JP5412298B2 - Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same - Google Patents

Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP5412298B2
JP5412298B2 JP2010003556A JP2010003556A JP5412298B2 JP 5412298 B2 JP5412298 B2 JP 5412298B2 JP 2010003556 A JP2010003556 A JP 2010003556A JP 2010003556 A JP2010003556 A JP 2010003556A JP 5412298 B2 JP5412298 B2 JP 5412298B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010003556A
Other languages
Japanese (ja)
Other versions
JP2011146132A (en
Inventor
宏明 小西
豊隆 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010003556A priority Critical patent/JP5412298B2/en
Publication of JP2011146132A publication Critical patent/JP2011146132A/en
Application granted granted Critical
Publication of JP5412298B2 publication Critical patent/JP5412298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、高容量,高出力かつ高安全なリチウムイオン二次電池用正極材料およびリチウムイオン二次電池に関する。   The present invention relates to a positive electrode material for a lithium ion secondary battery and a lithium ion secondary battery that have a high capacity, high output, and high safety.

プラグインハイブリッド自動車用電池として、リチウムイオン二次電池を採用するためには、高い安全性を維持しながら、低コスト化,低体積化,軽量化,高出力化が必要とされているため、正極材料には高容量,高出力かつ高安全であることが要求される。   In order to adopt a lithium ion secondary battery as a plug-in hybrid vehicle battery, it is necessary to reduce costs, reduce volume, reduce weight, and increase output while maintaining high safety. The positive electrode material is required to have high capacity, high output, and high safety.

特許文献1には、発熱開始温度の異なる二種類以上のリチウム含有化合物を有し、少なくても発熱開始温度が300℃以上である材料を有することが記載されている。   Patent Document 1 describes that two or more types of lithium-containing compounds having different heat generation start temperatures are included, and at least a material having a heat generation start temperature of 300 ° C. or higher is included.

特許文献2には、リチウム化合物と、Mn,Ni,Coを含む一種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを用いて作製したリチウム含有遷移金属化合物Aと、層状構造を有し、Li及び遷移金属としてNi,Coを含有するリチウム含有遷移金属複合酸化物粉体Bと、を混合してなるリチウム二次電池用正極活物質が記載されている。   Patent Document 2 discloses a lithium-containing transition metal compound prepared using a lithium compound, one or more transition metal compounds containing Mn, Ni, and Co, and an additive that suppresses grain growth and sintering during firing. A positive electrode active material for a lithium secondary battery is described in which A is mixed with Li and a lithium-containing transition metal composite oxide powder B having a layered structure and containing Ni and Co as transition metals. .

特許文献3には、LiCoO2に少なくともZrとMgとの両方を含有させたリチウム遷移金属複合酸化物Aと、層状構造を有し、遷移金属として少なくともMnとNiとの両方を含有し、かつ、Moを含有するリチウム遷移金属複合酸化物Bと、を混合した正極材料が記載されている。 Patent Document 3 includes a lithium transition metal composite oxide A in which LiCoO 2 contains at least both Zr and Mg, a layered structure, and contains at least both Mn and Ni as transition metals, and , A positive electrode material in which a lithium transition metal composite oxide B containing Mo is mixed is described.

特開2007−048744号公報JP 2007-048744 A 特開2009−032647号公報JP 2009-032647 A 特開2006−164934号公報JP 2006-164934 A

従来の正極材料では、プラグインハイブリッド自動車用電池に必要とされるような高容量を得ることができない。   Conventional positive electrode materials cannot provide such a high capacity as required for plug-in hybrid vehicle batteries.

また、従来の正極材料では、電池が昇温した際に正極材料から放出される脱酸素量の低減および電池の放熱効果を利用することができないため、高Ni含有量の正極材料を用いた際に問題となる安全性を解決することはできない。   In addition, since the conventional positive electrode material cannot use the reduction of the amount of deoxygenated from the positive electrode material when the battery is heated and the heat dissipation effect of the battery, the positive electrode material having a high Ni content is used. It is not possible to solve the safety problem.

以上のように、従来技術では、プラグインハイブリッド自動車用電池に要求される高容量,高出力かつ高安全を達成することができなかった。   As described above, the conventional technology cannot achieve the high capacity, high output, and high safety required for the battery for plug-in hybrid vehicles.

本発明は、プラグインハイブリッド自動車用電池に要求される高容量,高出力かつ高安全を達成することができるリチウムイオン二次電池用正極材料を提供するものである。   The present invention provides a positive electrode material for a lithium ion secondary battery that can achieve the high capacity, high output, and high safety required for a battery for a plug-in hybrid vehicle.

プラグインハイブリッド自動車用電池にリチウムイオン二次電池を採用するためには、高容量,高出力かつ高安全であることが要求される。   In order to adopt a lithium ion secondary battery for a plug-in hybrid vehicle battery, it is required to have a high capacity, a high output and a high safety.

リチウムイオン二次電池においてこれらの特性は正極材料の性質と密接な関係がある。   In a lithium ion secondary battery, these characteristics are closely related to the properties of the positive electrode material.

組成式LiMO2(M:遷移金属)で表される層状系の正極材料において、高容量を得るためには、遷移金属層中のNi含有量を増やす必要がある。 In the layered positive electrode material represented by the composition formula LiMO 2 (M: transition metal), it is necessary to increase the Ni content in the transition metal layer in order to obtain a high capacity.

しかし、高Ni含有量の正極材料は、充電時の構造安定性が低く、内部短絡などにより電池の温度が上昇した際に比較的低温で、正極材料中から放出された酸素と電解液とが反応し、大きな発熱反応が起こるため、電池が発火および破裂に至る危険性がある。   However, the positive electrode material with high Ni content has low structural stability during charging, and when the temperature of the battery rises due to an internal short circuit or the like, the oxygen released from the positive electrode material and the electrolyte solution are relatively low when the battery temperature rises. There is a risk that the battery will ignite and explode because it reacts and a large exothermic reaction takes place.

そこで、本発明のリチウムイオン二次電池用正極材料は、
組成式Lix1Nia1Mnb1Coc12
(0.2≦x1≦1.2,0.6≦a1≦0.9,0.05≦b1≦0.3,0.05≦c1≦0.3,a1+b1+c1=1.0)で表される第一の正極活物質と、
組成式Lix2Nia2Mnb2Coc2d22
(0.2≦x2≦1.2,0.7≦a2≦0.9,0.05≦b2<0.25,0.05≦c2<0.25,M=Al,Mg,0<d2≦0.06,a2+b2+c2+d2=1.0)で表される第二の正極活物質と、
組成式Lix3Nia3Mnb3Coc3d32
(0.2≦x3≦1.2,0.7≦a3≦0.9,0.05≦b3<0.25,0.05≦c3<0.25,M=Mo,W,0<d3≦0.06,a3+b3+c3+d3=1.0)で表される第三の正極活物質と、
を含むことを特徴とする。
Therefore, the positive electrode material for a lithium ion secondary battery of the present invention is
Composition formula Li x1 Ni a1 Mn b1 Co c1 O 2
(0.2 ≦ x1 ≦ 1.2, 0.6 ≦ a1 ≦ 0.9, 0.05 ≦ b1 ≦ 0.3, 0.05 ≦ c1 ≦ 0.3, a1 + b1 + c1 = 1.0) A first positive electrode active material,
Composition formula Li x2 Ni a2 Mn b2 Co c2 M d2 O 2
(0.2 ≦ x2 ≦ 1.2, 0.7 ≦ a2 ≦ 0.9, 0.05 ≦ b2 <0.25, 0.05 ≦ c2 <0.25, M = Al, Mg, 0 <d2 ≦ 0.06, a2 + b2 + c2 + d2 = 1.0),
Composition formula Li x3 Ni a3 Mn b3 Co c3 M d3 O 2
(0.2 ≦ x3 ≦ 1.2, 0.7 ≦ a3 ≦ 0.9, 0.05 ≦ b3 <0.25, 0.05 ≦ c3 <0.25, M = Mo, W, 0 <d3 ≦ 0.06, a3 + b3 + c3 + d3 = 1.0), a third positive electrode active material,
It is characterized by including.

また、第一および第二の正極活物質の平均二次粒径が、第三の正極活物質の平均二次粒径より大きいことが好ましい。   The average secondary particle size of the first and second positive electrode active materials is preferably larger than the average secondary particle size of the third positive electrode active material.

