1で説明した正極活物質10Aと同様であるので、同一の部分には同一の符号を付して説明を省略する。   The active material particle 1D constituting the positive electrode active material 10D of the present embodiment is different from the positive electrode active material 10A described in the first embodiment described above in that the intermediate portion 13 is provided between the core portion 11 and the surface layer portion 12. ing. Since the other points of the positive electrode active material 10D of this embodiment are the same as those of the positive electrode active material 10A described in the first embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の正極活物質10Dを構成する活物質粒子1Dは、コア部11と表層部12との間に中間部13を有している。中間部13のNiの原子濃度は、コア部11のNiの原子濃度よりも低く、表層部12のNiの原子濃度よりも高いことが好ましい。すなわち、表層部12のNiの原子濃度をCs、中間部13のNiの原子濃度をCm、コア部11のNiの原子濃度をCcとすると、Cs<Cm<Ccの関係が成立していることが好ましい。活物質粒子1Dが、前記式(1)で表される組成の異なる層状構造のコア部11と表層部12とを有し、ゼータ電位の等電点が5以上かつ7以下である場合に、Cs<Cm<Ccの関係が成立していると、活物質粒子1Dからなる正極活物質10Dを用いた非水系二次電池のサイクル劣化をより効果的に抑制することができるからである。   The active material particle 1 </ b> D constituting the positive electrode active material 10 </ b> D of the present embodiment has an intermediate portion 13 between the core portion 11 and the surface layer portion 12. The atomic concentration of Ni in the intermediate portion 13 is preferably lower than the atomic concentration of Ni in the core portion 11 and higher than the atomic concentration of Ni in the surface layer portion 12. That is, if the atomic concentration of Ni in the surface layer portion 12 is Cs, the atomic concentration of Ni in the intermediate portion 13 is Cm, and the atomic concentration of Ni in the core portion 11 is Cc, the relationship Cs <Cm <Cc is established. Is preferred. When the active material particle 1D has a core part 11 and a surface layer part 12 having a layered structure with different compositions represented by the formula (1), and the isoelectric point of the zeta potential is 5 or more and 7 or less, This is because when the relationship of Cs <Cm <Cc is established, cycle deterioration of the nonaqueous secondary battery using the positive electrode active material 10D made of the active material particles 1D can be more effectively suppressed.

また、表層部12のNiの原子濃度の濃度勾配は、中間部13のNiの原子濃度の濃度勾配よりも小さいことが好ましい。すなわち、表層部12のNiの濃度勾配をGs、中間部13のNiの濃度勾配をGmとすると、Gs<Gmの関係が成立することが好ましい。表層部12とコア部11との間に、表層部12よりも濃度勾配が大きい中間部13を介在させることにより、活物質粒子1Dの表面から中心へ向けたLiイオンの移動をスムースにしつつ、表層部12と中間部13の厚さを薄くすることができる。したがって、非水系二次電池の高容量化に寄与するコア部11の体積を相対的に増加させ、活物質粒子1Dからなる正極活物質10Dを用いた非水系二次電池を高容量化することができる。   Moreover, it is preferable that the concentration gradient of Ni atom concentration in the surface layer portion 12 is smaller than the concentration gradient of Ni atom concentration in the intermediate portion 13. That is, if the Ni concentration gradient in the surface layer portion 12 is Gs and the Ni concentration gradient in the intermediate portion 13 is Gm, the relationship of Gs <Gm is preferably established. By interposing an intermediate portion 13 having a concentration gradient larger than that of the surface layer portion 12 between the surface layer portion 12 and the core portion 11, while smooth movement of Li ions from the surface of the active material particle 1D toward the center, The thickness of the surface layer portion 12 and the intermediate portion 13 can be reduced. Therefore, relatively increasing the volume of the core 11 that contributes to increasing the capacity of the non-aqueous secondary battery and increasing the capacity of the non-aqueous secondary battery using the positive electrode active material 10D made of the active material particles 1D. Can do.

活物質粒子1Dの表層部12と中間部13とコア部11とは、例えば、以下のように定義することができる。活物質粒子1Dの表面から中心に向かって200nm以内の距離で、Ni原子濃度が−0.01mol%/nm以上の傾斜を有する場合には、Ni原子濃度が漸次低くなる傾斜の終了する部位までを表層部12と定義する。また、活物質粒子1Dの中心と、Ni原子濃度の差が2mol%以内の部位をコア部11と定義する。また、活物質粒子1Dの表層部12とコア部11との間にある部位を中間部13と定義する。ここで、活物質粒子1Dの中心は、例えば、活物質粒子1Dの重心位置、又は、活物質粒子1Dの断面形状の重心位置とすることができる。   The surface layer part 12, the intermediate part 13, and the core part 11 of the active material particle 1D can be defined as follows, for example. When the Ni atom concentration has a gradient of −0.01 mol% / nm or more at a distance within 200 nm from the surface of the active material particle 1D toward the center, the Ni atom concentration gradually decreases until the end of the gradient. Is defined as the surface layer portion 12. Further, the core portion 11 is defined as a portion where the difference between the center of the active material particle 1D and the Ni atom concentration is 2 mol% or less. Further, a portion between the surface layer portion 12 and the core portion 11 of the active material particle 1 </ b> D is defined as an intermediate portion 13. Here, the center of the active material particle 1D can be, for example, the center of gravity of the active material particle 1D or the center of gravity of the cross-sectional shape of the active material particle 1D.

なお、活物質粒子1Dの表面から中心に向かって200nm以内の距離で、Ni原子濃度が−0.01mol%/nm以上の傾斜を有しない場合には、活物質粒子1Dの表面とNi原子濃度の差が2mol%以内の部位を表層部12、活物質粒子1Dの中心とNi原子濃度の差が2mol%以内の部位をコア部11と定義することができる。   When the Ni atom concentration does not have a slope of −0.01 mol% / nm or more at a distance within 200 nm from the surface of the active material particle 1D toward the center, the surface of the active material particle 1D and the Ni atom concentration Can be defined as the surface layer portion 12, and the portion where the difference between the center of the active material particle 1 </ b> D and the Ni atom concentration is within 2 mol% can be defined as the core portion 11.

また、活物質粒子1Dの中間部13の厚さは、10nm以上かつ100nm以下であることが好ましい。中間部13の厚さを10nm以上とすることで、活物質粒子1D中のLiイオンの移動がよりスムースになる。一方、中間部13の厚さを100nm以下とすることで、非水系二次電池の高容量化に寄与するコア部11の体積が大きくなり、正極活物質10Dを正極に用いた非水系二次電池をより高容量化することができる。   The thickness of the intermediate portion 13 of the active material particle 1D is preferably 10 nm or more and 100 nm or less. By making the thickness of the intermediate part 13 10 nm or more, the movement of Li ions in the active material particles 1D becomes smoother. On the other hand, by setting the thickness of the intermediate part 13 to 100 nm or less, the volume of the core part 11 contributing to the increase in capacity of the non-aqueous secondary battery is increased, and the non-aqueous secondary using the positive electrode active material 10D as the positive electrode. The capacity of the battery can be increased.

活物質粒子1Dの表層部12又は中間部13の厚さ、及び、活物質粒子1Dの表層部12又は中間部13のNiの原子濃度の濃度勾配Gs又はGmは、例えば、透過電子顕微鏡−エネルギー分散型X線分光(Transmission Electron Microscopy−Energy Dispersive X-ray Detector;TEM−EDX)、透過電子顕微鏡−電子エネルギー損失分光(Transmission Electron Microscopy−Electron Energy Loss Spectroscopy;TEM−EELS)によって測定することができる。   The thickness of the surface layer part 12 or the intermediate part 13 of the active material particle 1D and the concentration gradient Gs or Gm of the atomic concentration of Ni in the surface layer part 12 or the intermediate part 13 of the active material particle 1D are, for example, transmission electron microscope-energy It can be measured by dispersive X-ray spectroscopy (TEM-EDX), transmission electron microscope-electron energy loss spectroscopy (TEM-EELS). .

具体的には、活物質粒子1Dの表層部12又は中間部13の厚さは、例えば、透過型電子顕微鏡の画像中で無作為に選択した活物質粒子1Dにおいて、TEM−EDXの線分析や、数nmから50nm間隔の点分析を行うことで計測することができる。また、活物質粒子1Dの表層部12又は中間部13のNiの原子濃度の濃度勾配Gs又はGmは、透過型電子顕微鏡の画像中で無作為に選択した活物質粒子1Dにおいて、TEM―EDXの線分析や、数nmから10nm間隔の点分析を行うことで計測することができる。   Specifically, the thickness of the surface layer portion 12 or the intermediate portion 13 of the active material particle 1D is determined by, for example, TEM-EDX line analysis in the active material particle 1D randomly selected in the transmission electron microscope image. It can be measured by performing point analysis at intervals of several nm to 50 nm. In addition, the concentration gradient Gs or Gm of the Ni atomic concentration in the surface layer portion 12 or the intermediate portion 13 of the active material particle 1D is determined by TEM-EDX in the active material particle 1D randomly selected in the transmission electron microscope image. It can be measured by performing line analysis or point analysis at intervals of several nm to 10 nm.

また、活物質粒子1Dのコア部11は、図4Aに示すように、表層部12及び中間部13によって完全に覆われていてもよいが、図4Bに示すように、コア部11が表層部12及び中間部13によって完全には覆われず、コア部11及び中間部13の一部が表層部12から露出していてもよい。すなわち、表層部12及び中間部13は、コア部11の周囲全体に形成されていてもよく、コア部11の周囲の一部に形成されていてもよい。また、コア部11と表層部12との間に中間部13が形成されず、コア部11と表層部12が接している領域があってもよい。   4A, the core part 11 of the active material particle 1D may be completely covered by the surface layer part 12 and the intermediate part 13, but the core part 11 is formed by the surface layer part as shown in FIG. 4B. 12 and the intermediate part 13 may not be completely covered, and a part of the core part 11 and the intermediate part 13 may be exposed from the surface layer part 12. That is, the surface layer portion 12 and the intermediate portion 13 may be formed on the entire periphery of the core portion 11 or may be formed on a part of the periphery of the core portion 11. Further, the intermediate portion 13 may not be formed between the core portion 11 and the surface layer portion 12, and there may be a region where the core portion 11 and the surface layer portion 12 are in contact with each other.

(正極活物質:実施形態5)
図5は、本発明の実施形態5に係る正極活物質10Eを構成する活物質粒子1Eの模式断面図である。
(Positive electrode active material: Embodiment 5)
FIG. 5 is a schematic cross-sectional view of active material particles 1E constituting the positive electrode active material 10E according to Embodiment 5 of the present invention.

本実施形態の正極活物質10Eは、コア部11と中間部13と表層部12とを有する複数の粒子が焼結された複合粒子である点で、前述の実施形態4で説明した正極活物質10Dと異なっている。本実施形態の正極活物質10Eのその他の点は、前述の実施形態4で説明した正極活物質10Dと同様であるので、同一の部分には同一の符号を付して説明を省略する。   The positive electrode active material 10E of the present embodiment is a composite particle obtained by sintering a plurality of particles having a core part 11, an intermediate part 13, and a surface layer part 12, and has been described in the fourth embodiment. It is different from 10D. Since the other points of the positive electrode active material 10E of the present embodiment are the same as those of the positive electrode active material 10D described in the fourth embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の活物質粒子1Eを構成する粒子は、前述の実施形態4で説明した活物質粒子1Dに相当する粒子である。すなわち、本実施形態の正極活物質10Eは、実施形態4の正極活物質10Dと同様に、組成の異なるコア部11と中間部13と表層部12とを有する層状構造の活物質粒子1Eからなる非水系二次電池用の正極活物質である。活物質粒子1Eは、組成が前記式(1)で表され、ゼータ電位の等電点が5以上かつ7以下である。したがって、本実施形態の正極活物質10Eによれば、実施形態4の正極活物質10Dと同様の効果を得ることができる。なお、本実施形態の正極活物質10Eを構成する活物質粒子1Eは、表面近傍の一部に実施形態4の活物質粒子1Dに相当する粒子と異なる粒子を含んでいてもよい。   The particles constituting the active material particles 1E of the present embodiment are particles corresponding to the active material particles 1D described in the fourth embodiment. That is, the positive electrode active material 10E of the present embodiment is composed of layered structure active material particles 1E having a core part 11, an intermediate part 13, and a surface layer part 12 having different compositions, like the positive electrode active material 10D of the fourth embodiment. It is a positive electrode active material for non-aqueous secondary batteries. The active material particle 1E has a composition represented by the formula (1), and has an isoelectric point of zeta potential of 5 or more and 7 or less. Therefore, according to the positive electrode active material 10E of this embodiment, the same effect as the positive electrode active material 10D of Embodiment 4 can be obtained. The active material particles 1E constituting the positive electrode active material 10E of the present embodiment may include particles different from the particles corresponding to the active material particles 1D of the fourth embodiment in a part near the surface.

(正極活物質:実施形態6)
図6は、本発明の実施形態6に係る正極活物質10Fを構成する活物質粒子1Fの模式断面図である。
(Positive electrode active material: Embodiment 6)
FIG. 6 is a schematic cross-sectional view of active material particles 1F constituting positive electrode active material 10F according to Embodiment 6 of the present invention.

本実施形態の正極活物質10Fを構成する活物質粒子1Fは、コア部11が複数の粒子が焼結された焼結体であり、中間部13及び表層部12が焼結体の表面に形成されている点で、前述の実施形態4で説明した正極活物質10Dと異なっている。本実施形態の正極活物質10Fのその他の点は、前述の実施形態4で説明した正極活物質10Dと同様であるので、同一の部分には同一の符号を付して説明を省略する。   In the active material particle 1F constituting the positive electrode active material 10F of the present embodiment, the core portion 11 is a sintered body obtained by sintering a plurality of particles, and the intermediate portion 13 and the surface layer portion 12 are formed on the surface of the sintered body. This is different from the positive electrode active material 10D described in the fourth embodiment. Since the other points of the positive electrode active material 10F of this embodiment are the same as those of the positive electrode active material 10D described in the above-described fourth embodiment, the same portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態の正極活物質10Fは、実施形態4の正極活物質10Dと同様に、組成の異なるコア部11と中間部13と表層部12とを有する層状構造の活物質粒子1Fからなる非水系二次電池用の正極活物質である。本実施形態において、活物質粒子1Fのコア部11は、複数の粒子が焼結された焼結体である。活物質粒子1Fは、実施形態4の正極活物質10Dと同様に、コア部11と表層部12の組成が前記式(1)で表され、ゼータ電位の等電点が5以上かつ7以下である。したがって、本実施形態の正極活物質10Fによれば、実施形態4の正極活物質10Dと同様の効果を得ることができる。   Similarly to the positive electrode active material 10D of the fourth embodiment, the positive electrode active material 10F of the present embodiment is a non-aqueous system composed of active material particles 1F having a layered structure having a core part 11, an intermediate part 13, and a surface layer part 12 having different compositions. It is a positive electrode active material for a secondary battery. In the present embodiment, the core portion 11 of the active material particle 1F is a sintered body in which a plurality of particles are sintered. In the active material particle 1F, the composition of the core portion 11 and the surface layer portion 12 is expressed by the above formula (1), and the isoelectric point of the zeta potential is 5 or more and 7 or less, as in the positive electrode active material 10D of Embodiment 4. is there. Therefore, according to the positive electrode active material 10F of this embodiment, the same effect as the positive electrode active material 10D of Embodiment 4 can be obtained.

(正極活物質製造方法)
以下、本発明の正極活物質製造方法の一実施形態について説明する。図7は、本実施形態の正極活物質製造方法の工程を示すフロー図である。
(Positive electrode active material manufacturing method)
Hereinafter, an embodiment of the positive electrode active material manufacturing method of the present invention will be described. FIG. 7 is a flowchart showing the steps of the positive electrode active material manufacturing method of the present embodiment.

