JP2011113825A - Positive electrode material for lithium-ion secondary battery, and lithium-ion secondary battery using it - Google Patents

Positive electrode material for lithium-ion secondary battery, and lithium-ion secondary battery using it Download PDF

Info

Publication number
JP2011113825A
JP2011113825A JP2009269403A JP2009269403A JP2011113825A JP 2011113825 A JP2011113825 A JP 2011113825A JP 2009269403 A JP2009269403 A JP 2009269403A JP 2009269403 A JP2009269403 A JP 2009269403A JP 2011113825 A JP2011113825 A JP 2011113825A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009269403A
Other languages
Japanese (ja)
Other versions
JP5389620B2 (en
JP2011113825A5 (en
Inventor
Hiroaki Konishi
宏明 小西
Toyotaka Yuasa
豊隆 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009269403A priority Critical patent/JP5389620B2/en
Priority to US12/805,829 priority patent/US8709656B2/en
Priority to CN201010569626.6A priority patent/CN102082269B/en
Priority to KR1020100118897A priority patent/KR101241571B1/en
Publication of JP2011113825A publication Critical patent/JP2011113825A/en
Publication of JP2011113825A5 publication Critical patent/JP2011113825A5/ja
Application granted granted Critical
Publication of JP5389620B2 publication Critical patent/JP5389620B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode material of high capacity, high output, and superior safety, and a lithium-ion secondary battery using that positive electrode material. <P>SOLUTION: The lithium-ion secondary battery uses the positive electrode material in which a first positive electrode active material expressed by a composition formula Li<SB>x1</SB>Ni<SB>a1</SB>Mn<SB>b1</SB>Co<SB>c1</SB>O<SB>2</SB>(0.2≤x1≤1.2, 0.6≤a1≤0.9, 0.05≤b1≤0.3, 0.05≤c1≤0.3, and a1+b1+c1=1.0) and a second positive electrode active material expressed by a composition formula Li<SB>x2</SB>Ni<SB>a2</SB>Mn<SB>b2</SB>Co<SB>c2</SB>M<SB>d</SB>O<SB>2</SB>(M=Mo, W, 0.2≤x2≤1.2, 0.7≤a2≤0.9, 0.05≤b2≤0.3, 0.05≤c2≤0.3, 0≤d≤0.06, and a2+b2+c2+d=1.0). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高容量,高出力かつ高安全なリチウムイオン二次電池用正極材料およびリチウムイオン二次電池に関する。   The present invention relates to a positive electrode material for a lithium ion secondary battery and a lithium ion secondary battery that have a high capacity, high output, and high safety.

プラグインハイブリッド自動車用電池としてリチウムイオン二次電池を採用するためには、高い安全性を維持しながら、低コスト化,低体積化,軽量化,高出力化等が必要とされているため、正極材料には高容量,高出力かつ高安全であることが要求される。   In order to adopt a lithium ion secondary battery as a plug-in hybrid vehicle battery, it is necessary to reduce costs, reduce volume, reduce weight, increase output, etc. while maintaining high safety. The positive electrode material is required to have high capacity, high output, and high safety.

特許文献1では、リチウムニッケル複合酸化物の表面にニッケル酸化物もしくは第二リチウムニッケル複合酸化物を含んでいる正極材料を用い、低温での高レート特性を阻害することなく、内部短絡時における安全性を高めている。この正極材料はリチウムニッケル複合酸化物の表面に抵抗の高い粒子を被覆しているため抵抗が高く、プラグインハイブリッド自動車用電池に必要とされるような高出力を得ることは更なる検討を有する。   In Patent Document 1, a positive electrode material containing nickel oxide or second lithium nickel composite oxide is used on the surface of a lithium nickel composite oxide, and safety at the time of an internal short circuit is prevented without hindering high rate characteristics at low temperatures. Increases sex. This positive electrode material has high resistance because the surface of the lithium-nickel composite oxide is coated with high-resistance particles, and obtaining high output as required for plug-in hybrid automobile batteries has further investigation. .

特許文献2では、一般式LivNi1-w-x-y-zCowCaxMgyz2(MはMn,Al,B,W,Nb,Ta,In,Mo,Sn,Ti,Zr,Yから選択される少なくても一種類以上の元素)で表され、Ca,Mg,Mが活物質内部に比べ、表面に多い正極材料を用い、寿命特性を改善している。この正極材料は、反応に関与しない元素を含むため抵抗が高く、プラグインハイブリッド自動車用電池に必要とされるような高出力を得ることは更なる検討を有する。 In Patent Document 2, the general formula Li v Ni 1-wxyz Co w Ca x Mg y M z O 2 (M is Mn, Al, B, W, Nb, Ta, In, Mo, Sn, Ti, Zr, from Y It is represented by at least one selected element), and the life characteristics are improved by using a positive electrode material with a larger amount of Ca, Mg, and M on the surface than in the active material. Since this positive electrode material contains an element that does not participate in the reaction, the resistance is high, and obtaining a high output as required for a plug-in hybrid vehicle battery has further studies.

特許文献3では、リチウムニッケル複合酸化物の表面にMn,W,Nb,Ta,In,Mo,Zr,Snから選択される元素を含む化合物を一種類以上含んでいる正極材料を用い、寿命特性を改善している。この正極材料も、反応に関与しない元素を含んでいるため抵抗が高く、プラグインハイブリッド自動車用電池に必要とされるような高出力を得ることは更なる検討を有する。   Patent Document 3 uses a positive electrode material containing one or more kinds of compounds containing an element selected from Mn, W, Nb, Ta, In, Mo, Zr, and Sn on the surface of a lithium nickel composite oxide. Has improved. Since this positive electrode material also contains an element that does not participate in the reaction, the resistance is high, and obtaining a high output as required for a plug-in hybrid vehicle battery has further investigation.

以上のように、これらの従来技術では、プラグインハイブリッド自動車用電池に要求される高容量,高出力かつ高安全を同時に達成するためには、更なる検討が必要であった。   As described above, in these conventional techniques, further studies are necessary to simultaneously achieve the high capacity, high output, and high safety required for the plug-in hybrid vehicle battery.

特開2006−302880号公報JP 2006-302880 A 特開2006−351378号公報JP 2006-351378 A 特開2006−351379号公報JP 2006-351379 A

プラグインハイブリッド自動車用電池としてリチウムイオン二次電池を採用するためには、高容量,高出力かつ高安全であることが要求される。   In order to employ a lithium ion secondary battery as a plug-in hybrid vehicle battery, it is required to have a high capacity, a high output and a high safety.

リチウムイオン二次電池においてこれらの特性は正極材料の性質と密接な関係がある。   In a lithium ion secondary battery, these characteristics are closely related to the properties of the positive electrode material.

組成式LiMO2(M:遷移金属)で表される層状系の正極材料において、高容量を得るためには、遷移金属層中のNi含有量を増やす必要がある。 In the layered positive electrode material represented by the composition formula LiMO 2 (M: transition metal), it is necessary to increase the Ni content in the transition metal layer in order to obtain a high capacity.

しかし、高Ni含有量の正極材料は、充電時の構造安定性が低い。そこで、電池の濫用などにより電池温度が上昇した際、比較的低温から酸素を放出し、大きな発熱反応が起こるため、電池の発火を考慮する必要がある。   However, a positive electrode material having a high Ni content has low structural stability during charging. Therefore, when the battery temperature rises due to battery abuse or the like, oxygen is released from a relatively low temperature and a large exothermic reaction occurs, so it is necessary to consider battery ignition.

そこで、本発明は、容量,出力,熱安定性に優れたリチウムイオン二次電池用正極材料を提供し、特性の優れたリチウムイオン二次電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a positive electrode material for a lithium ion secondary battery excellent in capacity, output, and thermal stability, and to provide a lithium ion secondary battery excellent in characteristics.