また、第三の正極活物質の平均二次粒径が、第一の正極活物質の平均二次粒径の二分の一以下であることが好ましい。   Moreover, it is preferable that the average secondary particle diameter of a 3rd positive electrode active material is 1/2 or less of the average secondary particle diameter of a 1st positive electrode active material.

また、第一の正極活物質のNi含有量a1が0.7≦a1≦0.9であり、第二および第三の正極活物質のNi含有量a2,a3が0.8≦a2≦0.9,0.8≦a3≦0.9であることが好ましい。   Further, the Ni content a1 of the first positive electrode active material is 0.7 ≦ a1 ≦ 0.9, and the Ni contents a2 and a3 of the second and third positive electrode active materials are 0.8 ≦ a2 ≦ 0. It is preferable that 0.9, 0.8 ≦ a3 ≦ 0.9.

また、リチウムイオン二次電池用正極材料に含まれる第一,第二,第三の正極活物質は、全ての正極活物質に占める割合が、それぞれ質量百分率で50%より低いことが好ましい。   Moreover, it is preferable that the ratio which occupies for all the positive electrode active materials of the 1st, 2nd, 3rd positive electrode active material contained in the positive electrode material for lithium ion secondary batteries is less than 50% in a mass percentage, respectively.

さらに、こうしたこれらリチウムイオン二次電池用正極材料は、リチウムを吸蔵放出可能な正極と、リチウムを吸蔵放出可能な負極と、が非水電解質およびセパレータを介して形成されるリチウムイオン二次電池の正極の正極材料として使用できる。   Furthermore, these positive electrode materials for lithium ion secondary batteries are lithium ion secondary batteries in which a positive electrode capable of occluding and releasing lithium and a negative electrode capable of occluding and releasing lithium are formed via a nonaqueous electrolyte and a separator. It can be used as a positive electrode material for a positive electrode.

これにより、本発明は、プラグインハイブリッド自動車用電池に要求される高容量,高出力かつ高安全を達成することができるリチウムイオン二次電池用正極材料を提供することができる。   Thereby, this invention can provide the positive electrode material for lithium ion secondary batteries which can achieve the high capacity | capacitance, high output, and high safety which are requested | required of the battery for plug-in hybrid vehicles.

充電状態の正極と電解液とを共に昇温した際のDSC測定結果を示す図。The figure which shows the DSC measurement result at the time of heating up both the positive electrode and electrolyte solution of a charge state. リチウムイオン二次電池を示す断面図。Sectional drawing which shows a lithium ion secondary battery.

以下に、本実施形態の特徴について記載する。   The features of this embodiment will be described below.

本実施形態のリチウムイオン二次電池用正極材料は、
組成式Lix1Nia1Mnb1Coc12
(0.2≦x1≦1.2,0.6≦a1≦0.9,0.05≦b1≦0.3,0.05≦c1≦0.3,a1+b1+c1=1.0)で表される第一の正極活物質と、
組成式Lix2Nia2Mnb2Coc2d22
(0.2≦x2≦1.2,0.7≦a2≦0.9,0.05≦b2<0.25,0.05≦c2<0.25,M=Al,Mg,0<d2≦0.06,a2+b2+c2+d2=1.0)で表される第二の正極活物質と、
組成式Lix3Nia3Mnb3Coc3d32
(0.2≦x3≦1.2,0.7≦a3≦0.9,0.05≦b3<0.25,0.05≦c3<0.25,M=Mo,W,0<d3≦0.06,a3+b3+c3+d3=1.0)で表される第三の正極活物質と、
を含むことを特徴とする。
The positive electrode material for a lithium ion secondary battery of this embodiment is
Composition formula Li x1 Ni a1 Mn b1 Co c1 O 2
(0.2 ≦ x1 ≦ 1.2, 0.6 ≦ a1 ≦ 0.9, 0.05 ≦ b1 ≦ 0.3, 0.05 ≦ c1 ≦ 0.3, a1 + b1 + c1 = 1.0) A first positive electrode active material,
Composition formula Li x2 Ni a2 Mn b2 Co c2 M d2 O 2
(0.2 ≦ x2 ≦ 1.2, 0.7 ≦ a2 ≦ 0.9, 0.05 ≦ b2 <0.25, 0.05 ≦ c2 <0.25, M = Al, Mg, 0 <d2 ≦ 0.06, a2 + b2 + c2 + d2 = 1.0),
Composition formula Li x3 Ni a3 Mn b3 Co c3 M d3 O 2
(0.2 ≦ x3 ≦ 1.2, 0.7 ≦ a3 ≦ 0.9, 0.05 ≦ b3 <0.25, 0.05 ≦ c3 <0.25, M = Mo, W, 0 <d3 ≦ 0.06, a3 + b3 + c3 + d3 = 1.0), a third positive electrode active material,
It is characterized by including.

高Ni含有量の正極活物質は、高容量が得られるが、充電時の熱安定性が低いという欠点がある。   A positive electrode active material having a high Ni content can provide a high capacity, but has a drawback of low thermal stability during charging.

そこで、高Ni含有量の正極活物質に、第四の金属元素を添加し、発熱温度領域を高温化した材料と低温化した材料とを混合した。   Therefore, a fourth metal element was added to the positive electrode active material having a high Ni content, and a material having a higher exothermic temperature region and a material having a lower temperature were mixed.

本混合材料は、単一の高Ni含有の正極活物質と比較し、発熱温度領域が広がり、電池の放熱作用を最大限に利用できるため、電池が昇温した際に発火及び破裂に至る可能性を低減することができる。   Compared with a single high Ni-containing positive electrode active material, this mixed material has a wider heat generation temperature range and can make maximum use of the heat dissipation of the battery, which can lead to ignition and rupture when the battery is heated. Can be reduced.

また、本実施形態にかかる発熱温度領域を低温化した材料は、第四の金属元素として、Mo,Wを添加した高Ni含有量の正極活物質を用いた。   In addition, as the fourth metal element, a high Ni content positive electrode active material to which Mo and W were added was used as the material in which the heat generation temperature range according to the present embodiment was lowered.

本材料は発熱温度領域を変化させるという効果と共に、リチウム脱離後、昇温したときに放出される酸素量を半分以下に低減することができるという効果を有する。   This material has the effect that the amount of oxygen released when the temperature is raised after desorption of lithium can be reduced to half or less, as well as the effect of changing the exothermic temperature region.

したがって、本材料は電池が昇温した際に起こる正極と電解液の発熱温度領域を広げ、電池の放熱を最大限に利用でき、かつ、総発熱量も低減できるという効果がある。   Therefore, this material has an effect of expanding the heat generation temperature range of the positive electrode and the electrolytic solution that occurs when the temperature of the battery is raised, making maximum use of the heat dissipation of the battery, and reducing the total heat generation.

そこで、本材料を用いることにより、昇温した際に発火などに至る可能性を低減させたリチウムイオン二次電池用正極材料およびリチウムイオン二次電池を提供することができる。   Thus, by using this material, it is possible to provide a positive electrode material for a lithium ion secondary battery and a lithium ion secondary battery that are less likely to cause ignition when heated.

さらに、第三の正極活物質の平均二次粒径が、第一,第二の正極活物質の平均二次粒径より小さいことを特徴とする。 Furthermore, the average secondary particle size of the third positive electrode active material is smaller than the average secondary particle size of the first and second positive electrode active materials.

第三の正極活物質は、Mo,Wを添加しているため、抵抗が高くなる。そこで、プラグインハイブリッド自動車用電池として採用するには、粒径を小さくし、リチウムの拡散距離を短くする必要がある。   Since the third positive electrode active material contains Mo and W, the resistance becomes high. Therefore, in order to adopt as a battery for a plug-in hybrid vehicle, it is necessary to reduce the particle size and the diffusion distance of lithium.

また、正極材料に含まれるそれぞれの正極活物質の存在比を質量百分率で50%より低いとする。50%以上となると、昇温した際に、その正極活物質が原因で発生する発熱反応の影響が大きくなるため、安全性に問題がある。   Further, the abundance ratio of each positive electrode active material contained in the positive electrode material is assumed to be lower than 50% by mass percentage. If it is 50% or more, the influence of the exothermic reaction that occurs due to the positive electrode active material increases when the temperature is raised, so that there is a problem in safety.