一般に、非水系二次電池用の正極活物質は、例えば、固相法、共沈法、ゾルゲル法、水熱法等によって製造することができる。本実施形態の正極活物質製造方法においても、これらの方法を採用することが可能である。   In general, a positive electrode active material for a non-aqueous secondary battery can be produced by, for example, a solid phase method, a coprecipitation method, a sol-gel method, a hydrothermal method, or the like. These methods can also be employed in the positive electrode active material manufacturing method of the present embodiment.

本実施形態の正極活物質製造方法は、前記式(1)で表される活物質粒子1A−1Fの組成の異なるコア部11と表層部12の前駆体粒子を製造する前駆体粒子製造工程S1と、製造された前駆体粒子を混合する混合工程S2と、混合された混合物を熱処理する熱処理工程S3とを有している。   The positive electrode active material manufacturing method of the present embodiment is a precursor particle manufacturing step S1 for manufacturing the precursor particles of the core part 11 and the surface layer part 12 having different compositions of the active material particles 1A-1F represented by the formula (1). And a mixing step S2 for mixing the produced precursor particles, and a heat treatment step S3 for heat-treating the mixed mixture.

前駆体粒子製造工程S1においては、遷移金属の化合物とLi化合物とを混合及び焼成して、コア部前駆体粒子と表層部前駆体粒子とを製造する。より具体的には、まず、原料のLi化合物、Ni化合物、Mn化合物、前記した組成式(1)に含む遷移金属Mの化合物等を所定の元素組成となる比率で秤量し、粉砕及び混合して原料粉末を調製する。   In the precursor particle manufacturing step S1, the transition metal compound and the Li compound are mixed and fired to manufacture the core part precursor particles and the surface layer part precursor particles. More specifically, first, raw material Li compound, Ni compound, Mn compound, transition metal M compound included in the above-described composition formula (1), and the like are weighed at a ratio of a predetermined element composition, pulverized and mixed. Prepare raw material powder.

Li化合物としては、例えば、酢酸リチウム、硝酸リチウム、炭酸リチウム、水酸化リチウム、塩化リチウム、硫酸リチウム等を、Ni化合物としては、例えば、酢酸ニッケル、硝酸ニッケル、炭酸ニッケル、硫酸ニッケル、水酸化ニッケル、酸化ニッケル等を、Mn化合物としては、例えば、酢酸マンガン、硝酸マンガン、炭酸マンガン、硫酸マンガン、酸化マンガン、水酸化マンガン等を用いることができる。また、Coや遷移金属Mの元素を含有させる場合は、これらの酢酸塩、硝酸塩、炭酸塩、硫酸塩、水酸化物、酸化物等を用いることができる。   Examples of the Li compound include lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide, lithium chloride, and lithium sulfate. Examples of the Ni compound include nickel acetate, nickel nitrate, nickel carbonate, nickel sulfate, and nickel hydroxide. As the Mn compound, for example, nickel acetate, manganese nitrate, manganese carbonate, manganese sulfate, manganese oxide, manganese hydroxide, or the like can be used. In addition, when an element of Co or transition metal M is contained, these acetates, nitrates, carbonates, sulfates, hydroxides, oxides, and the like can be used.

原料粉末を調製する粉砕、混合には、乾式粉砕及び湿式粉砕のいずれの方式も用いることができる。粉砕手段としては、例えば、ボールミル、ビーズミル、遊星型ボールミル、アトライター、ジェットミル等の粉砕機を利用することができる。   For the pulverization and mixing for preparing the raw material powder, any of dry pulverization and wet pulverization methods can be used. As the pulverizing means, for example, a pulverizer such as a ball mill, a bead mill, a planetary ball mill, an attritor, or a jet mill can be used.

異なる材料又は異なる比率で調製された原料粉末は、それぞれ焼成されて、活物質粒子1A−1Fのコア部11の前駆体であるコア部前駆体粒子と、活物質粒子1A−1Fの表層部12の前駆体である表層部前駆体粒子になる。原料粉末は、不活性ガス雰囲気又は酸化ガス雰囲気の下で仮焼成することによって原料化合物を熱分解させ、適宜解砕及び分級した後、本焼成することによって焼結させることが好ましい。仮焼成における加熱温度は、例えば、概ね300℃以上かつ700℃以下の範囲とし、本焼成における加熱温度は、例えば、概ね700℃以上かつ1100℃以下の範囲とすることができる。   The raw material powders prepared with different materials or different ratios are fired, respectively, and core part precursor particles that are precursors of the core part 11 of the active material particles 1A-1F and the surface layer part 12 of the active material particles 1A-1F. It becomes the surface layer part precursor particle | grains which are the precursor of this. It is preferable to sinter the raw material powder by subjecting the raw material compound to thermal decomposition by calcination in an inert gas atmosphere or an oxidizing gas atmosphere, and appropriately pulverizing and classifying the material compound, followed by main calcination. The heating temperature in the pre-baking can be, for example, in a range of approximately 300 ° C. to 700 ° C., and the heating temperature in the main baking can be, for example, in a range of approximately 700 ° C. to 1100 ° C., for example.

図1A及び図1B、図2、図4A及び図4B、並びに図5に示す実施形態1、2、4及び5の活物質粒子1A,1B,1D,1Eを製造するには、複数の粒子が焼結した状態の焼結体(二次粒子)であるコア部前駆体粒子を個々の粒子(一次粒子)に分離させる解砕を行う。また、図3及び図6に示す実施形態3及び6の活物質粒子1C,1Fを製造するには、複数の粒子が焼結した状態の焼結体であるコア部前駆体粒子をそのまま用いることができる。また、表層部前駆体粒子は、複数の粒子が焼結した状態の焼結体を個々の粒子に解砕するか、又は解砕した個々の粒子をさらに細かく粉砕することが好ましい。   In order to produce the active material particles 1A, 1B, 1D, and 1E of Embodiments 1, 2, 4, and 5 shown in FIG. 1A and FIG. 1B, FIG. 2, FIG. 4A, and FIG. Crushing is performed to separate the core part precursor particles, which are sintered bodies (secondary particles) in a sintered state, into individual particles (primary particles). Moreover, in order to produce the active material particles 1C and 1F of Embodiments 3 and 6 shown in FIGS. 3 and 6, the core part precursor particles, which are sintered bodies in which a plurality of particles are sintered, are used as they are. Can do. Further, it is preferable that the surface layer precursor particles are pulverized into individual particles of a sintered body in which a plurality of particles are sintered, or the pulverized individual particles are further finely pulverized.

前駆体粒子製造工程S1において、コア部前駆体粒子のメジアン径は、例えば、表層部前駆体粒子のメジアン径の2倍以上かつ100倍以下とすることができる。すなわち、コア部前駆体粒子のメジアン径をD50Aとし、表層部前駆体粒子のメジアン径をD50Bとすると、2≦D50A/D50B≦100の関係が成立することが好ましい。D50A/D50Bが2以上であれば、コア部前駆体粒子の表面に表層部前駆体粒子を配置することができる。また、D50A/D50Bが100以上になると、表層部前駆体粒子が小さくなり過ぎ、製造が困難になる。   In the precursor particle manufacturing step S1, the median diameter of the core part precursor particles can be, for example, not less than 2 times and not more than 100 times the median diameter of the surface layer part precursor particles. That is, when the median diameter of the core part precursor particles is D50A and the median diameter of the surface layer part precursor particles is D50B, it is preferable that the relationship 2 ≦ D50A / D50B ≦ 100 is satisfied. If D50A / D50B is 2 or more, the surface layer part precursor particles can be arranged on the surface of the core part precursor particles. On the other hand, when D50A / D50B is 100 or more, the surface layer precursor particles become too small, and the production becomes difficult.

次に、前駆体粒子製造工程S1において製造されたコア部前駆体粒子と表層部前駆体粒子とを混合する混合工程S2を実施する。混合工程S2では、コア部前駆体粒子と表層部前駆体粒子との混合を行い、又はコア部前駆体粒子の表面に表層部前駆体粒子を担持させる。混合工程S2は、例えば、らい解機、ヘンシェルミキサー、ボールミル、ビーズミル、遊星型ボールミル、アトライター、表面改質装置、複合化装置等を用いて行うことができる。   Next, a mixing step S2 for mixing the core part precursor particles and the surface layer part precursor particles manufactured in the precursor particle manufacturing step S1 is performed. In the mixing step S2, the core part precursor particles and the surface layer part precursor particles are mixed, or the surface part part precursor particles are supported on the surface of the core part precursor particles. The mixing step S2 can be performed using, for example, a levester, a Henschel mixer, a ball mill, a bead mill, a planetary ball mill, an attritor, a surface modification device, a compounding device, or the like.

混合工程S2において、コア部前駆体粒子100質量部に対して表層部前駆体粒子を0.1質量部以上かつ15質量部以下の割合で混合することが好ましい。このような質量比でコア部前駆体粒子と表層部前駆体粒子とを混合することで、活物質粒子1A−1Fの表層部12の厚さ、又は表層部12及び中間部13の厚さを調節することができる。   In the mixing step S2, it is preferable to mix the surface layer precursor particles at a ratio of 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the core part precursor particles. By mixing the core part precursor particles and the surface layer part precursor particles at such a mass ratio, the thickness of the surface layer part 12 of the active material particles 1A-1F or the thicknesses of the surface layer part 12 and the intermediate part 13 can be reduced. Can be adjusted.

次に、混合工程S2で得られた混合物を、ゼータ電位の等電点が5以上7以下の活物質粒子1A−1Fとなるように熱処理する熱処理工程S3を実施する。熱処理工程S3における加熱温度は、例えば、300℃以上かつ1100℃以下とすることができる。この熱処理工程S3における熱処理の加熱温度は、前駆体粒子製造工程S1におけるコア部前駆体粒子の本焼成の焼成温度よりも200℃低い温度以上であり、かつ前記焼成温度よりも50℃高い温度以下であることが好ましい。これにより、活物質粒子1A−1Fの形成率及び形成粒子率が向上する。   Next, a heat treatment step S3 is performed in which the mixture obtained in the mixing step S2 is heat-treated so as to become active material particles 1A-1F having an isoelectric point of zeta potential of 5 or more and 7 or less. The heating temperature in the heat treatment step S3 can be, for example, 300 ° C. or higher and 1100 ° C. or lower. The heating temperature of the heat treatment in the heat treatment step S3 is not less than a temperature that is 200 ° C. lower than the firing temperature of main firing of the core part precursor particles in the precursor particle manufacturing step S1, and not more than 50 ° C. higher than the firing temperature. It is preferable that Thereby, the formation rate and the formation particle rate of the active material particles 1A-1F are improved.

ここで、活物質粒子1A−1Fの形成率及び形成粒子率は、活物質粒子1A−1Fの複数の箇所の組成を測定することにより、算出することができる。具体的には、例えば、無作為に選択した活物質粒子1A−1Fの断面において、活物質粒子1A−1Fの中心部のNiの原子濃度を測定する。また、例えば、活物質粒子1A−1Fの断面の上下左右の4箇所において、表面から中心側へ10nmの位置のNiの原子濃度を測定する。そして、中心部のNiの原子濃度よりも高いNiの原子濃度が測定された測定箇所の数を、すべての測定箇所の合計の数で除して100を乗じた値を、活物質粒子1A−1Fの形成率とすることができる。なお、活物質粒子1A−1FのNiの原子濃度等の組成は、例えば、TEM−EDX、TEM−EELS等によって測定することができる。   Here, the formation rate and the formation particle rate of the active material particles 1A-1F can be calculated by measuring the composition of a plurality of locations of the active material particles 1A-1F. Specifically, for example, the atomic concentration of Ni at the center of the active material particles 1A-1F is measured in the cross section of the randomly selected active material particles 1A-1F. Further, for example, the atomic concentration of Ni at a position of 10 nm from the surface to the center side is measured at four locations on the top, bottom, left and right of the cross section of the active material particles 1A-1F. Then, the value obtained by dividing the number of measurement points where the atomic concentration of Ni higher than the atomic concentration of Ni in the central portion is divided by the total number of all measurement points and multiplying by 100 is the active material particle 1A- The formation rate can be 1F. The composition of the active material particles 1A-1F such as the atomic concentration of Ni can be measured by, for example, TEM-EDX, TEM-EELS, or the like.

また、活物質粒子1A−1Fの形成粒子率を算出するには、形成率を算出する場合と同様に、無作為に選択した活物質粒子1A−1Fの断面において、活物質粒子1A−1Fの中心部のNiの原子濃度を測定する。また、同断面において、例えば、活物質粒子1A−1Fの表面の上下左右の4箇所において、表面から中心側へ10nmの位置のNiの原子濃度を測定する。そして、活物質粒子1A−1Fの中心部のNiの原子濃度よりも高いNi原子濃度が、活物質粒子1A−1Fの表面からの距離が10nmの位置で1箇所以上測定された粒子の数を、測定した全粒子の数で除して100を乗じた値を、活物質粒子1A−1Fの形成粒子率とすることができる。   Moreover, in order to calculate the formation particle ratio of the active material particles 1A-1F, as in the case of calculating the formation ratio, in the cross section of the randomly selected active material particles 1A-1F, The atomic concentration of Ni in the center is measured. In addition, in the same cross section, for example, the atomic concentration of Ni at a position of 10 nm from the surface to the center side is measured at four positions on the surface of the active material particles 1A-1F. And the number of particles in which the Ni atom concentration higher than the Ni atom concentration at the center of the active material particle 1A-1F is measured at one or more locations at a distance of 10 nm from the surface of the active material particle 1A-1F. The value obtained by dividing by the number of all measured particles and multiplying by 100 can be defined as the percentage of particles formed of the active material particles 1A-1F.

さらに、熱処理工程S3における熱処理の加熱温度は、前駆体粒子製造工程S1における本焼成の焼成温度より50℃低い温度以上であることがより好ましい。これにより、活物質粒子1A−1Fの形成率及び形成粒子率がより向上する。   Furthermore, the heating temperature of the heat treatment in the heat treatment step S3 is more preferably at least 50 ° C. lower than the firing temperature of the main firing in the precursor particle manufacturing step S1. Thereby, the formation rate and the formation particle rate of active material particle 1A-1F improve more.

熱処理工程S3における熱処理の加熱時間は、前駆体粒子製造工程S1におけるコア部前駆体粒子の本焼成の焼成時間以下であることが好ましい。これにより、活物質粒子1A−1Fの形成率及び形成粒子率がより向上する。より具体的には、熱処理工程S3の熱処理において、前駆体粒子を前記した一定の加熱温度に保持する保持時間は、3時間未満であることが好ましい。これにより、活物質粒子1A−1Fの形成率及び形成粒子率がより向上する。なお、加熱温度のプロファイルによっては、加熱温度を一定に維持する保持時間がなくてもよい。熱処理工程S3における熱処理は、不活性ガス雰囲気で行ってもよいが、Niの原子濃度が高くても酸素欠損を防ぐことが可能になることから、酸化ガス雰囲気中で熱処理を行うことが好ましい。   The heating time of the heat treatment in the heat treatment step S3 is preferably equal to or shorter than the firing time of the main firing of the core part precursor particles in the precursor particle manufacturing step S1. Thereby, the formation rate and the formation particle rate of active material particle 1A-1F improve more. More specifically, in the heat treatment in the heat treatment step S3, the holding time for keeping the precursor particles at the above-described constant heating temperature is preferably less than 3 hours. Thereby, the formation rate and the formation particle rate of active material particle 1A-1F improve more. Depending on the heating temperature profile, there may be no holding time for maintaining the heating temperature constant. The heat treatment in the heat treatment step S3 may be performed in an inert gas atmosphere, but it is preferable to perform the heat treatment in an oxidizing gas atmosphere because oxygen deficiency can be prevented even if the atomic concentration of Ni is high.