本発明の一実施態様であるリチウムイオン二次電池用正極材料は、
組成式Lix1Nia1Mnb1Coc12
(0.2≦x1≦1.2,0.6≦a1≦0.9,0.05≦b1≦0.3,0.05≦c1≦0.3,a1+b1+c1=1.0)で表される第一の正極活物質と、
組成式Lix2Nia2Mnb2Coc2d2
(0.2≦x2≦1.2,0.7≦a2≦0.9,0.05≦b2≦0.3,0.05≦c2≦0.3,M=Mo,W、0≦d≦0.06,a2+b2+c2+d=1.0)で表される
第二の正極活物質と、
を含むことを特徴とするものである。
The positive electrode material for a lithium ion secondary battery according to one embodiment of the present invention is
Composition formula Li x1 Ni a1 Mn b1 Co c1 O 2
(0.2 ≦ x1 ≦ 1.2, 0.6 ≦ a1 ≦ 0.9, 0.05 ≦ b1 ≦ 0.3, 0.05 ≦ c1 ≦ 0.3, a1 + b1 + c1 = 1.0) A first positive electrode active material,
Composition formula Li x2 Ni a2 Mn b2 Co c2 M d O 2
(0.2 ≦ x2 ≦ 1.2, 0.7 ≦ a2 ≦ 0.9, 0.05 ≦ b2 ≦ 0.3, 0.05 ≦ c2 ≦ 0.3, M = Mo, W, 0 ≦ d ≦ 0.06, a2 + b2 + c2 + d = 1.0), a second positive electrode active material,
It is characterized by including.

そして、第一の正極活物質の平均二次粒径が、第二の正極活物質の平均二次粒径より大きいこと、また、第一の正極活物質のNiの含有量が、第二の正極活物質のNiの含有量以下であることが好ましい。これにより、より安全性の高い正極材料を提供することが可能となる。   The average secondary particle size of the first positive electrode active material is larger than the average secondary particle size of the second positive electrode active material, and the Ni content of the first positive electrode active material is It is preferable that it is below Ni content of a positive electrode active material. Thereby, it is possible to provide a positive electrode material with higher safety.

また、正極材料中に含まれる第一の正極活物質の混合比を、質量百分率で30〜70%とすることが好ましい。   Moreover, it is preferable that the mixing ratio of the 1st positive electrode active material contained in positive electrode material shall be 30 to 70% by mass percentage.

また、第二の正極活物質の平均二次粒径が、第一の正極活物質の平均二次粒径の二分の一以下であることが好ましい。   Moreover, it is preferable that the average secondary particle diameter of a 2nd positive electrode active material is 1/2 or less of the average secondary particle diameter of a 1st positive electrode active material.

また、第一の正極活物質のNi含有量a1が0.7≦a1≦0.8であり、第二の正極活物質のNi含有量a2が0.75≦a2≦0.8であることが好ましい。   Further, the Ni content a1 of the first positive electrode active material is 0.7 ≦ a1 ≦ 0.8, and the Ni content a2 of the second positive electrode active material is 0.75 ≦ a2 ≦ 0.8. Is preferred.

さらに、こうしたリチウムイオン二次電池用正極材料は、リチウムを吸蔵放出可能な正極とリチウムを吸蔵放出可能な負極が非水電解質およびセパレータを介して形成されるリチウムイオン二次電池の正極として使用することができる。   Further, such a positive electrode material for a lithium ion secondary battery is used as a positive electrode of a lithium ion secondary battery in which a positive electrode capable of occluding and releasing lithium and a negative electrode capable of occluding and releasing lithium are formed via a nonaqueous electrolyte and a separator. be able to.

本発明により、容量,出力,熱安定性に優れたリチウムイオン二次電池用正極材料が得ることができ、特性の優れたリチウムイオン二次電池を提供することができる。   According to the present invention, a positive electrode material for a lithium ion secondary battery excellent in capacity, output, and thermal stability can be obtained, and a lithium ion secondary battery excellent in characteristics can be provided.

二種類の正極活物質の混合状態を示す模式図。The schematic diagram which shows the mixed state of two types of positive electrode active materials. リチウムイオン二次電池を示す断面図。Sectional drawing which shows a lithium ion secondary battery.

以下に、本発明の特徴について、本実施例に基づいて説明する。   The characteristics of the present invention will be described below based on the present embodiment.

本実施例の正極材料は、組成式Lix1Nia1Mnb1Coc12(0.2≦x1≦1.2,0.6≦a1≦0.9,0.05≦b1≦0.3,0.05≦c1≦0.3,a1+b1+c1=1.0)で表される第一の正極活物質と、組成式Lix2Nia2Mnb2Coc2d2(0.2≦x2≦1.2,0.7≦a2≦0.9,0.05≦b2≦0.3,0.05≦c2≦0.3,M=Mo,W、0≦d≦0.06,a2+b2+c2+d=1.0)で表される第二の正極活物質とを含むものである。 The positive electrode material of this example has the composition formula Li x1 Ni a1 Mn b1 Co c1 O 2 (0.2 ≦ x1 ≦ 1.2, 0.6 ≦ a1 ≦ 0.9, 0.05 ≦ b1 ≦ 0.3). , 0.05 ≦ c1 ≦ 0.3, a1 + b1 + c1 = 1.0) and a composition formula Li x2 Ni a2 Mn b2 Co c2 M d O 2 (0.2 ≦ x2 ≦ 1.2, 0.7 ≦ a2 ≦ 0.9, 0.05 ≦ b2 ≦ 0.3, 0.05 ≦ c2 ≦ 0.3, M = Mo, W, 0 ≦ d ≦ 0.06, a2 + b2 + c2 + d = 1.0) and the second positive electrode active material.

本実施例にかかる、Mo,Wを添加した高Ni含有量の正極活物質は、リチウム脱離後、昇温したときに放出される酸素量が、Mo,Wを添加していない高Ni含有量の正極活物質に比較して、半分以下である。   The high Ni content positive electrode active material to which Mo and W are added according to this example has a high Ni content in which the amount of oxygen released when the temperature rises after desorption of lithium does not contain Mo and W. Compared to the amount of positive electrode active material, it is less than half.

そこで、Mo,Wを添加していない高Ni含有量の正極活物質に、Mo,Wを添加した高Ni含有量の正極活物質を混合することにより、電池が昇温した際に正極活物質中から放出される酸素量を低減させることができるため、昇温した際に発火などに至る可能性を低減させたリチウムイオン二次電池用正極材料を提供することができる。   Therefore, when the battery is heated, the positive electrode active material is mixed with the high Ni content positive electrode active material to which Mo and W are not added, and the high Ni content positive electrode active material to which Mo and W are added. Since the amount of oxygen released from the inside can be reduced, it is possible to provide a positive electrode material for a lithium ion secondary battery that is less likely to cause ignition when heated.

さらに、第一の正極活物質の平均二次粒径が第二の正極活物質の平均二次粒径より大きくする。第二の正極活物質はMo,Wを添加しているため、抵抗が高くなる。そこで、プラグインハイブリッド自動車用電池として採用するには、第二の正極活物質の平均二次粒径を第一の正極活物質の平均二次粒径がより小さくし、リチウムの拡散距離を短くする必要がある。   Furthermore, the average secondary particle size of the first positive electrode active material is made larger than the average secondary particle size of the second positive electrode active material. Since Mo and W are added to the second positive electrode active material, the resistance increases. Therefore, to adopt as a plug-in hybrid vehicle battery, the average secondary particle size of the second positive electrode active material is made smaller than the average secondary particle size of the first positive electrode active material, and the lithium diffusion distance is shortened. There is a need to.

また、正極材料中に含まれる第一の正極活物質の混合比が、質量百分率で30〜70%とする。30%より小さい場合は容量が低下し、70%より大きい場合は、昇温により正極活物質中から放出される酸素量が多くなり、安全性に問題があるためである。   Further, the mixing ratio of the first positive electrode active material contained in the positive electrode material is set to 30 to 70% by mass percentage. When the ratio is less than 30%, the capacity decreases. When the ratio is more than 70%, the amount of oxygen released from the positive electrode active material increases due to the temperature rise, which causes a safety problem.

