JP2014066623A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2014066623A
JP2014066623A JP2012212444A JP2012212444A JP2014066623A JP 2014066623 A JP2014066623 A JP 2014066623A JP 2012212444 A JP2012212444 A JP 2012212444A JP 2012212444 A JP2012212444 A JP 2012212444A JP 2014066623 A JP2014066623 A JP 2014066623A
Authority
JP
Japan
Prior art keywords
magnetoelectric conversion
current
conductive member
current sensor
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012212444A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
高橋  彰
Go Nojima
剛 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Green Devices Co Ltd
Original Assignee
Alps Green Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Green Devices Co Ltd filed Critical Alps Green Devices Co Ltd
Priority to JP2012212444A priority Critical patent/JP2014066623A/en
Publication of JP2014066623A publication Critical patent/JP2014066623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current sensor that suppresses variations in current measurement accuracy.SOLUTION: A current sensor comprises: a conductive member (11) that has a pair of main surfaces (A1, B1) and through which a current (I1) to be measured flows; and magnetoelectric transducers (121, 122) disposed so that an induction magnetic field (H1) generated by the current to be measured flowing in the conductive member can be detected. The conductive member has grooves (D1a, D1b) forming open areas (O1a, O1b) on the main surfaces. The magnetoelectric transducers are disposed in positions away from the conductive member and in areas overlapping with the open areas viewed from a direction orthogonal to the main surfaces.

Description

本発明は、被測定電流によって生じる誘導磁界に基づいて電流値を算出可能な電流センサに関する。   The present invention relates to a current sensor capable of calculating a current value based on an induced magnetic field generated by a current to be measured.

電気自動車や太陽電池などの分野では、被測定電流によって生じる誘導磁界に基づいて非接触で電流値を測定可能な電流センサが用いられている。この電流センサは、被測定電流によって生じる誘導磁界を検出するための磁電変換素子を備えており、磁電変換素子で検出される磁界強度を基に被測定電流の電流値を算出する。磁電変換素子としては、例えば、ホール効果を利用して磁界強度を電気信号に変換するホール素子や、磁界による電気抵抗値の変化を利用する磁気抵抗効果素子などが用いられる。   In fields such as electric vehicles and solar cells, current sensors that can measure a current value in a non-contact manner based on an induced magnetic field generated by a current to be measured are used. This current sensor includes a magnetoelectric conversion element for detecting an induced magnetic field generated by the current to be measured, and calculates the current value of the current to be measured based on the magnetic field strength detected by the magnetoelectric conversion element. As the magnetoelectric conversion element, for example, a Hall element that converts a magnetic field intensity into an electric signal using the Hall effect, a magnetoresistance effect element that uses a change in electric resistance value due to a magnetic field, or the like is used.

このような電流センサとして、被測定電流の流れる導電部材に凹部を設け、当該凹部内に磁電変換素子を収納させたものが知られている(例えば、特許文献1参照)。この電流センサは、被測定電流により生じる誘導磁界の磁界強度を凹部内に配置される磁電変換素子で検出して電流値を算出する。このように磁電変換素子を導電部材の凹部内に配置することで、電流センサは小型化される。   As such a current sensor, one in which a concave portion is provided in a conductive member through which a current to be measured flows and a magnetoelectric conversion element is accommodated in the concave portion is known (for example, see Patent Document 1). This current sensor calculates the current value by detecting the magnetic field strength of the induced magnetic field generated by the current to be measured by the magnetoelectric transducer arranged in the recess. By arranging the magnetoelectric conversion element in the recess of the conductive member in this way, the current sensor is reduced in size.

特開2012−78232号公報JP 2012-78232 A

ところで、上述のような非接触型の電流センサでは、被測定電流によって生じる誘導磁界の変化を磁電変換素子で検出するため、被測定電流の流れる導電部材に対して磁電変換素子の取り付け位置が僅かにずれるだけで電流測定精度は大きくばらついてしまう。   By the way, in the non-contact type current sensor as described above, since the change of the induced magnetic field caused by the current to be measured is detected by the magnetoelectric conversion element, the attachment position of the magnetoelectric conversion element is slightly relative to the conductive member through which the current to be measured flows. The current measurement accuracy varies greatly only by shifting.

本発明はかかる点に鑑みてなされたものであり、電流測定精度のばらつきを抑制した電流センサを提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the current sensor which suppressed the dispersion | variation in the current measurement precision.

本発明の電流センサは、一対の主表面を有し、被測定電流が流れる導電部材と、前記導電部材を流れる被測定電流により生じる誘導磁界を検出可能に配置された磁電変換素子と、を備え、前記導電部材は、前記主表面に開口領域を形成する溝を有し、前記磁電変換素子は、前記溝の外側の領域であって、前記主表面に垂直な方向から見て前記開口領域と重なる領域に配置されることを特徴とする。   The current sensor of the present invention includes a pair of main surfaces, a conductive member through which a current to be measured flows, and a magnetoelectric conversion element arranged to detect an induced magnetic field generated by the current to be measured flowing through the conductive member. The conductive member has a groove that forms an opening region on the main surface, and the magnetoelectric transducer is a region outside the groove, and the opening region when viewed from a direction perpendicular to the main surface. It is characterized by being arranged in an overlapping region.

この構成によれば、導電部材は、主表面に開口領域を形成する溝を有するので、溝の外側の領域であって、主表面に垂直な方向から見て溝の開口領域と重なる領域で、磁電変換素子が検出する誘導磁界の強度を主表面と平行な方向で略一定にすることが可能である。このため、溝の外側の領域であって、主表面に垂直な方向から見て溝の開口領域と重なる領域に磁電変換素子を配置すれば、磁電変換素子の取り付け位置が僅かにずれても電流測定精度は大きくばらつかずに済む。つまり、磁電変換素子の取り付け位置への要求が緩和されるので、電流センサの電流測定精度のばらつきを抑制することが可能である。   According to this configuration, since the conductive member has the groove that forms the opening region on the main surface, the conductive member is a region outside the groove and overlaps with the opening region of the groove when viewed from the direction perpendicular to the main surface. It is possible to make the intensity of the induced magnetic field detected by the magnetoelectric conversion element substantially constant in the direction parallel to the main surface. For this reason, if the magnetoelectric conversion element is arranged in an area outside the groove and overlapping the opening area of the groove when viewed from the direction perpendicular to the main surface, the current can be applied even if the attachment position of the magnetoelectric conversion element is slightly shifted. Measurement accuracy does not vary greatly. That is, since the requirement for the attachment position of the magnetoelectric transducer is relaxed, it is possible to suppress variations in the current measurement accuracy of the current sensor.

本発明の電流センサにおいて、前記磁電変換素子は、前記磁電変換素子が検出する前記誘導磁界の強度が前記主表面に平行な方向で略一定となる領域に配置されることが好ましい。この構成によれば、磁電変換素子が検出する誘導磁界の強度が略一定となる領域に磁電変換素子を配置させることで、磁電変換素子の取り付け位置が僅かにずれても電流測定精度は大きくばらつかずに済む。つまり、磁電変換素子の取り付け位置への要求が緩和されるので、電流センサの電流測定精度のばらつきを抑制することが可能である。   In the current sensor according to the aspect of the invention, it is preferable that the magnetoelectric conversion element is disposed in a region where the intensity of the induction magnetic field detected by the magnetoelectric conversion element is substantially constant in a direction parallel to the main surface. According to this configuration, by arranging the magnetoelectric conversion element in a region where the strength of the induced magnetic field detected by the magnetoelectric conversion element is substantially constant, the current measurement accuracy varies greatly even if the attachment position of the magnetoelectric conversion element is slightly shifted. No need to stick. That is, since the requirement for the attachment position of the magnetoelectric transducer is relaxed, it is possible to suppress variations in the current measurement accuracy of the current sensor.