本実施形態の正極活物質製造方法によれば、組成の異なるコア部11と表層部12とを有する層状構造の活物質粒子1A−1Fであって、組成が前記式(1)で表され、ゼータ電位の等電点が5以上かつ7以下である活物質粒子1A−1Fからなる非水系二次電池用の正極活物質10A−10Fを製造することができる。   According to the positive electrode active material manufacturing method of the present embodiment, the active material particles 1A-1F have a layered structure having a core part 11 and a surface layer part 12 having different compositions, and the composition is represented by the formula (1), A positive electrode active material 10A-10F for a non-aqueous secondary battery comprising active material particles 1A-1F having an isoelectric point of zeta potential of 5 or more and 7 or less can be produced.

(正極及び非水系二次電池)
以下、本発明の正極及び非水系二次電池の実施形態について説明する。図8は、本実施形態の正極111及びそれを備えた非水系二次電池100の模式的な部分断面図である。
(Positive electrode and non-aqueous secondary battery)
Hereinafter, embodiments of the positive electrode and the non-aqueous secondary battery of the present invention will be described. FIG. 8 is a schematic partial cross-sectional view of the positive electrode 111 of the present embodiment and the nonaqueous secondary battery 100 including the positive electrode 111.

本実施形態の非水系二次電池100は、例えば、円筒形のリチウムイオン二次電池であり、非水電解液を収容する有底円筒状の電池缶101と、電池缶101内に収容される捲回電極群110と、電池缶101の上部開口を封止する円板状の電池蓋102と、を備えている。電池缶101と電池蓋102は、例えば、アルミニウム等の金属材料により製作され、絶縁性を有する樹脂材料からなるシール材106を介して電池蓋102が電池缶101にかしめ等によって固定されることで、電池缶101が電池蓋102によって封止されるとともに互いに電気的に絶縁されている。なお、非水系二次電池100の形状は、円筒形に限られず、角形、ボタン形、ラミネートシート形等、他の任意の形状を採用することができる。   The non-aqueous secondary battery 100 of the present embodiment is, for example, a cylindrical lithium ion secondary battery, and is housed in a bottomed cylindrical battery can 101 that contains a non-aqueous electrolyte, and the battery can 101. A wound electrode group 110 and a disk-shaped battery lid 102 that seals the upper opening of the battery can 101 are provided. The battery can 101 and the battery lid 102 are made of, for example, a metal material such as aluminum, and the battery lid 102 is fixed to the battery can 101 by caulking or the like via a sealing material 106 made of an insulating resin material. The battery cans 101 are sealed by the battery lid 102 and are electrically insulated from each other. The shape of the non-aqueous secondary battery 100 is not limited to a cylindrical shape, and other arbitrary shapes such as a square shape, a button shape, and a laminate sheet shape can be adopted.

捲回電極群110は、長尺帯状のセパレータ113を介して対向させた長尺帯状の正極111と負極112とを捲回中心軸周りに捲回することによって製作されている。捲回電極群110は、正極集電体111aが正極リード片103を介して電池蓋102と電気的に接続され、負極集電体112aが負極リード片104を介して電池缶101の底部と電気的に接続されている。捲回電極群110と電池蓋102の間及び捲回電極群110と電池缶101の底部との間には、短絡を防止する絶縁板105が配置されている。正極リード片103及び負極リード片104は、それぞれ正極集電体111a及び負極集電体112aと同様の材料によって製作された電流引出用の部材であり、それぞれ正極集電体111a及び負極集電体112aにスポット溶接又は超音波圧接等によって接合されている。   The wound electrode group 110 is manufactured by winding a long strip-like positive electrode 111 and a negative electrode 112 facing each other with a long strip-like separator 113 around a winding center axis. In the wound electrode group 110, the positive electrode current collector 111 a is electrically connected to the battery lid 102 via the positive electrode lead piece 103, and the negative electrode current collector 112 a is electrically connected to the bottom of the battery can 101 via the negative electrode lead piece 104. Connected. An insulating plate 105 is disposed between the wound electrode group 110 and the battery lid 102 and between the wound electrode group 110 and the bottom of the battery can 101 to prevent a short circuit. The positive electrode lead piece 103 and the negative electrode lead piece 104 are members for current extraction made of the same material as the positive electrode current collector 111a and the negative electrode current collector 112a, respectively, and the positive electrode current collector 111a and the negative electrode current collector, respectively. 112a is joined by spot welding or ultrasonic pressure welding.

本実施形態の正極111は、正極集電体111aと、正極集電体111aの表面に形成された正極合材層111bと、を備えている。正極集電体111aとしては、例えば、アルミニウム又はアルミニウム合金等の金属箔、エキスパンドメタル、パンチングメタル等を用いることができる。金属箔は、例えば、8μm以上かつ30μm以下程度の厚さにすることができる。正極合材層111bは、図1Aから図6に示す活物質粒子1A−1Fからなる正極活物質10A−10Fを含んでいる。また、正極合材層111bは、導電材、結着剤等を含んでいてもよい。   The positive electrode 111 of this embodiment includes a positive electrode current collector 111a and a positive electrode mixture layer 111b formed on the surface of the positive electrode current collector 111a. As the positive electrode current collector 111a, for example, a metal foil such as aluminum or an aluminum alloy, an expanded metal, a punching metal, or the like can be used. The metal foil can have a thickness of, for example, about 8 μm to 30 μm. The positive electrode mixture layer 111b includes positive electrode active materials 10A-10F made of the active material particles 1A-1F shown in FIGS. 1A to 6. Further, the positive electrode mixture layer 111b may contain a conductive material, a binder, and the like.

正極合材層111bは、例えば、LiMnO−LiM1O(M1は、Co、Ni、Mn等の遷移金属元素を示す)のように表される固溶体系正極活物質、LiM2Oのように表される層状酸化物系正極活物質や、LiM3Aのように表されるポリアニオン系正極活物質等を含んでもよい。ここで、M2及びM3は、Mn、Ni、CoおよびFeからなる群より選択される少なくとも1種の遷移金属元素であり、Aは、酸素と結合してPO、SiO、BO等のアニオンを形成する典型元素であり、p、qは、1≦p≦2、3≦q≦7を満たす数である。M2及びM3の遷移金属元素は、一部をTi、Zr、Al、Mg、Cr、V、Nb、Ta、W、Mo等の元素で置換してもよい。 The positive electrode mixture layer 111b is, for example, a solid solution positive electrode active material expressed as Li 2 MnO 3 —LiM 1 O 2 (M 1 represents a transition metal element such as Co, Ni, or Mn), LiM 2 O 2 . It may include a layered oxide-based positive electrode active material represented, a polyanion-based positive electrode active material represented as LiM3A p O q , and the like. Here, M2 and M3 are at least one transition metal element selected from the group consisting of Mn, Ni, Co, and Fe, and A is bonded to oxygen to form PO 4 , SiO 4 , BO 3, etc. It is a typical element that forms an anion, and p and q are numbers satisfying 1 ≦ p ≦ 2, 3 ≦ q ≦ 7. A part of the transition metal elements of M2 and M3 may be substituted with elements such as Ti, Zr, Al, Mg, Cr, V, Nb, Ta, W, and Mo.

負極112は、負極集電体112aと、負極集電体112aの表面に形成された負極合材層112bとを備えている。負極集電体112aとしては、銅又は銅合金、ニッケル又はニッケル合金等の金属箔、エキスパンドメタル、パンチングメタル等を用いることができる。金属箔は、例えば、5μm以上かつ20μm以下程度の厚さにすることができる。負極合材層112bは、一般的なリチウムイオン二次電池に用いられている負極活物質を含んでいる。また、負極合材層112bは、導電材、結着剤等を含んでいてもよい。   The negative electrode 112 includes a negative electrode current collector 112a and a negative electrode mixture layer 112b formed on the surface of the negative electrode current collector 112a. As the negative electrode current collector 112a, metal foil such as copper or copper alloy, nickel or nickel alloy, expanded metal, punching metal, or the like can be used. The metal foil can have a thickness of, for example, about 5 μm or more and 20 μm or less. The negative electrode mixture layer 112b contains a negative electrode active material used in a general lithium ion secondary battery. The negative electrode mixture layer 112b may include a conductive material, a binder, and the like.

負極活物質としては、例えば、炭素材料、金属材料、金属酸化物材料等の一種以上を用いることができる。炭素材料としては、天然黒鉛、人造黒鉛等の黒鉛類や、コークス、ピッチ等の炭化物類や、非晶質炭素や、炭素繊維等を用いることができる。また、金属材料としては、リチウム、シリコン、スズ、アルミニウム、インジウム、ガリウム、マグネシウムやこれらの合金、金属酸化物材料としては、スズ、ケイ、リチウム、チタン素等を含む金属酸化物を用いることができる。   As the negative electrode active material, for example, one or more of a carbon material, a metal material, a metal oxide material, and the like can be used. As the carbon material, graphites such as natural graphite and artificial graphite, carbides such as coke and pitch, amorphous carbon, carbon fiber, and the like can be used. Further, as the metal material, lithium, silicon, tin, aluminum, indium, gallium, magnesium and alloys thereof, and as the metal oxide material, a metal oxide containing tin, silicon, lithium, titanium, or the like is used. it can.

セパレータ113としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレン−ポリプロピレン共重合体等のポリオレフィン系樹脂、ポリアミド樹脂、アラミド樹脂等の微孔性フィルムや不織布等を用いることができる。   As the separator 113, for example, a polyolefin resin such as polyethylene, polypropylene, or a polyethylene-polypropylene copolymer, a microporous film such as a polyamide resin or an aramid resin, a nonwoven fabric, or the like can be used.

正極111及び負極112は、例えば、合材調整工程、合材塗工工程、及び整形工程を経て製造することができる。合材調整工程では、例えば、プラネタリーミキサ、ディスパーミキサ、自転・公転ミキサ等の撹拌手段を用いて、正極活物質10A−10F又は負極活物質を、例えば、導電材、結着剤を含む溶液とともに撹拌及び均質化して合材スラリーを調製する。   The positive electrode 111 and the negative electrode 112 can be manufactured through, for example, a composite material adjusting process, a composite material coating process, and a shaping process. In the composite material adjusting step, for example, the positive electrode active material 10A-10F or the negative electrode active material is mixed with, for example, a conductive material and a binder using a stirring means such as a planetary mixer, a disper mixer, and a rotation / revolution mixer. Together with stirring and homogenization, a mixture slurry is prepared.

導電材としては、一般的なリチウムイオン二次電池に用いられている導電材を用いることができる。具体的には、例えば、黒鉛粉末、アセチレンブラック、ファーネスブラック、サーマルブラック、チャンネルブラック等の炭素粒子や炭素繊維等を導電材として用いることができる。導電材は、例えば、合材全体の質量に対して1質量%以上かつ10質量%以下程度となる量を用いることができる。   As the conductive material, a conductive material used in a general lithium ion secondary battery can be used. Specifically, for example, carbon particles such as graphite powder, acetylene black, furnace black, thermal black, and channel black, carbon fibers, and the like can be used as the conductive material. As the conductive material, for example, an amount of about 1% by mass or more and about 10% by mass or less can be used with respect to the total mass of the composite material.

結着剤としては、一般的なリチウムイオン二次電池に用いられている結着剤を用いることができる。具体的には、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、スチレン−ブタジエンゴム、カルボキシメチルセルロース、ポリアクリロニトリル、変性ポリアクリロニトリル等を結着剤として用いることができる。結着剤は、例えば、合材全体の質量に対して1質量%以上かつ10質量%以下程度、より好ましくは合材全体の質量に対して5質量%程度となる量を用いることができる。   As the binder, a binder used in a general lithium ion secondary battery can be used. Specifically, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyhexafluoropropylene, styrene-butadiene rubber, carboxymethylcellulose, polyacrylonitrile, modified polyacrylonitrile, and the like can be used as the binder. For example, the binder can be used in an amount of about 1% by mass to about 10% by mass, more preferably about 5% by mass with respect to the total mass of the composite material.

溶液の溶媒としては、結着剤の種類に応じて、N−メチルピロリドン、水、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、ジエチレングリコール、グリセリン、ジメチルスルホキシド、テトラヒドロフラン等から選択することができる。   As the solvent of the solution, N-methylpyrrolidone, water, N, N-dimethylformamide, N, N-dimethylacetamide, methanol, ethanol, propanol, isopropanol, ethylene glycol, diethylene glycol, glycerin depending on the type of binder. , Dimethyl sulfoxide, tetrahydrofuran and the like.

合材塗工工程では、まず、合材調整工程で調整した正極活物質10A−10Fを含む合材スラリーと負極活物質を含む合材スラリーを、例えば、バーコーター、ドクターブレード、ロール転写機等の塗工手段によって、それぞれ正極集電体111aと負極集電体112aの表面に塗布する。次に、合材スラリーを塗布した正極集電体111aと負極集電体112aとをそれぞれ熱処理することで、合材スラリーに含まれる溶液の溶媒を揮発又は蒸発させて除去し、正極集電体111aと負極集電体112aの表面に、それぞれ正極合材層111bと負極合材層112bを形成する。   In the composite material coating process, first, the composite material slurry containing the positive electrode active material 10A-10F adjusted in the composite material adjustment process and the composite material slurry containing the negative electrode active material, for example, a bar coater, a doctor blade, a roll transfer machine, etc. Are applied to the surfaces of the positive electrode current collector 111a and the negative electrode current collector 112a, respectively. Next, the positive electrode current collector 111a and the negative electrode current collector 112a coated with the mixture slurry are respectively heat-treated to volatilize or evaporate the solvent of the solution contained in the mixture slurry, thereby removing the positive electrode current collector. A positive electrode mixture layer 111b and a negative electrode mixture layer 112b are formed on the surfaces of 111a and the negative electrode current collector 112a, respectively.

成形工程では、まず、正極集電体111aの表面に形成された正極合材層111bと、負極集電体112aの表面に形成された負極合材層112bとを、例えば、ロールプレス等の加圧手段を用いて、それぞれ加圧成形する。これにより、正極合材層111bを、例えば、15μm以上かつ300μm以下程度の厚さにして、負極合材層112bを、例えば、10μm以上かつ150μm以下程度の厚さにすることができる。その後、正極集電体111a及び正極合材層111bと、負極集電体112a及び負極合材層112bとを、それぞれ長尺帯状に裁断することによって、正極111と負極112を製造することができる。   In the forming step, first, the positive electrode mixture layer 111b formed on the surface of the positive electrode current collector 111a and the negative electrode mixture layer 112b formed on the surface of the negative electrode current collector 112a are subjected to, for example, roll press or the like. Each is pressure-molded using a pressure means. Thereby, the positive electrode mixture layer 111b can be made to have a thickness of, for example, about 15 μm to 300 μm, and the negative electrode mixture layer 112b can be made to have a thickness of, for example, about 10 μm to 150 μm. Thereafter, the positive electrode current collector 111a and the positive electrode composite material layer 111b, and the negative electrode current collector 112a and the negative electrode composite material layer 112b are each cut into long strips, whereby the positive electrode 111 and the negative electrode 112 can be manufactured. .