また、第二の正極活物質の平均二次粒径が、第一の正極活物質の平均二次粒径の二分の一以下とする。これは、粒径を小さくすることにより、正極材料の充填率が向上するからである。   In addition, the average secondary particle size of the second positive electrode active material is set to not more than one half of the average secondary particle size of the first positive electrode active material. This is because the filling rate of the positive electrode material is improved by reducing the particle size.

また、第一の正極活物質のNi含有量a1が0.7≦a1≦0.8であり、第二の正極活物質のNi含有量a2が0.75≦a2≦0.8である。遷移金属層中のNi含有量を増やすことにより、高容量の正極材料を提供することができるためである。   Further, the Ni content a1 of the first positive electrode active material is 0.7 ≦ a1 ≦ 0.8, and the Ni content a2 of the second positive electrode active material is 0.75 ≦ a2 ≦ 0.8. This is because a high-capacity positive electrode material can be provided by increasing the Ni content in the transition metal layer.

そして、第一の正極活物質のNiの含有量が、第二の正極活物質のNiの含有量より少なくする。   Then, the Ni content of the first positive electrode active material is made smaller than the Ni content of the second positive electrode active material.

そして、こうした正極材料を用いて、リチウムを吸蔵放出可能な正極とし、リチウムを吸蔵放出可能な負極と共に、非水電解質およびセパレータを介して形成し、リチウムイオン二次電池を構成することができる。   Then, using such a positive electrode material, a positive electrode capable of occluding and releasing lithium is formed through a nonaqueous electrolyte and a separator together with a negative electrode capable of occluding and releasing lithium, whereby a lithium ion secondary battery can be configured.

本発明の実施例では、正極材料として、
組成式Lix1Nia1Mnb1Coc12(0.2≦x1≦1.2,0.6≦a1≦0.9,0.05≦b1≦0.3,0.05≦c1≦0.3,a1+b1+c1=1.0)で表される第一の正極活物質と、組成式Lix2Nia2Mnb2Coc2d2(0.2≦x2≦1.2,0.7≦a2≦0.9,0.05≦b2≦0.3,0.05≦c2≦0.3,M=Mo,W、0≦d≦0.06,a2+b2+c2+d=1.0)で表される第二の正極活物質とを混合した材料を用いる。
In the embodiment of the present invention, as the positive electrode material,
Composition formula Li x1 Ni a1 Mn b1 Co c1 O 2 (0.2 ≦ x1 ≦ 1.2, 0.6 ≦ a1 ≦ 0.9, 0.05 ≦ b1 ≦ 0.3, 0.05 ≦ c1 ≦ 0 .3, a1 + b1 + c1 = 1.0) and a composition formula Li x2 Ni a2 Mn b2 Co c2 M d O 2 (0.2 ≦ x2 ≦ 1.2, 0.7 ≦ a2 ≦ 0.9, 0.05 ≦ b2 ≦ 0.3, 0.05 ≦ c2 ≦ 0.3, M = Mo, W, 0 ≦ d ≦ 0.06, a2 + b2 + c2 + d = 1.0) A material mixed with the second positive electrode active material is used.

ここで、第一の正極活物質のLiの量は0.2≦x1≦1.2であるが、これは、x1<0.2では、充電状態においてLi層中に存在するLiの量が少なく、層状の結晶構造を維持できないためである。また、1.2<x1では、複合酸化物における遷移金属の量が減少し、容量が低下するためである。   Here, the amount of Li in the first positive electrode active material is 0.2 ≦ x1 ≦ 1.2. This is because when x1 <0.2, the amount of Li present in the Li layer in the charged state is This is because the layered crystal structure cannot be maintained. In addition, when 1.2 <x1, the amount of transition metal in the composite oxide decreases, and the capacity decreases.

Niの量は、0.6≦a1≦0.9であるが、これはa1<0.6では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of Ni is 0.6 ≦ a1 ≦ 0.9. This is because the content of Ni mainly contributing to the charge / discharge reaction decreases and the capacity decreases when a1 <0.6. .

Mnの量は、0.05≦b1≦0.3であるが、これはb1<0.05では、充電状態における構造が不安定になり、正極からの酸素放出温度が低下する。b1>0.3では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of Mn is 0.05 ≦ b1 ≦ 0.3. However, when b1 <0.05, the structure in the charged state becomes unstable, and the oxygen release temperature from the positive electrode decreases. This is because when b1> 0.3, the content of Ni mainly contributing to the charge / discharge reaction is reduced and the capacity is reduced.

Coの量は、0.05≦c1≦0.3であるが、これはc1<0.05では、充電状態における構造が不安定になり、充放電における正極活物質の体積変化が大きくなる。c1>0.3では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of Co is 0.05 ≦ c1 ≦ 0.3. However, when c1 <0.05, the structure in the charged state becomes unstable, and the volume change of the positive electrode active material during charge / discharge increases. When c1> 0.3, the content of Ni mainly contributing to the charge / discharge reaction is reduced, and the capacity is reduced.

ここで、第二の正極活物質のLiの量は0.2≦x2≦1.2であるが、これは、x2<0.2では、充電状態においてLi層中に存在するLiの量が少なく、層状の結晶構造を維持できないためである。また、1.2<x2では、複合酸化物における遷移金属の量が減少し、容量が低下するためである。   Here, the amount of Li in the second positive electrode active material is 0.2 ≦ x2 ≦ 1.2. This is because when x2 <0.2, the amount of Li present in the Li layer in the charged state is This is because the layered crystal structure cannot be maintained. Further, when 1.2 <x2, the amount of transition metal in the composite oxide is decreased, and the capacity is decreased.

Niの量は、0.7≦a2≦0.9であるが、これはa2<0.7では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of Ni is 0.7 ≦ a2 ≦ 0.9. This is because, when a2 <0.7, the content of Ni mainly contributing to the charge / discharge reaction is decreased and the capacity is decreased. .

Mnの量は、0.05≦b2≦0.3であるが、これはb2<0.05では、充電状態における構造が不安定になり、正極からの酸素放出温度が低下する。b2>0.3では、充
放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。
The amount of Mn is 0.05 ≦ b2 ≦ 0.3. However, when b2 <0.05, the structure in the charged state becomes unstable, and the oxygen release temperature from the positive electrode decreases. This is because when b2> 0.3, the content of Ni mainly contributing to the charge / discharge reaction is reduced and the capacity is reduced.

Coの量は、0.05≦c2≦0.3であるが、これはc2<0.05では、充電状態における構造が不安定になり、充放電における正極活物質の体積変化が大きくなる。c2>0.3では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of Co is 0.05 ≦ c2 ≦ 0.3. However, when c2 <0.05, the structure in the charged state becomes unstable, and the volume change of the positive electrode active material during charge / discharge increases. This is because, when c2> 0.3, the content of Ni mainly contributing to the charge / discharge reaction is reduced and the capacity is reduced.

Mの量は、0≦d≦0.06であるが、これはd>0.06では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of M is 0 ≦ d ≦ 0.06. This is because, when d> 0.06, the content of Ni mainly contributing to the charge / discharge reaction is decreased, and the capacity is decreased.

(正極活物質の作製)
原料として、酸化ニッケル,二酸化マンガン,酸化コバルト,酸化モリブテン,酸化タングステンを使用し、所定の原子比となるように秤量した後に、純水を加えスラリーとした。
(Preparation of positive electrode active material)
Nickel oxide, manganese dioxide, cobalt oxide, molybdenum oxide, and tungsten oxide were used as raw materials, weighed so as to have a predetermined atomic ratio, and then added with pure water to form a slurry.

このスラリーを平均粒径が0.2μmとなるまでジルコニアのビーズミルで粉砕した。   The slurry was pulverized with a zirconia bead mill until the average particle size became 0.2 μm.