本発明の電流センサにおいて、前記磁電変換素子は、前記溝の底から前記主表面までの距離より、前記溝の底から前記磁電変換素子までの距離が大きくなる領域に配置されることが好ましい。この構成によれば、溝の底から主表面までの距離より、溝の底から磁電変換素子までの距離が大きくなる領域において、磁電変換素子が検出する誘導磁界の強度を略一定にできるので、磁電変換素子の取り付け位置が僅かにずれても電流測定精度は大きくばらつかずに済む。つまり、磁電変換素子の取り付け位置への要求が緩和されるので、電流測定精度のばらつきを抑制できる。   In the current sensor according to the aspect of the invention, it is preferable that the magnetoelectric conversion element is disposed in a region where a distance from the bottom of the groove to the magnetoelectric conversion element is larger than a distance from the bottom of the groove to the main surface. According to this configuration, in the region where the distance from the bottom of the groove to the magnetoelectric conversion element is larger than the distance from the bottom of the groove to the main surface, the strength of the induced magnetic field detected by the magnetoelectric conversion element can be made substantially constant. Even if the mounting position of the magnetoelectric transducer is slightly shifted, the current measurement accuracy does not vary greatly. That is, since the requirement for the attachment position of the magnetoelectric conversion element is relaxed, variation in current measurement accuracy can be suppressed.

本発明の電流センサにおいて、前記一対の主表面に対応して一対の前記磁電変換素子が配置され、前記一対の前記磁電変換素子の出力を演算する演算回路を備えても良い。この構成によれば、一対の磁電変換素子の出力を演算回路で演算することにより、外乱磁界の影響を相殺して電流測定精度を高めることができる。   In the current sensor of the present invention, a pair of the magnetoelectric conversion elements may be disposed corresponding to the pair of main surfaces, and an arithmetic circuit that calculates outputs of the pair of magnetoelectric conversion elements may be provided. According to this configuration, by calculating the outputs of the pair of magnetoelectric transducers with the arithmetic circuit, it is possible to cancel the influence of the disturbance magnetic field and increase the current measurement accuracy.

本発明の電流センサにおいて、前記溝は、前記被測定電流の流れる方向に直交する面内において矩形状の断面形状を有しても良い。また、前記溝は、前記被測定電流の流れる方向に直交する面内において台形状の断面形状を有しても良い。   In the current sensor of the present invention, the groove may have a rectangular cross-sectional shape in a plane orthogonal to the direction in which the current to be measured flows. The groove may have a trapezoidal cross-sectional shape in a plane orthogonal to the direction in which the current to be measured flows.

本発明によれば、電流測定精度のばらつきを抑制した電流センサが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the current sensor which suppressed the dispersion | variation in current measurement accuracy is provided.

実施の形態1に係る電流センサの構成例を示す模式図である。4 is a schematic diagram illustrating a configuration example of a current sensor according to Embodiment 1. FIG. 実施の形態1に係る電流センサの回路構成を示すブロック図である。2 is a block diagram showing a circuit configuration of a current sensor according to Embodiment 1. FIG. 実施の形態1に係る電流センサの導電部材の周囲に発生する誘導磁界を計算するためのシミュレーションモデルを示す図である。6 is a diagram illustrating a simulation model for calculating an induced magnetic field generated around a conductive member of the current sensor according to Embodiment 1. FIG. 実施の形態1に係る電流センサのシミュレーション結果を示すグラフである。6 is a graph showing a simulation result of the current sensor according to the first embodiment. 実施の形態1に係る電流センサの正規化(規格化)されたシミュレーション結果を示すグラフである。4 is a graph showing a normalized (normalized) simulation result of the current sensor according to the first embodiment. 実施の形態1に係る電流センサとは異なる電流センサのシミュレーション結果を示すグラフである。6 is a graph showing a simulation result of a current sensor different from the current sensor according to the first embodiment. 実施の形態2に係る電流センサの構成例を示す模式図である。6 is a schematic diagram illustrating a configuration example of a current sensor according to Embodiment 2. FIG. 実施の形態2に係る電流センサの導電部材の周囲に発生する誘導磁界を計算するためのシミュレーションモデルを示す図である。It is a figure which shows the simulation model for calculating the induction magnetic field which generate | occur | produces around the electroconductive member of the current sensor which concerns on Embodiment 2. FIG. 実施の形態2に係る電流センサのシミュレーション結果を示すグラフである。10 is a graph showing a simulation result of the current sensor according to the second embodiment. 代表的な電流センサの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a typical current sensor. 代表的な電流センサの導電部材の周囲に発生する誘導磁界を計算するためのシミュレーションモデルを示す図である。It is a figure which shows the simulation model for calculating the induction magnetic field which generate | occur | produces around the electroconductive member of a typical current sensor. 代表的な電流センサのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of a typical current sensor. 代表的な電流センサの正規化(規格化)されたシミュレーション結果を示すグラフである。It is a graph which shows the simulation result by which the typical current sensor was normalized (normalized).

図10を参照して、代表的な電流センサの構成例を説明する。図10は、電流センサの構成例を示す模式図であり、図10Bは、図10AのXB−XB矢視断面を示している。図10に示す電流センサ3は、直方体状の導電部材31と、導電部材31を挟むように配置された一組の磁電変換素子321,322とを備えている。磁電変換素子321,322は、導電部材31の長手方向に垂直で、向きの等しい感度軸S3a,S3bを有している。   A configuration example of a typical current sensor will be described with reference to FIG. FIG. 10 is a schematic diagram illustrating a configuration example of a current sensor, and FIG. 10B illustrates a cross section taken along the arrow XB-XB in FIG. 10A. The current sensor 3 shown in FIG. 10 includes a rectangular parallelepiped conductive member 31 and a pair of magnetoelectric conversion elements 321 and 322 arranged so as to sandwich the conductive member 31. The magnetoelectric conversion elements 321 and 322 have sensitivity axes S3a and S3b that are perpendicular to the longitudinal direction of the conductive member 31 and have the same orientation.

この電流センサ3の導電部材31に被測定電流I3が流れると、導電部材31の周囲には誘導磁界H3が発生する。磁電変換素子321,322は、向きの等しい感度軸S3a,S3bを有しているので、逆向きに作用する誘導磁界H3の影響を受けると逆極性の一対の出力を生じる。磁電変換素子321,322の一対の出力は、磁電変換素子321,322に接続される演算回路(不図示)で差動演算され、電流センサ3の出力として後段に送られる。   When the measured current I3 flows through the conductive member 31 of the current sensor 3, an induction magnetic field H3 is generated around the conductive member 31. Since the magnetoelectric conversion elements 321 and 322 have sensitivity axes S3a and S3b having the same orientation, a pair of outputs having opposite polarities is generated when affected by the induced magnetic field H3 acting in the opposite direction. A pair of outputs of the magnetoelectric conversion elements 321 and 322 are differentially calculated by an arithmetic circuit (not shown) connected to the magnetoelectric conversion elements 321 and 322 and sent to the subsequent stage as an output of the current sensor 3.