以上のように製造された正極111及び負極112は、セパレータ113を介して対向した状態で捲回中心軸周りに捲回されて捲回電極群110とされる。捲回電極群110は、負極集電体112aが負極リード片104を介して電池缶101の底部に接続され、正極集電体111aが正極リード片103を介して電池蓋102に接続され、絶縁板105等によって電池缶101及び電池蓋102と短絡が防止されて電池缶101に収容される。その後、電池缶101に非水電解液を注入し、シール材106を介して電池蓋102を電池缶101に固定し、電池缶101を密封することで、非水系二次電池100を製造することができる。   The positive electrode 111 and the negative electrode 112 manufactured as described above are wound around the winding central axis in a state of being opposed to each other with the separator 113 interposed therebetween, so that a wound electrode group 110 is formed. In the wound electrode group 110, the negative electrode current collector 112a is connected to the bottom of the battery can 101 via the negative electrode lead piece 104, and the positive electrode current collector 111a is connected to the battery lid 102 via the positive electrode lead piece 103 for insulation. A short circuit with the battery can 101 and the battery lid 102 is prevented by the plate 105 and the like, and the battery can 101 is accommodated. Thereafter, a non-aqueous secondary battery 100 is manufactured by injecting a non-aqueous electrolyte into the battery can 101, fixing the battery lid 102 to the battery can 101 via the sealing material 106, and sealing the battery can 101. Can do.

電池缶101に注入される非水電解液としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO等のリチウム塩を非水溶媒に溶解させた溶液を用いることができる。非水電解液におけるリチウム塩の濃度は、0.7M以上1.5M以下とすることが好ましい。 The non-aqueous electrolyte injected to the battery can 101, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 A solution in which a lithium salt such as F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , or LiC (CF 3 SO 2 ) 3 is dissolved in a non-aqueous solvent can be used. The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.7M or more and 1.5M or less.

非水溶媒としては、ジエチルカーボネート、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、メチルアセテート、ジメトキシエタン等を用いることができる。また、非水電解液には、電解液の酸化分解及び還元分解の抑制、金属元素の析出防止、イオン伝導性の向上、難燃性の向上等を目的として、各種の添加剤を添加することができる。このような添加剤としては、例えば、電解液の分解を抑制する1,3−プロパンサルトン、1,4−ブタンサルトン等や、電解液の保存性を向上させる不溶性ポリアジピン酸無水物、ヘキサヒドロ無水フタル酸等や、難燃性を向上させるフッ素置換アルキルホウ素等を用いることができる。   As the non-aqueous solvent, diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl acetate, dimethoxyethane and the like can be used. In addition, various additives should be added to the non-aqueous electrolyte for the purpose of suppressing oxidative decomposition and reductive decomposition of the electrolytic solution, preventing precipitation of metal elements, improving ion conductivity, and improving flame retardancy. Can do. Examples of such additives include 1,3-propane sultone and 1,4-butane sultone that suppress decomposition of the electrolytic solution, insoluble polyadipic anhydride that improves the storage stability of the electrolytic solution, and hexahydrophthalic anhydride. An acid or the like, or a fluorine-substituted alkyl boron that improves flame retardancy can be used.

以上の構成を有する非水系二次電池100は、電池蓋102を正極外部端子、電池缶101の底部を負極外部端子として、外部から供給された電力を捲回電極群110に蓄積するとともに、捲回電極群110に蓄積した電力を外部の装置等に供給することができる。このように、本実施形態の非水系二次電池100は、例えば、携帯電子機器や家庭用電気機器等の小型電源、無停電電源や電力平準化装置等の定置用電源、船舶、鉄道、ハイブリット自動車、電気自動車等の駆動電源として使用することができる。   The non-aqueous secondary battery 100 having the above configuration uses the battery lid 102 as a positive electrode external terminal and the bottom of the battery can 101 as a negative electrode external terminal, and accumulates power supplied from the outside in the wound electrode group 110, and The electric power accumulated in the rotating electrode group 110 can be supplied to an external device or the like. As described above, the non-aqueous secondary battery 100 according to the present embodiment includes, for example, small power sources such as portable electronic devices and household electric devices, stationary power sources such as uninterruptible power sources and power leveling devices, ships, railways, and hybrids. It can be used as a drive power source for automobiles, electric cars and the like.

ここで、本実施形態の正極111の正極合材層111bは、図1Aから図6のいずれかに示す活物質粒子1A−1Fからなる正極活物質10A−10Fを含んでいる。したがって、本実施形態の正極111によれば、非水系二次電池100の良好なサイクル特性と高容量特性を両立することが可能になる。また、本実施形態の非水系二次電池100は、図1Aから図6のいずれかに示す活物質粒子1A−1Fからなる正極活物質10A−10Fを含む正極合材層111bを有する正極111を備えている。したがって、本実施形態の非水系二次電池100によれば、良好なサイクル特性と高容量特性を両立することが可能になる。   Here, the positive electrode mixture layer 111b of the positive electrode 111 of the present embodiment includes the positive electrode active material 10A-10F made of the active material particles 1A-1F shown in any of FIGS. 1A to 6. Therefore, according to the positive electrode 111 of the present embodiment, it is possible to achieve both good cycle characteristics and high capacity characteristics of the nonaqueous secondary battery 100. Moreover, the non-aqueous secondary battery 100 of this embodiment includes a positive electrode 111 having a positive electrode mixture layer 111b including positive electrode active materials 10A-10F made of active material particles 1A-1F shown in any of FIGS. 1A to 6. I have. Therefore, according to the nonaqueous secondary battery 100 of the present embodiment, it is possible to achieve both good cycle characteristics and high capacity characteristics.

(二次電池モジュール)
以下、本発明の二次電池モジュールの実施形態について説明する。図9は、本実施形態の二次電池モジュール200の模式図である。
(Secondary battery module)
Hereinafter, embodiments of the secondary battery module of the present invention will be described. FIG. 9 is a schematic diagram of the secondary battery module 200 of the present embodiment.

本実施形態の二次電池モジュール200は、前述の非水系二次電池100を備えている。本実施形態の二次電池モジュール200は、所望の出力を確保するために複数の非水系二次電池100が直列に接続されて電池群が構成されている。なお、複数の電池群を並列に組み合わせて筐体に格納することで高容量の二次電池モジュールとすることもできる。図示は省略するが、二次電池モジュール200は、コントローラ、ヒューズ、及びバランス回路を備えてもよい。   The secondary battery module 200 of the present embodiment includes the non-aqueous secondary battery 100 described above. In the secondary battery module 200 of the present embodiment, a plurality of non-aqueous secondary batteries 100 are connected in series in order to ensure a desired output, thereby forming a battery group. In addition, it can also be set as a high capacity | capacitance secondary battery module by combining several battery groups in parallel and storing in a housing | casing. Although illustration is omitted, the secondary battery module 200 may include a controller, a fuse, and a balance circuit.

ヒューズは、過電流に対する保護機能を有することができる。バランス回路は、電極間電圧を平準化する機能を有することができる。コントローラは、非水系二次電池100の電極間電圧、電流、温度を監視する機能を有することができる。コントローラは、保護回路を備え、保護回路によって設定された充放電終止電位の範囲で過充電や過放電等を防止する機能を備えていてもよい。   The fuse can have a protection function against overcurrent. The balance circuit can have a function of leveling the voltage between the electrodes. The controller can have a function of monitoring the interelectrode voltage, current, and temperature of the non-aqueous secondary battery 100. The controller may include a protection circuit, and may have a function of preventing overcharge, overdischarge, and the like within a charge / discharge end potential range set by the protection circuit.

また、コントローラには、外部との通信を行う信号入出力手段が接続されていてもよく、信号入出力手段は、例えば、車両に備えられるECUからの制御信号の入力や、ECUへの電池監視情報の出力を行う機能を有してもよい。二次電池モジュール200は、さらに個々の非水系二次電池100の容量の監視や平準化の機能、冷却機能等を有してもよい。   The controller may be connected to signal input / output means for performing communication with the outside. The signal input / output means may be, for example, an input of a control signal from an ECU provided in a vehicle or a battery monitoring to the ECU. It may have a function of outputting information. The secondary battery module 200 may further have a capacity monitoring, leveling function, cooling function, and the like of each non-aqueous secondary battery 100.

本実施形態の二次電池モジュール200は、車載用として用いることができる。特に、本実施形態の二次電池モジュール200は、良好なサイクル特性と高容量特性を両立することが可能な非水系二次電池100を備えているので、例えば、電気自動車やハイブリット自動車等において、長期間に亘って安定的な出力を可能にすることができる。   The secondary battery module 200 of the present embodiment can be used for in-vehicle use. In particular, since the secondary battery module 200 of the present embodiment includes the non-aqueous secondary battery 100 that can achieve both good cycle characteristics and high capacity characteristics, for example, in an electric vehicle, a hybrid vehicle, and the like, A stable output can be made possible over a long period of time.

(実施例及び比較例)
本発明の正極活物質、正極及び非水系二次電池の実施例と、その比較例について説明する。
(Examples and Comparative Examples)
Examples of the positive electrode active material, the positive electrode, and the nonaqueous secondary battery of the present invention and comparative examples thereof will be described.

(実施例1)
以下の手順によって、非水二次電池用正極活物質を製造した。
Example 1
A positive electrode active material for a non-aqueous secondary battery was produced by the following procedure.

まず、以下の手順により、主に活物質粒子のコア部となる相対的にNiの原子濃度の高いコア部前駆体粒子を製造した。原料の炭酸リチウム、炭酸ニッケル、炭酸コバルト、炭酸マンガンをLi:Ni:Co:Mnが、モル濃度比で、1.03:0.80:0.10:0.10となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。得られた原料粉末を、ノズル式スプレードライ装置で乾燥した後、高純度アルミナ容器に投入し、酸素気流下で650℃の仮焼成温度で12時間の仮焼成を行った。そして、得られた仮焼成体を高純度アルミナ容器から取り出して空冷し、複数の粒子からなる仮焼成体を個々の粒子に解砕し、再び高純度アルミナ容器に投入し、酸素気流下で850℃の本焼成温度で8時間の本焼成を行った。得られた焼成体を高純度アルミナ容器から取り出して空冷し、分級した。これにより、複数の粒子が焼結された焼結体としてのコア部前駆体粒子が得られた。   First, core part precursor particles having a relatively high atomic concentration of Ni, which mainly becomes the core part of the active material particles, were produced by the following procedure. Lithium carbonate, nickel carbonate, cobalt carbonate, and manganese carbonate as raw materials are weighed so that Li: Ni: Co: Mn is 1.03: 0.80: 0.10: 0.10 in molar concentration ratio, These were wet pulverized and mixed to prepare a raw material powder. The obtained raw material powder was dried with a nozzle type spray dryer, and then charged into a high-purity alumina container, and pre-baked at a pre-baking temperature of 650 ° C. for 12 hours under an oxygen stream. The obtained calcined product is taken out from the high-purity alumina container and air-cooled, and the calcined product composed of a plurality of particles is crushed into individual particles, put into the high-purity alumina container again, and 850 under an oxygen stream. The main baking was performed at a main baking temperature of 0 ° C. for 8 hours. The obtained fired body was taken out from the high-purity alumina container, air-cooled, and classified. Thereby, the core part precursor particle | grains as a sintered compact by which several particle | grains were sintered were obtained.

得られたコア部前駆体粒子の元素分析をTEM−EDXによって行ったところ、Li:Ni:Co:Mnは、1.00:0.80:0.10:0.10であった。よって、元素組成は、Li1.0Ni0.8Co0.1Mn0.1であると推定される。また、コア部前駆体粒子の結晶構造を、X線回折装置(リガク社製RINTIII)により、CuKα線を用いて分析した結果、R3−mに帰属する層状構造のピークが確認できた。また、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)でコア部前駆体粒子の粒度分布を測定することにより得られたメジアン径(D50)は、11μmであった。 When the elemental analysis of the obtained core part precursor particle was performed by TEM-EDX, Li: Ni: Co: Mn was 1.00: 0.80: 0.10: 0.10. Therefore, the elemental composition is estimated to be Li 1.0 Ni 0.8 Co 0.1 Mn 0.1 O 2 . Moreover, as a result of analyzing the crystal structure of the core portion precursor particles using CuKα rays with an X-ray diffractometer (RINTIII manufactured by Rigaku Corporation), a peak of a layered structure belonging to R3-m could be confirmed. Moreover, the median diameter (D50) obtained by measuring the particle size distribution of core part precursor particle | grains with the laser diffraction / scattering type particle size distribution measuring apparatus (LA-920 by Horiba Ltd.) was 11 micrometers.

次に、以下の手順により、主に活物質粒子の表層部となる相対的にNiの原子濃度が低く、Liの原子濃度が高い表層部前駆体粒子を製造した。原料の炭酸リチウム、炭酸マンガン及び炭酸ニッケルを、Li:Ni:Mnが、モル濃度比で、1.20:0.2:0.6となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。   Next, surface layer part precursor particles having a relatively low atomic concentration of Ni and a high atomic concentration of Li were produced mainly by the following procedure. Lithium carbonate, manganese carbonate and nickel carbonate as raw materials are weighed so that Li: Ni: Mn is a molar concentration ratio of 1.20: 0.2: 0.6, and these are wet-ground and mixed. Raw material powder was prepared.

得られた原料粉末を、ノズル式スプレードライ装置で乾燥した後、高純度アルミナ容器に投入し、大気雰囲気中で700℃の仮焼成温度で12時間の仮焼成を行った。そして、複数の粒子が焼結した焼結体を空冷し、焼結体を構成する粒子よりもさらに細かくなるように焼結体を粉砕し、表層部前駆体粒子を得た。得られた表層部前駆体粒子の元素分析を行ったところ、Li:Ni:Mnは、1.16:0.20:0.60であった。よって、元素組成は、Li1.16Ni0.2Mn0.6で あると推定される。また、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)で表層部前駆体粒子の粒度分布を測定することにより得られたメジアン径(D50)は、0.17μmであった。 The obtained raw material powder was dried by a nozzle type spray drying apparatus, and then charged into a high-purity alumina container, followed by calcination for 12 hours at a calcination temperature of 700 ° C. in an air atmosphere. And the sintered compact in which the some particle | grains sintered was air-cooled, the sintered compact was grind | pulverized so that it might become finer than the particle | grains which comprise a sintered compact, and surface layer part precursor particle | grains were obtained. When the elemental analysis of the obtained surface layer part precursor particle was conducted, Li: Ni: Mn was 1.16: 0.20: 0.60. Therefore, the elemental composition is estimated to be Li 1.16 Ni 0.2 Mn 0.6 O 2 . Moreover, the median diameter (D50) obtained by measuring the particle size distribution of the surface layer precursor particles with a laser diffraction / scattering particle size distribution measuring apparatus (LA-920 manufactured by Horiba Ltd.) was 0.17 μm. .

次に、100質量部のコア部前駆体粒子と、5質量部の表層部前駆体粒子とを乳鉢を用いて混合した。得られた混合物を高純度アルミナ容器に投入し、酸素雰囲気中で800℃の加熱温度で1時間の熱処理を行って、活物質粒子からなる正極活物質を製造した。その後、高純度アルミナ容器から活物質粒子を取り出して空冷し、図3に示す構造の活物質粒子からなる実施例1の正極活物質を得た。レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)で正極活物質の粒度分布を測定したところ、実施例1の正極活物質を構成する活物質粒子のメジアン径(D50)は、9μmであった。   Next, 100 parts by mass of core part precursor particles and 5 parts by mass of surface layer part precursor particles were mixed using a mortar. The obtained mixture was put into a high-purity alumina container and subjected to heat treatment for 1 hour at a heating temperature of 800 ° C. in an oxygen atmosphere to produce a positive electrode active material composed of active material particles. Thereafter, the active material particles were taken out from the high-purity alumina container and air-cooled to obtain the positive electrode active material of Example 1 composed of the active material particles having the structure shown in FIG. When the particle size distribution of the positive electrode active material was measured with a laser diffraction / scattering particle size distribution analyzer (LA-920 manufactured by Horiba Ltd.), the median diameter (D50) of the active material particles constituting the positive electrode active material of Example 1 was 9 μm.