このスラリーにポリビニルアルコール(PVA)溶液を固形分比に換算して1wt.%添加し、更に1時間混合し、スプレードライヤ−により造粒および乾燥させた。   A polyvinyl alcohol (PVA) solution was added to this slurry in an amount of 1 wt.% In terms of the solid content ratio, further mixed for 1 hour, and granulated and dried by a spray dryer.

この造粒粒子に対し、Li:(NiMnCo)比が1.05:1となるように水酸化リチウムおよび炭酸リチウムを加えた。   Lithium hydroxide and lithium carbonate were added to the granulated particles so that the Li: (NiMnCo) ratio was 1.05: 1.

次に、この粉末を850℃で10時間焼成することにより層状構造の結晶を有し、その後、解砕して正極活物質1−1(表1参照)を得た。   Next, this powder was fired at 850 ° C. for 10 hours to have a layered structure crystal, and then pulverized to obtain a positive electrode active material 1-1 (see Table 1).

さらに、分級により粒径30μm以上の粗大粒子を除去した後、電極作製に用いた。   Further, coarse particles having a particle size of 30 μm or more were removed by classification, and then used for electrode production.

また、本実施例に関する正極活物質の作製方法は、上記の方法に限定されず、共沈法など、他の方法を用いてもよい。   Further, the method for producing the positive electrode active material in this example is not limited to the above method, and other methods such as a coprecipitation method may be used.

以下に、合成した第一の正極活物質および第二の正極活物質の遷移金属の組成比をそれぞれ下記の表1,表2に示す。   The composition ratios of the transition metals of the synthesized first positive electrode active material and second positive electrode active material are shown in Tables 1 and 2 below, respectively.

Figure 2011113825
Figure 2011113825

Figure 2011113825
Figure 2011113825

表1(第一の正極活物質1−1〜1−4)及び表2(第二の正極活物質2−1〜2−11)には、それぞれ、合成した第一の正極活物質(Ni,Mn,Co)および第二の正極活物質(Ni,Mn,Co,Mo,W)の組成比と、平均二次粒子径を示す。   In Table 1 (first positive electrode active materials 1-1 to 1-4) and Table 2 (second positive electrode active materials 2-1 to 2-11), the synthesized first positive electrode active materials (Ni , Mn, Co) and the second positive electrode active material (Ni, Mn, Co, Mo, W), and the average secondary particle diameter.

正極活物質1−1と炭素系導電剤を質量比で85:10.7になるように秤量し、メカノフュージョンを用いて活物質と導電剤を複合化した。ここでは、ハイブリダイザーなどの機器を用いてそれぞれの活物質と導電剤を複合化しても良い。   The positive electrode active material 1-1 and the carbon-based conductive agent were weighed so as to have a mass ratio of 85: 10.7, and the active material and the conductive agent were combined using mechanofusion. Here, the active material and the conductive agent may be combined using a device such as a hybridizer.

正極活物質2−1にも同様の操作を行った。   The same operation was performed on the positive electrode active material 2-1.

次に、複合化した二種類の材料を質量比で40:60になるように混合した。この方法により、各々の活物質の表面に導電剤を高分散させ、粒子の表面に導電剤を被覆することができる。   Next, the two types of composite materials were mixed at a mass ratio of 40:60. By this method, the conductive agent can be highly dispersed on the surface of each active material, and the surface of the particles can be coated with the conductive agent.

こうして形成された正極材料は、図1の二種類の正極活物質の混合状態を示す模式図に示すように、第一の正極活物質の二次粒子1と第二の正極活物質の二次粒子2とが混合している。   The positive electrode material thus formed is composed of secondary particles 1 of the first positive electrode active material and secondary particles of the second positive electrode active material, as shown in the schematic diagram showing the mixed state of the two types of positive electrode active materials in FIG. Particles 2 are mixed.

そして、図1に示すように、第一の正極活物質の二次粒子1より第二の正極活物質の二次粒子2が小さく形成される。   As shown in FIG. 1, the secondary particles 2 of the second positive electrode active material are formed smaller than the secondary particles 1 of the first positive electrode active material.

この導電剤の被覆により、電子伝導性が向上するため、正極材料として用いた際に、大電流を流しても高容量が維持される。   Since the electron conductivity is improved by the coating of the conductive agent, a high capacity is maintained even when a large current is passed when used as a positive electrode material.

また、異なる活物質を混合する際に活物質間に導電剤が存在するため、活物質間に導電性のネットワークが形成され、充放電反応に寄与しない孤立した活物質の割合を減少させることができ、高容量が維持できる。   In addition, since a conductive agent exists between the active materials when mixing different active materials, a conductive network is formed between the active materials, which may reduce the proportion of isolated active materials that do not contribute to the charge / discharge reaction. And high capacity can be maintained.

一方で、活物質と導電剤の複合化を行わずに、二種類の活物質と導電剤を混合した場合、各々の活物質の表面に導電剤を被覆されていないため、電子伝導性が低下する。   On the other hand, when two active materials and a conductive agent are mixed without compounding the active material and the conductive agent, the surface of each active material is not coated with the conductive agent, resulting in a decrease in electronic conductivity. To do.

さらに、各々の活物質と導電剤の混合状態が悪化し、活物質間の導電ネットワークの形成が困難となり、孤立した活物質の割合が増加し容量が減少する。   Furthermore, the mixed state of each active material and the conductive agent is deteriorated, it becomes difficult to form a conductive network between the active materials, the ratio of the isolated active material is increased, and the capacity is decreased.

その後、二種類の活物質と導電剤の混合材料とNMPに溶解した結着剤を、混合材料と結着剤が質量比で95.7:4.3になるように混合した。   Thereafter, a mixed material of two kinds of active materials and a conductive agent and a binder dissolved in NMP were mixed so that the mixed material and the binder were in a mass ratio of 95.7: 4.3.

均一に混合されたスラリーを、厚み20μmのアルミ集電体箔上に塗布した後、120℃で乾燥し、プレスにて電極密度が2.7g/cm3になるように圧縮成形した。 The uniformly mixed slurry was applied onto an aluminum current collector foil having a thickness of 20 μm, dried at 120 ° C., and compression-molded with a press so that the electrode density was 2.7 g / cm 3 .

その後、直径15mmの円盤状に打ち抜き、正極を作製した。   Thereafter, it was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.

作製した正極を用い、金属リチウムを負極、非水電解液(EC,DMCの体積比で1:2の混合溶媒に1.0モル/リットルのLiPF6を溶解させたもの)を用いて試作電池を作製した。 Prototype battery using prepared positive electrode, metallic lithium as negative electrode, and non-aqueous electrolyte (1.0 mol / liter LiPF 6 dissolved in a 1: 2 mixed solvent by volume ratio of EC and DMC) Was made.

また、本発明に関する試験電池において、使用する導電剤,結着剤,負極,電解液,電解質は上記のものに限定されず、例えば以下のものを用いても良い。   In the test battery according to the present invention, the conductive agent, the binder, the negative electrode, the electrolytic solution, and the electrolyte to be used are not limited to those described above. For example, the following may be used.

導電剤としては、黒鉛,アセチレンブラック,カーボンブラックなどが挙げられる。   Examples of the conductive agent include graphite, acetylene black, and carbon black.

結着剤としては、ポリテトラフルオロエチレン,ゴム系バインダなどが挙げられる。   Examples of the binder include polytetrafluoroethylene and a rubber binder.

電解液としては、エチレンカーボネート,プロピレンカーボネート,ジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネート,γ−ブチルラクトン,テトラヒドロフラン,ジメトキシエタンなどが挙げられる。   Examples of the electrolytic solution include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyl lactone, tetrahydrofuran, and dimethoxyethane.

電解質としては、LiBF4,LiClO4,LiAsF6,LiCF3SO3,LiN(CF3SO22などが挙げられる。 Examples of the electrolyte include LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .

以下に、第一の正極活物質および第二の正極活物質の混合比を表3示す。   Table 3 shows the mixing ratio of the first positive electrode active material and the second positive electrode active material.

Figure 2011113825
Figure 2011113825

表3には、実施例1から実施例13までと比較例1から比較例10までを示す。   Table 3 shows Example 1 to Example 13 and Comparative Example 1 to Comparative Example 10.

表3に示す第一の正極活物質は表1に示すものであり、第二の正極活物質は表2に示すものである。また、表3に示す混合比はこれら第一の正極活物質と第二の正極活物質との混合比である。   The first positive electrode active material shown in Table 3 is shown in Table 1, and the second positive electrode active material is shown in Table 2. The mixing ratio shown in Table 3 is the mixing ratio of these first positive electrode active material and second positive electrode active material.

(充放電試験)
次に前述の試作電池を用いて以下の試験を行った。
(Charge / discharge test)
Next, the following tests were performed using the prototype battery described above.

充電レートを0.1Cとし、4.3Vまで定電流/定電圧で充電後、0.1Cで2.5Vまで定電流放電した。   The charge rate was set to 0.1 C, and the battery was charged at a constant current / constant voltage up to 4.3 V, and then discharged at a constant current up to 2.5 V at 0.1 C.

(示差走査熱量測定)
また、4.3Vまで定電流/定電圧で充電後、電極を試験電池から取り出し、DMCで洗浄後、直径3.5mmの円盤状に打ち抜き、サンプルパンにいれ、電解液を1μl加え、密封した。
(Differential scanning calorimetry)
Also, after charging to 4.3 V at a constant current / constant voltage, the electrode was taken out from the test battery, washed with DMC, punched into a disk shape with a diameter of 3.5 mm, placed in a sample pan, 1 μl of electrolyte was added and sealed. .

この試料を5℃/minで昇温させた時の発熱挙動を調べた。   The heat generation behavior when this sample was heated at 5 ° C./min was examined.

(直流抵抗測定)
更に、試験電池を用いて、室温の電極抵抗を測定した。試験電池の開回路電圧が、3.7Vから4.4Vの範囲で定電流放電を行い、0.1秒間隔で放電時の電圧を記録した。
(DC resistance measurement)
Furthermore, the electrode resistance at room temperature was measured using a test battery. Constant current discharge was performed when the open circuit voltage of the test battery was in the range of 3.7 V to 4.4 V, and the voltage at the time of discharge was recorded at intervals of 0.1 seconds.

次に、開回路電圧からの10秒目の電圧低下を測定し、電極抵抗を求めた。   Next, the voltage drop at 10 seconds from the open circuit voltage was measured to determine the electrode resistance.

実施例2では、作製した正極活物質1−1と2−2を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 2, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-2 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例3では、作製した正極活物質1−1と2−3を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 3, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-3 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例4では、作製した正極活物質1−1と2−4を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 4, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-4 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例5では、作製した正極活物質1−1と2−5を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 5, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-5 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例6では、作製した正極活物質1−1と2−6を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 6, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-6 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例7では、作製した正極活物質1−2と2−1を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 7, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-2 and 2-1 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例8では、作製した正極活物質1−3と2−1を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 8, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-3 and 2-1 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例9では、作製した正極活物質1−2と2−8を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 9, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-2 and 2-8 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例10では、作製した正極活物質1−2と2−9を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 10, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-2 and 2-9 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例11では、作製した正極活物質1−1と2−8を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 11, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-8 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例12では、作製した正極活物質1−1と2−1を質量比で30:70になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 12, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-1 were mixed at a mass ratio of 30:70 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例13では、作製した正極活物質1−1と2−1を質量比で50:50になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 13, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-1 were mixed at a mass ratio of 50:50 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例14では、作製した正極活物質1−1と2−1を質量比で70:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 14, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-1 were mixed at a mass ratio of 70:30 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

実施例15では、作製した正極活物質1−1と2−10を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。   In Example 15, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-10 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

〔比較例1〕
比較例1では、作製した正極活物質1−2を正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 1]
In Comparative Example 1, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active material 1-2 was used as a positive electrode active material, and a charge / discharge test and a DSC measurement were performed.

〔比較例2〕
比較例2では、作製した正極活物質1−1を正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 2]
In Comparative Example 2, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active material 1-1 was used as the positive electrode active material, and a charge / discharge test and a DSC measurement were performed.

〔比較例3〕
比較例3では、作製した正極活物質2−1を正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 3]
In Comparative Example 3, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active material 2-1 was used as the positive electrode active material, and a charge / discharge test and a DSC measurement were performed.

〔比較例4〕
比較例4では、作製した正極活物質1−1と2−7を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 4]
In Comparative Example 4, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-7 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

〔比較例5〕
比較例5では、作製した正極活物質1−3を正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 5]
In Comparative Example 5, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active material 1-3 was used as the positive electrode active material, and a charge / discharge test and a DSC measurement were performed.

〔比較例6〕
比較例6では、作製した正極活物質1−4と2−8を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 6]
In Comparative Example 6, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-4 and 2-8 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

〔比較例7〕
比較例7では、作製した正極活物質1−2と2−9を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 7]
In Comparative Example 7, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-2 and 2-9 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

〔比較例8〕
比較例8では、作製した正極活物質1−1と2−1を質量比で20:80になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 8]
In Comparative Example 8, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-1 were mixed at a mass ratio of 20:80 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

〔比較例9〕
比較例9では、作製した正極活物質1−1と2−1を質量比で80:20になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 9]
In Comparative Example 9, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-1 were mixed at a mass ratio of 80:20 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

〔比較例10〕
比較例10では、作製した正極活物質1−1と2−11を質量比で40:60になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験およびDSC測定を行った。
[Comparative Example 10]
In Comparative Example 10, a prototype battery was produced in the same manner as in Example 1 except that the produced positive electrode active materials 1-1 and 2-11 were mixed at a mass ratio of 40:60 and used as the positive electrode active material. Were prepared, and a charge / discharge test and a DSC measurement were performed.

Figure 2011113825
Figure 2011113825

Figure 2011113825
Figure 2011113825

Figure 2011113825
Figure 2011113825

Figure 2011113825
Figure 2011113825

こうした実施例1から実施例15まで、比較例1から比較例10までについて、それぞれ容量比,発熱量比、及び抵抗比を表4〜表7に示す。   Tables 4 to 7 show the capacity ratio, the calorific value ratio, and the resistance ratio for Examples 1 to 15 and Comparative Examples 1 to 10, respectively.

表4〜表7には、実施例1〜6,12〜15,比較例1〜4,8〜10では得られた初回放電容量の値を比較例1の初回放電容量の値で除した値を、また、実施例7〜11,比較例5〜7では得られた初回放電容量の値を比較例5の初回放電容量の値で除した値を示す。   Tables 4 to 7 show values obtained by dividing the initial discharge capacity values obtained in Examples 1 to 6, 12 to 15 and Comparative Examples 1 to 4 and 8 to 10 by the initial discharge capacity values of Comparative Example 1. In Examples 7 to 11 and Comparative Examples 5 to 7, values obtained by dividing the obtained initial discharge capacity values by the initial discharge capacity values of Comparative Example 5 are shown.

また、表4〜表7には、実施例1〜6,12〜15,比較例1〜4,8〜10では得られた発熱量の値を比較例1の初回放電容量の値で除した値を、また、実施例7〜11,比較例5〜7では得られた発熱量の値を比較例5の初回放電容量の値で除した値を示す。   In Tables 4 to 7, the calorific value obtained in Examples 1 to 6, 12 to 15 and Comparative Examples 1 to 4 and 8 to 10 was divided by the initial discharge capacity value of Comparative Example 1. The values are obtained by dividing the calorific value obtained in Examples 7 to 11 and Comparative Examples 5 to 7 by the initial discharge capacity value of Comparative Example 5.