図11は、図10に示す導電部材31の周囲に発生する誘導磁界H3を計算するためのシミュレーションモデルを示す図である。ここでは、図11に示すように、幅が10mmで厚さが2mmの導電部材31を用いる場合を想定してシミュレーションを行った。また、このシミュレーションでは、磁電変換素子321での検出が想定される磁界を計算した。具体的には、導電部材31の厚さ方向の中央から4.5mm離れた位置(図11のX軸に相当する位置)での磁界強度の感度軸S3a方向の成分(導電部材31の幅方向の成分)を計算した。   FIG. 11 is a diagram showing a simulation model for calculating the induced magnetic field H3 generated around the conductive member 31 shown in FIG. Here, as shown in FIG. 11, the simulation was performed on the assumption that a conductive member 31 having a width of 10 mm and a thickness of 2 mm was used. In this simulation, a magnetic field assumed to be detected by the magnetoelectric conversion element 321 was calculated. Specifically, the component (the width direction of the conductive member 31) in the sensitivity axis S3a direction of the magnetic field strength at a position 4.5 mm away from the center in the thickness direction of the conductive member 31 (a position corresponding to the X axis in FIG. 11). Component).

図12は、シミュレーション結果を示すグラフであり、図13は、正規化(規格化)されたシミュレーション結果を示すグラフである。図12及び図13に示すように、感度軸S3a方向における磁界強度は、導電部材31の幅方向の中央(X=5mm)において最大となり、幅方向の中央から外れると急激に小さくなる。このことは、磁電変換素子321の幅方向の取り付け精度が、電流センサ3の電流測定精度を大きく左右することを示唆している。   FIG. 12 is a graph showing a simulation result, and FIG. 13 is a graph showing a normalized (normalized) simulation result. As shown in FIGS. 12 and 13, the magnetic field strength in the sensitivity axis S3a direction becomes maximum at the center in the width direction (X = 5 mm) of the conductive member 31 and rapidly decreases when it deviates from the center in the width direction. This suggests that the mounting accuracy in the width direction of the magnetoelectric conversion element 321 greatly affects the current measurement accuracy of the current sensor 3.

本発明者らはこの点に着目し、電流センサの電流測定精度が、磁電変換素子の取り付け精度に大きく左右されないように感度軸方向の磁界強度を調節できれば、磁電変換素子の取り付け位置への要求を緩和して、電流測定精度のばらつきを抑制できると考えた。そして、この着想に基づき本発明を完成させた。   The present inventors pay attention to this point, and if the magnetic field strength in the sensitivity axis direction can be adjusted so that the current measurement accuracy of the current sensor is not greatly influenced by the mounting accuracy of the magnetoelectric conversion device, the requirement for the mounting position of the magnetoelectric conversion device is required. It was thought that the variation in current measurement accuracy could be suppressed. And based on this idea, this invention was completed.

すなわち、本発明の骨子は、所定の領域において感度軸方向の磁界強度が略一定となるように導電部材を形成し、その領域内に磁電変換素子を配置させることである。より具体的には、導電部材の主表面に開口領域を有する溝を形成し、磁電変換素子を、溝の外側の領域であって、主表面に垂直な方向から見て溝の開口領域と重なる領域に配置することである。これにより、磁電変換素子の取り付け位置が僅かにずれても、磁電変換素子が検出する誘導磁界の強度は殆ど変わらないので、電流測定精度のばらつきを抑制できる。以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。   That is, the gist of the present invention is to form a conductive member so that the magnetic field strength in the sensitivity axis direction is substantially constant in a predetermined region, and to dispose the magnetoelectric conversion element in that region. More specifically, a groove having an opening region is formed on the main surface of the conductive member, and the magnetoelectric transducer overlaps with the opening region of the groove when viewed from a direction perpendicular to the main surface, outside the groove. Is to place in the area. Thereby, even if the attachment position of the magnetoelectric conversion element is slightly shifted, the intensity of the induced magnetic field detected by the magnetoelectric conversion element is hardly changed, so that variation in current measurement accuracy can be suppressed. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(実施の形態1)
本実施の形態では、電流センサの第1の形態について説明する。図1は、本実施の形態に係る電流センサの構成例を示す模式図であり、図1Bは、図1AのIB−IB矢視断面を示している。図1に示す電流センサ1は、被測定電流I1の流れる導電部材11と、導電部材11を挟むように配置された一組の磁電変換素子121,122とを備えている。
(Embodiment 1)
In the present embodiment, a first form of the current sensor will be described. FIG. 1 is a schematic diagram illustrating a configuration example of a current sensor according to the present embodiment, and FIG. 1B illustrates a cross-sectional view taken along the line IB-IB in FIG. 1A. The current sensor 1 shown in FIG. 1 includes a conductive member 11 through which a current I1 to be measured flows, and a pair of magnetoelectric transducers 121 and 122 arranged so as to sandwich the conductive member 11.

導電部材11は、金属板を加工することで形成されており、被測定電流I1の流れる方向(図1においてY方向、以下、電流方向)に対して略平行な縦長の形状を有している。導電部材11において、幅方向(図1においてX方向)の中央領域111は外側領域112a,112bより薄く形成されている。これにより、導電部材11には、厚さ方向(図1においてZ方向)における一方側の主表面A1と他方側の主表面B1とにそれぞれ開口領域O1a,O1bを形成する溝D1a,D1bが設けられている。   The conductive member 11 is formed by processing a metal plate, and has a vertically long shape substantially parallel to the direction in which the current I1 to be measured flows (Y direction in FIG. 1; hereinafter, current direction). . In the conductive member 11, the central region 111 in the width direction (X direction in FIG. 1) is formed thinner than the outer regions 112a and 112b. As a result, the conductive member 11 is provided with grooves D1a and D1b for forming opening regions O1a and O1b in the main surface A1 on one side and the main surface B1 on the other side in the thickness direction (Z direction in FIG. 1), respectively. It has been.

導電部材11は、厚さ方向の中央を通る平面に対して対称な形状を有している。すなわち、溝D1a,D1bも対称な形状を有している。この溝D1a,D1bは、電流方向に沿って延びるように形成されており、電流方向に直交する面内において矩形状の断面形状を有している。導電部材11の周囲には、溝D1a,D1bに対応して、磁電変換素子121,122が配置されている。   The conductive member 11 has a symmetrical shape with respect to a plane passing through the center in the thickness direction. That is, the grooves D1a and D1b also have a symmetric shape. The grooves D1a and D1b are formed so as to extend along the current direction, and have a rectangular cross-sectional shape in a plane orthogonal to the current direction. Magnetoelectric conversion elements 121 and 122 are disposed around the conductive member 11 so as to correspond to the grooves D1a and D1b.

磁電変換素子121,122は、主表面A1,B1に垂直な方向(Z方向)から見て溝D1a,D1bの開口領域O1a,O1bと重なるように配置されている(図1A)。少なくとも、磁電変換素子121,122において磁界に感度を有する検出部(不図示)は、主表面A1,B1に垂直な方向から見て開口領域O1a,O1b(幅w1)の内側に位置付けられている。   The magnetoelectric conversion elements 121 and 122 are arranged so as to overlap the opening regions O1a and O1b of the grooves D1a and D1b when viewed from the direction (Z direction) perpendicular to the main surfaces A1 and B1 (FIG. 1A). At least the detection units (not shown) having sensitivity to the magnetic field in the magnetoelectric conversion elements 121 and 122 are positioned inside the opening regions O1a and O1b (width w1) when viewed from the direction perpendicular to the main surfaces A1 and B1. .