また、実施例1の正極活物質を構成する活物質粒子の元素分析をTEM−EDXによって行ったところ、Li:Ni:Mn:Coは、1.02:0.77:0.13:0.10であった。よって、実施例1の活物質粒子の元素組成は、Li1.02Ni0.77Mn0.13Co0.10であると推定される。なお、実施例1の活物質粒子の元素組成中の酸素の比率は、層状構造を維持可能な1.9から2.1程度の範囲内で変動している可能性がある。 Moreover, when the elemental analysis of the active material particle which comprises the positive electrode active material of Example 1 was performed by TEM-EDX, Li: Ni: Mn: Co was 1.02: 0.77: 0.13: 0. 10. Therefore, the elemental composition of the active material particles of Example 1 is estimated to be Li 1.02 Ni 0.77 Mn 0.13 Co 0.10 O 2 . In addition, the ratio of oxygen in the elemental composition of the active material particles of Example 1 may vary within a range of about 1.9 to 2.1 where the layered structure can be maintained.

図10は、実施例1の正極活物質を構成する活物質粒子のTEM−EDXによる測定位置を示す電子顕微鏡画像である。図11は、実施例1の正極活物質を構成する活物質粒子のTEM−EDXによる測定結果を示すグラフである。表1は、実施例1の正極活物質を構成する活物質粒子のTEM−EDXによる測定結果を示す表である。   FIG. 10 is an electron microscopic image showing measurement positions of active material particles constituting the positive electrode active material of Example 1 by TEM-EDX. FIG. 11 is a graph showing a measurement result by TEM-EDX of the active material particles constituting the positive electrode active material of Example 1. Table 1 is a table | surface which shows the measurement result by TEM-EDX of the active material particle which comprises the positive electrode active material of Example 1. FIG.

Figure 2016100064
Figure 2016100064

実施例1の正極活物質から無作為に選択した活物質粒子のうち、粒子1−1は、電子顕微鏡画像の活物質粒子の二次元輪郭を通る断面において、例えば、断面形状の重心位置を活物質粒子の中心(C)とし、TEM−EDXによって中心(C)の組成を測定した。また、活物質粒子の断面の上下左右の4箇所において、活物質粒子の表面からの距離が10nmの位置(T/10, B/10, L/10, R/10)でTEM−EDXによって組成を測定した。さらに、活物質粒子の断面の右側では、活物質粒子の表面からの距離が20nm、50nm、75nm、及び100nmの位置(R/20, R/50, R/75, R/100)でTEM−EDXによって組成を測定した。同様に、正極活物質中から無作為に選択した活物質粒子のうち、粒子1−2から粒子1−4においては、活物質粒子の断面の中心(C)と上下左右の4箇所の表面から10nmの位置(T/10, B/10, L/10, R/10)でTEM−EDXによって組成を測定した。   Among the active material particles randomly selected from the positive electrode active material of Example 1, the particle 1-1 has, for example, the active position of the center of gravity of the cross-sectional shape in the cross section passing through the two-dimensional outline of the active material particle in the electron microscope image. The center (C) of the substance particle was used, and the composition of the center (C) was measured by TEM-EDX. In addition, the composition by TEM-EDX at the position (T / 10, B / 10, L / 10, R / 10) where the distance from the surface of the active material particle is 10 nm at the top, bottom, left and right of the cross section of the active material particle. Was measured. Further, on the right side of the cross section of the active material particles, the TEM− is at positions (R / 20, R / 50, R / 75, R / 100) at distances of 20 nm, 50 nm, 75 nm, and 100 nm from the surface of the active material particles. The composition was measured by EDX. Similarly, among the active material particles randomly selected from the positive electrode active material, in the particles 1-2 to 1-4, the center (C) of the cross section of the active material particles and the four surfaces on the top, bottom, left, and right are provided. The composition was measured by TEM-EDX at a position of 10 nm (T / 10, B / 10, L / 10, R / 10).

表1及び図11に示す測定結果から、実施例1の正極活物質を構成する活物質粒子は、厚さ50nmの表層部を有し、表層部のNiの原子濃度は、71mol%であり、表層部のNiの原子濃度の勾配は、0.028mol%/nmであることが確認できた。また、実施例1の正極活物質を構成する活物質粒子は、厚さ50nmの中間部を有し、中間部のNiの原子濃度は、75mol%であり、中間部のNiの原子濃度の勾配は、0.18mol%/nmであることが確認できた。また、実施例1の正極活物質を構成する活物質粒子のコア部は、Niの原子濃度が80mol%であり、Niの原子濃度の勾配が0.012mol%/nmであることが確認できた。   From the measurement results shown in Table 1 and FIG. 11, the active material particles constituting the positive electrode active material of Example 1 have a surface layer portion with a thickness of 50 nm, and the atomic concentration of Ni in the surface layer portion is 71 mol%, It was confirmed that the gradient of the Ni atomic concentration in the surface layer portion was 0.028 mol% / nm. The active material particles constituting the positive electrode active material of Example 1 have an intermediate part with a thickness of 50 nm, the atomic concentration of Ni in the intermediate part is 75 mol%, and the gradient of the atomic concentration of Ni in the intermediate part Was confirmed to be 0.18 mol% / nm. Further, it was confirmed that the core part of the active material particles constituting the positive electrode active material of Example 1 had an Ni atomic concentration of 80 mol% and a Ni atomic concentration gradient of 0.012 mol% / nm. .

また、実施例1の正極活物質を構成する活物質粒子の表層部は、Mnの原子濃度が21mol%であり、Mnの原子濃度の勾配が0.028mol%/nmであることが確認できた。また、実施例1の正極活物質を構成する活物質粒子の中間部は、Mnの原子濃度が15mol%であり、Mnの原子濃度の勾配が0.22mol%/nmであることが確認できた。また、実施例1の正極活物質を構成する活物質粒子のコア部は、Mnの原子濃度が10mol%であり、Mnの原子濃度の勾配が0.022mol%/nmであることが確認できた。   Moreover, it was confirmed that the surface layer portion of the active material particles constituting the positive electrode active material of Example 1 had an Mn atomic concentration of 21 mol% and an Mn atomic concentration gradient of 0.028 mol% / nm. . Moreover, it has confirmed that the intermediate part of the active material particle which comprises the positive electrode active material of Example 1 was 15 mol% of atomic concentration of Mn, and the gradient of the atomic concentration of Mn was 0.22 mol% / nm. . Moreover, the core part of the active material particle which comprises the positive electrode active material of Example 1 has confirmed that the atomic concentration of Mn was 10 mol%, and the gradient of the atomic concentration of Mn was 0.022 mol% / nm. .

また、実施例1の正極活物質の形成率は88%であり、形成粒子率は50%であった。また、TEMにより、表層部とコア部の電子回折パターンを測定し、いずれもR3−mに帰属する層状構造のパターンが確認できた。さらに、実施例1の正極活物質のζ電位の等電点を測定したところ、6.0であった。   Moreover, the formation rate of the positive electrode active material of Example 1 was 88%, and the formation particle rate was 50%. Moreover, the electron diffraction pattern of a surface layer part and a core part was measured by TEM, and the pattern of the layered structure which all belonged to R3-m has been confirmed. Furthermore, when the isoelectric point of the ζ potential of the positive electrode active material of Example 1 was measured, it was 6.0.

(実施例2)
実施例2の正極活物質は、以下の手順で製作した。まず、実施例1で製造した100質量部のコア部前駆体粒子と、実施例1で製造した粒子2.5質量部の表層部前駆体とを、複合化装置を用いて混合した。ここで、複合化装置とは、熱処理を行うことなく粒子を複合化することが可能な、高エネルギーミルである。得られた混合物を、高純度アルミナ容器に投入し、酸素雰囲気中で800℃の加熱温度で1時間の熱処理を行って、実施例2の正極活物質を製造した。高純度アルミナ容器から実施例2の正極活物質を取り出して空冷した後、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)で粒度分布を測定したところ、実施例2の正極活物質を構成する活物質粒子のメジアン径(D50)は、10μmであった。
(Example 2)
The positive electrode active material of Example 2 was manufactured by the following procedure. First, 100 parts by mass of the core part precursor particles produced in Example 1 and 2.5 parts by mass of the surface layer part precursor produced in Example 1 were mixed using a composite apparatus. Here, the compounding device is a high energy mill capable of compounding particles without performing heat treatment. The obtained mixture was put into a high-purity alumina container and heat-treated at a heating temperature of 800 ° C. for 1 hour in an oxygen atmosphere to produce the positive electrode active material of Example 2. After taking out the positive electrode active material of Example 2 from a high-purity alumina container and air-cooling, the particle size distribution was measured with a laser diffraction / scattering particle size distribution analyzer (LA-920 manufactured by Horiba Ltd.). The median diameter (D50) of the active material particles constituting the active material was 10 μm.

また、実施例2の正極活物質を構成する活物質粒子の元素分析をTEM−EDXによって行ったところ、Li:Ni:Mn:Coは、1.02:0.79:0.11:0.10であった。よって、実施例2の正極活物質を構成する活物質粒子の元素組成は、Li1.02Ni0.79Mn0.11Co0.10であると推定される。なお、実施例2の活物質粒子の元素組成中の酸素の比率は、層状構造を維持可能な1.9から2.1程度の範囲内で変動している可能性がある。 Moreover, when the elemental analysis of the active material particle which comprises the positive electrode active material of Example 2 was performed by TEM-EDX, Li: Ni: Mn: Co was 1.02: 0.79: 0.11: 0. 10. Therefore, the elemental composition of the active material particles constituting the positive electrode active material of Example 2 is estimated to be Li 1.02 Ni 0.79 Mn 0.11 Co 0.10 O 2 . In addition, the ratio of oxygen in the elemental composition of the active material particles of Example 2 may vary within a range of about 1.9 to 2.1 where the layered structure can be maintained.

図12は、実施例2の正極活物質を構成する活物質粒子のTEM−EDXによる測定結果を示すグラフである。表2は、実施例2の正極活物質を構成する活物質粒子のTEM−EDXによる測定結果を示す表である。   FIG. 12 is a graph showing a measurement result by TEM-EDX of the active material particles constituting the positive electrode active material of Example 2. Table 2 is a table | surface which shows the measurement result by TEM-EDX of the active material particle which comprises the positive electrode active material of Example 2.

Figure 2016100064
Figure 2016100064
Figure 2016100064
Figure 2016100064

実施例2の正極活物質から無作為に選択した活物質粒子のうち、粒子2−1、粒子2−3、粒子2−6から粒子2−10は、実施例1の粒子1−2から粒子1−4と同様に、活物質粒子の断面の中心(C)と、上下左右の4箇所において、活物質粒子の表面からの距離が10nmの位置(T/10, B/10, L/10, R/10)でTEM−EDXによって組成を測定した。粒子2−2及び粒子2−5では中心と上下の2箇所(T/10, B/10)を測定した。粒子2−4では、活物質粒子の断面の中心(C)と、上下左右の4箇所において、活物質粒子の表面からの距離が10nmの位置(T/10, B/10, L/10, R/10)でTEM−EDXによって組成を測定するとともに、断面の右側では、活物質粒子の表面からの距離が140nmの位置まで10nm間隔(R/20-R/140)でTEM−EDXによって組成を測定した。   Of the active material particles randomly selected from the positive electrode active material of Example 2, Particle 2-1, Particle 2-3, Particle 2-6 to Particle 2-10 are particles from Particle 1-2 of Example 1 Similarly to 1-4, the position (T / 10, B / 10, L / 10) where the distance from the surface of the active material particles is 10 nm at the center (C) of the cross section of the active material particles and at the four positions on the top, bottom, left and right. , R / 10) and the composition was measured by TEM-EDX. In the particle 2-2 and the particle 2-5, the center and upper and lower two places (T / 10, B / 10) were measured. In the particle 2-4, the distance from the surface of the active material particle (T / 10, B / 10, L / 10, 4C) at the center (C) of the cross section of the active material particle and the four positions on the top, bottom, left, and right The composition is measured by TEM-EDX at R / 10), and on the right side of the cross section, the composition is measured by TEM-EDX at intervals of 10 nm (R / 20-R / 140) until the distance from the active material particle surface is 140 nm. Was measured.

表2及び図12に示す測定結果から、実施例2の正極活物質を構成する活物質粒子は、厚さ100nmの表層部を有し、表層部のNiの原子濃度は、72mol%であり、表層部のNi原子濃度の勾配は、0.12mol%/nmであることが確認できた。また、実施例2の正極活物質を構成する活物質粒子は、厚さ20nmの中間部を有し、中間部のNiの原子濃度は、73mol%であり、中間部のNiの原子濃度の勾配は、0.80mol%/nmであることが確認できた。また、実施例2の正極活物質を構成する活物質粒子のコア部は、Niの原子濃度が79mol%であり、Niの原子濃度の勾配が0.0086mol%/nmであることが確認できた。   From the measurement results shown in Table 2 and FIG. 12, the active material particles constituting the positive electrode active material of Example 2 have a surface layer portion with a thickness of 100 nm, and the atomic concentration of Ni in the surface layer portion is 72 mol%, It was confirmed that the gradient of the Ni atom concentration in the surface layer portion was 0.12 mol% / nm. Moreover, the active material particles constituting the positive electrode active material of Example 2 have an intermediate part with a thickness of 20 nm, the atomic concentration of Ni in the intermediate part is 73 mol%, and the gradient of the atomic concentration of Ni in the intermediate part Was confirmed to be 0.80 mol% / nm. Further, it was confirmed that the core part of the active material particles constituting the positive electrode active material of Example 2 had an Ni atomic concentration of 79 mol% and a Ni atomic concentration gradient of 0.0086 mol% / nm. .

また、実施例2の正極活物質を構成する活物質粒子の表層部は、Mnの原子濃度が19mol%であり、Mnの原子濃度の勾配が0.132mol%/nmであることが確認できた。また、実施例2の活物質粒子の中間部は、Mnの原子濃度が18mol%であり、Mnの原子濃度の勾配が0.9mol%/nmであることが確認できた。また、実施例2の正極活物質を構成する活物質粒子のコア部は、Mnの原子濃度が10mol%であり、Mnの原子濃度の勾配が0.006mol%/nmであることが確認できた。   Further, it was confirmed that the surface layer portion of the active material particles constituting the positive electrode active material of Example 2 had an Mn atomic concentration of 19 mol% and a Mn atomic concentration gradient of 0.132 mol% / nm. . Further, it was confirmed that the intermediate part of the active material particles of Example 2 had an Mn atomic concentration of 18 mol% and a Mn atomic concentration gradient of 0.9 mol% / nm. Further, it was confirmed that the core part of the active material particles constituting the positive electrode active material of Example 2 had an Mn atomic concentration of 10 mol% and an Mn atomic concentration gradient of 0.006 mol% / nm. .

また、実施例2の正極活物質の形成率は86%であり、形成粒子率は70%であった。また、TEMにより、表層部とコア部の電子回折パターンを測定し、いずれもR3−mに帰属する層状構造のパターンが確認できた。さらに、実施例2の正極活物質のζ電位の等電点を測定したところ、5.8であった。   Moreover, the formation rate of the positive electrode active material of Example 2 was 86%, and the formation particle rate was 70%. Moreover, the electron diffraction pattern of a surface layer part and a core part was measured by TEM, and the pattern of the layered structure which all belonged to R3-m has been confirmed. Furthermore, the isoelectric point of the zeta potential of the positive electrode active material of Example 2 was measured and found to be 5.8.

(実施例3)
実施例1で製造した表層部前駆体と同様に、以下の手順により、実施例3の表層部前駆体粒子を製造した。まず、原料の炭酸リチウム、炭酸マンガンを、Li:Mnが、モル濃度比で2.02:1.0となるように秤量し、これらを湿式粉砕及び混合して原料粉末を調製した。
(Example 3)
In the same manner as the surface layer portion precursor manufactured in Example 1, the surface layer portion precursor particles of Example 3 were manufactured by the following procedure. First, raw material lithium carbonate and manganese carbonate were weighed so that the molar ratio of Li: Mn was 2.02: 1.0, and these were wet pulverized and mixed to prepare a raw material powder.