次に、本実施形態のリチウムイオン二次電池は、リチウムを吸蔵放出可能な正極と、リチウムを吸蔵放出可能な負極と、が非水電解質およびセパレータを介して形成されるリチウムイオン二次電池であり、正極が正極活物質を有し、その正極活物質が、前記の第一の正極活物質と、第二の正極活物質と、第三の正極活物質とを含む。   Next, the lithium ion secondary battery of the present embodiment is a lithium ion secondary battery in which a positive electrode capable of inserting and extracting lithium and a negative electrode capable of inserting and extracting lithium are formed via a nonaqueous electrolyte and a separator. The positive electrode has a positive electrode active material, and the positive electrode active material includes the first positive electrode active material, the second positive electrode active material, and the third positive electrode active material.

また、第三の正極活物質の平均二次粒径が、第一の正極活物質の平均二次粒径の二分の一以下であることが好ましい。これは、粒径を小さくしたことによる効果がより顕著に現れ、かつ正極材料の充填率も向上するからである。 Moreover, it is preferable that the average secondary particle diameter of a 3rd positive electrode active material is 1/2 or less of the average secondary particle diameter of a 1st positive electrode active material. This is because the effect of reducing the particle size appears more remarkably and the filling rate of the positive electrode material is also improved.

さらに、第一の正極活物質のNi含有量a1が0.7≦a1≦0.9であり、第二,第三の正極活物質のNi含有量a2,a3が0.8≦a2≦0.9,0.8≦a3≦0.9であることが好ましい。遷移金属層中のNi含有量を増やすことにより、高容量の正極材料を提供することができる。   Further, the Ni content a1 of the first positive electrode active material is 0.7 ≦ a1 ≦ 0.9, and the Ni contents a2 and a3 of the second and third positive electrode active materials are 0.8 ≦ a2 ≦ 0. It is preferable that 0.9, 0.8 ≦ a3 ≦ 0.9. By increasing the Ni content in the transition metal layer, a high capacity positive electrode material can be provided.

ここで、本実施形態を実施するための実施例の一つを以下に示す。   Here, one of the examples for implementing this embodiment is shown below.

本発明の実施例では、正極材料として、
組成式Lix1Nia1Mnb1Coc12
(0.2≦x1≦1.2,0.6≦a1≦0.9,0.05≦b1≦0.3,0.05≦c1≦0.3,a1+b1+c1=1.0)で表される第一の正極活物質と、
組成式Lix2Nia2Mnb2Coc2d22
(0.2≦x2≦1.2,0.7≦a2≦0.9,0.05≦b2<0.25,0.05≦c2<0.25,M=Al,Mg,0<d2≦0.06,a2+b2+c2+d2=1.0)で表される第二の正極活物質と、
組成式Lix3Nia3Mnb3Coc3d32
(0.2≦x3≦1.2,0.7≦a3≦0.9,0.05≦b3<0.25,0.05≦c3<0.25,M=Mo,W,0<d3≦0.06,a3+b3+c3+d3=1.0)で表される第三の正極活物質と、
を混合した材料を用いる。
In the embodiment of the present invention, as the positive electrode material,
Composition formula Li x1 Ni a1 Mn b1 Co c1 O 2
(0.2 ≦ x1 ≦ 1.2, 0.6 ≦ a1 ≦ 0.9, 0.05 ≦ b1 ≦ 0.3, 0.05 ≦ c1 ≦ 0.3, a1 + b1 + c1 = 1.0) A first positive electrode active material,
Composition formula Li x2 Ni a2 Mn b2 Co c2 M d2 O 2
(0.2 ≦ x2 ≦ 1.2, 0.7 ≦ a2 ≦ 0.9, 0.05 ≦ b2 <0.25, 0.05 ≦ c2 <0.25, M = Al, Mg, 0 <d2 ≦ 0.06, a2 + b2 + c2 + d2 = 1.0),
Composition formula Li x3 Ni a3 Mn b3 Co c3 M d3 O 2
(0.2 ≦ x3 ≦ 1.2, 0.7 ≦ a3 ≦ 0.9, 0.05 ≦ b3 <0.25, 0.05 ≦ c3 <0.25, M = Mo, W, 0 <d3 ≦ 0.06, a3 + b3 + c3 + d3 = 1.0), a third positive electrode active material,
A mixed material is used.

ここで、第一の正極活物質のLiの量は、0.2≦x1≦1.2であるが、これはx1<0.2では、充電状態においてLi層中に存在するLiの量が少なく、層状の結晶構造を維持できないためである。また、1.2<x1では、複合酸化物における遷移金属の量が減少し、容量が低下するためである。   Here, the amount of Li in the first positive electrode active material is 0.2 ≦ x1 ≦ 1.2, and when x1 <0.2, the amount of Li present in the Li layer in the charged state is This is because the layered crystal structure cannot be maintained. In addition, when 1.2 <x1, the amount of transition metal in the composite oxide decreases, and the capacity decreases.

Niの量は、0.6≦a1≦0.9であるが、これはa1<0.6では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of Ni is 0.6 ≦ a1 ≦ 0.9. This is because the content of Ni mainly contributing to the charge / discharge reaction decreases and the capacity decreases when a1 <0.6. .

Mnの量は、0.05≦b1≦0.3であるが、これはb1<0.05では、充電状態における構造が不安定になり、正極からの酸素放出温度が低下する。また、b1>0.3で
は、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。
The amount of Mn is 0.05 ≦ b1 ≦ 0.3. However, when b1 <0.05, the structure in the charged state becomes unstable, and the oxygen release temperature from the positive electrode decreases. Further, when b1> 0.3, the content of Ni mainly contributing to the charge / discharge reaction is decreased, and the capacity is decreased.

Coの量は、0.05≦c1≦0.3であるが、これはc1<0.05では、充電状態における構造が不安定になり、充放電における正極活物質の体積変化が大きくなる。また、
c1>0.3では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。
The amount of Co is 0.05 ≦ c1 ≦ 0.3. However, when c1 <0.05, the structure in the charged state becomes unstable, and the volume change of the positive electrode active material during charge / discharge increases. Also,
When c1> 0.3, the content of Ni mainly contributing to the charge / discharge reaction is reduced, and the capacity is reduced.

ここで、第二,第三の正極活物質のLiの量は、0.2≦x2≦1.2,0.2≦x3≦1.2であるが、これはx2<0.2,x3<0.2では、充電状態においてLi層中に存在するLiの量が少なく、層状の結晶構造を維持できないためである。また、1.2<x2,1.2<x3では、複合酸化物における遷移金属の量が減少し、容量が低下するためである。   Here, the amount of Li in the second and third positive electrode active materials is 0.2 ≦ x2 ≦ 1.2, 0.2 ≦ x3 ≦ 1.2, which is x2 <0.2, x3. <0.2 is because the amount of Li present in the Li layer in the charged state is small, and the layered crystal structure cannot be maintained. Further, when 1.2 <x2 and 1.2 <x3, the amount of transition metal in the composite oxide is decreased, and the capacity is decreased.

Niの量は、0.7≦a2≦0.9,0.7≦a3≦0.9であるが、これはa2<0.7,a3<0.7では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of Ni is 0.7 ≦ a2 ≦ 0.9, 0.7 ≦ a3 ≦ 0.9, and this mainly contributes to the charge / discharge reaction when a2 <0.7 and a3 <0.7. This is because the Ni content is reduced and the capacity is reduced.

Mnの量は、0.05≦b2<0.25,0.05≦b3<0.25であるが、これはb2<0.05,b3<0.05では、充電状態における構造が不安定になり、正極からの酸素放出温度が低下する。また、b2≧0.25,b3≧0.25では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of Mn is 0.05 ≦ b2 <0.25, 0.05 ≦ b3 <0.25, but this is unstable in the charged state when b2 <0.05 and b3 <0.05. As a result, the oxygen release temperature from the positive electrode decreases. In addition, when b2 ≧ 0.25 and b3 ≧ 0.25, the content of Ni mainly contributing to the charge / discharge reaction is decreased, and the capacity is decreased.