また、磁電変換素子121,122は、厚さ方向において導電部材11と重ならないように、導電部材11から離れた位置に配置されている(図1B)。すなわち、磁電変換素子121,122は、溝D1a,D1bの外側の領域に配置されている。溝D1a,D1bの底から磁電変換素子121,122までの距離(最短距離)d2は、溝D1a,D1bの深さ(溝D1a,D1bの底から主表面A1,B1までの距離)d1より大きくなっている。なお、磁電変換素子121,122は、溝の内側に配置された絶縁スペーサ上に固定される。絶縁スペーサは、ガラスなどの材料で構成され、溝D1a,D1bの深さ以上の厚みを有している。ただし、磁電変換素子121,122の固定方法はこれに限られず、樹脂などによって任意の位置に固定されても良い。   Further, the magnetoelectric conversion elements 121 and 122 are arranged at positions away from the conductive member 11 so as not to overlap the conductive member 11 in the thickness direction (FIG. 1B). That is, the magnetoelectric conversion elements 121 and 122 are disposed in the region outside the grooves D1a and D1b. The distance (shortest distance) d2 from the bottom of the grooves D1a and D1b to the magnetoelectric transducers 121 and 122 is greater than the depth of the grooves D1a and D1b (the distance from the bottom of the grooves D1a and D1b to the main surfaces A1 and B1) d1. It has become. The magnetoelectric conversion elements 121 and 122 are fixed on insulating spacers arranged inside the groove. The insulating spacer is made of a material such as glass and has a thickness equal to or greater than the depth of the grooves D1a and D1b. However, the fixing method of the magnetoelectric conversion elements 121 and 122 is not limited to this, and may be fixed at an arbitrary position with resin or the like.

この磁電変換素子121,122は、磁電変換素子121,122に加わる磁界の強度に応じた電気信号(例えば電圧)を出力する。磁電変換素子121,122は、それぞれ感度が最大となる感度軸S1a,S1bを有しており、感度軸S1a,S1bが導電部材11の幅方向に対して略平行となるように配置されている。また、磁電変換素子121,122は、感度軸S1a,S1bが共に同じ方向を向くように配置されている。   The magnetoelectric conversion elements 121 and 122 output an electric signal (for example, voltage) corresponding to the strength of the magnetic field applied to the magnetoelectric conversion elements 121 and 122. The magnetoelectric conversion elements 121 and 122 have sensitivity axes S1a and S1b with maximum sensitivity, respectively, and are arranged so that the sensitivity axes S1a and S1b are substantially parallel to the width direction of the conductive member 11. . In addition, the magnetoelectric conversion elements 121 and 122 are arranged so that the sensitivity axes S1a and S1b are oriented in the same direction.

磁電変換素子121,122としては、例えば、GMR(Giant Magneto Resistive effect)素子、TMR(Tunnel Magneto Resistive effect)素子などの磁気抵抗効果素子が用いられる。なお、磁電変換素子121,122は、感度軸S1a,S1bが互いに逆方向を向くように配置されても良い。   As the magnetoelectric conversion elements 121 and 122, for example, magnetoresistive elements such as GMR (Giant Magneto Resistive effect) elements and TMR (Tunnel Magneto Resistive effect) elements are used. Note that the magnetoelectric conversion elements 121 and 122 may be arranged such that the sensitivity axes S1a and S1b face in opposite directions.

図2は、電流センサ1の回路構成を示すブロック図である。図2に示すように、磁電変換素子121,122の後段には、演算回路13が接続されている。この演算回路13は、磁電変換素子121,122の出力を差動演算して演算結果を出力する。なお、感度軸S1a,S1bが互いに逆方向を向くように配置されている場合には、演算回路13は、磁電変換素子121,122の出力の和を算出して後段に出力する。   FIG. 2 is a block diagram showing a circuit configuration of the current sensor 1. As shown in FIG. 2, the arithmetic circuit 13 is connected to the subsequent stage of the magnetoelectric conversion elements 121 and 122. The arithmetic circuit 13 performs a differential operation on the outputs of the magnetoelectric conversion elements 121 and 122 and outputs a calculation result. When the sensitivity axes S1a and S1b are arranged so as to face in opposite directions, the arithmetic circuit 13 calculates the sum of the outputs of the magnetoelectric conversion elements 121 and 122 and outputs it to the subsequent stage.

このように構成された電流センサ1の導電部材11に、図1に示すような被測定電流I1が流れると、磁電変換素子121,122のそれぞれの感度軸S1a,S1bに対して逆向きに作用する誘導磁界H1が発生する。磁電変換素子121,122の感度軸S1a,S1bは共に同じ方向を向いているので、逆向きに作用する誘導磁界H1が加わると磁電変換素子121,122から逆極性の一対の出力が発生する。演算回路13は、磁電変換素子121,122からの一対の出力の差をとって外乱磁界の影響を相殺し、演算結果を電流センサ1の出力として後段に送る。   When the current I1 to be measured as shown in FIG. 1 flows through the conductive member 11 of the current sensor 1 configured in this way, the current acts on the sensitivity axes S1a and S1b of the magnetoelectric transducers 121 and 122 in opposite directions. An induction magnetic field H1 is generated. Since the sensitivity axes S1a and S1b of the magnetoelectric conversion elements 121 and 122 are both in the same direction, a pair of outputs having opposite polarities are generated from the magnetoelectric conversion elements 121 and 122 when an induced magnetic field H1 acting in the opposite direction is applied. The arithmetic circuit 13 takes the difference between the pair of outputs from the magnetoelectric conversion elements 121 and 122 to cancel the influence of the disturbance magnetic field, and sends the calculation result to the subsequent stage as the output of the current sensor 1.

図3は、図1に示す導電部材11の周囲に発生する誘導磁界H1を計算するためのシミュレーションモデルを示す図である。ここでは、図3に示すように、幅が10mm、中央領域111の厚さが0.6mm、外側領域112a,112bの厚さがそれぞれ2mmの導電部材11を用いる場合を想定してシミュレーションを行った。中央領域111の幅は4mm、外側領域112a,112bの幅は3mmとした。つまり、この場合、溝D1a,D1b(開口領域O1a,O1b)の幅は4mmであり、深さは0.7mmである。   FIG. 3 is a diagram showing a simulation model for calculating the induction magnetic field H1 generated around the conductive member 11 shown in FIG. Here, as shown in FIG. 3, the simulation is performed assuming that the conductive member 11 is 10 mm wide, the central region 111 is 0.6 mm thick, and the outer regions 112a and 112b are 2 mm thick. It was. The width of the central region 111 was 4 mm, and the width of the outer regions 112a and 112b was 3 mm. That is, in this case, the widths of the grooves D1a and D1b (opening regions O1a and O1b) are 4 mm and the depth is 0.7 mm.

このシミュレーションでは、磁電変換素子121での検出が想定される磁界を計算した。具体的には、導電部材11の厚さ方向の中央から4.5mm離れた位置(図3のX軸に相当する位置)での磁界強度の感度軸S1a方向の成分(導電部材11の幅方向の成分)を計算した。なお、磁電変換素子122で検出される磁界強度は、磁電変換素子121で検出される磁界強度と同様である。   In this simulation, a magnetic field assumed to be detected by the magnetoelectric conversion element 121 was calculated. Specifically, the component (the width direction of the conductive member 11) in the sensitivity axis S1a direction of the magnetic field strength at a position 4.5 mm away from the center in the thickness direction of the conductive member 11 (a position corresponding to the X axis in FIG. 3). Component). The magnetic field strength detected by the magnetoelectric conversion element 122 is the same as the magnetic field strength detected by the magnetoelectric conversion element 121.