また、表4〜表7には、実施例1〜6,12〜15,比較例1〜4,8〜10では得られた電極抵抗の値を比較例1の初回放電容量の値で除した値を、また、実施例7〜11,比較例5〜7では得られた電極抵抗の値を比較例5の初回放電容量の値で除した値を示す。   In Tables 4 to 7, the values of the electrode resistance obtained in Examples 1 to 6, 12 to 15 and Comparative Examples 1 to 4 and 8 to 10 were divided by the initial discharge capacity value of Comparative Example 1. The values obtained by dividing the electrode resistance values obtained in Examples 7 to 11 and Comparative Examples 5 to 7 by the initial discharge capacity values in Comparative Example 5 are shown.

表4に示した結果を考察すると、実施例1〜6における放電容量は、比較例1より大きい値を示すことが明らかになった。これは、実施例1〜6で選択した正極活物質は、遷移金属層中に存在するNi含有量が多いためだと考えられる。   Examination of the results shown in Table 4 revealed that the discharge capacities in Examples 1 to 6 were larger than Comparative Example 1. This is presumably because the positive electrode active materials selected in Examples 1 to 6 have a high Ni content in the transition metal layer.

また、実施例1〜6における発熱量は、比較例1より小さい値を示すことが明らかになった。これは、昇温した際に正極活物質から放出される酸素量を低減する効果を持つMo,Wを添加したためである。また、抵抗は上昇したものの上昇率は10%以下であった。   Moreover, it became clear that the emitted-heat amount in Examples 1-6 shows a value smaller than the comparative example 1. FIG. This is because Mo and W having an effect of reducing the amount of oxygen released from the positive electrode active material when the temperature is raised are added. Moreover, although the resistance increased, the rate of increase was 10% or less.

一方、比較例1〜4では、比較例1と比べ、容量増加および発熱量低減を両立することはできなかった。比較例2では第一の正極活物質のみ存在するため、発熱量が多くなった。比較例3では第二の正極活物質のみ存在するため、容量が低下した。比較例4では第二の正極活物質中にMoが8%存在するため、容量が低下した。   On the other hand, in Comparative Examples 1 to 4, compared with Comparative Example 1, it was impossible to achieve both an increase in capacity and a reduction in calorific value. In Comparative Example 2, since only the first positive electrode active material was present, the calorific value was increased. In Comparative Example 3, since only the second positive electrode active material was present, the capacity decreased. In Comparative Example 4, the capacity decreased because 8% of Mo was present in the second positive electrode active material.

表5に示した結果を考察すると、実施例7〜11における放電容量は、比較例6より大きい値を示すことが明らかになった。これは、実施例7〜11で選択した正極活物質は、遷移金属層中に存在するNi含有量が多いためだと考えられる。   Examination of the results shown in Table 5 revealed that the discharge capacities in Examples 7 to 11 were larger than Comparative Example 6. This is presumably because the positive electrode active materials selected in Examples 7 to 11 have a high Ni content present in the transition metal layer.

実施例7〜11における発熱量は、比較例6より小さい値を示すことが明らかになった。これは、昇温した際に正極活物質から放出される酸素量を低減する効果を持つMo,Wを添加したためである。また、抵抗は上昇したものの上昇率は10%以下であった。   It became clear that the calorific value in Examples 7-11 shows a value smaller than Comparative Example 6. This is because Mo and W having an effect of reducing the amount of oxygen released from the positive electrode active material when the temperature is raised are added. Moreover, although the resistance increased, the rate of increase was 10% or less.

一方、比較例5〜7では、比較例5と比べ、容量増加および発熱量低減を両立することはできなかった。比較例6では第一の正極活物質のNi含有量が50%と低いため、容量が低い。比較例7では第二の正極活物質のNi含有量が60%と低いため、容量が低い。第二の正極活物質は昇温した際に正極活物質から放出される酸素量を低減する効果を持つMo,Wを添加しているため、熱安定性は優れている。そこで、Ni含有量が高くすることができる。高容量および高安全を両立するためには、第一の正極活物質に、本材料よりNi含有量を高くし、かつMo,Wを添加した第二の正極活物質が必要となる。   On the other hand, in Comparative Examples 5 to 7, compared with Comparative Example 5, it was impossible to achieve both an increase in capacity and a reduction in calorific value. In Comparative Example 6, since the Ni content of the first positive electrode active material is as low as 50%, the capacity is low. In Comparative Example 7, since the Ni content of the second positive electrode active material is as low as 60%, the capacity is low. The second positive electrode active material is excellent in thermal stability because it contains Mo and W which have the effect of reducing the amount of oxygen released from the positive electrode active material when the temperature is raised. Therefore, the Ni content can be increased. In order to achieve both high capacity and high safety, a second positive electrode active material in which the Ni content is higher than that of the present material and Mo and W are added to the first positive electrode active material is required.

表6及び表4に示した結果を考察すると、実施例1,12〜14における放電容量は、比較例1より大きい値を示すことが明らかになった。これは、実施例1,12〜14で選択した正極活物質は、遷移金属層中に存在するNi含有量が多いためだと考えられる。   Examination of the results shown in Table 6 and Table 4 revealed that the discharge capacities in Examples 1 and 12 to 14 were larger than Comparative Example 1. This is presumably because the positive electrode active materials selected in Examples 1 and 12 to 14 have a high Ni content present in the transition metal layer.

また、実施例1,12〜14における発熱量は、比較例1より小さい値を示すことが明らかになった。これは、昇温した際に正極活物質から放出される酸素量を低減する効果を持つMo,Wを添加したためである。また、抵抗は上昇したものの上昇率は10%以下であった。   Moreover, it became clear that the emitted-heat amount in Example 1, 12-14 shows a value smaller than the comparative example 1. FIG. This is because Mo and W having an effect of reducing the amount of oxygen released from the positive electrode active material when the temperature is raised are added. Moreover, although the resistance increased, the rate of increase was 10% or less.

一方、比較例2,3,7,8では、比較例1と比べ、容量増加および発熱量低減を両立することはできなかった。比較例2,8では第一の正極活物質の混合比が多く、発熱量が多くなり、比較例3,7では第二の正極活物質の混合比が多く、容量が低下した。   On the other hand, in Comparative Examples 2, 3, 7, and 8, compared with Comparative Example 1, it was impossible to achieve both an increase in capacity and a reduction in heat generation. In Comparative Examples 2 and 8, the mixing ratio of the first positive electrode active material was large and the calorific value was large, and in Comparative Examples 3 and 7, the mixing ratio of the second positive electrode active material was large and the capacity was reduced.

表7及び表4に示した結果を考察すると、実施例1,15は、比較例1と比べ、容量増加および発熱量低減を両立し、かつ抵抗の上昇率は10%以下であった。   Considering the results shown in Table 7 and Table 4, compared with Comparative Example 1, Examples 1 and 15 achieved both increased capacity and reduced heat generation, and the rate of increase in resistance was 10% or less.

一方、比較例10では、比較例1と比べ、抵抗の上昇率は10.8%と大きい値を示した。これは、第二の正極活物質の二次粒子径が大きいため、抵抗の上昇率を低減することができなかった。   On the other hand, in Comparative Example 10, as compared with Comparative Example 1, the rate of increase in resistance was as large as 10.8%. This was because the secondary cathode diameter of the second positive electrode active material was large, and the rate of increase in resistance could not be reduced.

図2にリチウムイオン二次電池を示す断面図を示す。   FIG. 2 is a cross-sectional view showing a lithium ion secondary battery.

図2に示すリチウムイオン二次電池は、集電体の両面に正極材料を塗布した正極板11と集電体の両面に負極材料を塗布した負極板12とをセパレータ13を介して形成し、これらを捲回して形成する。   The lithium ion secondary battery shown in FIG. 2 has a positive electrode plate 11 coated with a positive electrode material on both sides of a current collector and a negative electrode plate 12 coated with a negative electrode material on both sides of the current collector through a separator 13. These are formed by winding.