得られた原料粉末を、ノズル式スプレードライ装置で乾燥した後、高純度アルミナ容器に投入し、大気中において700℃で12時間の仮焼成を行った。そして、複数の粒子が焼結した焼結体を空冷し、焼結体を構成する粒子よりもさらに細かくなるように焼結体を粉砕し、実施例3の表層部前駆体粒子を得た。得られた表層部前駆体粒子の元素分析を行ったところ、Li:Mnは、2.0:1.0であった。よって、元素組成は、LiMnOであると推定される。また、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)で実施例3の表層部前駆体粒子の粒度分布を測定することにより得られたメジアン径(D50)は、0.18μmであった。 The obtained raw material powder was dried by a nozzle type spray drying apparatus and then put into a high-purity alumina container and pre-baked at 700 ° C. for 12 hours in the air. And the sintered compact in which the several particle | grains sintered was air-cooled, the sintered compact was grind | pulverized so that it might become finer than the particle | grains which comprise a sintered compact, and the surface layer part precursor particle | grain of Example 3 was obtained. When the elemental analysis of the obtained surface layer part precursor particle was performed, Li: Mn was 2.0: 1.0. Therefore, the elemental composition is estimated to be Li 2 MnO 3 . The median diameter (D50) obtained by measuring the particle size distribution of the surface layer precursor particles of Example 3 with a laser diffraction / scattering particle size distribution measuring apparatus (LA-920 manufactured by Horiba, Ltd.) is 0. 18 μm.

次に、実施例1で製造した100質量部のコア部前駆体粒子と、実施例3で製造した5質量部の表層部前駆体粒子とを、乳鉢を用いて混合した。得られた混合物を高純度アルミナ容器に投入し、酸素雰囲気中で800℃の加熱温度で1時間の熱処理を行って、活物質粒子からなる実施例3の正極活物質を製造した。その後、高純度アルミナ容器から実施例3の活物質粒子を取り出して空冷し、図3に示す構造の活物質粒子からなる正極活物質を得た。レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)で正極活物質の粒度分布を測定したところ、実施例3の正極活物質を構成する活物質粒子のメジアン径(D50)は、9μmであった。   Next, 100 parts by mass of the core part precursor particles produced in Example 1 and 5 parts by mass of the surface part precursor particles produced in Example 3 were mixed using a mortar. The obtained mixture was put into a high-purity alumina container, and heat-treated for 1 hour at a heating temperature of 800 ° C. in an oxygen atmosphere to produce a positive electrode active material of Example 3 made of active material particles. Thereafter, the active material particles of Example 3 were taken out from the high-purity alumina container and air-cooled to obtain a positive electrode active material composed of active material particles having the structure shown in FIG. When the particle size distribution of the positive electrode active material was measured with a laser diffraction / scattering particle size distribution analyzer (LA-920 manufactured by Horiba Ltd.), the median diameter (D50) of the active material particles constituting the positive electrode active material of Example 3 was 9 μm.

また、実施例3の正極活物質を構成する活物質粒子の元素分析をTEM−EDXによって行ったところ、Li:Ni:Mn:Coは、1.05:0.76:0.14:0.10であった。よって、実施例1の活物質粒子の元素組成は、Li1.05Ni0.76Mn0.14Co0.10であると推定される。なお、実施例3の正極活物質を構成する活物質粒子の元素組成中の酸素の比率は、層状構造を維持可能な1.9から2.1程度の範囲内で変動している可能性がある。 Moreover, when the elemental analysis of the active material particle which comprises the positive electrode active material of Example 3 was performed by TEM-EDX, Li: Ni: Mn: Co was 1.05: 0.76: 0.14: 0. 10. Therefore, the elemental composition of the active material particles of Example 1 is estimated to be Li 1.05 Ni 0.76 Mn 0.14 Co 0.10 O 2 . In addition, the ratio of oxygen in the elemental composition of the active material particles constituting the positive electrode active material of Example 3 may vary within a range of about 1.9 to 2.1 where the layered structure can be maintained. is there.

図13は、実施例3の正極活物質を構成する活物質粒子のTEM−EDXによる測定結果を示すグラフである。表3は、実施例3の正極活物質を構成する活物質粒子のTEM−EDXによる測定結果を示す表である。   FIG. 13 is a graph showing a measurement result by TEM-EDX of the active material particles constituting the positive electrode active material of Example 3. Table 3 is a table | surface which shows the measurement result by TEM-EDX of the active material particle which comprises the positive electrode active material of Example 3. FIG.

Figure 2016100064
Figure 2016100064

実施例3の正極活物質から無作為に選択した活物質粒子のうち、粒子3−1及び粒子3−2は、実施例1の粒子1−2から粒子1−4と同様に、活物質粒子の断面の中心(C)と、上下左右の4箇所において、活物質粒子の表面からの距離が10nmの位置でTEM−EDXによって組成を測定した。粒子3−3では、活物質粒子の断面の中心(C)と、上下左右の4箇所において、活物質粒子の表面からの距離が10nmの位置(T/10, B/10, L/10, R/10)でTEM−EDXによって組成を測定するとともに、断面の右側では、活物質粒子の表面からの距離が30nmから200nmの位置まで、20nm、30nm、30nm、35nm、5nm、5nm、15nm、15nm、及び50nmの間隔(R/30-R/200)で、TEM−EDXによって組成を測定した。   Of the active material particles randomly selected from the positive electrode active material of Example 3, the particles 3-1 and 3-2 are the active material particles in the same manner as the particles 1-2 to 1-4 of Example 1. The composition was measured by TEM-EDX at a position where the distance from the surface of the active material particles was 10 nm at the center (C) of the cross-section of and the four positions on the top, bottom, left and right. In the particle 3-3, the distance from the surface of the active material particle (T / 10, B / 10, L / 10, 4) at the center (C) of the cross section of the active material particle and the four positions on the top, bottom, left, and right R / 10) and the composition is measured by TEM-EDX, and on the right side of the cross section, the distance from the surface of the active material particles is 30 nm to 200 nm, 20 nm, 30 nm, 30 nm, 35 nm, 5 nm, 5 nm, 15 nm, The composition was measured by TEM-EDX at intervals of 15 nm and 50 nm (R / 30-R / 200).

表3及び図13に示す測定結果から、実施例3の正極活物質を構成する活物質粒子は、厚さ115nmの表層部を有し、表層部のNiの原子濃度は、75mol%であり、表層部のNi原子濃度の勾配は、0.0095mol%/nmであることが確認できた。また、実施例3の正極活物質を構成する活物質粒子は、厚さ15nmの中間部を有し、中間部のNiの原子濃度は、78mol%であり、中間部のNiの原子濃度の勾配は、0.30mol%/nmであることが確認できた。また、実施例3の正極活物質を構成する活物質粒子のコア部は、Niの原子濃度が81mol%であり、Niの原子濃度の勾配が0.028mol%/nmであることが確認できた。   From the measurement results shown in Table 3 and FIG. 13, the active material particles constituting the positive electrode active material of Example 3 have a surface layer portion with a thickness of 115 nm, and the atomic concentration of Ni in the surface layer portion is 75 mol%, It was confirmed that the gradient of Ni atom concentration in the surface layer portion was 0.0095 mol% / nm. Moreover, the active material particles constituting the positive electrode active material of Example 3 have an intermediate part with a thickness of 15 nm, the atomic concentration of Ni in the intermediate part is 78 mol%, and the gradient of the atomic concentration of Ni in the intermediate part Was confirmed to be 0.30 mol% / nm. Further, it was confirmed that the core part of the active material particles constituting the positive electrode active material of Example 3 had an Ni atomic concentration of 81 mol% and a Ni atomic concentration gradient of 0.028 mol% / nm. .

また、実施例3の正極活物質を構成する活物質粒子の表層部は、Mnの原子濃度が17mol%であり、Mnの原子濃度の勾配が0.149mol%/nmであることが確認できた。また、実施例3の活物質粒子の中間部は、Mnの原子濃度が13mol%であり、Mnの原子濃度の勾配が0.4mol%/nmであることが確認できた。また、実施例2の正極活物質を構成する活物質粒子のコア部は、Mnの原子濃度が10mol%であり、Mnの原子濃度の勾配が0.018mol%/nmであることが確認できた。   Moreover, it was confirmed that the surface layer portion of the active material particles constituting the positive electrode active material of Example 3 had an Mn atomic concentration of 17 mol% and an Mn atomic concentration gradient of 0.149 mol% / nm. . Further, it was confirmed that the intermediate part of the active material particles of Example 3 had an Mn atomic concentration of 13 mol% and a Mn atomic concentration gradient of 0.4 mol% / nm. Further, it was confirmed that the core part of the active material particles constituting the positive electrode active material of Example 2 had an Mn atomic concentration of 10 mol% and a Mn atomic concentration gradient of 0.018 mol% / nm. .

また、実施例3の正極活物質の形成率は88%であり、形成粒子率は66%であった。また、TEMにより、表層部とコア部の電子回折パターンを測定し、いずれもR3−mに帰属する層状構造のパターンが確認できた。さらに、実施例3の正極活物質のζ電位の等電点を測定したところ、6.3であった。   Moreover, the formation rate of the positive electrode active material of Example 3 was 88%, and the formation particle rate was 66%. Moreover, the electron diffraction pattern of a surface layer part and a core part was measured by TEM, and the pattern of the layered structure which all belonged to R3-m has been confirmed. Furthermore, when the isoelectric point of the zeta potential of the positive electrode active material of Example 3 was measured, it was 6.3.

(実施例4)
実施例4の正極活物質は、以下の手順で製作した。まず、実施例1で製造した100質量部のコア部前駆体粒子と、実施例1で製造した2.5質量部の表層部前駆体粒子とを、実施例2と同様に、複合化装置を用いて混合した。次に、得られた混合物を、高純度アルミナ容器に投入し、酸素雰囲気中で850℃の加熱温度まで温度上昇させた後、直ちに降温させるように、加熱温度の保持時間が0時間の熱処理を行って、実施例4の正極活物質を製造した。高純度アルミナ容器から実施例4の正極活物質を取り出して空冷した後、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)で粒度分布を測定したところ、実施例4の正極活物質を構成する活物質粒子のメジアン径(D50)は、11μmであった。
Example 4
The positive electrode active material of Example 4 was manufactured by the following procedure. First, in the same manner as in Example 2, 100 parts by mass of the core part precursor particles manufactured in Example 1 and 2.5 parts by mass of the surface layer part precursor particles manufactured in Example 1 were combined. Used and mixed. Next, the obtained mixture is put into a high-purity alumina container, heated to a heating temperature of 850 ° C. in an oxygen atmosphere, and then subjected to heat treatment with a heating temperature holding time of 0 hour so that the temperature is immediately lowered. The positive electrode active material of Example 4 was manufactured. After taking out the positive electrode active material of Example 4 from a high-purity alumina container and air-cooling, the particle size distribution was measured with a laser diffraction / scattering type particle size distribution analyzer (LA-920 manufactured by Horiba, Ltd.). The median diameter (D50) of the active material particles constituting the active material was 11 μm.

また、TEMにより、表層部とコア部の電子回折パターンを測定し、いずれもR3−mに帰属する層状構造のパターンが確認できた。さらに、実施例4の正極活物質のζ電位の等電点を測定したところ、5.4であった。これは、酸素雰囲気中で850℃の加熱温度で、加熱温度の保持時間が0時間の熱処理を行ったことにより、コア粒前駆体粒子の組成と表層部前駆体粒子の組成が適度に相互拡散することで、コア部よりも相対的に高Li濃度かつ高Mnの表層部が形成されたためであると考えられる。   Moreover, the electron diffraction pattern of a surface layer part and a core part was measured by TEM, and the pattern of the layered structure which all belonged to R3-m has been confirmed. Furthermore, the isoelectric point of the ζ potential of the positive electrode active material of Example 4 was measured and found to be 5.4. This is because the composition of the core particle precursor particles and the composition of the surface layer precursor particles are appropriately interdiffused by performing a heat treatment at a heating temperature of 850 ° C. in an oxygen atmosphere at a heating temperature holding time of 0 hour. This is considered to be because a surface layer portion having a relatively higher Li concentration and higher Mn than the core portion was formed.

(実施例5)
実施例5の正極活物質は、以下の手順で製作した。まず、実施例1で製造したコア部前駆体粒子を100質量部と、実施例1で製造した表層部前駆体粒子2.5質量部とを、実施例2と同様に、複合化装置を用いて混合した。次に、得られた混合物を、高純度アルミナ容器に投入し、酸素雰囲気中で850℃の加熱温度で1時間の熱処理を行って、実施例5の正極活物質を製造した。高純度アルミナ容器から実施例5の正極活物質を取り出して空冷した後、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)で粒度分布を測定したところ、実施例5の正極活物質を構成する活物質粒子のメジアン径(D50)は、11μmであった。
(Example 5)
The positive electrode active material of Example 5 was manufactured by the following procedure. First, 100 parts by mass of the core part precursor particles produced in Example 1 and 2.5 parts by mass of the surface layer part precursor particles produced in Example 1 were used in the same manner as in Example 2 using a composite device. And mixed. Next, the obtained mixture was put into a high-purity alumina container and subjected to a heat treatment for 1 hour at a heating temperature of 850 ° C. in an oxygen atmosphere to produce the positive electrode active material of Example 5. After taking out the positive electrode active material of Example 5 from a high purity alumina container and air-cooling, when the particle size distribution was measured with the laser diffraction / scattering type particle size distribution measuring apparatus (LA-920 by Horiba Ltd.), the positive electrode of Example 5 was obtained. The median diameter (D50) of the active material particles constituting the active material was 11 μm.

また、TEMにより、表層部とコア部の電子回折パターンを測定し、いずれもR3−mに帰属する層状構造のパターンが確認できた。さらに、実施例5の正極活物質のζ電位の等電点を測定したところ、6.4であった。これは、酸素雰囲気中で850℃の加熱温度で1時間の熱処理を行ったことにより、コア粒前駆体粒子の組成と表層部前駆体粒子の組成が適度に相互拡散することで、コア部よりも相対的に高Li濃度かつ高Mnの表層部が形成されたためであると考えられる。   Moreover, the electron diffraction pattern of a surface layer part and a core part was measured by TEM, and the pattern of the layered structure which all belonged to R3-m has been confirmed. Furthermore, when the isoelectric point of the zeta potential of the positive electrode active material of Example 5 was measured, it was 6.4. This is because the composition of the core particle precursor particles and the composition of the surface layer precursor particles are appropriately interdiffused by performing a heat treatment for 1 hour at a heating temperature of 850 ° C. in an oxygen atmosphere. This is probably because a surface layer portion having a relatively high Li concentration and a high Mn was formed.

(比較例1)
比較例1の正極活物質は、以下の手順で製作した。実施例5と同様に、実施例1で製造した100質量部のコア部前駆体粒子と、実施例1で製造した2.5質量部の表層部前駆体粒子とを、複合化装置を用いて混合した。次に、得られた混合物を、高純度アルミナ容器に投入し、酸素雰囲気中で850℃の加熱温度で3時間の熱処理を行って、比較例1の正極活物質を製造した。高純度アルミナ容器から比較例1の正極活物質を取り出して空冷した後、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)で粒度分布を測定したところ、比較例1の正極活物質を構成する活物質粒子のメジアン径(D50)は、11μmであった。
(Comparative Example 1)
The positive electrode active material of Comparative Example 1 was manufactured according to the following procedure. In the same manner as in Example 5, 100 parts by mass of the core part precursor particles produced in Example 1 and 2.5 parts by mass of the surface layer part precursor particles produced in Example 1 were combined using a composite device. Mixed. Next, the obtained mixture was put into a high-purity alumina container and subjected to a heat treatment for 3 hours at a heating temperature of 850 ° C. in an oxygen atmosphere to produce a positive electrode active material of Comparative Example 1. After taking out the positive electrode active material of Comparative Example 1 from the high-purity alumina container and air-cooling, the particle size distribution was measured with a laser diffraction / scattering particle size distribution measuring device (LA-920 manufactured by Horiba, Ltd.). The median diameter (D50) of the active material particles constituting the active material was 11 μm.

比較例1の正極活物質のζ電位の等電点を測定したところ、4.6であった。これは、酸素雰囲気中で850℃の加熱温度で3時間の熱処理を行ったことにより、コア粒前駆体粒子の組成と表層部前駆体粒子の組成の相互拡散が過剰になり、ζ電位の等電点が低下したものと考えられる。   When the isoelectric point of the ζ potential of the positive electrode active material of Comparative Example 1 was measured, it was 4.6. This is because the heat treatment at 850 ° C. for 3 hours in an oxygen atmosphere causes the mutual diffusion of the composition of the core particle precursor particles and the composition of the surface layer precursor particles to be excessive, and the ζ potential, etc. It is thought that the electric point decreased.

(比較例2)
比較例2の正極活物質は、以下の手順で製作した。実施例5と同様に、実施例1で製造した100質量部のコア部前駆体粒子と、実施例1で製造した2.5質量部の表層部前駆体粒子とを、複合化装置を用いて混合した。次に、得られた混合物を、高純度アルミナ容器に投入し、酸素雰囲気中で850℃の加熱温度で6時間の熱処理を行って、比較例2の正極活物質を製造した。高純度アルミナ容器から比較例2の正極活物質を取り出して空冷した後、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製LA−920)で粒度分布を測定したところ、比較例2の正極活物質を構成する活物質粒子のメジアン径(D50)は、11μmであった。
(Comparative Example 2)
The positive electrode active material of Comparative Example 2 was manufactured by the following procedure. In the same manner as in Example 5, 100 parts by mass of the core part precursor particles produced in Example 1 and 2.5 parts by mass of the surface layer part precursor particles produced in Example 1 were combined using a composite device. Mixed. Next, the obtained mixture was put into a high-purity alumina container and subjected to a heat treatment at a heating temperature of 850 ° C. for 6 hours in an oxygen atmosphere to produce a positive electrode active material of Comparative Example 2. After taking out the positive electrode active material of Comparative Example 2 from the high-purity alumina container and air-cooling, the particle size distribution was measured with a laser diffraction / scattering particle size distribution analyzer (LA-920 manufactured by Horiba Ltd.). The median diameter (D50) of the active material particles constituting the active material was 11 μm.

比較例2の正極活物質のζ電位の等電点を測定したところ、4.5であった。これは、酸素雰囲気中で850℃の加熱温度で6時間の熱処理を行ったことにより、コア粒前駆体粒子の組成と表層部前駆体粒子の組成の相互拡散が過剰になり、ζ電位の等電点が低下したものと考えられる。   When the isoelectric point of the ζ potential of the positive electrode active material of Comparative Example 2 was measured, it was 4.5. This is because heat treatment at 850 ° C. for 6 hours in an oxygen atmosphere results in excessive interdiffusion between the composition of the core particle precursor particles and the composition of the surface layer precursor particles, and the like of the ζ potential. It is thought that the electric point decreased.

(比較例3)
比較例3の正極活物質は、以下の手順で製作した。実施例5と同様に、実施例1で製造した100質量部のコア部前駆体粒子と、実施例1で製造した2.5質量部の表層部前駆体粒子とを、複合化装置を用いて混合した。そして、得られた混合物を、熱処理を行うことなく、比較例3の正極活物質とした。
(Comparative Example 3)
The positive electrode active material of Comparative Example 3 was produced by the following procedure. In the same manner as in Example 5, 100 parts by mass of the core part precursor particles produced in Example 1 and 2.5 parts by mass of the surface layer part precursor particles produced in Example 1 were combined using a composite device. Mixed. And the obtained mixture was made into the positive electrode active material of the comparative example 3 without performing heat processing.

比較例3の正極活物質のζ電位の等電点を測定したところ、9.2であった。比較例3の正極活物質は、熱処理を行っていないため、コア前駆体粒子の組成と表層部前駆体粒子の組成が適度に相互拡散しておらず、ζ電位の等電点が高いままであると考えられる。   The isoelectric point of the zeta potential of the positive electrode active material of Comparative Example 3 was measured and found to be 9.2. Since the positive electrode active material of Comparative Example 3 was not heat-treated, the composition of the core precursor particles and the composition of the surface layer precursor particles were not appropriately interdiffused, and the isoelectric point of the ζ potential remained high. It is believed that there is.

(比較例4)
実施例1で製造したコア部前駆体粒子を、そのまま比較例4の正極活物質とした。比較例4の正極活物質のζ電位の等電点を測定したところ、4.1であった。
(Comparative Example 4)
The core part precursor particles produced in Example 1 were used as the positive electrode active material of Comparative Example 4 as it was. When the isoelectric point of the ζ potential of the positive electrode active material of Comparative Example 4 was measured, it was 4.1.

以上によって得られた実施例1から実施例5、及び比較例1から比較例4の正極活物質を用いて、実施例1から実施例5、及び比較例1から比較例4の正極及び非水系二次電池を製作した。   Using the positive electrode active materials of Examples 1 to 5 and Comparative Examples 1 to 4 obtained as described above, the positive electrodes and non-aqueous systems of Examples 1 to 5 and Comparative Examples 1 to 4 were used. A secondary battery was manufactured.

まず、90質量部の正極活物質と、6質量部の導電材と、4質量部の結着剤とを、溶媒のN−メチルピロリドンと混合し、均質化してスラリー状の正極合材を調製した。なお、導電材としては、アセチレンブラック「デンカブラック(登録商標)」(電気化学工業株式会社製)を用いた。また、結着剤としては、ポリフッ化ビニリデンを用いた。   First, 90 parts by mass of a positive electrode active material, 6 parts by mass of a conductive material, and 4 parts by mass of a binder are mixed with a solvent N-methylpyrrolidone and homogenized to prepare a slurry-like positive electrode mixture. did. As the conductive material, acetylene black “DENKA BLACK (registered trademark)” (manufactured by Denki Kagaku Kogyo Co., Ltd.) was used. In addition, polyvinylidene fluoride was used as the binder.

次に、調製した正極合材を、厚み15μmのアルミニウム箔からなる正極集電体に塗布し、120℃で乾燥させた後、60MPaで2回プレスし、圧縮成形して電極板とした。そして、電極板を直径15mmの円盤状に打ち抜き、実施例1から実施例5、及び比較例1から比較例4の非水系二次電池用の正極を製作した。   Next, the prepared positive electrode mixture was applied to a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried at 120 ° C., pressed twice at 60 MPa, and compression molded to obtain an electrode plate. Then, the electrode plate was punched into a disk shape having a diameter of 15 mm, and positive electrodes for non-aqueous secondary batteries of Examples 1 to 5 and Comparative Examples 1 to 4 were manufactured.

次に、実施例1から実施例5、及び比較例1から比較例4の非水系二次電池用の正極と、金属リチウムからなる非水系二次電池用の負極を用いて、それぞれ、実施例1から実施例5、及び比較例1から比較例4の非水系二次電池を製作した。なお、非水系二次電池の非水電解液としては、エチレンカーボネートとジメチルカーボネートとを体積比1:2で混合した溶媒に、LiPFを1.0mol/lの濃度となるように溶解させたものを用いた。 Next, the positive electrode for the non-aqueous secondary battery of Examples 1 to 5 and Comparative Example 1 to Comparative Example 4 and the negative electrode for the non-aqueous secondary battery made of metallic lithium were used, respectively. Nonaqueous secondary batteries of 1 to Example 5 and Comparative Examples 1 to 4 were manufactured. In addition, as a non-aqueous electrolyte of the non-aqueous secondary battery, LiPF 6 was dissolved in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2 so as to have a concentration of 1.0 mol / l. A thing was used.

次に、製作した実施例1から実施例5、及び比較例1から比較例4に係る非水系二次電池について、以下の充放電試験を行い、放電容量を測定した。なお、充放電試験は、環境温度25℃の下で行った。   Next, the non-aqueous secondary batteries according to Examples 1 to 5 and Comparative Examples 1 to 4 manufactured were subjected to the following charge / discharge test, and the discharge capacity was measured. The charge / discharge test was conducted at an environmental temperature of 25 ° C.

まず、各非水系二次電池に対して、0.2C相当の電流で上限電圧4.3Vまで定電流定電圧充電を行い、30分間休止した後、0.2C相当の定電流で下限電圧3.3Vまで放電を行い、30分間休止する充放電を2サイクル行い、非水系二次電池の初期化を行った。各非水系二次電池の放電容量は、1サイクル目の値とした。その後、各非水系二次電池に対して、1C相当の電流で上限電圧4.4Vまで定電流定電圧充電を行い、5分間休止後、1C相当の定電流で下限電圧3.3Vまで放電を行い、5分間休止する充放電を50サイクル行った。1C相当の定電流放電の50サイクル目の放電容量を、1C相当の定電流放電の1サイクル目の放電容量で除して、100を乗じた値を、各非水系二次電池の容量維持率とした。その結果を、以下の表4に示す。   First, each non-aqueous secondary battery is charged with a constant current and a constant voltage up to an upper limit voltage of 4.3 V at a current equivalent to 0.2 C, and after resting for 30 minutes, a lower limit voltage of 3 with a constant current equivalent to 0.2 C. The battery was discharged to 3 V and charged / discharged for 30 minutes, followed by two cycles to initialize the non-aqueous secondary battery. The discharge capacity of each non-aqueous secondary battery was the value at the first cycle. Thereafter, each non-aqueous secondary battery is charged with a constant current and a constant voltage up to an upper limit voltage of 4.4 V at a current equivalent to 1 C. After resting for 5 minutes, it is discharged to a lower limit voltage of 3.3 V with a constant current equivalent to 1 C. Then, 50 cycles of charging / discharging for 5 minutes were performed. The discharge capacity at the 50th cycle of constant current discharge equivalent to 1C is divided by the discharge capacity at the first cycle of constant current discharge equivalent to 1C, and multiplied by 100, the capacity maintenance rate of each non-aqueous secondary battery It was. The results are shown in Table 4 below.

次に、実施例1と比較例4の非水系二次電池に対して、以下の充放電試験を行い、放電容量を測定した。なお、充放電試験は、環境温度25℃の下で行った。   Next, the following charge / discharge test was performed on the nonaqueous secondary batteries of Example 1 and Comparative Example 4 to measure the discharge capacity. The charge / discharge test was conducted at an environmental temperature of 25 ° C.

まず、各非水系二次電池に対して、0.2C相当の電流で上限電圧4.6Vまで定電流定電圧充電を行い、30分間休止した後、0.2C相当の定電流で下限電圧3.3Vまで放電を行い、30分間休止する充放電を2サイクル行い、非水系二次電池の初期化を行った。その後、各非水系二次電池に対して、1C相当の電流で上限電圧4.6Vまで定電流定電圧充電を行い、5分間休止後、1C相当の定電流で下限電圧3.3Vまで放電を行い、5分間休止する充放電を50サイクル行った。1C相当の定電流放電の50サイクル目の放電容量を1C相当の定電流放電の1サイクル目の放電容量で除して、100を乗じた値を、各非水系二次電池の4.6Vにおける容量維持率とした。その結果を、以下の表4に示す。   First, each non-aqueous secondary battery is charged with a constant current and a constant voltage up to an upper limit voltage of 4.6 V at a current equivalent to 0.2 C. After resting for 30 minutes, the lower limit voltage 3 is supplied with a constant current equivalent to 0.2 C. The battery was discharged to 3 V and charged / discharged for 30 minutes, followed by two cycles to initialize the non-aqueous secondary battery. Thereafter, each non-aqueous secondary battery is charged with a constant current and a constant voltage up to an upper limit voltage of 4.6 V at a current equivalent to 1 C. After resting for 5 minutes, it is discharged to a lower limit voltage of 3.3 V with a constant current equivalent to 1 C. Then, 50 cycles of charging / discharging for 5 minutes were performed. The value obtained by dividing the discharge capacity at the 50th cycle of the constant current discharge equivalent to 1C by the discharge capacity at the first cycle of the constant current discharge equivalent to 1C and multiplying by 100 is 4.6 V for each non-aqueous secondary battery. The capacity maintenance rate was used. The results are shown in Table 4 below.

Figure 2016100064
Figure 2016100064

実施例1から実施例5の非水系二次電池の正極に含まれる正極活物質は、コア部前駆体粒子と表層部前駆体粒子を混合した後に、コア部前駆体粒子の焼成温度である850℃より50℃低い800℃又はコア部前駆体粒子の焼成温度と同じ850℃の加熱温度で熱処理を行っている。これにより、表4に示すように、実施例1から実施例5の非水系二次電池の正極に含まれる正極活物質は、ζ電位の等電点が5以上7以下になることが確認された。また、実施例4及び実施例5並びに比較例1及び比較例2に示すように、コア部前駆体粒子と表層部前駆体粒子を混合した後の熱処理の加熱温度が850℃である場合、熱処理時間を3時間未満、より好ましくは1時間以下とすることにより、ζ電位の等電点が5以上7以下になることが確認された。   The positive electrode active material contained in the positive electrodes of the non-aqueous secondary batteries of Example 1 to Example 5 is the firing temperature of the core part precursor particles after mixing the core part precursor particles and the surface layer part precursor particles 850. The heat treatment is performed at 800 ° C., which is 50 ° C. lower than the temperature C, or at a heating temperature of 850 ° C., which is the same as the firing temperature of the core part precursor particles. As a result, as shown in Table 4, it was confirmed that the positive electrode active material contained in the positive electrodes of the non-aqueous secondary batteries of Examples 1 to 5 had an isoelectric point of ζ potential of 5 or more and 7 or less. It was. Moreover, as shown in Example 4 and Example 5 and Comparative Example 1 and Comparative Example 2, when the heating temperature of the heat treatment after mixing the core part precursor particles and the surface layer part precursor particles is 850 ° C., the heat treatment It was confirmed that the isoelectric point of the ζ potential was 5 or more and 7 or less by setting the time to less than 3 hours, more preferably 1 hour or less.

ζ電位の等電点が5以上7以下である実施例1から実施例5の非水系二次電池では、ζ電位の等電点が5未満の比較例1、比較例2及び比較例4、並びに、ζ電位の等電点が7より大きい比較例3の非水系二次電池と比較して、電池電圧で4.3V(vs Li/Li)以下、正極単極で4.4V(vs Li/Li)以下の低電位での容量維持率の値が高くなった。つまり、ζ電位の等電点が5以上7以下であるとサイクル劣化が抑制されることが確認された。 In the non-aqueous secondary batteries of Examples 1 to 5 in which the isoelectric point of ζ potential is 5 or more and 7 or less, Comparative Example 1, Comparative Example 2, and Comparative Example 4 in which the isoelectric point of ζ potential is less than 5. In addition, compared with the non-aqueous secondary battery of Comparative Example 3 in which the isoelectric point of the ζ potential is larger than 7, the battery voltage is 4.3 V (vs Li / Li + ) or less, and the positive electrode single electrode is 4.4 V (vs. The value of the capacity retention rate at a low potential of (Li / Li + ) or lower became high. That is, it was confirmed that cycle deterioration is suppressed when the isoelectric point of the ζ potential is 5 or more and 7 or less.

また、ζ電位の等電点が5以上7以下である実施例1と、ζ電位の等電点が5未満の比較例4と比較して、電池電圧で4.5V(vs Li/Li)、正極単極で4.6V(vs Li/Li)の高電位での容量維持率の値が高くなった。つまり、ζ電位の等電点が5以上であるとサイクル劣化が抑制されることが確認された。 In addition, compared with Example 1 in which the isoelectric point of ζ potential is 5 or more and 7 or less and Comparative Example 4 in which the isoelectric point of ζ potential is less than 5, the battery voltage is 4.5 V (vs Li / Li + ), The capacity retention ratio at a high potential of 4.6 V (vs Li / Li + ) was high for the single positive electrode. That is, it was confirmed that cycle deterioration is suppressed when the isoelectric point of the ζ potential is 5 or more.

以上により、ζ電位の等電点が5以上7以下であると、非水系二次電池を電池電圧で4.5V(vs Li/Li)、正極単極で4.6V(vs Li/Li)の高電位まで利用する場合のサイクル劣化を抑制できるだけでなく、非水系二次電池を電池電圧で4.3V(vs Li/Li)以下、正極単極で4.4V(vs Li/Li)以下の低電位まで利用する場合のサイクル劣化も抑制できることが確認された。 As described above, when the isoelectric point of the ζ potential is 5 or more and 7 or less, the non-aqueous secondary battery has a battery voltage of 4.5 V (vs Li / Li + ) and a positive electrode single electrode of 4.6 V (vs Li / Li). + ) In addition to suppressing cycle deterioration when used up to a high potential, a non-aqueous secondary battery is not more than 4.3 V (vs Li / Li + ) in terms of battery voltage and 4.4 V (vs Li / in) with a single positive electrode. It was confirmed that the cycle deterioration when using a low potential of Li + ) or less can also be suppressed.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1A−1F 活物質粒子、10A−10F 正極活物質、11 コア部、12 表層部、13 中間部、100 非水系二次電池、111 正極、111a 正極集電体、111b 正極合剤層、200 二次電池モジュール、S1 前駆体粒子製造工程、S2 混合工程、S3 熱処理工程 1A-1F active material particles, 10A-10F positive electrode active material, 11 core part, 12 surface layer part, 13 intermediate part, 100 nonaqueous secondary battery, 111 positive electrode, 111a positive electrode current collector, 111b positive electrode mixture layer, 200 2 Secondary battery module, S1 precursor particle manufacturing process, S2 mixing process, S3 heat treatment process

Claims (16)

組成の異なるコア部と表層部とを有する層状構造の活物質粒子からなる非水系二次電池用の正極活物質であって、
前記活物質粒子は、組成が下記式(1)で表され、ゼータ電位の等電点が5以上7以下であることを特徴とする正極活物質。
Li1+aNiMnCo …(1)
ただし、前記式(1)中、Mは、Mg、Al、Ti、Mo、Nbからなる群より選択される少なくとも1種の元素であり、a、b、c、d、及びeは、−0.1≦a≦0.3、0.5≦b≦0.95、0<c≦0.95、0≦d≦0.6、0≦e≦0.1、及び、b+c+d+e=1、を満たす数である。
A positive electrode active material for a non-aqueous secondary battery comprising active material particles having a layered structure having a core portion and a surface layer portion having different compositions,
The positive electrode active material, wherein the active material particles have a composition represented by the following formula (1) and an isoelectric point of zeta potential is 5 or more and 7 or less.
Li 1 + a Ni b Mn c Co d M e O 2 ... (1)
In the above formula (1), M is at least one element selected from the group consisting of Mg, Al, Ti, Mo, and Nb, and a, b, c, d, and e are −0. 0.1 ≦ a ≦ 0.3, 0.5 ≦ b ≦ 0.95, 0 <c ≦ 0.95, 0 ≦ d ≦ 0.6, 0 ≦ e ≦ 0.1, and b + c + d + e = 1. It is a number that satisfies.
前記活物質粒子は、前記コア部と前記表層部とを有する複数の粒子が焼結された複合粒子であることを特徴とする請求項1に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the active material particles are composite particles obtained by sintering a plurality of particles having the core portion and the surface layer portion. 前記コア部は、複数の粒子が焼結された焼結体であり、
前記表層部は、前記焼結体の表面に形成されていることを特徴とする請求項1に記載の正極活物質。
The core part is a sintered body in which a plurality of particles are sintered,
The positive electrode active material according to claim 1, wherein the surface layer portion is formed on a surface of the sintered body.
前記コア部のNiの原子濃度は、前記表層部のNiの原子濃度よりも高いことを特徴とする請求項1から請求項3のいずれか一項に記載の正極活物質。   4. The positive electrode active material according to claim 1, wherein an atomic concentration of Ni in the core portion is higher than an atomic concentration of Ni in the surface layer portion. 5. 前記表層部のLiの原子濃度は、前記コア部のLiの原子濃度よりも高いことを特徴とする請求項4に記載の正極活物質。   The positive electrode active material according to claim 4, wherein an atomic concentration of Li in the surface layer portion is higher than an atomic concentration of Li in the core portion. 前記コア部と前記表層部との間に中間部を有し、
前記中間部のNiの原子濃度は、前記コア部のNiの原子濃度よりも低く、前記表層部のNiの原子濃度よりも高く、
前記表層部のNiの原子濃度の濃度勾配は、前記中間部のNiの原子濃度の濃度勾配よりも小さいことを特徴とする請求項5に記載の正極活物質。
Having an intermediate part between the core part and the surface part,
The atomic concentration of Ni in the intermediate portion is lower than the atomic concentration of Ni in the core portion, and higher than the atomic concentration of Ni in the surface layer portion,
The positive electrode active material according to claim 5, wherein a concentration gradient of Ni concentration in the surface layer portion is smaller than a concentration gradient of Ni concentration in the intermediate portion.
前記表層部は、組成が下記式(2)で表されることを特徴とする請求項5又は請求項6に記載の正極活物質。
Li1+aNiMnCo …(2)
ただし、前記式(2)中、Mは、Mg、Al、Ti、Mo、Nbからなる群より選択される少なくとも1種の元素であり、a、b、c、d、及びeは、0<a≦0.3、0.2≦b≦0.95、0<c≦0.95、0≦d≦0.6、0≦e≦0.1、及び、b+c+d+e=1、を満たす数である。
The positive electrode active material according to claim 5, wherein the surface layer portion has a composition represented by the following formula (2).
Li 1 + a Ni b Mn c Co d M e O 2 ... (2)
In the above formula (2), M is at least one element selected from the group consisting of Mg, Al, Ti, Mo, and Nb, and a, b, c, d, and e are 0 < A number satisfying a ≦ 0.3, 0.2 ≦ b ≦ 0.95, 0 <c ≦ 0.95, 0 ≦ d ≦ 0.6, 0 ≦ e ≦ 0.1, and b + c + d + e = 1. is there.
前記表層部の厚さが20nm以上200nm以下であることを特徴とする請求項5又は請求項6に記載の正極活物質。   The positive electrode active material according to claim 5 or 6, wherein a thickness of the surface layer portion is 20 nm or more and 200 nm or less. 前記中間部の厚さが10nm以上100nm以下であることを特徴とする請求項6に記載の正極活物質。   The positive electrode active material according to claim 6, wherein a thickness of the intermediate portion is 10 nm or more and 100 nm or less. 請求項1から請求項9のいずれか一項に記載の正極活物質の製造方法であって、
遷移金属の化合物とLi化合物とを混合及び焼成して、組成の異なるコア部前駆体粒子と表層部前駆体粒子とを製造する前駆体粒子製造工程と、
前記コア部前駆体粒子と前記表層部前駆体粒子とを混合する混合工程と、
前記混合工程で得られた混合物を熱処理して、前記式(1)で表されるゼータ電位の等電点が5以上7以下の前記活物質粒子となるように熱処理する熱処理工程と、
を含むことを特徴とする正極活物質製造方法。
A method for producing a positive electrode active material according to any one of claims 1 to 9,
A precursor particle production process for producing a core part precursor particle and a surface layer part precursor particle having different compositions by mixing and firing a transition metal compound and a Li compound,
A mixing step of mixing the core part precursor particles and the surface layer part precursor particles;
A heat treatment step of heat-treating the mixture obtained in the mixing step so that the active material particles have an isoelectric point of zeta potential represented by the formula (1) of 5 or more and 7 or less;
The positive electrode active material manufacturing method characterized by including.
前記前駆体粒子製造工程において、前記コア部前駆体粒子のメジアン径を、前記表層部前駆体粒子のメジアン径の2倍以上100倍以下とし、
前記混合工程において、前記コア部前駆体粒子100質量部に対して前記表層部前駆体粒子を0.1質量部以上15質量部以下の割合で混合することを特徴とする請求項10に記載の正極活物質製造方法。
In the precursor particle production step, the median diameter of the core part precursor particles is set to be 2 to 100 times the median diameter of the surface layer part precursor particles,
The said mixing process WHEREIN: The said surface part precursor particle | grain is mixed in the ratio of 0.1 to 15 mass parts with respect to 100 mass parts of said core part precursor particles, The Claim 10 characterized by the above-mentioned. A method for producing a positive electrode active material.
前記熱処理工程における前記熱処理の加熱時間は、前記前駆体粒子製造工程における前記コア部前駆体粒子の焼成時間以下であることを特徴とする請求項10又は請求項11に記載の正極活物質製造方法。   The method for producing a positive electrode active material according to claim 10 or 11, wherein a heating time of the heat treatment in the heat treatment step is equal to or shorter than a firing time of the core part precursor particles in the precursor particle production step. . 前記熱処理工程における前記熱処理の加熱温度は、前記前駆体粒子製造工程における前記コア部前駆体粒子の焼成温度よりも200℃低い温度以上かつ前記焼成温度よりも50℃高い温度以下であることを特徴とする請求項12に記載の正極活物質製造方法。   The heating temperature of the heat treatment in the heat treatment step is not less than a temperature 200 ° C. lower than the firing temperature of the core part precursor particles in the precursor particle manufacturing step and not more than 50 ° C. higher than the firing temperature. The method for producing a positive electrode active material according to claim 12. 正極集電体と、該正極集電体の表面に形成された正極合材層とを備えた非水系二次電池用の正極であって、
前記正極合材層は、請求項1から請求項9のいずれか一項に記載の正極活物質を含むことを特徴とする正極。
A positive electrode for a non-aqueous secondary battery comprising a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector,
The positive electrode mixture layer includes the positive electrode active material according to any one of claims 1 to 9.
請求項14に記載の正極を備えることを特徴とする非水系二次電池。   A non-aqueous secondary battery comprising the positive electrode according to claim 14. 請求項15に記載の非水系二次電池を備えることを特徴とする二次電池モジュール。   A secondary battery module comprising the nonaqueous secondary battery according to claim 15.
JP2014233483A 2014-11-18 2014-11-18 Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module Pending JP2016100064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014233483A JP2016100064A (en) 2014-11-18 2014-11-18 Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014233483A JP2016100064A (en) 2014-11-18 2014-11-18 Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module

Publications (1)

Publication Number Publication Date
JP2016100064A true JP2016100064A (en) 2016-05-30

Family

ID=56078066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014233483A Pending JP2016100064A (en) 2014-11-18 2014-11-18 Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module

Country Status (1)

Country Link
JP (1) JP2016100064A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207138A (en) * 2016-09-20 2016-12-07 中国科学院化学研究所 A kind of method for preparing anode material of lithium-ion battery and application thereof
WO2018135253A1 (en) * 2017-01-20 2018-07-26 Necエナジーデバイス株式会社 Positive electrode active substance, positive electrode, and lithium ion secondary cell
JP2018200863A (en) * 2017-05-29 2018-12-20 太平洋セメント株式会社 Positive-electrode active material complex for lithium ion secondary battery or positive-electrode active material complex for sodium ion secondary battery, secondary battery using the same, and manufacturing method for the same
JP2019514835A (en) * 2017-02-22 2019-06-06 リオナノ インコーポレイテッド Core shell electroactive substance
CN113675381A (en) * 2020-05-15 2021-11-19 深圳市比亚迪锂电池有限公司 Lithium ion battery positive electrode material, positive electrode plate and lithium ion battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207138A (en) * 2016-09-20 2016-12-07 中国科学院化学研究所 A kind of method for preparing anode material of lithium-ion battery and application thereof
CN106207138B (en) * 2016-09-20 2019-10-01 中国科学院化学研究所 A kind of method for preparing anode material of lithium-ion battery and its application
WO2018135253A1 (en) * 2017-01-20 2018-07-26 Necエナジーデバイス株式会社 Positive electrode active substance, positive electrode, and lithium ion secondary cell
CN110235289A (en) * 2017-01-20 2019-09-13 远景Aesc能源元器件有限公司 Positive active material, anode and lithium ion secondary battery
JPWO2018135253A1 (en) * 2017-01-20 2019-11-07 株式会社エンビジョンAescエナジーデバイス Positive electrode active material, positive electrode and lithium ion secondary battery
US10998542B2 (en) 2017-01-20 2021-05-04 Envision Aesc Energy Devices Ltd. Positive electrode active material, positive electrode, and lithium ion secondary battery
JP2019514835A (en) * 2017-02-22 2019-06-06 リオナノ インコーポレイテッド Core shell electroactive substance
JP2018200863A (en) * 2017-05-29 2018-12-20 太平洋セメント株式会社 Positive-electrode active material complex for lithium ion secondary battery or positive-electrode active material complex for sodium ion secondary battery, secondary battery using the same, and manufacturing method for the same
CN113675381A (en) * 2020-05-15 2021-11-19 深圳市比亚迪锂电池有限公司 Lithium ion battery positive electrode material, positive electrode plate and lithium ion battery
CN113675381B (en) * 2020-05-15 2024-03-19 深圳市比亚迪锂电池有限公司 Lithium ion battery positive electrode material, positive electrode plate and lithium ion battery

Similar Documents

Publication Publication Date Title
JP7179887B2 (en) lithium ion secondary battery
CN108807864B (en) Composite positive electrode active material, positive electrode and lithium battery containing composite positive electrode active material, and method for preparing composite positive electrode active material
JP6589339B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5450284B2 (en) Lithium titanate particles and manufacturing method thereof, negative electrode for lithium ion battery, and lithium battery
WO2016006557A1 (en) Lithium ion secondary battery positive electrode material, lithium ion secondary battery positive electrode and lithium ion secondary battery that use same, and method for manufacturing lithium ion secondary battery positive electrode material
US10388944B2 (en) Positive electrode active material for lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP6476776B2 (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP2011113825A (en) Positive electrode material for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP2016081626A (en) Cathode active material for nonaqueous secondary battery, manufacturing method thereof, cathode for nonaqueous secondary battery, nonaqueous secondary battery and on-vehicle nonaqueous secondary battery module
JP2016100064A (en) Positive electrode active material and method for manufacturing the same, and positive electrode, nonaqueous secondary battery and secondary battery module
JP5401296B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6493757B2 (en) Lithium ion secondary battery
CN108352562B (en) Nonaqueous electrolyte secondary battery
JP2016081716A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP2016051504A (en) Positive electrode active material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and on-vehicle nonaqueous secondary battery module
JP2019106277A (en) Positive electrode material and lithium secondary battery using the same
JP6493408B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6394193B2 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
JP2015130272A (en) Positive electrode for nonaqueous secondary battery, positive electrode active material for nonaqueous secondary battery, nonaqueous secondary battery and on-vehicle nonaqueous secondary battery
JP7060336B2 (en) Method for manufacturing positive electrode active material, lithium ion secondary battery and positive electrode active material
JP2015222696A (en) Positive electrode active material for lithium ion secondary batteries and method for manufacturing the same
JP7002433B2 (en) Positive electrode material and secondary battery using this
JP2018046012A (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte power storage device
WO2024090148A1 (en) Non-aqueous electrolyte secondary battery
JP2016039117A (en) Positive electrode active material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and on-vehicle nonaqueous secondary battery module