Coの量は、0.05≦c2<0.25,0.05≦c3<0.25であるが、これはc2<0.05,c3<0.05では、充電状態における構造が不安定になり、充放電における正極活物質の体積変化が大きくなる。また、c2≧0.25,c3≧0.25では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of Co is 0.05 ≦ c2 <0.25, 0.05 ≦ c3 <0.25, which is unstable in the charged state when c2 <0.05 and c3 <0.05. Thus, the volume change of the positive electrode active material during charge / discharge increases. Further, when c2 ≧ 0.25 and c3 ≧ 0.25, the content of Ni mainly contributing to the charge / discharge reaction is decreased, and the capacity is decreased.

Mの量は、0<d2≦0.06,0<d3≦0.06であるが、これはd2>0.06,d3>0.06では、充放電反応に主に寄与するNiの含有量が減少し、容量が低下するためである。   The amount of M is 0 <d2 ≦ 0.06, 0 <d3 ≦ 0.06, and when d2> 0.06 and d3> 0.06, the content of Ni mainly contributes to the charge / discharge reaction. This is because the amount decreases and the capacity decreases.

(正極活物質の作製)
原料として、酸化ニッケル,二酸化マンガン,酸化コバルト,(酸化アルミニウム,酸化マグネシウム,酸化モリブテン,酸化タングステン)を使用し、所定の原子比となるように秤量した後に、純水を加えスラリーとした。
(Preparation of positive electrode active material)
Nickel oxide, manganese dioxide, cobalt oxide, (aluminum oxide, magnesium oxide, molybdenum oxide, tungsten oxide) were used as raw materials, weighed so as to have a predetermined atomic ratio, and then pure water was added to form a slurry.

このスラリーを平均粒径が0.2μmとなるまでジルコニアのビーズミルで粉砕した。   The slurry was pulverized with a zirconia bead mill until the average particle size became 0.2 μm.

このスラリーにポリビニルアルコール(PVA)溶液を固形分比に換算して1wt.%添加し、更に1時間混合し、スプレードライヤ−により造粒および乾燥させた。   A polyvinyl alcohol (PVA) solution was added to this slurry in an amount of 1 wt.% In terms of the solid content ratio, further mixed for 1 hour, and granulated and dried by a spray dryer.

この造粒粒子に対し、Li:(NiMnCoM)比が1.05:1となるように水酸化リチウムおよび炭酸リチウムを加えた。   Lithium hydroxide and lithium carbonate were added to the granulated particles so that the Li: (NiMnCoM) ratio was 1.05: 1.

次に、この粉末を850℃で10時間焼成することにより層状構造の結晶を有し、その後、解砕して正極活物質1−1を得た。   Next, this powder was fired at 850 ° C. for 10 hours to have a layered crystal, and then pulverized to obtain a positive electrode active material 1-1.

さらに、分級により粒径30μm以上の粗大粒子を除去した後、電極作製に用いた。   Further, coarse particles having a particle size of 30 μm or more were removed by classification, and then used for electrode production.

また、本実施例に関する正極活物質の作製方法は、上記の方法に限定されず、共沈法など、他の方法を用いてもよい。   Further, the method for producing the positive electrode active material in this example is not limited to the above method, and other methods such as a coprecipitation method may be used.

以下に、合成した第一の正極活物質,第二の正極活物質および第三の正極活物質の遷移金属の組成比をそれぞれ下記の表1,表2,表3に示す。   The composition ratios of the transition metals of the synthesized first positive electrode active material, second positive electrode active material, and third positive electrode active material are shown in Table 1, Table 2, and Table 3, respectively.

Figure 0005412298
Figure 0005412298

Figure 0005412298
Figure 0005412298

Figure 0005412298
Figure 0005412298

なお、表1,表2,表3に示した組成は、Li以外のものを示したものである。Liはほぼ1.05を示す。   In addition, the composition shown in Table 1, Table 2, and Table 3 shows things other than Li. Li shows approximately 1.05.

正極活物質1−1と炭素系導電剤とを質量比で85:10.7になるように秤量し、メカノフュージョンを用いて活物質と導電剤を複合化した。   The positive electrode active material 1-1 and the carbon-based conductive agent were weighed so as to have a mass ratio of 85: 10.7, and the active material and the conductive agent were combined using mechanofusion.

ここでは、ハイブリダイザーなどの機器を用いてそれぞれの活物質と導電剤とを複合化しても良い。   Here, each active material and the conductive agent may be combined using a device such as a hybridizer.

正極活物質2−1,3−1にも同様の操作を行った。   The same operation was performed on the positive electrode active materials 2-1 and 3-1.

次に、複合化した三種類の材料を質量比で30:40:30になるように混合した。   Next, the three types of composite materials were mixed at a mass ratio of 30:40:30.

この方法により、各々の活物質の表面に導電剤を高分散させ、粒子の表面に導電剤を被覆することができる。   By this method, the conductive agent can be highly dispersed on the surface of each active material, and the surface of the particles can be coated with the conductive agent.

この導電剤の被覆により、電子伝導性が向上するため、正極材料として用いた際に、大電流を流しても高容量が維持される。   Since the electron conductivity is improved by the coating of the conductive agent, a high capacity is maintained even when a large current is passed when used as a positive electrode material.

また、異なる活物質を混合する際に活物質間に導電剤が存在するため、活物質間に導電性のネットワークが形成され、充放電反応に寄与しない孤立した活物質の割合を減少させることができ、高容量が維持できる。   In addition, since a conductive agent exists between the active materials when mixing different active materials, a conductive network is formed between the active materials, which may reduce the proportion of isolated active materials that do not contribute to the charge / discharge reaction. And high capacity can be maintained.

一方で、活物質と導電剤との複合化を行わずに、三種類の活物質と導電剤とを混合した場合、各々の活物質の表面に導電剤が被覆されていないため、電子伝導性が低下する。さらに、各々の活物質と導電剤との混合状態が悪化し、活物質間の導電ネットワークの形成が困難となり、孤立した活物質の割合が増加し容量が減少する。   On the other hand, when the three active materials and the conductive agent are mixed without combining the active material and the conductive agent, the surface of each active material is not coated with the conductive agent, so that the electron conductivity Decreases. Furthermore, the mixed state of each active material and the conductive agent is deteriorated, it becomes difficult to form a conductive network between the active materials, the ratio of the isolated active material is increased, and the capacity is decreased.

その後、三種類の活物質と導電剤との混合材料とNMPに溶解した結着剤を、混合材料と結着剤とが質量比で95.7:4.3になるように混合した。   Thereafter, a mixed material of three kinds of active materials and a conductive agent and a binder dissolved in NMP were mixed so that the mixed material and the binder were in a mass ratio of 95.7: 4.3.

均一に混合されたスラリーを、厚み20μmのアルミ集電体箔上に塗布した後、120℃で乾燥し、プレスにて電極密度が2.7g/cm3になるように圧縮成形した。 The uniformly mixed slurry was applied onto an aluminum current collector foil having a thickness of 20 μm, dried at 120 ° C., and compression-molded with a press so that the electrode density was 2.7 g / cm 3 .

その後、直径15mmの円盤状に打ち抜き、正極を作製した。   Thereafter, it was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.

作製した正極を用い、金属リチウムを負極,非水電解液(EC,DMCの体積比で1:2の混合溶媒に1.0モル/リットルのLiPF6を溶解させたもの)を用いて試作電池を作製した。 Prototype battery using prepared positive electrode, metallic lithium as negative electrode, non-aqueous electrolyte (1.0 mol / liter LiPF 6 dissolved in 1: 2 mixed solvent by volume ratio of EC and DMC) Was made.

また、本実施例に関する試験電池において、使用する導電剤,結着剤,負極,電解液,電解質は、本実施例にて説明したものに限定されず、例えば以下のものを用いても良い。   Further, in the test battery relating to this example, the conductive agent, binder, negative electrode, electrolytic solution, and electrolyte used are not limited to those described in this example, and for example, the following may be used.

導電剤としては、黒鉛,アセチレンブラック,カーボンブラックなどが挙げられる。   Examples of the conductive agent include graphite, acetylene black, and carbon black.

結着剤としては、ポリテトラフルオロエチレン,ゴム系バインダなどが挙げられる。   Examples of the binder include polytetrafluoroethylene and a rubber binder.

電解液としては、エチレンカーボネート,プロピレンカーボネート,ジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネート,γ−ブチルラクトン,テトラヒドロフラン,ジメトキシエタンなどが挙げられる。   Examples of the electrolytic solution include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyl lactone, tetrahydrofuran, and dimethoxyethane.

電解質としては、LiBF4,LiClO4,LiAsF6,LiCF3SO3,LiN(CF3SO22などが挙げられる。 Examples of the electrolyte include LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .

以下に、第一の正極活物質,第二の正極活物質および第三の正極活物質の混合比を、下記の表4,表5に示す。   Tables 4 and 5 below show the mixing ratios of the first positive electrode active material, the second positive electrode active material, and the third positive electrode active material.

Figure 0005412298
Figure 0005412298

Figure 0005412298
Figure 0005412298

次に前述の試作電池を用いて以下の試験を行った。   Next, the following tests were performed using the prototype battery described above.

(充放電試験)
充電レートを0.1Cとし、4.3Vまで定電流/定電圧で充電後、0.1Cで2.5Vまで定電流放電した。
(Charge / discharge test)
The charge rate was set to 0.1 C, and the battery was charged at a constant current / constant voltage up to 4.3 V, and then discharged at a constant current up to 2.5 V at 0.1 C.

実施例1,2,4〜6,8〜10,12〜17,比較例1,4,6,10〜11では、得られた初回放電容量の値を後述する比較例1の初回放電容量の値で除した値を下記の表6,表7,表8(容量比)に示す。 Example 1,2,4~6,8~10,12~ 17, Comparative Examples 1, 4, 6, in 10 to 11, the initial discharge capacity of Comparative Example 1 described below the value of the initial discharge capacity obtained The values divided by the values are shown in the following Table 6, Table 7, and Table 8 (capacity ratio).

また、実施例3,7比較例2,3,5,7では、得られた初回放電容量の値を後述する比較例2の初回放電容量の値で除した値を下記の表6,表7,表8に示す。 In Examples 3 and 7 , and Comparative Examples 2, 3 , 5 and 7, the values obtained by dividing the obtained initial discharge capacity value by the initial discharge capacity value of Comparative Example 2 described later are shown in Tables 6 and 6 below. 7 and Table 8 show.

(示差走査熱量測定)
4.3Vまで定電流/定電圧で充電後、電極を試験電池から取り出し、DMCで洗浄後、直径3.5mmの円盤状に打ち抜き、サンプルパンにいれ、電解液を1μl(リットル)加え、密封した。
(Differential scanning calorimetry)
After charging to 4.3 V at a constant current / constant voltage, the electrode is removed from the test battery, washed with DMC, punched into a disk with a diameter of 3.5 mm, placed in a sample pan, 1 μl (liter) of electrolyte is added, and sealed. did.

この試料を5℃/minで昇温させた時の発熱挙動を調べた。   The heat generation behavior when this sample was heated at 5 ° C./min was examined.

実施例1,2,4〜6,8〜10,12〜17,比較例1,4,6,10〜11では、得られた発熱の最大値(最大発熱値)および発熱量の値を後述する比較例1の初回放電容量の値で除した値を下記の表6,表7,表8(最大発熱値比および発熱量比)に示す。 In Examples 1, 2, 4 to 6, 8 to 10 , 12 to 17 , and Comparative Examples 1, 4, 6, 10 to 11, the obtained maximum value of heat generation (maximum heat generation value) and value of heat generation amount are described later. The values divided by the initial discharge capacity value of Comparative Example 1 are shown in Table 6, Table 7 and Table 8 (maximum heat generation value ratio and heat generation amount ratio) below.

また、実施例3,7比較例2,3,5,7では、得られた発熱の最大値(最大発熱値)および発熱量の値を後述する比較例2の初回放電容量の値で除した値を下記の表6,表7,表8に示す。 In Examples 3 and 7 , and Comparative Examples 2, 3 , 5, and 7, the obtained maximum value of heat generation (maximum heat generation value) and the value of the heat generation amount are divided by the initial discharge capacity value of Comparative Example 2 described later. The obtained values are shown in Table 6, Table 7 and Table 8 below.

(直流抵抗測定)
試験電池を用いて、室温の電極抵抗を測定した。
(DC resistance measurement)
The electrode resistance at room temperature was measured using a test battery.

試験電池の開回路電圧が、3.7Vから4.4Vの範囲で定電流放電を行い、0.1秒間隔で放電時の電圧を記録した。   Constant current discharge was performed when the open circuit voltage of the test battery was in the range of 3.7 V to 4.4 V, and the voltage at the time of discharge was recorded at intervals of 0.1 seconds.

次に、開回路電圧からの10秒目の電圧低下を測定し、電極抵抗を求めた。   Next, the voltage drop at 10 seconds from the open circuit voltage was measured to determine the electrode resistance.

実施例1,2,4〜6,8〜10,12〜17,比較例1,4,6,1011では、得られた電極抵抗の値を後述する比較例1の初回放電容量の値で除した値を下記の表6,表7,表8(抵抗比)に示す。 In Examples 1, 2, 4 to 6, 8 to 10 , 12 to 17 and Comparative Examples 1, 4, 6, 10 to 11 , the obtained electrode resistance value is the initial discharge capacity value of Comparative Example 1 described later. The values divided by are shown in Table 6, Table 7 and Table 8 (resistance ratio) below.

また、実施例3,7比較例2,3,5,7では、得られた電極抵抗の値を後述する比較例2の初回放電容量の値で除した値を下記の表6,表7,表8に示す。 In Examples 3 and 7 , and Comparative Examples 2, 3 , 5, and 7, values obtained by dividing the obtained electrode resistance value by the initial discharge capacity value of Comparative Example 2 described later are shown in Tables 6 and 7 below. Table 8 shows.

実施例2では、作製した正極活物質1−2,2−1,3−1を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 2 was the same as Example 1 except that the produced positive electrode active materials 1-2, 2-1, 3-1 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例3では、作製した正極活物質1−3,2−1,3−1を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 3 was the same as Example 1 except that the produced positive electrode active materials 1-3, 2-1 and 3-1 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例4では、作製した正極活物質1−1,2−2,3−1を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 4 is the same as Example 1 except that the produced positive electrode active materials 1-1, 2-2, 3-1 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例5では、作製した正極活物質1−1,2−3,3−1を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 5 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-3, and 3-1 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例6では、作製した正極活物質1−1,2−5,3−1を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 6 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-5, and 3-1 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例7では、作製した正極活物質1−2,2−6,3−1を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 7 was the same as Example 1 except that the produced positive electrode active materials 1-2, 2-6, and 3-1 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例8では、作製した正極活物質1−1,2−1,3−2を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 8 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-2 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例9では、作製した正極活物質1−1,2−1,3−3を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 9 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-3 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例10では、作製した正極活物質1−1,2−1,3−5を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 10 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-5 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例11では、作製した正極活物質1−2,2−1,3−6を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 11 is the same as Example 1 except that the produced positive electrode active materials 1-2, 2-1 and 3-6 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例12では、作製した正極活物質1−1,2−1,3−1を質量比で20:40:40になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 12 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-1 were mixed at a mass ratio of 20:40:40 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例13では、作製した正極活物質1−1,2−1,3−1を質量比で40:20:40になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 13 is the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-1 were mixed at a mass ratio of 40:20:40 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例14では、作製した正極活物質1−1,2−1,3−1を質量比で40:40:20になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 14 is the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-1 were mixed at a mass ratio of 40:40:20 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例15では、作製した正極活物質1−1,2−1,3−8を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。   Example 15 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-8 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

〔比較例1〕
比較例1では、作製した正極活物質1−2のみを正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[Comparative Example 1]
In Comparative Example 1, a prototype battery was produced in the same manner as in Example 1 except that only the produced positive electrode active material 1-2 was used as the positive electrode active material, and a charge / discharge test, differential scanning calorimetry, and direct current resistance measurement were performed. Went.

〔比較例2〕
比較例2では、作製した正極活物質1−3のみを正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[Comparative Example 2]
In Comparative Example 2, a prototype battery was produced in the same manner as in Example 1 except that only the produced positive electrode active material 1-3 was used as the positive electrode active material, and a charge / discharge test, differential scanning calorimetry, and DC resistance measurement were performed. Went.

〔比較例3〕
比較例3では、作製した正極活物質1−4,2−1,3−1を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[Comparative Example 3]
Comparative Example 3 was the same as Example 1 except that the produced positive electrode active materials 1-4, 2-1, 3-1 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

〔比較例4〕
比較例4では、作製した正極活物質1−1,2−4,3−1を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[Comparative Example 4]
Comparative Example 4 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-4, and 3-1 were mixed and used as a positive electrode active material at a mass ratio of 30:40:30. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

〔比較例5〕
比較例5では、作製した正極活物質1−2,2−7,3−1を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[Comparative Example 5]
Comparative Example 5 was the same as Example 1 except that the produced positive electrode active materials 1-2, 2-7, 3-1 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

〔比較例6〕
比較例6では、作製した正極活物質1−1,2−1,3−4を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[Comparative Example 6]
Comparative Example 6 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-4 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

〔比較例7〕
比較例7では、作製した正極活物質1−2,2−1,3−7を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[Comparative Example 7]
Comparative Example 7 was the same as Example 1 except that the produced positive electrode active materials 1-2, 2-1 and 3-7 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例16
実施例16では、作製した正極活物質1−1,2−1,3−1を質量比で50:20:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
Example 16
Example 16 is the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-1 were mixed at a mass ratio of 50:20:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

実施例17
実施例17では、作製した正極活物質1−1,2−1,3−1を質量比で20:50:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[ Example 17 ]
Example 17 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-1 were mixed at a mass ratio of 20:50:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

〔比較例10〕
比較例10では、作製した正極活物質1−1,2−1,3−1を質量比で20:30:50になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[Comparative Example 10]
Comparative Example 10 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, 3-1 were mixed at a mass ratio of 20:30:50 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

〔比較例11〕
比較例11では、作製した正極活物質1−1,2−1,3−9を質量比で30:40:30になるように混合して正極活物質として用いた以外は、実施例1と同様の方法で試作電池を作製し、充放電試験,示差走査熱量測定および直流抵抗測定を行った。
[Comparative Example 11]
Comparative Example 11 was the same as Example 1 except that the produced positive electrode active materials 1-1, 2-1, and 3-9 were mixed at a mass ratio of 30:40:30 and used as the positive electrode active material. Prototype batteries were prepared in the same manner, and charge / discharge tests, differential scanning calorimetry, and DC resistance measurements were performed.

Figure 0005412298
Figure 0005412298

Figure 0005412298
Figure 0005412298

Figure 0005412298
Figure 0005412298

表6に示した結果を考察すると、実施例1,2,4〜6,8〜10における放電容量は、比較例1より大きい値を示すことが明らかになった。   Examination of the results shown in Table 6 revealed that the discharge capacities in Examples 1, 2, 4 to 6, 8 to 10 were larger than Comparative Example 1.

また、実施例3,7における放電容量は、比較例2より大きい値を示すことが明らかになった。   Moreover, it became clear that the discharge capacities in Examples 3 and 7 were larger than Comparative Example 2.

放電容量が大きい値を示したのは、それぞれの実施例で選択した正極材料は、遷移金属層中に存在するNi含有量が多いためだと考えられる。   The reason why the discharge capacity shows a large value is considered that the positive electrode material selected in each example has a large amount of Ni present in the transition metal layer.

また、実施例1,2,4〜6,8〜10における最大発熱値および発熱量は、比較例1より小さい値を示すことが明らかになった。   In addition, it has been clarified that the maximum heat generation value and the heat generation amount in Examples 1, 2, 4 to 6, 8 to 10 are smaller than those of Comparative Example 1.

また、実施例3,7でも、比較例2より小さい値を示すことが明らかになった。   In addition, in Examples 3 and 7, it was revealed that the value was smaller than Comparative Example 2.

最大発熱値が減少したのは、それぞれの組成を持つ活物質の混合比が全て50%より低いためである。   The maximum exothermic value decreased because the mixing ratio of the active materials having the respective compositions was all lower than 50%.

また、発熱量の低減は、昇温した際に正極活物質から放出される酸素量を低減する効果を持つMo,Wを添加したためである。   Moreover, the amount of generated heat is reduced because Mo and W having an effect of reducing the amount of oxygen released from the positive electrode active material when the temperature is raised are added.

また、抵抗は上昇したものの上昇率は10%以下であった。   Moreover, although the resistance increased, the rate of increase was 10% or less.

一方、比較例4,6では、比較例1と比べ、容量増加および最大発熱値,発熱量低減を両立することはできなかった。   On the other hand, in Comparative Examples 4 and 6, compared with Comparative Example 1, it was not possible to achieve both capacity increase, maximum heat generation value, and heat generation amount reduction.

比較例3,5,7では、比較例2と比べ、容量増加および最大発熱値,発熱量低減を両立することはできなかった。   In Comparative Examples 3, 5, and 7, compared with Comparative Example 2, it was impossible to achieve both an increase in capacity, a maximum heat generation value, and a reduction in heat generation.

比較例4では、第二の正極活物質中にAlが8%存在するため、容量が低下した。   In Comparative Example 4, the capacity was reduced because 8% Al was present in the second positive electrode active material.

比較例6では、第三の正極活物質中にMoが8%存在するため、容量が低下した。   In Comparative Example 6, the capacity decreased because 8% of Mo was present in the third positive electrode active material.

比較例3では、第一の正極活物質中のNi含有量が50%と少ないため、容量が低下した。   In Comparative Example 3, the capacity was reduced because the Ni content in the first positive electrode active material was as low as 50%.

比較例5では、第二の正極活物質中のNi含有量が60%と少ないため、容量が低下した。   In Comparative Example 5, the capacity was reduced because the Ni content in the second positive electrode active material was as low as 60%.

比較例7では、第三の正極活物質中のNi含有量が60%と少ないため、容量が低下した。   In Comparative Example 7, the capacity was lowered because the Ni content in the third positive electrode active material was as low as 60%.

表7に示した結果を考察すると、実施例12〜14、16、17における放電容量は、比較例1より大きい値を示すことが明らかになった。 Examination of the results shown in Table 7 revealed that the discharge capacities in Examples 12 to 14 , 16 and 17 were larger than Comparative Example 1.

放電容量が大きい値を示したのは、それぞれの実施例で選択した正極材料は、遷移金属層中に存在するNi含有量が多いためだと考えられる。   The reason why the discharge capacity shows a large value is considered that the positive electrode material selected in each example has a large amount of Ni present in the transition metal layer.

また、実施例12〜14における最大発熱値および発熱量は、比較例1より小さい値を示すことが明らかになった。   Moreover, it became clear that the maximum heat generation value and the heat generation amount in Examples 12 to 14 are smaller than those of Comparative Example 1.

最大発熱値が減少したのは、それぞれの組成を持つ活物質の混合比が全て50%より低いためである。   The maximum exothermic value decreased because the mixing ratio of the active materials having the respective compositions was all lower than 50%.

また、発熱量が低減したのは、昇温した際に正極活物質から放出される酸素量を低減する効果を持つMo,Wを添加したためである。   The reason why the calorific value is reduced is that Mo and W having an effect of reducing the amount of oxygen released from the positive electrode active material when the temperature is raised are added.

また、抵抗は上昇したものの上昇率は10%以下であった。   Moreover, although the resistance increased, the rate of increase was 10% or less.

一方、比較例10では、比較例1と比べ、容量増加および発熱量低減を両立することはできなかった。 On the other hand, in Comparative Example 10 , compared with Comparative Example 1, it was not possible to achieve both an increase in capacity and a reduction in heat generation.

実施例16、17では第一,第二の正極活物質の混合比が50%であったため、最大発熱値が大きくなった。 In Examples 16 and 17 , since the mixing ratio of the first and second positive electrode active materials was 50%, the maximum heat generation value increased.

また、比較例10では第三の正極活物質の混合比が50%であったため、放電容量が低下した。   In Comparative Example 10, since the mixing ratio of the third positive electrode active material was 50%, the discharge capacity was reduced.

表8に示した結果を考察すると、実施例15における放電容量は、比較例1より大きい値を示すことが明らかになった。   Examination of the results shown in Table 8 revealed that the discharge capacity in Example 15 was larger than that in Comparative Example 1.

これは、実施例15で選択した正極活物質は、遷移金属層中に存在するNi含有量が多いためだと考えられる。   This is presumably because the positive electrode active material selected in Example 15 has a large amount of Ni present in the transition metal layer.

また、実施例15における最大発熱値および発熱量は、比較例1より小さい値を示すことが明らかになった。   Further, it was revealed that the maximum heat generation value and the heat generation amount in Example 15 were smaller than those in Comparative Example 1.

最大発熱値が減少したのは、それぞれの組成を持つ活物質の混合比が全て50%より低いためである。   The maximum exothermic value decreased because the mixing ratio of the active materials having the respective compositions was all lower than 50%.

また、発熱量が低減したのは、昇温した際に正極活物質から放出される酸素量を低減する効果を持つMo,Wを添加したためである。   The reason why the calorific value is reduced is that Mo and W having an effect of reducing the amount of oxygen released from the positive electrode active material when the temperature is raised are added.

また、抵抗は上昇したものの上昇率は10%以下であった。   Moreover, although the resistance increased, the rate of increase was 10% or less.

一方、比較例11では、比較例1と比べ、容量増加、発熱量低減,抵抗増加の抑制を両立することはできなかった。   On the other hand, in Comparative Example 11, compared with Comparative Example 1, it was not possible to achieve both an increase in capacity, a reduction in heat generation, and a suppression of increase in resistance.

比較例11では抵抗が高い第三の正極活物質の二次粒子径が大きいため抵抗が上昇したため、混合した正極材料としても抵抗上昇率は13.1%と大きい値を示した。   In Comparative Example 11, the resistance increased due to the large secondary particle diameter of the third positive electrode active material having high resistance. Therefore, the resistance increase rate of the mixed positive electrode material was as large as 13.1%.

また、図1に、単一の遷移金属酸化物からなる正極活物質と、三種類以上の遷移金属酸化物からなる正極活物質とにおいて、充電状態の正極と電解液とを共に昇温した際のDSC測定結果を示す。   FIG. 1 shows a case where both the charged positive electrode and the electrolyte solution are heated in a positive electrode active material made of a single transition metal oxide and a positive electrode active material made of three or more kinds of transition metal oxides. The DSC measurement result of is shown.

図1において、実施例1の正極材の示差走査熱量測定の結果1と比較例1の正極材の示差走査熱量測定の結果2とを比較すると明らかなように、電池が昇温したときに起こる正極と電解液の発熱温度領域を広げられることがわかる。   In FIG. 1, when the result 1 of the differential scanning calorimetry of the positive electrode material of Example 1 is compared with the result 2 of the differential scanning calorimetry of the positive electrode material of Comparative Example 1, it occurs when the battery is heated. It can be seen that the heating temperature range of the positive electrode and the electrolyte can be expanded.

また、図2にリチウムイオン二次電池を示す断面図を示す。   FIG. 2 is a cross-sectional view showing a lithium ion secondary battery.

図2に示すリチウムイオン二次電池は、集電体の両面に正極材料を塗布した正極板3と集電体の両面に負極材料を塗布した負極板4とをセパレータ5を介して形成し、これらを捲回して形成する。   The lithium ion secondary battery shown in FIG. 2 has a positive electrode plate 3 coated with a positive electrode material on both sides of a current collector and a negative electrode plate 4 coated with a negative electrode material on both sides of the current collector through a separator 5. These are formed by winding.

こうした捲回体を電池缶6に挿入する。そして、負極板4を、負極リード片7を介して電池缶6に電気的に接続する。   Such a wound body is inserted into the battery can 6. Then, the negative electrode plate 4 is electrically connected to the battery can 6 via the negative electrode lead piece 7.

また、電池缶6に密閉蓋部8を、パッキン9を介して形成する。そして、正極板3を、正極リード片10を介して密閉蓋部8に電気的に接続する。   Further, the sealing lid 8 is formed on the battery can 6 via the packing 9. Then, the positive electrode plate 3 is electrically connected to the sealing lid portion 8 through the positive electrode lead piece 10.

なお、捲回体は絶縁板11によって絶縁される。   The wound body is insulated by the insulating plate 11.

こうした、リチウムイオン二次電池の正極材料に本実施形態で示した材料を用いることにより、プラグインハイブリッド自動車用電池に要求される高容量,高出力かつ高安全を達成することができるリチウムイオン二次電池用正極材料を提供することができる。   By using the material shown in this embodiment as the positive electrode material of the lithium ion secondary battery, the lithium ion secondary battery that can achieve the high capacity, high output, and high safety required for the plug-in hybrid vehicle battery. A positive electrode material for a secondary battery can be provided.

本発明は、特に、リチウムイオン二次電池の正極材料として有望であり、プラグインハイブリッド自動車用のリチウムイオン二次電池に利用可能である。   The present invention is particularly promising as a positive electrode material for lithium ion secondary batteries, and can be used for lithium ion secondary batteries for plug-in hybrid vehicles.

1 実施例1の正極材の示差走査熱量測定の結果
2 比較例1の正極材の示差走査熱量測定の結果
3 正極板
4 負極板
5 セパレータ
6 電池缶
7 負極リード片
8 密閉蓋部
9 パッキン
10 正極リード片
11 絶縁板
1 Results of Differential Scanning Calorimetry of Positive Electrode Material of Example 1 2 Results of Differential Scanning Calorimetry of Positive Electrode Material of Comparative Example 1 3 Positive Electrode Plate 4 Negative Electrode Plate 5 Separator 6 Battery Can 7 Negative Electrode Lead Piece 8 Sealing Lid 9 Packing 10 Positive electrode lead piece 11 Insulating plate

Claims (8)

組成式Lix1Nia1Mnb1Coc12
(0.2≦x1≦1.2,0.6≦a1≦0.9,0.05≦b1≦0.3,0.05≦c1≦0.3,a1+b1+c1=1.0)で表される第一の正極活物質と、
組成式Lix2Nia2Mnb2Coc2d22
(0.2≦x2≦1.2,0.7≦a2≦0.9,0.05≦b2<0.25,0.05≦c2<0.25,M=Al,Mg,0<d2≦0.06,a2+b2+c2+d2=1.0)で表される第二の正極活物質と、
組成式Lix3Nia3Mnb3Coc3Md32
(0.2≦x3≦1.2,0.7≦a3≦0.9,0.05≦b3<0.25,0.05≦c3<0.25,M=Mo,W,0<d3≦0.06,a3+b3+c3+d3=1.0)で表される第三の正極活物質と、
炭素系導電剤と、
を含み、
前記第一の正極活物質、前記第二の正極活物質、および前記第三の正極活物質は、それぞれ前記炭素系導電剤と複合化されており、
前記第三の正極活物質の質量比は、前記第一の正極活物質と前記第二の正極活物質と前記第三の正極活物質の質量の合計を100とすると、40以下であり、
前記第三の正極活物質の平均二次粒径は、7.08μm以下であり、
前記第一の正極活物質および前記第二の正極活物質の平均二次粒径は、前記第三の正極活物質の平均二次粒径よりも大きい、
ことを特徴とするリチウムイオン二次電池用正極材料。
Composition formula Li x1 Ni a1 Mn b1 Co c1 O 2
(0.2 ≦ x1 ≦ 1.2, 0.6 ≦ a1 ≦ 0.9, 0.05 ≦ b1 ≦ 0.3, 0.05 ≦ c1 ≦ 0.3, a1 + b1 + c1 = 1.0) A first positive electrode active material,
Composition formula Li x2 Ni a2 Mn b2 Co c2 M d2 O 2
(0.2 ≦ x2 ≦ 1.2, 0.7 ≦ a2 ≦ 0.9, 0.05 ≦ b2 <0.25, 0.05 ≦ c2 <0.25, M = Al, Mg, 0 <d2 ≦ 0.06, a2 + b2 + c2 + d2 = 1.0),
Composition formula Li x3 Ni a3 Mn b3 Co c3 Md 3 O 2
(0.2 ≦ x3 ≦ 1.2, 0.7 ≦ a3 ≦ 0.9, 0.05 ≦ b3 <0.25, 0.05 ≦ c3 <0.25, M = Mo, W, 0 <d3 ≦ 0.06, a3 + b3 + c3 + d3 = 1.0), a third positive electrode active material,
A carbon-based conductive agent;
Including
The first positive electrode active material, the second positive electrode active material, and the third positive electrode active material are each compounded with the carbon-based conductive agent,
The mass ratio of the third positive electrode active material is 40 or less, where 100 is the total mass of the first positive electrode active material, the second positive electrode active material, and the third positive electrode active material,
The average secondary particle size of the third positive electrode active material is 7.08 μm or less,
The average secondary particle size of the first positive electrode active material and the second positive electrode active material is larger than the average secondary particle size of the third positive electrode active material,
A positive electrode material for a lithium ion secondary battery.
請求項1において、
前記第三の正極活物質の平均二次粒径は、5.98μm〜6.86μmである、
ことを特徴とするリチウムイオン二次電池用正極材料。
In claim 1,
The average secondary particle size of the third positive electrode active material is 5.98 μm to 6.86 μm.
A positive electrode material for a lithium ion secondary battery.
請求項1において、
前記第一の正極活物質の平均二次粒径は、15.3μm〜16.7μmであり、
前記第二の正極活物質の平均二次粒径は、13.2μm〜13.8μmである、
ことを特徴とするリチウムイオン二次電池用正極材料。
In claim 1,
The average secondary particle size of the first positive electrode active material is 15.3 μm to 16.7 μm,
The average secondary particle size of the second positive electrode active material is 13.2 μm to 13.8 μm.
A positive electrode material for a lithium ion secondary battery.
請求項1において、
前記第一の正極活物質と前記第二の正極活物質と前記第三の正極活物質の質量比は、R1:R2:R3(ただし、20≦R1≦40、20≦R2≦40、20≦R3≦40、およびR1+R2+R3=100)である、
ことを特徴とするリチウムイオン二次電池用正極材料。
In claim 1,
The mass ratio of the first positive electrode active material, the second positive electrode active material, and the third positive electrode active material is R1: R2: R3 (where 20 ≦ R1 ≦ 40, 20 ≦ R2 ≦ 40, 20 ≦ R3 ≦ 40, and R1 + R2 + R3 = 100).
A positive electrode material for a lithium ion secondary battery.
請求項1において、
前記第三の正極活物質の平均二次粒径は、前記第一の正極活物質の平均二次粒径の二分の一以下である、
ことを特徴とするリチウムイオン二次電池用正極材料。
In claim 1,
The average secondary particle size of the third positive electrode active material is half or less than the average secondary particle size of the first positive electrode active material.
A positive electrode material for a lithium ion secondary battery.
請求項1において、
前記第一の正極活物質のNi含有量a1は、0.7≦a1≦0.9であり、
前記第二の正極活物質のNi含有量a2は、0.8≦a2≦0.9であり、
前記第三の正極活物質のNi含有量a3は、0.8≦a3≦0.9である、
ことを特徴とするリチウムイオン二次電池用正極材料。
In claim 1,
The Ni content a1 of the first positive electrode active material is 0.7 ≦ a1 ≦ 0.9,
The Ni content a2 of the second positive electrode active material is 0.8 ≦ a2 ≦ 0.9,
The Ni content a3 of the third positive electrode active material is 0.8 ≦ a3 ≦ 0.9.
A positive electrode material for a lithium ion secondary battery.
請求項1において、
前記リチウムイオン二次電池用正極材料に含まれる前記第一の正極活物質、前記第二の正極活物質、および前記第三の正極活物質は、全ての正極活物質に占める割合が、それぞれ質量百分率で50%より低い、
ことを特徴とするリチウムイオン二次電池用正極材料。
In claim 1,
The ratio of the first positive electrode active material, the second positive electrode active material, and the third positive electrode active material contained in the lithium ion secondary battery positive electrode material to all the positive electrode active materials is mass. Less than 50% in percentage,
A positive electrode material for a lithium ion secondary battery.
リチウムを吸蔵放出可能な正極と、リチウムを吸蔵放出可能な負極とが、非水電解質およびセパレータを介して配置されることで形成されるリチウムイオン二次電池において、
前記正極が、請求項1に記載のリチウムイオン二次電池用正極材料を有することを特徴とするリチウムイオン二次電池。
In a lithium ion secondary battery formed by arranging a positive electrode capable of occluding and releasing lithium and a negative electrode capable of occluding and releasing lithium via a nonaqueous electrolyte and a separator,
The said positive electrode has the positive electrode material for lithium ion secondary batteries of Claim 1, The lithium ion secondary battery characterized by the above-mentioned.
JP2010003556A 2010-01-12 2010-01-12 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same Expired - Fee Related JP5412298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003556A JP5412298B2 (en) 2010-01-12 2010-01-12 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003556A JP5412298B2 (en) 2010-01-12 2010-01-12 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2011146132A JP2011146132A (en) 2011-07-28
JP5412298B2 true JP5412298B2 (en) 2014-02-12

Family

ID=44460842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003556A Expired - Fee Related JP5412298B2 (en) 2010-01-12 2010-01-12 Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5412298B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156713B2 (en) * 2012-03-07 2017-07-05 日産自動車株式会社 Positive electrode active material, positive electrode for electric device and electric device
JP6112380B2 (en) * 2012-03-07 2017-04-12 日産自動車株式会社 Positive electrode active material, positive electrode for electric device and electric device
JP5999307B2 (en) * 2012-03-07 2016-09-28 日産自動車株式会社 Positive electrode active material, positive electrode for electric device and electric device
KR101557549B1 (en) 2012-05-31 2015-10-07 주식회사 엘지화학 Lithium secondary battery
JP5978024B2 (en) * 2012-06-21 2016-08-24 日立マクセル株式会社 Non-aqueous secondary battery
JP2014049372A (en) * 2012-09-03 2014-03-17 Hitachi Maxell Ltd Lithium ion secondary battery
US10998542B2 (en) 2017-01-20 2021-05-04 Envision Aesc Energy Devices Ltd. Positive electrode active material, positive electrode, and lithium ion secondary battery
JP6368022B1 (en) 2017-05-31 2018-08-01 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN108155377B (en) * 2018-02-02 2021-03-26 四川大学 Ternary material battery positive electrode and preparation method thereof and lithium ion battery
US20230327079A1 (en) * 2020-08-25 2023-10-12 Nichia Corporation Positive electrode active material and positive electrode for nonaqueous electrolyte secondary battery
WO2023068221A1 (en) * 2021-10-20 2023-04-27 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3281829B2 (en) * 1997-01-16 2002-05-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP3869605B2 (en) * 1999-03-01 2007-01-17 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2002042816A (en) * 2000-07-25 2002-02-08 Kee:Kk High-capacity non-aqueous secondary battery
KR20020070495A (en) * 2000-11-20 2002-09-09 쥬오 덴끼 고교 가부시키가이샤 Nonaqueous electrolyte secondary cell and positive electrode active material
JP4404179B2 (en) * 2001-12-06 2010-01-27 ソニー株式会社 Positive electrode active material and secondary battery using the same
US9666862B2 (en) * 2005-02-23 2017-05-30 Lg Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
JP2006252895A (en) * 2005-03-09 2006-09-21 Sony Corp Battery
JP4945967B2 (en) * 2005-09-02 2012-06-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP5135764B2 (en) * 2006-11-02 2013-02-06 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP5181482B2 (en) * 2007-01-26 2013-04-10 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2011146132A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5389620B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5412298B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5421865B2 (en) Lithium ion secondary battery
US20110033750A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPWO2013002162A1 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5615769B2 (en) Lithium secondary battery
JP5412453B2 (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP5475611B2 (en) Lithium ion secondary battery
CN109792048B (en) Positive electrode for nonaqueous electrolyte secondary battery
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP3615196B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP5629609B2 (en) Lithium secondary battery
WO2019142744A1 (en) Non-aqueous electrolyte secondary battery
JP5658058B2 (en) Lithium ion secondary battery
JP2015222696A (en) Positive electrode active material for lithium ion secondary batteries and method for manufacturing the same
JP7325050B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5828754B2 (en) Positive electrode material and lithium ion secondary battery
WO2023189507A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2024070220A1 (en) Non-aqueous electrolyte secondary battery
WO2024062848A1 (en) Secondary battery positive electrode active material and secondary battery
JP2016058334A (en) Positive electrode material for lithium secondary battery
JP2016039117A (en) Positive electrode active material for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and on-vehicle nonaqueous secondary battery module
JP2002216758A (en) Lithium ion secondary battery, positive electrode active material and sheath for synthesizing compound oxide containing lithium
CN114303262A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

LAPS Cancellation because of no payment of annual fees