こうした捲回体を電池缶14に挿入する。そして、負極板12を、負極リード片15を介して電池缶14に電気的に接続する。   Such a wound body is inserted into the battery can 14. Then, the negative electrode plate 12 is electrically connected to the battery can 14 via the negative electrode lead piece 15.

また、電池缶14に密閉蓋部16を、パッキン18を介して形成する。そして、正極板11を、正極リード片17を介して密閉蓋部16に電気的に接続する。   Further, the sealing lid portion 16 is formed on the battery can 14 via the packing 18. Then, the positive electrode plate 11 is electrically connected to the sealing lid portion 16 via the positive electrode lead piece 17.

なお、捲回体は絶縁板19によって絶縁される。   The wound body is insulated by the insulating plate 19.

こうした、リチウムイオン二次電池の正極材料に本実施例で示した材料を用いることにより、容量,出力,熱安定性に優れたリチウムイオン二次電池を提供することができる。   By using the material shown in this embodiment as the positive electrode material of the lithium ion secondary battery, a lithium ion secondary battery excellent in capacity, output, and thermal stability can be provided.

本発明は、特に、プラグインハイブリッド自動車用のリチウムイオン二次電池の正極材料として有望である。   The present invention is particularly promising as a positive electrode material for lithium ion secondary batteries for plug-in hybrid vehicles.

1 第一の正極活物質の二次粒子
2 第二の正極活物質の二次粒子
11 正極板
12 負極板
13 セパレータ
14 電池缶
15 負極リード片
16 密閉蓋部
17 正極リード片
18 パッキン
19 絶縁板
DESCRIPTION OF SYMBOLS 1 Secondary particle of 1st positive electrode active material 2 Secondary particle of 2nd positive electrode active material 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Battery can 15 Negative electrode lead piece 16 Sealing cover part 17 Positive electrode lead piece 18 Packing 19 Insulating plate

Claims (7)

組成式Lix1Nia1Mnb1Coc12
(0.2≦x1≦1.2,0.6≦a1≦0.9,0.05≦b1≦0.3,0.05≦c1≦0.3,a1+b1+c1=1.0)で表される第一の正極活物質と、
組成式Lix2Nia2Mnb2Coc2d2
(0.2≦x2≦1.2,0.7≦a2≦0.9,0.05≦b2≦0.3,0.05≦c2≦0.3,M=Mo,W、0≦d≦0.06,a2+b2+c2+d=1.0)で表される
第二の正極活物質と、
を含むことを特徴とするリチウムイオン二次電池用正極材料。
Composition formula Li x1 Ni a1 Mn b1 Co c1 O 2
(0.2 ≦ x1 ≦ 1.2, 0.6 ≦ a1 ≦ 0.9, 0.05 ≦ b1 ≦ 0.3, 0.05 ≦ c1 ≦ 0.3, a1 + b1 + c1 = 1.0) A first positive electrode active material,
Composition formula Li x2 Ni a2 Mn b2 Co c2 M d O 2
(0.2 ≦ x2 ≦ 1.2, 0.7 ≦ a2 ≦ 0.9, 0.05 ≦ b2 ≦ 0.3, 0.05 ≦ c2 ≦ 0.3, M = Mo, W, 0 ≦ d ≦ 0.06, a2 + b2 + c2 + d = 1.0), a second positive electrode active material,
A positive electrode material for a lithium ion secondary battery, comprising:
請求項1において、
前記第一の正極活物質の平均二次粒径が、前記第二の正極活物質の平均二次粒径より大きいことを特徴とするリチウムイオン二次電池用正極材料。
In claim 1,
A positive electrode material for a lithium ion secondary battery, wherein an average secondary particle size of the first positive electrode active material is larger than an average secondary particle size of the second positive electrode active material.
請求項1において、
前記第一の正極活物質のNiの含有量が、前記第二の正極活物質のNiの含有量以下であることを特徴とするリチウムイオン二次電池用正極材料。
In claim 1,
The positive electrode material for a lithium ion secondary battery, wherein the content of Ni in the first positive electrode active material is equal to or less than the content of Ni in the second positive electrode active material.
請求項1において、
前記正極材料中に含まれる第一の正極活物質の混合比を、質量百分率で30〜70%とすることを特徴とするリチウムイオン二次電池用正極材料。
In claim 1,
A positive electrode material for a lithium ion secondary battery, wherein a mixing ratio of the first positive electrode active material contained in the positive electrode material is 30 to 70% by mass percentage.
請求項1において、
前記第二の正極活物質の平均二次粒径が、前記第一の正極活物質の平均二次粒径の二分の一以下であることを特徴とするリチウムイオン電池用正極材料。
In claim 1,
The positive electrode material for a lithium ion battery, wherein an average secondary particle size of the second positive electrode active material is not more than one half of an average secondary particle size of the first positive electrode active material.
請求項1において、
前記第一の正極活物質のNi含有量a1が0.7≦a1≦0.8であり、前記第二の正極活物質のNi含有量a2が0.75≦a2≦0.8であることを特徴とするリチウムイオン電池用正極材料。
In claim 1,
The Ni content a1 of the first positive electrode active material is 0.7 ≦ a1 ≦ 0.8, and the Ni content a2 of the second positive electrode active material is 0.75 ≦ a2 ≦ 0.8. A positive electrode material for a lithium ion battery.
リチウムを吸蔵放出可能な正極とリチウムを吸蔵放出可能な負極が非水電解質およびセパレータを介して形成されるリチウムイオン二次電池において、
前記正極が、請求項1記載のリチウムイオン二次電池用正極材料を有することを特徴とするリチウムイオン二次電池。
In a lithium ion secondary battery in which a positive electrode capable of occluding and releasing lithium and a negative electrode capable of occluding and releasing lithium are formed via a nonaqueous electrolyte and a separator,
A lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to claim 1.
JP2009269403A 2009-11-27 2009-11-27 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same Expired - Fee Related JP5389620B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009269403A JP5389620B2 (en) 2009-11-27 2009-11-27 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
US12/805,829 US8709656B2 (en) 2009-11-27 2010-08-20 Cathode material for lithium ion secondary battery and lithium ion secondary battery using it
CN201010569626.6A CN102082269B (en) 2009-11-27 2010-11-24 Anode material for lithium ion secondary battery and lithium ion secondary battery using it
KR1020100118897A KR101241571B1 (en) 2009-11-27 2010-11-26 Cathode material for lithium ion secondary battery and lithium ion secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009269403A JP5389620B2 (en) 2009-11-27 2009-11-27 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Publications (3)

Publication Number Publication Date
JP2011113825A true JP2011113825A (en) 2011-06-09
JP2011113825A5 JP2011113825A5 (en) 2012-02-02
JP5389620B2 JP5389620B2 (en) 2014-01-15

Family

ID=44069137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009269403A Expired - Fee Related JP5389620B2 (en) 2009-11-27 2009-11-27 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Country Status (4)

Country Link
US (1) US8709656B2 (en)
JP (1) JP5389620B2 (en)
KR (1) KR101241571B1 (en)
CN (1) CN102082269B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079608A (en) * 2010-10-05 2012-04-19 Hitachi Ltd Lithium ion secondary battery
JP2013016377A (en) * 2011-07-05 2013-01-24 Hitachi Ltd Lithium secondary battery
JP2013134819A (en) * 2011-12-26 2013-07-08 Hitachi Ltd Positive electrode material and lithium ion secondary battery
JP2014049372A (en) * 2012-09-03 2014-03-17 Hitachi Maxell Ltd Lithium ion secondary battery
WO2019131194A1 (en) 2017-12-27 2019-07-04 パナソニック株式会社 Positive electrode active material for secondary cell having non-aqueous electrolyte, positive electrode for secondary cell having non-aqueous electrolyte, and secondary cell having non-aqueous electrolyte
WO2020003642A1 (en) 2018-06-29 2020-01-02 パナソニックIpマネジメント株式会社 Positive electrode active substance for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2020137296A1 (en) 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2020174794A1 (en) 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2021065162A1 (en) 2019-10-04 2021-04-08 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2021153350A1 (en) 2020-01-31 2021-08-05 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2022013822A (en) * 2020-06-30 2022-01-18 三星エスディアイ株式会社 Nickel-based lithium metal composite oxide, manufacturing method thereof, and lithium secondary battery having positive electrode containing the nickel-based lithium metal composite oxide