図4は、シミュレーション結果を示すグラフであり、図5は、正規化(規格化)されたシミュレーション結果を示すグラフである。図4において、横軸は、導電部材11の幅方向の位置を示し、縦軸は、対応する位置における磁界強度の感度軸S1a方向の成分を示す。同様に、図5において、横軸は、導電部材11の幅方向の位置を示し、縦軸は、正規化(規格化)された磁界強度の感度軸S1a方向の成分を示す。   FIG. 4 is a graph showing simulation results, and FIG. 5 is a graph showing normalized (normalized) simulation results. In FIG. 4, the horizontal axis indicates the position of the conductive member 11 in the width direction, and the vertical axis indicates the component of the magnetic field strength in the sensitivity axis S1a direction at the corresponding position. Similarly, in FIG. 5, the horizontal axis indicates the position in the width direction of the conductive member 11, and the vertical axis indicates the component of the normalized (normalized) magnetic field strength in the sensitivity axis S1a direction.

図4及び図5に示すように、磁界強度の感度軸S1a方向の成分は、導電部材11の幅方向の中央付近で略一定となっている。具体的には、幅方向の3mm〜7mmの位置で、磁界強度は±0.5%(±0.005)の範囲に収まっている。このように、本実施の形態に係る電流センサ1は、磁界強度の感度軸S1a(S1b)方向の成分が略一定となる領域(以下、プラトー領域)を有しているので、このプラトー領域内のいずれかの位置に磁電変換素子121(122)を配置できれば、電流測定精度を略一定に保つことが可能である。つまり、磁電変換素子121(122)の取り付け位置への要求が緩和されるので、電流測定精度のばらつきを抑制できる。   As shown in FIGS. 4 and 5, the component of the magnetic field strength in the direction of the sensitivity axis S <b> 1 a is substantially constant near the center in the width direction of the conductive member 11. Specifically, the magnetic field strength is within a range of ± 0.5% (± 0.005) at a position of 3 mm to 7 mm in the width direction. Thus, the current sensor 1 according to the present embodiment has a region (hereinafter referred to as a plateau region) in which the component of the magnetic field strength in the sensitivity axis S1a (S1b) direction is substantially constant. If the magnetoelectric transducer 121 (122) can be arranged at any of the positions, the current measurement accuracy can be kept substantially constant. That is, since the requirement for the attachment position of the magnetoelectric conversion element 121 (122) is alleviated, variation in current measurement accuracy can be suppressed.

図5に示すように、プラトー領域は、溝D1a(D1b)の開口領域O1a(O1b)に対応して形成されている。すなわち、プラトー領域は、溝D1a(D1b)の開口領域O1a(O1b)と重なる位置に、開口領域O1a(O1b)と同程度の幅で形成されている。具体的には、図3に示すシミュレーションモデルにおいて、溝D1a(D1b)の開口領域O1a(O1b)は、幅方向の3mm〜7mmの位置に4mmの幅で形成されており、プラトー領域も、3mm〜7mmの位置に4mmの幅(プラトー幅)で形成されている。このため、磁電変換素子121(122)を、溝D1a(D1b)の開口領域O1a(O1b)と重なるように配置することで、電流測定精度を略一定に保つことが可能である。   As shown in FIG. 5, the plateau region is formed corresponding to the opening region O1a (O1b) of the groove D1a (D1b). That is, the plateau region is formed at a position overlapping the opening region O1a (O1b) of the groove D1a (D1b) with the same width as the opening region O1a (O1b). Specifically, in the simulation model shown in FIG. 3, the opening region O1a (O1b) of the groove D1a (D1b) is formed with a width of 4 mm at a position of 3 mm to 7 mm in the width direction, and the plateau region is also 3 mm. It is formed with a width (plateau width) of 4 mm at a position of ˜7 mm. For this reason, it is possible to keep the current measurement accuracy substantially constant by arranging the magnetoelectric conversion element 121 (122) so as to overlap the opening region O1a (O1b) of the groove D1a (D1b).

なお、図13に示すように、溝D1a,D1bの形成されていない導電部材31を用いる電流センサ3においては、プラトー幅は1mm以下となってしまう。このため、磁電変換素子321の取り付け位置が僅かでもずれると、所定の電流測定精度を得るのは難しくなる。   As shown in FIG. 13, in the current sensor 3 using the conductive member 31 in which the grooves D1a and D1b are not formed, the plateau width becomes 1 mm or less. For this reason, if the attachment position of the magnetoelectric conversion element 321 is slightly shifted, it becomes difficult to obtain a predetermined current measurement accuracy.

図6は、図3に示す導電部材11を用い、図3とは異なる位置に磁電変換素子121を配置する場合のシミュレーション結果を示すグラフである。図6において、横軸は、導電部材11の幅方向の位置を示し、縦軸は、対応する位置における磁界強度の感度軸S1a方向の成分を示す。ここでは、導電部材11の厚さ方向の中央から0.5mm離れた位置における磁界強度の感度軸S1a方向の成分(導電部材11の幅方向の成分)を計算した。つまり、磁電変換素子121が溝D1aの内側に配置される状況を想定して計算を行った。   FIG. 6 is a graph illustrating a simulation result when the electroconductive member 11 shown in FIG. 3 is used and the magnetoelectric conversion element 121 is arranged at a position different from that in FIG. In FIG. 6, the horizontal axis indicates the position of the conductive member 11 in the width direction, and the vertical axis indicates the component of the magnetic field strength in the sensitivity axis S1a direction at the corresponding position. Here, the component in the sensitivity axis S1a direction (component in the width direction of the conductive member 11) of the magnetic field strength at a position 0.5 mm away from the center in the thickness direction of the conductive member 11 was calculated. That is, the calculation was performed on the assumption that the magnetoelectric conversion element 121 is disposed inside the groove D1a.

図6に示すように、溝D1aの内側には、図4及び図5に示すような広いプラトー領域は形成されない。これは、溝D1aの内側では、導電部材11の外側領域112a,112bを流れる電流からの磁界の影響が強くなり過ぎるためである。つまり、磁電変換素子121(122)は、少なくとも溝D1a(D1b)の外側に配置される必要がある。   As shown in FIG. 6, a wide plateau region as shown in FIGS. 4 and 5 is not formed inside the groove D1a. This is because the influence of the magnetic field from the current flowing in the outer regions 112a and 112b of the conductive member 11 becomes too strong inside the groove D1a. That is, the magnetoelectric conversion element 121 (122) needs to be disposed at least outside the groove D1a (D1b).

また、導電部材11の外側領域112a,112bを流れる電流からの磁界の影響が十分に緩和された広いプラトー領域は、導電部材11の主表面A1,B1から適度に離れた位置に形成される。つまり、磁電変換素子121(122)は、導電部材11の主表面A1,B1からある程度離れた位置に配置されるのが好ましい。例えば、主表面A1,B1からの距離(d2−d1)が、溝D1a(D1b)の深さd1の4.5倍以上5.4倍以下の範囲となる位置には十分に広いプラトー領域が形成される。よって、磁電変換素子121(122)は、このような位置に配置されるのが好ましい。   In addition, a wide plateau region in which the influence of the magnetic field from the current flowing through the outer regions 112a and 112b of the conductive member 11 is sufficiently relaxed is formed at a position appropriately separated from the main surfaces A1 and B1 of the conductive member 11. That is, it is preferable that the magnetoelectric conversion element 121 (122) is disposed at a position away from the main surfaces A1 and B1 of the conductive member 11 to some extent. For example, a sufficiently wide plateau region is present at a position where the distance (d2-d1) from the main surfaces A1 and B1 is in the range of 4.5 to 5.4 times the depth d1 of the groove D1a (D1b). It is formed. Therefore, the magnetoelectric conversion element 121 (122) is preferably disposed at such a position.

以上のように、本実施の形態の電流センサ1において、導電部材11は、主表面A1,B1に開口領域O1a,O1bを形成する溝D1a,D1bを有するので、溝D1a,D1bの外側の領域であって、主表面A1,B1に垂直な方向から見て溝D1a,D1bの開口領域O1a,O1bと重なる領域で、磁電変換素子121,122が検出する誘導磁界H1の強度を略一定にすることが可能である。このため、溝D1a,D1bの外側の領域であって、主表面A1,B1に垂直な方向から見て溝D1a,D1bの開口領域O1a,O1bと重なる領域に磁電変換素子121,122を配置すれば、磁電変換素子121,122の取り付け位置が僅かにずれても電流測定精度は大きくばらつかずに済む。つまり、磁電変換素子121,122の取り付け位置への要求が緩和されるので、電流測定精度のばらつきを抑制できる。   As described above, in the current sensor 1 according to the present embodiment, the conductive member 11 has the grooves D1a and D1b that form the opening regions O1a and O1b on the main surfaces A1 and B1, and therefore the region outside the grooves D1a and D1b. The intensity of the induced magnetic field H1 detected by the magnetoelectric transducers 121 and 122 is made substantially constant in a region overlapping the opening regions O1a and O1b of the grooves D1a and D1b when viewed from the direction perpendicular to the main surfaces A1 and B1. It is possible. For this reason, the magnetoelectric conversion elements 121 and 122 are arranged in the regions outside the grooves D1a and D1b and overlapping the opening regions O1a and O1b of the grooves D1a and D1b when viewed from the direction perpendicular to the main surfaces A1 and B1. For example, even if the attachment positions of the magnetoelectric conversion elements 121 and 122 are slightly shifted, the current measurement accuracy does not vary greatly. That is, since the requirements for the attachment positions of the magnetoelectric conversion elements 121 and 122 are alleviated, variations in current measurement accuracy can be suppressed.

本実施の形態において示される構成又は方法は、他の実施の形態において示される構成又は方法と適宜組み合わせて実施することができる。   The structures or methods described in this embodiment can be implemented in appropriate combination with the structures or methods described in the other embodiments.

(実施の形態2)
本実施の形態では、電流センサの第2の形態について説明する。図7は、本実施の形態に係る電流センサの構成例を示す模式図であり、図7Bは、図7AのVIIB−VIIB矢視断面を示している。図7に示す電流センサ2は、被測定電流I2の流れる導電部材21と、導電部材21を挟むように配置された一組の磁電変換素子221,222とを備えている。なお、本実施の形態に係る電流センサ2と実施の形態1で説明した電流センサ1とは、導電部材21,11の構成のみが相違する。このため、以下では、主に相違点について詳細に説明する。
(Embodiment 2)
In the present embodiment, a second form of the current sensor will be described. FIG. 7 is a schematic diagram showing a configuration example of the current sensor according to the present embodiment, and FIG. 7B shows a cross section taken along arrow VIIB-VIIB in FIG. 7A. The current sensor 2 shown in FIG. 7 includes a conductive member 21 through which the current I2 to be measured flows, and a pair of magnetoelectric transducers 221 and 222 arranged so as to sandwich the conductive member 21. The current sensor 2 according to the present embodiment is different from the current sensor 1 described in the first embodiment only in the configuration of the conductive members 21 and 11. For this reason, the differences will be mainly described in detail below.

導電部材21は、金属板を加工することで形成されており、被測定電流I2の流れる方向(図7においてY方向、以下、電流方向)に対して略平行な縦長の形状を有している。導電部材21において、幅方向(図7においてX方向)の中央領域211は外側領域212a,212bより薄く形成されている。これにより、導電部材21には、厚さ方向(図7においてZ方向)における一方側の主表面A2と他方側の主表面B2とにそれぞれ開口領域O2a,O2bを形成する溝D2a,D2bが設けられている。   The conductive member 21 is formed by processing a metal plate, and has a vertically long shape substantially parallel to the direction in which the current I2 to be measured flows (Y direction in FIG. 7, hereinafter, the current direction). . In the conductive member 21, the central region 211 in the width direction (X direction in FIG. 7) is formed thinner than the outer regions 212a and 212b. As a result, the conductive member 21 is provided with grooves D2a and D2b for forming opening regions O2a and O2b, respectively, on the main surface A2 on one side and the main surface B2 on the other side in the thickness direction (Z direction in FIG. 7). It has been.

導電部材21は、厚さ方向の中央を通る平面に対して対称な形状を有している。すなわち、溝D2a,D2bも対称な形状を有している。この溝D2a,D2bは、電流方向に沿って延びるように形成されており、電流方向に直交する面内において台形状の断面形状を有している。導電部材11の周囲には、溝D2a,D2bに対応して、磁電変換素子221,222が配置されている。   The conductive member 21 has a symmetrical shape with respect to a plane passing through the center in the thickness direction. That is, the grooves D2a and D2b also have a symmetric shape. The grooves D2a and D2b are formed so as to extend along the current direction, and have a trapezoidal cross-sectional shape in a plane orthogonal to the current direction. Magnetoelectric conversion elements 221 and 222 are disposed around the conductive member 11 so as to correspond to the grooves D2a and D2b.

磁電変換素子221,222は、主表面A2,B2に垂直な方向(Z方向)から見て溝D2a,D2bの開口領域O2a,O2bと重なるように配置されている(図7A)。少なくとも、磁電変換素子221,222において磁界に感度を有する検出部(不図示)は、主表面A2,B2に垂直な方向(Z方向)から見て開口領域O1a,O1b(幅w2)の内側に位置付けられている。   The magnetoelectric conversion elements 221 and 222 are arranged so as to overlap the opening regions O2a and O2b of the grooves D2a and D2b when viewed from the direction (Z direction) perpendicular to the main surfaces A2 and B2 (FIG. 7A). At least the detection unit (not shown) having sensitivity to the magnetic field in the magnetoelectric conversion elements 221 and 222 is located inside the opening regions O1a and O1b (width w2) when viewed from the direction (Z direction) perpendicular to the main surfaces A2 and B2. It is positioned.

また、磁電変換素子221,222は、厚さ方向において導電部材21と重ならないように、導電部材21から離れた位置に配置されている(図7B)。すなわち、磁電変換素子221,222は、溝D2a,D2bの外側の領域に配置されている。溝D2a,D2bの底から磁電変換素子221,222までの距離(最短距離)d4は、溝D1a,D1bの深さ(溝D2a,D2bの底から主表面A1,B1までの距離)d3より大きくなっている。   Moreover, the magnetoelectric conversion elements 221 and 222 are disposed at positions away from the conductive member 21 so as not to overlap the conductive member 21 in the thickness direction (FIG. 7B). That is, the magnetoelectric conversion elements 221 and 222 are arranged in the region outside the grooves D2a and D2b. The distance (shortest distance) d4 from the bottom of the grooves D2a and D2b to the magnetoelectric transducers 221 and 222 is greater than the depth of the grooves D1a and D1b (the distance from the bottom of the grooves D2a and D2b to the main surfaces A1 and B1) d3. It has become.

この電流センサ2の導電部材21に、図7に示すような被測定電流I2が流れると、磁電変換素子221,222のそれぞれの感度軸S2a,S2bに対して逆向きに作用する誘導磁界H2が発生する。磁電変換素子221,222の感度軸S2a,S2bは共に同じ方向を向いているので、逆向きに作用する誘導磁界H2が加わると磁電変換素子221,222から逆極性の一対の出力が発生する。磁電変換素子221,222からの一対の出力は、演算回路(不図示)で演算されて後段に出力される。   When a measured current I2 as shown in FIG. 7 flows through the conductive member 21 of the current sensor 2, an induced magnetic field H2 acting in the opposite direction with respect to the sensitivity axes S2a and S2b of the magnetoelectric transducers 221 and 222 is generated. Occur. Since the sensitivity axes S2a and S2b of the magnetoelectric conversion elements 221 and 222 are both in the same direction, when an induced magnetic field H2 acting in the opposite direction is applied, a pair of outputs having opposite polarities are generated from the magnetoelectric conversion elements 221 and 222. A pair of outputs from the magnetoelectric conversion elements 221 and 222 are calculated by an arithmetic circuit (not shown) and output to the subsequent stage.

図8は、図7に示す導電部材21の周囲に発生する誘導磁界H2を計算するためのシミュレーションモデルを示す図である。ここでは、図8に示すように、幅が10mm、中央領域211の最も薄い部分の厚さが0.6mm、外側領域212a,212bの厚さがそれぞれ2mmの導電部材21を用いる場合を想定してシミュレーションを行った。中央領域211の幅は4mm、外側領域212a,212bの幅は3mmとした。また、中央領域において厚さが一定でない領域の幅をそれぞれ0.7mmとし、中央領域211で最も薄い部分の幅を2.6mmとした。この場合、溝D2a,D2b(開口領域O1a,O1b)の幅は4mmであり、深さは0.7mmである。   FIG. 8 is a diagram showing a simulation model for calculating the induced magnetic field H2 generated around the conductive member 21 shown in FIG. Here, as shown in FIG. 8, it is assumed that a conductive member 21 having a width of 10 mm, the thickness of the thinnest part of the central region 211 is 0.6 mm, and the thicknesses of the outer regions 212a and 212b is 2 mm, respectively. And simulated. The width of the central region 211 was 4 mm, and the widths of the outer regions 212a and 212b were 3 mm. In addition, the width of the region where the thickness is not constant in the central region is 0.7 mm, and the width of the thinnest portion in the central region 211 is 2.6 mm. In this case, the widths of the grooves D2a and D2b (opening regions O1a and O1b) are 4 mm and the depth is 0.7 mm.

このシミュレーションでは、磁電変換素子221での検出が想定される磁界を計算した。具体的には、導電部材21の厚さ方向の中央から4.5mm離れた位置(図8のX軸に相当する位置)での磁界強度の感度軸S2a方向の成分(導電部材21の幅方向の成分)を計算した。なお、磁電変換素子222で検出される磁界強度は、磁電変換素子221で検出される磁界強度と同様である。   In this simulation, a magnetic field assumed to be detected by the magnetoelectric conversion element 221 was calculated. Specifically, the component (the width direction of the conductive member 21) in the sensitivity axis S2a direction of the magnetic field strength at a position 4.5 mm away from the center in the thickness direction of the conductive member 21 (a position corresponding to the X axis in FIG. 8). Component). The magnetic field strength detected by the magnetoelectric conversion element 222 is the same as the magnetic field strength detected by the magnetoelectric conversion element 221.

図9は、シミュレーション結果を示すグラフである。図9において、横軸は、導電部材21の幅方向の位置を示し、縦軸は、対応する位置における磁界強度の感度軸S2a方向の成分を示す。図9に示すように、磁界強度の感度軸S2a方向の成分は、導電部材21の幅方向の中央付近で略一定となっている。このように、本実施の形態に係る電流センサ2も、磁界強度の感度軸S2a(S2b)方向の成分が略一定となるプラトー領域を有しているので、このプラトー領域内のいずれかの位置に磁電変換素子221(222)を配置できれば、電流測定精度を略一定に保つことが可能である。つまり、磁電変換素子221(222)の取り付け位置への要求が緩和されるので、電流測定精度のばらつきを抑制できる。   FIG. 9 is a graph showing a simulation result. In FIG. 9, the horizontal axis indicates the position of the conductive member 21 in the width direction, and the vertical axis indicates the component of the magnetic field intensity in the sensitivity axis S2a direction at the corresponding position. As shown in FIG. 9, the component of the magnetic field strength in the direction of the sensitivity axis S <b> 2 a is substantially constant near the center in the width direction of the conductive member 21. As described above, the current sensor 2 according to the present embodiment also has a plateau region in which the component of the magnetic field strength in the direction of the sensitivity axis S2a (S2b) is substantially constant. If the magnetoelectric conversion element 221 (222) can be disposed in the current measuring accuracy, the current measurement accuracy can be kept substantially constant. That is, since the requirement for the attachment position of the magnetoelectric conversion element 221 (222) is relaxed, it is possible to suppress variations in current measurement accuracy.

本実施の形態において示される構成又は方法は、他の実施の形態において示される構成又は方法と適宜組み合わせて実施することができる。   The structures or methods described in this embodiment can be implemented in appropriate combination with the structures or methods described in the other embodiments.

以上のように、本発明の電流センサにおいて、導電部材は、主表面に開口領域を形成する溝を有するので、溝の外側の領域であって、主表面に垂直な方向から見て溝の開口領域と重なる領域で、磁電変換素子が検出する誘導磁界の強度を略一定にすることが可能である。このため、溝の外側の領域であって、主表面に垂直な方向から見て溝の開口領域と重なる領域に磁電変換素子を配置すれば、磁電変換素子の取り付け位置が僅かにずれても電流測定精度は大きくばらつかずに済む。つまり、磁電変換素子の取り付け位置への要求が緩和されるので、電流測定精度のばらつきを抑制できる。   As described above, in the current sensor according to the present invention, the conductive member has a groove that forms an opening region on the main surface. Therefore, the conductive member is a region outside the groove, and the opening of the groove when viewed from the direction perpendicular to the main surface. It is possible to make the intensity of the induced magnetic field detected by the magnetoelectric conversion element substantially constant in the region overlapping the region. For this reason, if the magnetoelectric conversion element is arranged in an area outside the groove and overlapping the opening area of the groove when viewed from the direction perpendicular to the main surface, the current can be applied even if the attachment position of the magnetoelectric conversion element is slightly shifted. Measurement accuracy does not vary greatly. That is, since the requirement for the attachment position of the magnetoelectric conversion element is relaxed, variation in current measurement accuracy can be suppressed.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態では、2個の磁電変換素子を備える電流センサを例示しているが、電流センサの備える磁電変換素子は1個でも良い。この場合、導電部材には、磁電変換素子が配置される側の主表面にのみ溝を設ければよく、また、差動演算を行う演算回路も不要となる。さらに、電流センサは、3個以上の磁電変換素子を備えていても良い。その他、本発明は、適宜変更して実施できる。   In addition, this invention is not limited to the said embodiment, A various change can be implemented. For example, in the above embodiment, a current sensor including two magnetoelectric conversion elements is illustrated, but the number of magnetoelectric conversion elements included in the current sensor may be one. In this case, the conductive member may be provided with a groove only on the main surface on the side where the magnetoelectric conversion element is disposed, and an arithmetic circuit for performing a differential operation becomes unnecessary. Furthermore, the current sensor may include three or more magnetoelectric conversion elements. In addition, the present invention can be implemented with appropriate modifications.

本発明は、例えば、被測定電流によって生じる誘導磁界に基づいて電流値を算出する電流センサにおいて、電流測定精度のばらつきを抑制するため有用である。   The present invention is useful for suppressing variations in current measurement accuracy in a current sensor that calculates a current value based on an induced magnetic field generated by a current to be measured, for example.

1,2,3 電流センサ
11,21,31 導電部材
13 演算回路
111,211 中央領域
112a,112b,212a,212b 外側領域
121,122,221,222,321,322 磁電変換素子
A1,A2,B1,B2 主表面
D1a,D1b,D2a,D2b 溝
H1,H2,H3 誘導磁界
I1,I2,I3 被測定電流
O1a,O1b,O2a,O2b 開口領域
S1a,S1b,S2a,S2b,S3a,S3b 感度軸
d1,d3 深さ
d2,d4 距離
w1,w2 幅
1,2,3 Current sensor
11, 21, 31 Conductive member 13 Arithmetic circuits 111, 211 Central region 112a, 112b, 212a, 212b Outer region 121, 122, 221, 222, 321, 322 Magnetoelectric transducers A1, A2, B1, B2 Main surfaces D1a, D1b , D2a, D2b Groove H1, H2, H3 Inductive magnetic field I1, I2, I3 Current to be measured O1a, O1b, O2a, O2b Open region S1a, S1b, S2a, S2b, S3a, S3b Sensitivity axis d1, d3 Depth d2, d4 Distance w1, w2 width

Claims (6)

一対の主表面を有し、被測定電流が流れる導電部材と、前記導電部材を流れる被測定電流により生じる誘導磁界を検出可能に配置された磁電変換素子と、を備え、
前記導電部材は、前記主表面に開口領域を形成する溝を有し、
前記磁電変換素子は、前記溝の外側の領域であって、前記主表面に垂直な方向から見て前記開口領域と重なる領域に配置されることを特徴とする電流センサ。
A conductive member having a pair of main surfaces, through which a current to be measured flows, and a magnetoelectric conversion element arranged to detect an induced magnetic field generated by the current to be measured flowing through the conductive member;
The conductive member has a groove that forms an opening region in the main surface;
The current sensor, wherein the magnetoelectric conversion element is disposed in an area outside the groove and overlapping the opening area when viewed from a direction perpendicular to the main surface.
前記磁電変換素子は、前記磁電変換素子が検出する前記誘導磁界の強度が前記主表面に平行な方向で略一定となる領域に配置されることを特徴とする請求項1に記載の電流センサ。   2. The current sensor according to claim 1, wherein the magnetoelectric conversion element is arranged in a region where the intensity of the induction magnetic field detected by the magnetoelectric conversion element is substantially constant in a direction parallel to the main surface. 前記磁電変換素子は、前記溝の底から前記主表面までの距離より、前記溝の底から前記磁電変換素子までの距離が大きくなる領域に配置されることを特徴とする請求項1に記載の電流センサ。   The said magnetoelectric conversion element is arrange | positioned in the area | region where the distance from the bottom of the said groove | channel to the said magnetoelectric conversion element becomes larger than the distance from the bottom of the said groove | channel to the said main surface. Current sensor. 前記一対の主表面に対応して一対の前記磁電変換素子が配置され、
前記一対の前記磁電変換素子の出力を演算する演算回路を備えたことを特徴とする請求項1に記載の電流センサ。
A pair of the magnetoelectric transducers are arranged corresponding to the pair of main surfaces,
The current sensor according to claim 1, further comprising an arithmetic circuit that calculates outputs of the pair of magnetoelectric transducers.
前記溝は、前記被測定電流の流れる方向に直交する面内において矩形状の断面形状を有することを特徴とする請求項1から請求項4のいずれかに記載の電流センサ。   5. The current sensor according to claim 1, wherein the groove has a rectangular cross-sectional shape in a plane orthogonal to a direction in which the current to be measured flows. 前記溝は、前記被測定電流の流れる方向に直交する面内において台形状の断面形状を有することを特徴とする請求項1から請求項4のいずれかに記載の電流センサ。   5. The current sensor according to claim 1, wherein the groove has a trapezoidal cross-sectional shape in a plane orthogonal to a direction in which the current to be measured flows.
JP2012212444A 2012-09-26 2012-09-26 Current sensor Pending JP2014066623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012212444A JP2014066623A (en) 2012-09-26 2012-09-26 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212444A JP2014066623A (en) 2012-09-26 2012-09-26 Current sensor

Publications (1)

Publication Number Publication Date
JP2014066623A true JP2014066623A (en) 2014-04-17

Family

ID=50743175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212444A Pending JP2014066623A (en) 2012-09-26 2012-09-26 Current sensor

Country Status (1)

Country Link
JP (1) JP2014066623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174247A1 (en) * 2014-05-14 2015-11-19 株式会社村田製作所 Electric current sensor
WO2016076114A1 (en) * 2014-11-14 2016-05-19 株式会社村田製作所 Current sensor
US11852659B2 (en) 2021-09-16 2023-12-26 Kabushiki Kaisha Toshiba Current detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523751A (en) * 1998-08-25 2002-07-30 ルスト・アントリープステヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Method of measuring current without generation of potential difference and current measuring device without generation of potential difference
JP2003288899A (en) * 2002-03-27 2003-10-10 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary cell
JP2010048809A (en) * 2008-08-25 2010-03-04 Robert Seuffer Gmbh & Co Kg Current detection device
JP2011095234A (en) * 2009-10-29 2011-05-12 Kohshin Electric Corp Device for detecting polyphase current
JP2012078232A (en) * 2010-10-04 2012-04-19 Panasonic Corp Current detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523751A (en) * 1998-08-25 2002-07-30 ルスト・アントリープステヒニク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Method of measuring current without generation of potential difference and current measuring device without generation of potential difference
JP2003288899A (en) * 2002-03-27 2003-10-10 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary cell
JP2010048809A (en) * 2008-08-25 2010-03-04 Robert Seuffer Gmbh & Co Kg Current detection device
JP2011095234A (en) * 2009-10-29 2011-05-12 Kohshin Electric Corp Device for detecting polyphase current
JP2012078232A (en) * 2010-10-04 2012-04-19 Panasonic Corp Current detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174247A1 (en) * 2014-05-14 2015-11-19 株式会社村田製作所 Electric current sensor
WO2016076114A1 (en) * 2014-11-14 2016-05-19 株式会社村田製作所 Current sensor
JPWO2016076114A1 (en) * 2014-11-14 2017-04-27 株式会社村田製作所 Current sensor
US11852659B2 (en) 2021-09-16 2023-12-26 Kabushiki Kaisha Toshiba Current detection device

Similar Documents

Publication Publication Date Title
JP5648246B2 (en) Current sensor
JP5531217B2 (en) Current sensor
JP5489145B1 (en) Current sensor
JP5531215B2 (en) Current sensor
JP6711086B2 (en) Current sensor
JP6477684B2 (en) Current detector
JP6690433B2 (en) Current sensor
JP2013170878A (en) Current sensor
JP5816958B2 (en) Current sensor
WO2013038867A1 (en) Electric-current sensor
JP2015036636A (en) Current sensor
WO2012046547A1 (en) Current sensor
JP2013088370A (en) Current sensor
JPWO2016006410A1 (en) Current sensor
JP2014066623A (en) Current sensor
JP2016200438A (en) Current sensor
JP5487403B2 (en) Current sensor
JP3191252U (en) Current sensor
JP6671985B2 (en) Current sensor
JP6671986B2 (en) Current sensor and method of manufacturing the same
JP3192500U (en) Current sensor
JP2015132516A (en) Electric current detection structure
JP2013142604A (en) Current sensor
JP6144597B2 (en) Current sensor
JP2011174775A (en) Current sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160119