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412453B2 (en) 2011-02-24 2014-02-12 株式会社日立製作所 Positive electrode active material, positive electrode, and lithium ion secondary battery
CN103545505B (en) 2013-10-22 2017-02-08 江苏华东锂电技术研究院有限公司 Cathode active material of lithium ion battery as well as preparation method thereof
CN105789609A (en) * 2014-12-15 2016-07-20 上海兆维科技发展有限公司 Cathode material, preparation method and application thereof
US10998542B2 (en) * 2017-01-20 2021-05-04 Envision Aesc Energy Devices Ltd. Positive electrode active material, positive electrode, and lithium ion secondary battery
CN109309227A (en) * 2017-07-26 2019-02-05 宁德时代新能源科技股份有限公司 Lithium ion battery and positive electrode active material thereof
KR20190055700A (en) * 2017-11-15 2019-05-23 주식회사 에코프로비엠 Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
KR102457285B1 (en) * 2018-01-15 2022-10-19 에스케이온 주식회사 Lithium secondary battery
CA3090720A1 (en) * 2018-02-07 2019-08-15 Ningde Amperex Technology Limited Positive active material, positive electrode and lithium-ion battery
CN110729477B (en) * 2018-07-16 2021-07-23 宁德新能源科技有限公司 Positive electrode active material and lithium ion battery
CN111342029B (en) * 2020-03-20 2021-10-22 浙江中金格派锂电产业股份有限公司 Preparation method of composite anode of lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532221A (en) * 2005-02-23 2008-08-14 エルジー・ケム・リミテッド Secondary battery with improved lithium ion mobility and battery capacity
JP2009032647A (en) * 2007-06-25 2009-02-12 Mitsubishi Chemicals Corp Material for positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2009117261A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW363940B (en) * 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
KR20020070495A (en) * 2000-11-20 2002-09-09 쥬오 덴끼 고교 가부시키가이샤 Nonaqueous electrolyte secondary cell and positive electrode active material
KR101027764B1 (en) * 2002-01-08 2011-04-07 소니 주식회사 Cathode active material and non-aqueous electrolyte secondary battery using the same
JP4307005B2 (en) * 2002-03-25 2009-08-05 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP5079247B2 (en) 2005-03-23 2012-11-21 パナソニック株式会社 Lithium ion secondary battery and manufacturing method thereof
KR100877754B1 (en) 2005-06-14 2009-01-08 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
JP4824349B2 (en) 2005-06-16 2011-11-30 パナソニック株式会社 Lithium ion secondary battery
JP5153060B2 (en) 2005-06-16 2013-02-27 パナソニック株式会社 Lithium ion secondary battery
CN100429809C (en) 2005-11-04 2008-10-29 比亚迪股份有限公司 Method for preparing lithium - nickel - manganese - cobalt - oxygen anode material of lithium ion battery
JP5094230B2 (en) * 2006-08-29 2012-12-12 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR100786850B1 (en) 2006-11-21 2007-12-20 삼성에스디아이 주식회사 Positive electrode for lithium secondary battery and lithium secondary battery comprising same
JP5378720B2 (en) 2007-07-27 2013-12-25 パナソニック株式会社 Lithium ion secondary battery
US8062560B2 (en) * 2008-02-29 2011-11-22 Byd Company Limited Composite compound with mixed crystalline structure
JP4972624B2 (en) 2008-09-30 2012-07-11 日立ビークルエナジー株式会社 Positive electrode material for lithium secondary battery and lithium secondary battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532221A (en) * 2005-02-23 2008-08-14 エルジー・ケム・リミテッド Secondary battery with improved lithium ion mobility and battery capacity
JP2009032647A (en) * 2007-06-25 2009-02-12 Mitsubishi Chemicals Corp Material for positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2009117261A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079608A (en) * 2010-10-05 2012-04-19 Hitachi Ltd Lithium ion secondary battery
JP2013016377A (en) * 2011-07-05 2013-01-24 Hitachi Ltd Lithium secondary battery
JP2013134819A (en) * 2011-12-26 2013-07-08 Hitachi Ltd Positive electrode material and lithium ion secondary battery
JP2014049372A (en) * 2012-09-03 2014-03-17 Hitachi Maxell Ltd Lithium ion secondary battery
EP3734719A4 (en) * 2017-12-27 2021-03-03 Panasonic Corporation Positive electrode active material for secondary cell having non-aqueous electrolyte, positive electrode for secondary cell having non-aqueous electrolyte, and secondary cell having non-aqueous electrolyte
WO2019131194A1 (en) 2017-12-27 2019-07-04 パナソニック株式会社 Positive electrode active material for secondary cell having non-aqueous electrolyte, positive electrode for secondary cell having non-aqueous electrolyte, and secondary cell having non-aqueous electrolyte
US11552287B2 (en) 2017-12-27 2023-01-10 Panasonic Holdings Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2020003642A1 (en) 2018-06-29 2020-01-02 パナソニックIpマネジメント株式会社 Positive electrode active substance for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JPWO2020003642A1 (en) * 2018-06-29 2021-07-08 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
JP7199064B2 (en) 2018-06-29 2023-01-05 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020137296A1 (en) 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US11942637B2 (en) 2018-12-28 2024-03-26 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2020174794A1 (en) 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2021065162A1 (en) 2019-10-04 2021-04-08 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2021153350A1 (en) 2020-01-31 2021-08-05 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2022013822A (en) * 2020-06-30 2022-01-18 三星エスディアイ株式会社 Nickel-based lithium metal composite oxide, manufacturing method thereof, and lithium secondary battery having positive electrode containing the nickel-based lithium metal composite oxide

Also Published As

Publication number Publication date
CN102082269A (en) 2011-06-01
CN102082269B (en) 2014-03-12
KR101241571B1 (en) 2013-03-11
US20110129734A1 (en) 2011-06-02
JP5389620B2 (en) 2014-01-15
KR20110059553A (en) 2011-06-02
US8709656B2 (en) 2014-04-29

Similar Documents

Publication Publication Date Title
JP5389620B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5412298B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
KR101109068B1 (en) CATHODE MATERIAL FOR Li ION SECONDARY BATTERY AND Li ION SECONDARY BATTERY USING THE SAME
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
KR101260159B1 (en) lithium ion secondary battery
KR102115685B1 (en) Precursor for lithium transition metal oxide cathode materials for rechargeable batteries
CN110890525A (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
JP2011146158A (en) Lithium secondary battery
JP3503688B2 (en) Lithium secondary battery
JP2016051504A (en) Positive electrode active material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and on-vehicle nonaqueous secondary battery module
JP2016081716A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
CN109792048B (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2013175401A (en) Positive electrode material
JP2012079608A (en) Lithium ion secondary battery
CN112751020A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5629609B2 (en) Lithium secondary battery
JP2015130272A (en) Positive electrode for nonaqueous secondary battery, positive electrode active material for nonaqueous secondary battery, nonaqueous secondary battery and on-vehicle nonaqueous secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP5658058B2 (en) Lithium ion secondary battery
JP2015222696A (en) Positive electrode active material for lithium ion secondary batteries and method for manufacturing the same
WO2016046868A1 (en) Positive active material for lithium ion secondary battery, positive electrode material, and lithium ion secondary battery
JP2017037776A (en) Nonaqueous electrolyte battery
JP2021093330A (en) Electrode for nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5828754B2 (en) Positive electrode material and lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees