JP2013088370A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2013088370A
JP2013088370A JP2011231297A JP2011231297A JP2013088370A JP 2013088370 A JP2013088370 A JP 2013088370A JP 2011231297 A JP2011231297 A JP 2011231297A JP 2011231297 A JP2011231297 A JP 2011231297A JP 2013088370 A JP2013088370 A JP 2013088370A
Authority
JP
Japan
Prior art keywords
sensitivity
axis
magnetic field
current
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011231297A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hebiguchi
広行 蛇口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Green Devices Co Ltd
Original Assignee
Alps Green Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Green Devices Co Ltd filed Critical Alps Green Devices Co Ltd
Priority to JP2011231297A priority Critical patent/JP2013088370A/en
Publication of JP2013088370A publication Critical patent/JP2013088370A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current sensor capable of securing linearity of an output signal even when a magnetic sensitive element with high sensitivity is used and having a wide measurement range.SOLUTION: A current sensor (1) includes magnetic sensitive elements (12a, 12b) each for outputting an output signal by an induction field (H) from a current to be measured. Each of the magnetic sensitive elements (12a, 12b) has a sensitivity axis (S1) and a sensitivity influence axis (S2) orthogonal to the sensitivity axis (S1) and is arranged so that the sensitivity axis (S1) makes a predetermined angle (θ) with a direction of the induction field (H), and the sensitivity influence axis (S2) is arranged orthogonally to an induction direction of the current to be measured and to the direction of the induction field (H).

Description

本発明は、被測定電流からの誘導磁界を介して被測定電流値を測定する電流センサに関し、例えば、検出感度を調整できる電流センサに関する。   The present invention relates to a current sensor that measures a measured current value via an induced magnetic field from the measured current, and, for example, relates to a current sensor that can adjust detection sensitivity.

電気自動車やハイブリッドカーなどにおけるモータ駆動技術分野では、比較的大きな電流が取り扱われるため、これら大電流を非接触で測定可能な電流センサが求められている。このような電流センサとして、被測定電流からの誘導磁界により出力信号を出力する感磁素子としてのホール素子と、被測定電流の電流値に応じて、被測定電流からの誘導磁界の方向とホール素子の感度軸(感磁面に直交する方向)とのなす角度を変化させる角度変更機構とを具備する電流検出装置が提案されている(例えば、特許文献1参照)。   In the field of motor drive technology in electric vehicles, hybrid cars, and the like, a relatively large current is handled, and thus a current sensor that can measure these large currents in a non-contact manner is required. As such a current sensor, a Hall element as a magnetosensitive element that outputs an output signal by an induced magnetic field from the current to be measured, and a direction and a hall of the induced magnetic field from the current to be measured according to the current value of the current to be measured. There has been proposed a current detection device including an angle changing mechanism that changes an angle formed with a sensitivity axis of a device (a direction perpendicular to a magnetic sensitive surface) (for example, see Patent Document 1).

かかる電流検出装置においては、ホール素子は、感度軸の方向から印加された被測定電流からの誘導磁界の磁界強度に応じた電圧(ホール電圧)信号を発生する。この電流検出装置においては、被測定電流が小電流の場合には、角度変更機構によって被測定電流からの誘導磁界の方向と感度軸とが一致するようにホール素子を回転し、被測定電流の電流値が大電流の場合には、被測定電流からの誘導磁界の方向に対して感度軸が所定の角度θをなすようにホール素子を回転する。これにより、被測定電流が大電流の場合には、ホール素子の感度軸に対して印加される誘導磁界Hの磁界強度H1がH1=H×cosθとなるので、角度θの調整によってホール素子の磁化飽和を抑制することができ、測定レンジの広い電流センサを実現できる。   In such a current detection device, the Hall element generates a voltage (Hall voltage) signal corresponding to the magnetic field strength of the induced magnetic field from the current to be measured applied from the direction of the sensitivity axis. In this current detection device, when the current to be measured is a small current, the angle changing mechanism rotates the Hall element so that the direction of the induced magnetic field from the current to be measured and the sensitivity axis coincide with each other. When the current value is a large current, the Hall element is rotated so that the sensitivity axis forms a predetermined angle θ with respect to the direction of the induced magnetic field from the current to be measured. As a result, when the current to be measured is a large current, the magnetic field strength H1 of the induction magnetic field H applied to the sensitivity axis of the Hall element is H1 = H × cos θ. Magnetization saturation can be suppressed, and a current sensor with a wide measurement range can be realized.

特開2001−59851号公報JP 2001-59851 A

ところで、高感度の感磁素子においては、感度軸に対して直交する方向に検出感度に影響を及ぼす軸(以下、「感度影響軸」という)が生じる場合がある。このような高感度の感磁素子を備えた電流センサにおいては、被測定電流からの誘導磁界の方向に対して感度軸が所定の角度をなすように感磁素子を配置した場合には、感度軸の方向から印加された誘導磁界に基づく出力信号に加えて、感度影響軸の方向から印加された誘導磁界が測定精度に影響を及ぼす場合がある。例えば、感度影響軸の方向から印加された誘導磁界により、感度軸の方向の検出感度そのものが影響を受けて感度変化する場合や、感度軸影響軸の方向から印加された誘導磁界による出力信号により感度変化が生じる場合がある。このような感度変化が生じると、電流センサの出力信号の線形性を低下する要因となる場合がある。   By the way, in a highly sensitive magnetosensitive element, an axis that affects detection sensitivity (hereinafter referred to as “sensitivity affecting axis”) may occur in a direction orthogonal to the sensitivity axis. In a current sensor having such a highly sensitive magnetosensitive element, when the magnetosensitive element is arranged so that the sensitivity axis forms a predetermined angle with respect to the direction of the induced magnetic field from the current to be measured, the sensitivity In addition to the output signal based on the induced magnetic field applied from the direction of the axis, the induced magnetic field applied from the direction of the sensitivity affecting axis may affect the measurement accuracy. For example, the induced magnetic field applied from the direction of the sensitivity axis affects the detection sensitivity itself in the direction of the sensitivity axis and the sensitivity changes, or the output signal from the induced magnetic field applied from the direction of the sensitivity axis affects the axis. Sensitivity changes may occur. When such a sensitivity change occurs, it may cause a decrease in the linearity of the output signal of the current sensor.

本発明は、かかる点に鑑みてなされたものであり、高感度な感磁素子を用いた場合においても、出力信号の線形性を確保できる測定レンジの広い電流センサを提供することを目的とする。   The present invention has been made in view of such points, and an object of the present invention is to provide a current sensor with a wide measurement range that can ensure the linearity of an output signal even when a highly sensitive magnetosensitive element is used. .

本発明の電流センサは、被測定電流からの誘導磁界により出力信号を出力する感磁素子を備え、前記感磁素子は、感度軸及び当該感度軸と直交する感度影響軸を有し、前記感度軸が前記誘導磁界の方向に対して所定の角度をなすように配置され、前記感度影響軸が前記被測定電流の通流方向及び前記誘導磁界の方向に対して直交に配置されたことを特徴とする。   The current sensor of the present invention includes a magnetosensitive element that outputs an output signal by an induced magnetic field from a current to be measured, and the magnetosensitive element has a sensitivity axis and a sensitivity influence axis that is orthogonal to the sensitivity axis, and the sensitivity The axis is arranged so as to form a predetermined angle with respect to the direction of the induced magnetic field, and the sensitivity influence axis is arranged perpendicular to the direction of current flow and the direction of the induced magnetic field. And

この構成によれば、被測定電流からの誘導磁界が感度軸に対して所定の角度をなす方向から印加されるので、感度軸の方向から印加される誘導磁界の磁界強度が小さくなる。これにより、被測定電流が大電流の場合であっても、磁気検出素子の磁気飽和を抑制できる測定レンジの広い電流センサを実現できる。また、被測定電流からの誘導磁界が感度影響軸に対して直交する方向から印加されるので、感度影響軸の方向から印加される誘導磁界に基づく感度変化が実質的にゼロとなる。これにより、感度影響軸を有する高感度な感磁素子を用いた場合においても、感度影響軸に起因する出力信号の線形性の低下を抑制できる。   According to this configuration, since the induced magnetic field from the current to be measured is applied from the direction forming a predetermined angle with respect to the sensitivity axis, the magnetic field strength of the induced magnetic field applied from the direction of the sensitivity axis is reduced. Thereby, even when the current to be measured is a large current, it is possible to realize a current sensor with a wide measurement range that can suppress magnetic saturation of the magnetic detection element. Further, since the induced magnetic field from the current to be measured is applied from the direction orthogonal to the sensitivity influence axis, the sensitivity change based on the induced magnetic field applied from the direction of the sensitivity influence axis becomes substantially zero. Thereby, even when a highly sensitive magnetosensitive element having a sensitivity influence axis is used, it is possible to suppress a decrease in linearity of the output signal due to the sensitivity influence axis.

本発明の電流センサにおいては、前記感度影響軸が副感度軸であることが好ましい。この構成により、被測定電流からの誘導磁界が副感度軸の方向に対して略直交する方向から印加されるので、副感度軸の方向から印加される誘導磁界に基づく感度変化が実質的にゼロとなる。これにより、副感度軸を有する感磁素子を用いた場合においても、副感度軸に起因する出力信号の線形性の低下を抑制できる。   In the current sensor of the present invention, it is preferable that the sensitivity influence axis is a secondary sensitivity axis. With this configuration, since the induced magnetic field from the current to be measured is applied from a direction substantially orthogonal to the direction of the secondary sensitivity axis, the sensitivity change based on the induced magnetic field applied from the direction of the secondary sensitivity axis is substantially zero. It becomes. Thereby, even when a magnetosensitive element having a secondary sensitivity axis is used, it is possible to suppress a decrease in linearity of the output signal due to the secondary sensitivity axis.

本発明の電流センサにおいては、前記感磁素子がGMR素子であってもよい。   In the current sensor of the present invention, the magnetosensitive element may be a GMR element.

本発明の電流センサにおいては、前記感磁素子が磁気収束板を備えたホール素子であってもよい。   In the current sensor of the present invention, the magnetosensitive element may be a Hall element provided with a magnetic focusing plate.

本発明の電流センサにおいては、前記感度影響軸が感度変化軸であることが好ましい。この構成により、被測定電流からの誘導磁界が感度変化軸の方向に対して略直交する方向から印加されるので、感度変化軸の方向から印加される誘導磁界に基づく感度変化が実質的にゼロとなる。これにより、感度影響軸を有する感磁素子を用いた場合においても、感度変化軸に起因する出力信号の線形性の低下を抑制できる。   In the current sensor of the present invention, it is preferable that the sensitivity influence axis is a sensitivity change axis. With this configuration, the induced magnetic field from the current to be measured is applied from a direction substantially orthogonal to the direction of the sensitivity change axis, so that the sensitivity change based on the induced magnetic field applied from the direction of the sensitivity change axis is substantially zero. It becomes. Thereby, even when a magnetosensitive element having a sensitivity influence axis is used, it is possible to suppress a decrease in linearity of the output signal due to the sensitivity change axis.

本発明の電流センサにおいては、前記感磁素子がGMR素子であってもよい。   In the current sensor of the present invention, the magnetosensitive element may be a GMR element.

本発明の電流センサにおいては、前記感磁素子が一対の感磁素子であり、前記一対の感磁素子の出力信号を差動演算して前記被測定電流の電流値を算出する演算回路を備えることが好ましい。この構成により、一対の感磁素子に対して略同一方向から外部磁界が印加され、一対の感磁素子から外部磁界に基づく略同相の出力信号が出力される。このため、一対の感磁素子の出力信号を差動演算することにより、外部磁界によるノイズ成分をキャンセルすることができる。   In the current sensor of the present invention, the magnetosensitive element is a pair of magnetosensitive elements, and includes an arithmetic circuit that calculates the current value of the current to be measured by differentially calculating the output signals of the pair of magnetosensitive elements. It is preferable. With this configuration, an external magnetic field is applied to the pair of magnetosensitive elements from substantially the same direction, and a substantially in-phase output signal based on the external magnetic field is output from the pair of magnetosensitive elements. For this reason, the noise component due to the external magnetic field can be canceled by differentially calculating the output signals of the pair of magnetosensitive elements.

本発明の電流センサにおいては、切り欠き部を有する絶縁基板を備え、前記一対の感磁素子は、前記切り欠き部を挟むように前記絶縁基板に配設されており、前記切り欠き部に前記導電部材が挿入されることが好ましい。この構成により、一対の感磁素子の角度の調整及び位置合わせが容易になると共に、絶縁基板を小型化することができる。   The current sensor of the present invention includes an insulating substrate having a notch, and the pair of magnetosensitive elements are disposed on the insulating substrate so as to sandwich the notch, and the notch has the It is preferable that a conductive member is inserted. With this configuration, it is easy to adjust and align the angle of the pair of magnetosensitive elements, and it is possible to reduce the size of the insulating substrate.

本発明によれば、高感度な感磁素子を用いた場合においても、出力信号の線形性を確保できる測定レンジの広い電流センサを提供することができる。   According to the present invention, it is possible to provide a current sensor with a wide measurement range that can ensure the linearity of an output signal even when a highly sensitive magnetosensitive element is used.

本実施の形態に係る電流センサを示す模式図である。It is a schematic diagram which shows the current sensor which concerns on this Embodiment. 本実施の形態に係る電流センサの感磁素子の配置例を示す模式図である。It is a schematic diagram which shows the example of arrangement | positioning of the magnetic sensing element of the current sensor which concerns on this Embodiment. 本実施の形態に係る電流センサの測定原理の説明図である。It is explanatory drawing of the measurement principle of the current sensor which concerns on this Embodiment. 本実施の形態に係る電流センサのブロック図である。It is a block diagram of the current sensor which concerns on this Embodiment.

本発明者は、GMR素子などの高感度な感磁素子を用いた電流センサにおいては、被測定電流からの誘導磁界による出力信号の線形性を悪化させる要因が、感度軸と直交する方向における検出感度に影響を及ぼす軸(以下、「感度影響軸」という)にあることを見出した。例えば、GMR素子のような、感度軸と直交する方向に感度影響軸を有する感磁素子を用いた場合、単純に感度軸の方向を被測定電流からの誘導磁界(以下、単に「誘導磁界ともいう」)の方向に対して変化させた際には、感磁素子の磁化飽和を抑制できる反面、感度影響軸にも大きな磁界が印加され、その影響で感度軸の方向の感度(感度軸の方向の磁界に対する磁気抵抗変化率)そのものが変化する。また、感度影響軸の方向から印加された誘導磁界により感度影響軸に基づく出力信号が出力される場合もある。このような場合においては、電流センサの出力信号の線形性が低下する場合がある。   The present inventor has detected that in a current sensor using a highly sensitive magnetosensitive element such as a GMR element, a factor that deteriorates the linearity of an output signal due to an induced magnetic field from a current to be measured is detected in a direction orthogonal to the sensitivity axis. It was found that it is on the axis that affects the sensitivity (hereinafter referred to as the “sensitivity affecting axis”). For example, when a magnetosensitive element having a sensitivity influence axis in a direction orthogonal to the sensitivity axis, such as a GMR element, is used, the direction of the sensitivity axis is simply changed to an induced magnetic field (hereinafter simply referred to as “induced magnetic field”). ")", The magnetization saturation of the magnetosensitive element can be suppressed, but a large magnetic field is also applied to the sensitivity-affected axis, and as a result, the sensitivity in the direction of the sensitivity axis (sensitivity axis) The rate of change in magnetoresistance with respect to the magnetic field in the direction itself changes. In addition, an output signal based on the sensitivity influence axis may be output by the induced magnetic field applied from the direction of the sensitivity influence axis. In such a case, the linearity of the output signal of the current sensor may deteriorate.

本発明者は、感度軸が誘導磁界の方向に対して所定の角度をなすように配置すると共に、感度影響軸が被測定電流からの誘導磁界の方向に対して直交するように感磁素子を配置することにより、高感度な感磁素子を用いた場合であっても、被測定電流の出力信号の線形性を確保できる測定レンジの広い電流センサを実現できることを見出し、本発明を完成させるに至った。以下、本発明の一実施の形態について、添付図面を参照して詳細に説明する。   The inventor arranges the magnetosensitive element so that the sensitivity axis is at a predetermined angle with respect to the direction of the induced magnetic field, and the sensitivity influence axis is orthogonal to the direction of the induced magnetic field from the current to be measured. In order to complete the present invention, it is possible to realize a current sensor with a wide measurement range that can ensure the linearity of the output signal of the current to be measured even when a highly sensitive magnetosensitive element is used. It came. Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1A、図1Bは、本発明の一実施の形態に係る電流センサ1の模式図である。図1Aは、電流センサ1の外観を示す斜視図であり、図1Bは、電流センサ1の平面図である。   1A and 1B are schematic views of a current sensor 1 according to an embodiment of the present invention. FIG. 1A is a perspective view illustrating an appearance of the current sensor 1, and FIG. 1B is a plan view of the current sensor 1.

図1Aに示すように、本実施の形態に係る電流センサ1は、外周縁部から中央部に向けて切り欠き部11aが設けられた絶縁基板11と、切り欠き部11aを挟むように絶縁基板11上に対向して配設された一対の感磁素子12a,12bとを備える。絶縁基板11の切り欠き部11aには、図1AにおけるY軸方向(被測定電流Iの通流方向)に延在する平板形状の導電部材13が挿入される。このとき、絶縁基板11は、その主面が導電部材13の一対の主面と略直交するように配置される。また、絶縁基板11は、図1Bに示すように、平面視において絶縁基板11の面内方向Aと導電部材13の被測定電流Iの通流方向に直交する方向B(X軸方向)とが所定の角度θをなすように配置される(平面視において面内方向Aが方向Bに対して斜めである)。   As shown in FIG. 1A, the current sensor 1 according to the present embodiment includes an insulating substrate 11 provided with a notch portion 11a from the outer peripheral edge portion toward the center portion, and an insulating substrate so as to sandwich the notch portion 11a. 11 is provided with a pair of magnetosensitive elements 12a and 12b arranged to face each other. A flat plate-shaped conductive member 13 extending in the Y-axis direction in FIG. 1A (the flow direction of the current I to be measured) is inserted into the cutout portion 11 a of the insulating substrate 11. At this time, the insulating substrate 11 is disposed such that its main surface is substantially orthogonal to the pair of main surfaces of the conductive member 13. In addition, as shown in FIG. 1B, the insulating substrate 11 has an in-plane direction A of the insulating substrate 11 and a direction B (X-axis direction) orthogonal to the flow direction of the current I to be measured of the conductive member 13 in plan view. Arranged so as to form a predetermined angle θ (in-plane direction A is oblique to direction B in plan view).

一対の感磁素子12a,12bは、感度軸S1及びこの感度軸S1の方向に直交する方向における感度影響軸S2を有する。本実施の形態においては、一対の感磁素子12a,12bの感度軸S1は、図1Bに示すように、絶縁基板11の面内方向Aに対して略平行であると共に、導電部材13の主面に対して略平行である。一対の感磁素子12a,12bの感度影響軸S2は、図1Aに示すように、導電部材13の主面に対して略垂直であると共に、絶縁基板11の主面に対して略平行である。すなわち、一対の感磁素子12a,12bの感度軸S1は、誘導磁界Hの方向に沿って配置され、感度影響軸S2は、誘導磁界Hの方向に直交する方向、かつ、導電部材13の主面に対して垂直に配置される(図1AにおけるZ軸方向)。   The pair of magnetosensitive elements 12a and 12b has a sensitivity axis S1 and a sensitivity influence axis S2 in a direction orthogonal to the direction of the sensitivity axis S1. In the present embodiment, the sensitivity axis S1 of the pair of magnetosensitive elements 12a and 12b is substantially parallel to the in-plane direction A of the insulating substrate 11 as shown in FIG. It is substantially parallel to the surface. As shown in FIG. 1A, the sensitivity influence axis S2 of the pair of magnetosensitive elements 12a and 12b is substantially perpendicular to the main surface of the conductive member 13 and substantially parallel to the main surface of the insulating substrate 11. . That is, the sensitivity axis S1 of the pair of magnetosensitive elements 12a and 12b is arranged along the direction of the induction magnetic field H, and the sensitivity influence axis S2 is a direction orthogonal to the direction of the induction magnetic field H and the main axis of the conductive member 13. It is arranged perpendicular to the surface (Z-axis direction in FIG. 1A).

また、本実施の形態に係る電流センサ1においては、図1Bに示すように、平面視において一対の感磁素子12a,12bは、感度軸S1が導電部材13を通流する被測定電流Iからの誘導磁界Hの方向であるX軸方向に対して所定の角度θをなすように配置されると共に、感度影響軸S2が被測定電流Iの通流方向及び誘導磁界Hの方向に対して直交するZ軸方向に沿って配置される。この構成により、詳細については後述するように、誘導磁界Hによる一対の感磁素子12a,12bの磁化飽和を抑制して測定レンジを拡大できると共に、感度影響軸S2に基づく感度変化が実質的にゼロとなるので、測定レンジが広く、出力信号の線形性が高い電流センサ1を実現することができる。   Further, in the current sensor 1 according to the present embodiment, as shown in FIG. 1B, the pair of magnetosensitive elements 12a and 12b has a sensitivity axis S1 from a measured current I passing through the conductive member 13 in a plan view. Are arranged so as to form a predetermined angle θ with respect to the X-axis direction, which is the direction of the induced magnetic field H, and the sensitivity affecting axis S2 is orthogonal to the direction of the current I to be measured and the direction of the induced magnetic field H. Arranged along the Z-axis direction. With this configuration, as will be described in detail later, the magnetization range of the pair of magnetosensitive elements 12a and 12b due to the induction magnetic field H can be suppressed and the measurement range can be expanded, and the sensitivity change based on the sensitivity influence axis S2 is substantially reduced. Since it becomes zero, the current sensor 1 having a wide measurement range and high linearity of the output signal can be realized.

一対の感磁素子12a,12bは、導電部材13を通流する被測定電流Iからの誘導磁界Hにより出力信号を出力する。一対の感磁素子12a,12bから出力された出力信号は、絶縁基板11上に設けられた配線パターン(不図示)を介して演算回路としての信号処理回路21(図1において不図示、図4参照)に入力される。信号処理回路21では、被測定電流Iの電流値が算出される。   The pair of magnetosensitive elements 12 a and 12 b outputs an output signal by the induced magnetic field H from the measured current I flowing through the conductive member 13. Output signals output from the pair of magnetosensitive elements 12a and 12b are transmitted through a wiring pattern (not shown) provided on the insulating substrate 11 to a signal processing circuit 21 (not shown in FIG. 1, FIG. 4). Input). In the signal processing circuit 21, the current value of the measured current I is calculated.

図2A,図2Bは、感磁素子12a,12bの配置例を示す模式図である。感磁素子12a,12bは、感度軸S1が誘導磁界Hの方向に対して所定の角度をなすように配置され、感度影響軸S2が誘導磁界Hの方向に対して直交するように配置されていれば特に制限はない。例えば、一対の感磁素子12a,12bは、感度軸S1及び感度影響軸S2をそれぞれ略同一方向に揃えて配置してもよく(図2A参照)、感度軸S1を略同一方向に揃えると共に、感度影響軸S2が互いに略逆方向となるように配置してもよい(図2B参照)。なお、一対の感磁素子12a,12bの感度軸S1及び感度影響軸S2の方向については、本発明の効果を奏する範囲であれば、一対の感磁素子12a,12bで完全に平行でなくても良い。   2A and 2B are schematic diagrams showing examples of arrangement of the magnetosensitive elements 12a and 12b. The magnetosensitive elements 12a and 12b are arranged so that the sensitivity axis S1 forms a predetermined angle with respect to the direction of the induction magnetic field H, and the sensitivity influence axis S2 is arranged so as to be orthogonal to the direction of the induction magnetic field H. If there is no particular limitation. For example, the pair of magnetosensitive elements 12a and 12b may be arranged such that the sensitivity axis S1 and the sensitivity influence axis S2 are aligned in substantially the same direction (see FIG. 2A), and the sensitivity axis S1 is aligned in approximately the same direction. You may arrange | position so that the sensitivity influence axis | shaft S2 may become a substantially reverse direction mutually (refer FIG. 2B). Note that the direction of the sensitivity axis S1 and the sensitivity influence axis S2 of the pair of magnetosensitive elements 12a and 12b is not completely parallel between the pair of magnetosensitive elements 12a and 12b as long as the effect of the present invention is achieved. Also good.

感磁素子12a,12bとしては、被測定電流Iからの誘導磁界Hにより出力信号を出力し、感度軸S1と直交する方向に感度影響軸S2を有するものであれば特に限定されない。感磁素子12a,12bとしては、例えば、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などの磁気抵抗効果素子や、磁気収束板を用いて素子面内に磁界感度軸を持たせたホール素子などを用いることができる。   The magnetosensitive elements 12a and 12b are not particularly limited as long as they output an output signal by the induced magnetic field H from the current I to be measured and have the sensitivity influence axis S2 in the direction orthogonal to the sensitivity axis S1. As the magnetosensitive elements 12a and 12b, for example, a magnetoresistive effect element such as a GMR (Giant Magneto Resistance) element or a TMR (Tunnel Magneto Resistance) element, or a magnetic convergence plate is used to provide a magnetic field sensitivity axis in the element plane. A Hall element or the like can be used.

感磁素子12a,12bとしては、感度軸S1に対して略直交する方向に感度影響軸S2としての副感度軸を有するものを用いてもよい。ここで、副感度軸とは、感度軸S1に対して略直交する方向からの誘導磁界Hにより感度軸S1からの出力信号に対して相対的に弱い出力信号が生じる軸、すなわち感度軸S1に対して直交する方向の磁界を検知する軸である。このような副感度軸を有する感磁素子12a,12bとしては、例えば、GMR素子や磁気収束板を備えたホール素子などが挙げられる。GMR素子の場合は、フリー層の磁化方向が回転する平面内において、感度軸S1と直交する方向が副感度軸となる。また、磁気収束板を備えたホール素子の場合は、磁気収束板の平面内において、感度軸S1と直交する方向が副感度軸となる。これらのGMR素や磁気収束板を備えたホール素子においては、副感度軸(感度影響軸S2)を被測定電流Iによる誘導磁界Hの方向に直交するように配置することにより、被測定電流Iからの誘導磁界Hによる感度影響軸S2に基づく感度変化を実質的にゼロとすることができるので、感度影響軸に起因する電流センサの出力信号の線形性の低下を抑制することができる。   As the magnetosensitive elements 12a and 12b, those having a secondary sensitivity axis as the sensitivity influence axis S2 in a direction substantially orthogonal to the sensitivity axis S1 may be used. Here, the secondary sensitivity axis is an axis in which an output signal relatively weak with respect to an output signal from the sensitivity axis S1 is generated by the induced magnetic field H from a direction substantially orthogonal to the sensitivity axis S1, that is, the sensitivity axis S1. It is an axis for detecting a magnetic field in a direction orthogonal to the direction. Examples of the magnetic sensitive elements 12a and 12b having such a secondary sensitivity axis include a GMR element and a Hall element equipped with a magnetic converging plate. In the case of the GMR element, the direction perpendicular to the sensitivity axis S1 is the sub-sensitivity axis in the plane in which the magnetization direction of the free layer rotates. In the case of a Hall element provided with a magnetic converging plate, the direction perpendicular to the sensitivity axis S1 is the secondary sensitivity axis in the plane of the magnetic converging plate. In the Hall element provided with these GMR elements and magnetic converging plates, the sub-sensitivity axis (sensitivity influencing axis S2) is arranged so as to be orthogonal to the direction of the induced magnetic field H caused by the current I to be measured. Since the change in sensitivity based on the sensitivity influence axis S2 due to the induced magnetic field H can be made substantially zero, it is possible to suppress a decrease in linearity of the output signal of the current sensor due to the sensitivity influence axis.

また、感磁素子12a,12bとしては、感度軸S1に対して略直交する方向に感度影響軸S2としての感度変化軸を有するものを用いてもよい。ここで、感度変化軸とは、感度軸S1の方向からの誘導磁界Hに対する磁気抵抗変化率を変化させる軸、すなわち感度軸S1の検出感度を変化させる軸である。このような感度軸変化軸を有する感磁素子12a,12bとしては、例えば、ハードバイアスを備えたGMRやTMR素子などが挙げられる。これらのハードバイアスを備えたGMR素子やTMR素子においては、ハードバイアスからのバイアス磁界をGMR素子やTMR素子に印加することにより、磁化自由層の磁化方向をPIN層の磁化方向に平行させることが容易となるので、被測定電流Iからの誘導磁界Hによる出力信号の線形性を向上することができる。また、バイアス磁界の印加によりGMR素子やTMR素子に印加される実効的な誘導磁界Hが減少するので、ヒステリシスを低減することもできる。   As the magnetic sensitive elements 12a and 12b, those having a sensitivity change axis as the sensitivity influence axis S2 in a direction substantially orthogonal to the sensitivity axis S1 may be used. Here, the sensitivity change axis is an axis that changes the magnetoresistance change rate with respect to the induced magnetic field H from the direction of the sensitivity axis S1, that is, an axis that changes the detection sensitivity of the sensitivity axis S1. Examples of the magnetosensitive elements 12a and 12b having such a sensitivity axis changing axis include GMR and TMR elements having a hard bias. In a GMR element or TMR element having such a hard bias, the magnetization direction of the magnetization free layer can be made parallel to the magnetization direction of the PIN layer by applying a bias magnetic field from the hard bias to the GMR element or TMR element. Since it becomes easy, the linearity of the output signal by the induced magnetic field H from the current I to be measured can be improved. Further, since the effective induction magnetic field H applied to the GMR element and the TMR element is reduced by applying the bias magnetic field, the hysteresis can be reduced.

感磁素子12a,12bとして、ハードバイアスを備えたGMR素子やTMR素子を用いる場合、ハードバイアスからのバイアス磁界の印加方向が、感度変化軸(感度影響軸S2)と略一致するように配設することが望ましい。この感度変化軸の方向は、誘導磁界Hの方向に直交する方向である。したがって、本実施の形態に係る電流センサ1において、ハードバイアスを備えたGMR素子やTMR素子を用いる場合には、ハードバイアスからのバイアス磁界の印加方向を感度影響軸S2と一致させることにより、バイアス磁界の印加方向に対して略直交する方向からの被測定電流Iによる誘導磁界Hが印加されることになり、バイアス磁界に対する被測定電流Iからの誘導磁界Hの影響を実質的にゼロとすることができるので、上述した出力信号の線形性の向上を実現できる。   When a GMR element or a TMR element having a hard bias is used as the magnetosensitive elements 12a and 12b, the bias magnetic field application direction from the hard bias is arranged so as to substantially coincide with the sensitivity change axis (sensitivity influence axis S2). It is desirable to do. The direction of the sensitivity change axis is a direction orthogonal to the direction of the induction magnetic field H. Therefore, in the current sensor 1 according to the present embodiment, when a GMR element or a TMR element having a hard bias is used, the bias magnetic field application direction from the hard bias is made to coincide with the sensitivity influence axis S2, thereby making the bias The induced magnetic field H due to the measured current I from the direction substantially perpendicular to the direction in which the magnetic field is applied is applied, and the influence of the induced magnetic field H from the measured current I on the bias magnetic field is substantially zero. Therefore, the linearity of the output signal described above can be improved.

また、感磁素子12a、12bとしては、GMR素子やTMR素子の形状を細長くして、形状異方性を強めたGMR素子やTMR素子を用いることもできる。この場合、GMR素子及びTMR素子の長手方向が感度影響軸S2となる。このような形状異方性を有するGMR素子及びTMR素子においては、上述した感度影響軸S2としての副感度軸及び感度変化軸が共に生じる場合もある。このような場合には、被測定電流からの誘導磁界Hの方向と副感度軸及び感度変化軸とをそれぞれ略直交させることにより、感度変化軸に基づく感度軸の感度変化が実質的にゼロになると共に、副感度軸に基づく出力信号も実質的にゼロとなるので、電流センサ1の出力信号の線形性の低下を抑制できる。   Further, as the magnetosensitive elements 12a and 12b, GMR elements and TMR elements in which the shapes of the GMR elements and TMR elements are elongated and the shape anisotropy is enhanced can be used. In this case, the longitudinal direction of the GMR element and the TMR element is the sensitivity affecting axis S2. In the GMR element and the TMR element having such shape anisotropy, both the sub-sensitivity axis and the sensitivity change axis as the sensitivity influence axis S2 may occur. In such a case, by making the direction of the induced magnetic field H from the current to be measured, the sub-sensitivity axis, and the sensitivity change axis substantially orthogonal, the sensitivity change of the sensitivity axis based on the sensitivity change axis becomes substantially zero. In addition, since the output signal based on the secondary sensitivity axis is also substantially zero, it is possible to suppress a decrease in linearity of the output signal of the current sensor 1.

次に、本実施の形態に係る電流センサ1の測定原理について説明する。図3A〜図3Cは、電流センサ1の測定原理の説明図である。なお、図3Aにおいては、説明の便宜上、絶縁基板11を省略した斜視図を示している。また、図3B,図3Cにおいては、図3Aの上面図を模式的に示している。   Next, the measurement principle of the current sensor 1 according to the present embodiment will be described. 3A to 3C are explanatory diagrams of the measurement principle of the current sensor 1. 3A is a perspective view in which the insulating substrate 11 is omitted for convenience of explanation. 3B and 3C schematically show a top view of FIG. 3A.

図3Aに示すように、本実施の形態に係る電流センサ1においては、一対の感磁素子12a,12bが導電部材13を挟むように対向して配置される。導電部材13を通流する被測定電流Iからの誘導磁界Hの方向は、導電部材13の被測定電流Iの通流方向(図3Aの太線の矢印参照)に対して略直交する方向(図3A〜図3Cの一点鎖線参照)となる。このため、一対の感磁素子12a,12bには、被測定電流Iの通流方向に対して略直交する方向から誘導磁界Hが印加される。   As shown in FIG. 3A, in the current sensor 1 according to the present embodiment, a pair of magnetosensitive elements 12a and 12b are arranged to face each other with the conductive member 13 interposed therebetween. The direction of the induction magnetic field H from the measured current I flowing through the conductive member 13 is substantially orthogonal to the flowing direction of the measured current I of the conductive member 13 (see the thick arrow in FIG. 3A) (see FIG. 3). 3A to 3C). For this reason, the induction magnetic field H is applied to the pair of magnetosensitive elements 12a and 12b from a direction substantially perpendicular to the flow direction of the current I to be measured.

ここで、一対の感磁素子12a,12bは、導電部材13の延在方向に対して主面が斜めに配置された絶縁基板11上に配設されているので、導電部材13の主面の面内方向において、感度軸S1が誘導磁界Hの方向に対して所定の角度θ1をなすように配置される。このため、一対の感磁素子12a,12bに対して感度軸S1の方向から印加される誘導磁界Hの磁界強度H1は、H1=H×cosθ1となる。また、一対の感磁素子12a,12bは、感度影響軸S2が誘導磁界Hの方向に対して直交するように配置されているので、感度影響軸S2の方向から印加される誘導磁界Hの磁界強度H2は、H2=H×cos90度となる。したがって、一対の感磁素子12a,12bに対して感度軸S1の方向から印加される誘導磁界Hの磁界強度H1,H2が所定の角度θ1に応じて変化すると共に(所定の角度θ1が大きくなるにしたがって誘導磁界Hの磁界強度H1,H2が小さくなる)、一対の感磁素子12a,12bから出力される出力信号のうち、感度影響軸S2の方向からの誘導磁界Hに基づく感度変化が実質的にゼロとなる。この結果、一対の感磁素子12a,12bの磁化飽和の抑制が可能となり、大電流の測定が可能となると共に、感度影響軸S2に基づく出力信号に起因する出力信号の線形性の低下を抑制できる。   Here, since the pair of magnetosensitive elements 12 a and 12 b are disposed on the insulating substrate 11 whose main surface is disposed obliquely with respect to the extending direction of the conductive member 13, In the in-plane direction, the sensitivity axis S1 is arranged so as to form a predetermined angle θ1 with respect to the direction of the induction magnetic field H. Therefore, the magnetic field intensity H1 of the induction magnetic field H applied from the direction of the sensitivity axis S1 to the pair of magnetosensitive elements 12a and 12b is H1 = H × cos θ1. Further, since the pair of magnetosensitive elements 12a and 12b are arranged so that the sensitivity influence axis S2 is orthogonal to the direction of the induction magnetic field H, the magnetic field of the induction magnetic field H applied from the direction of the sensitivity influence axis S2. The intensity H2 is H2 = H × cos 90 degrees. Therefore, the magnetic field strengths H1 and H2 of the induction magnetic field H applied from the direction of the sensitivity axis S1 to the pair of magnetosensitive elements 12a and 12b change according to the predetermined angle θ1 (the predetermined angle θ1 increases). The magnetic field strengths H1 and H2 of the induced magnetic field H are reduced according to the above), and among the output signals output from the pair of magnetosensitive elements 12a and 12b, the sensitivity change based on the induced magnetic field H from the direction of the sensitivity affecting axis S2 is substantial. Will be zero. As a result, the magnetization saturation of the pair of magnetosensitive elements 12a and 12b can be suppressed, a large current can be measured, and a decrease in linearity of the output signal due to the output signal based on the sensitivity influence axis S2 can be suppressed. it can.

なお、図3Cに示すように、一対の感磁素子12a,12bの感度軸に直交する感度影響軸S2を絶縁基板11(導電部材13)の主面に対して平行にした場合には、感度影響軸S2の方向から印加される誘導磁界Hの磁界強度H2は、H2=H×cosθ2となる。このため、この場合には、一対の感磁素子12a,12bから出力される出力信号に、感度影響軸S2の方向からの磁界強度H2の印加の影響を受け、感度軸S1の方向の感度(感度軸S1の方向の磁界に対する磁気抵抗変化率)が変化する。このため、感度影響軸S2に基づく出力信号により、電流センサの出力信号の線形性が悪化する。   As shown in FIG. 3C, when the sensitivity influence axis S2 orthogonal to the sensitivity axes of the pair of magnetosensitive elements 12a and 12b is parallel to the main surface of the insulating substrate 11 (conductive member 13), the sensitivity The magnetic field strength H2 of the induction magnetic field H applied from the direction of the influence axis S2 is H2 = H × cos θ2. Therefore, in this case, the output signals output from the pair of magnetosensitive elements 12a and 12b are affected by the application of the magnetic field intensity H2 from the direction of the sensitivity affecting axis S2, and the sensitivity in the direction of the sensitivity axis S1 ( The magnetoresistance change rate with respect to the magnetic field in the direction of the sensitivity axis S1 changes. For this reason, the linearity of the output signal of the current sensor is deteriorated by the output signal based on the sensitivity influence axis S2.

図4は、本実施の形態に係る電流センサ1のブロック図である。図4に示す電流センサ1は、一対の感磁素子12a、12bと、それぞれの感磁素子12a、12bからの出力信号を信号処理(電流値を演算)して出力する信号処理回路(演算回路)21とから構成されている。   FIG. 4 is a block diagram of the current sensor 1 according to the present embodiment. A current sensor 1 shown in FIG. 4 includes a pair of magnetosensitive elements 12a and 12b and a signal processing circuit (arithmetic circuit) that outputs an output signal from each of the magnetosensitive elements 12a and 12b by signal processing (calculating a current value). ) 21.

感磁素子12aは、導電部材13を通流する被測定電流Iからの誘導磁界Hを検出し、検出した誘導磁界Hの磁界強度に比例した大きさとなる電圧信号が信号処理回路21に出力される。例えば、図3Bに示す場合、地磁気などの外部磁界をHαとすると、感磁素子12aから出力される電圧信号Vaは、kを比例定数として下記式(1)で示される。なお感磁素子12aの感度軸S1の方向と同じ向きの磁界は+、逆向きの磁界を−としている。
Va=k×{(H×cosθ1)−Hα} …(1)
The magnetosensitive element 12 a detects the induced magnetic field H from the current I to be measured flowing through the conductive member 13, and a voltage signal having a magnitude proportional to the magnetic field strength of the detected induced magnetic field H is output to the signal processing circuit 21. The For example, in the case shown in FIG. 3B, when an external magnetic field such as geomagnetism is Hα, the voltage signal Va output from the magnetosensitive element 12a is expressed by the following formula (1), where k is a proportional constant. The magnetic field in the same direction as the direction of the sensitivity axis S1 of the magnetosensitive element 12a is + and the magnetic field in the opposite direction is-.
Va = k × {(H × cos θ1) −Hα} (1)

同様に、感磁素子12bは、導電部材13を通流する被測定電流Iからの誘導磁界Hを検出し、検出した磁界強度に比例した大きさとなる電圧信号が信号処理回路21に出力される。例えば、図3Bに示す場合、地磁気などの外部磁界をHαとすると、感磁素子12bから出力される電圧信号Vbは、kを比例定数として下記式(2)で示される。なお、感磁素子12bの感度軸S1の方向と同じ向きの磁界は+、逆向きの磁界を−としている。
Vb=k×{(−H×cosθ1)−Hα} …(2)
Similarly, the magnetosensitive element 12 b detects an induced magnetic field H from the current I to be measured flowing through the conductive member 13, and a voltage signal having a magnitude proportional to the detected magnetic field strength is output to the signal processing circuit 21. . For example, in the case shown in FIG. 3B, when an external magnetic field such as geomagnetism is Hα, the voltage signal Vb output from the magnetosensitive element 12b is expressed by the following equation (2), where k is a proportional constant. The magnetic field in the same direction as the direction of the sensitivity axis S1 of the magnetosensitive element 12b is +, and the magnetic field in the opposite direction is-.
Vb = k × {(− H × cos θ1) −Hα} (2)

信号処理回路21は、感磁素子12a、12bから出力された電圧信号Va、Vbに対して差動演算処理を行う。例えば、図2A,図2Bに示すように、感度軸S1の方向が互いに同じ向きとなるように感磁素子12a、12bが配置される場合、信号処理回路21は、感磁素子12a、12bから出力された電圧信号Va、Vbを下記式(3)に示すように減算して、導電部材13を通流する被測定電流Iの電流値を算出する。
Va−Vb=k×{(H×cosθ1)−Hα}−k×{(−H×cosθ1)−Hα}=k×2H …(3)
The signal processing circuit 21 performs differential arithmetic processing on the voltage signals Va and Vb output from the magnetic sensitive elements 12a and 12b. For example, as shown in FIGS. 2A and 2B, when the magnetosensitive elements 12a and 12b are arranged so that the directions of the sensitivity axes S1 are the same, the signal processing circuit 21 is connected to the magnetosensitive elements 12a and 12b. The output voltage signals Va and Vb are subtracted as shown in the following formula (3) to calculate the current value of the measured current I flowing through the conductive member 13.
Va−Vb = k × {(H × cos θ1) −Hα} −k × {(− H × cos θ1) −Hα} = k × 2H (3)

上記式(3)に示されるように、電圧信号Va、Vbを減算することにより、外部磁界Bαに基づく出力信号が相殺され、被測定電流Iからの誘導磁界Hに基づく出力信号が加算される。この結果、外部磁界Hαの影響を排除でき、電流値の測定精度を向上させることができる。   As shown in the above equation (3), by subtracting the voltage signals Va and Vb, the output signal based on the external magnetic field Bα is canceled and the output signal based on the induced magnetic field H from the current I to be measured is added. . As a result, the influence of the external magnetic field Hα can be eliminated, and the current value measurement accuracy can be improved.

このように、本実施の形態に係る電流センサ1においては、一対の感磁素子12a,12bに対して、被測定電流Iからの誘導磁界Hが互いに略逆方向から印加され、外部磁界Hαが略同一方向から印加される。このため、一対の感磁素子12a,12bから被測定電流Iからの誘導磁界Hに基づく略逆相の出力信号が出力され、外部磁界Hαに基づく略同相の出力信号が出力される。したがって、一対の感磁素子12a,12bの出力信号を差動演算することにより、外部磁界Hαに基づくノイズ成分をキャンセルすることができる。   Thus, in the current sensor 1 according to the present embodiment, the induction magnetic field H from the current I to be measured is applied to the pair of magnetosensitive elements 12a and 12b from substantially opposite directions, and the external magnetic field Hα is generated. Applied from substantially the same direction. Therefore, a substantially reverse phase output signal based on the induced magnetic field H from the current I to be measured is output from the pair of magnetosensitive elements 12a and 12b, and an approximately in-phase output signal based on the external magnetic field Hα is output. Therefore, the noise component based on the external magnetic field Hα can be canceled by performing a differential operation on the output signals of the pair of magnetosensitive elements 12a and 12b.

以上説明したように、上記実施の形態に係る電流センサ1によれば、被測定電流Iからの誘導磁界Hの方向に対して、一対の感磁素子12a,12bの感度軸S1が所定の角度θ1をなすように配置すると共に、感度軸S1に直交する方向に生じる感度影響軸S2が略直交するように配置したことから、誘導磁界Hが感度軸S1に対しては所定の角度をなす方向から印加され、感度影響軸S2に対しては直交する方向から印加される。この構成により、感度軸S1の方向から印加される誘導磁界Hの磁界強度H1がH1=H×cosθ1になると共に、感度影響軸S2の方向から印加される誘導磁界Hが実質的にゼロとなるので、被測定電流Iが大電流の場合であっても、感磁素子12a,12bの磁気飽和を抑制できると共に、感度影響軸S2に起因する出力信号の線形性の低下を抑制できる。したがって、高感度な感磁素子12a,12bを用いた場合であっても、被測定電流Iの出力信号の線形性を確保できる測定レンジの広い電流センサを実現できる。   As described above, according to the current sensor 1 according to the above embodiment, the sensitivity axis S1 of the pair of magnetosensitive elements 12a and 12b is at a predetermined angle with respect to the direction of the induced magnetic field H from the current I to be measured. A direction in which the induced magnetic field H forms a predetermined angle with respect to the sensitivity axis S1 because the sensitivity influence axis S2 generated in a direction orthogonal to the sensitivity axis S1 is arranged so as to be substantially perpendicular to the sensitivity axis S1. And applied from a direction orthogonal to the sensitivity affecting axis S2. With this configuration, the magnetic field strength H1 of the induced magnetic field H applied from the direction of the sensitivity axis S1 becomes H1 = H × cos θ1, and the induced magnetic field H applied from the direction of the sensitivity influence axis S2 becomes substantially zero. Therefore, even when the measured current I is a large current, the magnetic saturation of the magnetosensitive elements 12a and 12b can be suppressed, and the decrease in the linearity of the output signal due to the sensitivity affecting axis S2 can be suppressed. Therefore, even when the highly sensitive magnetosensitive elements 12a and 12b are used, it is possible to realize a current sensor with a wide measurement range that can ensure the linearity of the output signal of the current I to be measured.

また、本実施の形態に係る電流センサ1においては、一対の感磁素子12a,12bとして、GMR素子を用いた場合であっても、ハードバイアスからのバイアス磁界の方向と感度影響軸S2とを一致させることにより、バイアス磁界の方向に対して略直交する方向から被測定電流Iからの誘導磁界Hが印加されるので、バイアス磁界の方向における誘導磁界Hの影響が実質的にゼロとなる。これにより、出力信号の線形性の向上及びヒステリシスの低減を実現できる。   Further, in the current sensor 1 according to the present embodiment, the direction of the bias magnetic field from the hard bias and the sensitivity influence axis S2 are obtained even when a GMR element is used as the pair of magnetosensitive elements 12a and 12b. By matching, the induced magnetic field H from the current I to be measured is applied from a direction substantially orthogonal to the direction of the bias magnetic field, so that the influence of the induced magnetic field H in the direction of the bias magnetic field becomes substantially zero. Thereby, improvement of linearity of an output signal and reduction of hysteresis can be realized.

さらに、本実施の形態に係る電流センサ1においては、一対の感磁素子12a,12bとして、副感度軸を有するGMR素子や磁気収束板を備えたホール素子を用いた場合であっても、感度影響軸S2を副感度軸と一致させることにより、被測定電流Iからの誘導磁界Hが副感度軸に対して直交する方向から印加されるので、副感度軸の方向から印加される誘導磁界Hに基づく感度変化が実質的にゼロとなる。これにより、副感度軸に起因する出力信号の線形性の低下を抑制できるので、副感度軸を有する感磁素子を用いた場合においても、被測定電流Iの出力信号の線形性を確保できる。   Furthermore, in the current sensor 1 according to the present embodiment, even when a pair of magnetosensitive elements 12a and 12b is a GMR element having a secondary sensitivity axis or a Hall element having a magnetic focusing plate, the sensitivity By causing the influence axis S2 to coincide with the sub-sensitivity axis, the induced magnetic field H from the current I to be measured is applied from the direction orthogonal to the sub-sensitivity axis, and therefore the induced magnetic field H applied from the direction of the sub-sensitivity axis. The sensitivity change based on is substantially zero. As a result, it is possible to suppress a decrease in the linearity of the output signal due to the secondary sensitivity axis, so that the linearity of the output signal of the current I to be measured can be ensured even when a magnetosensitive element having the secondary sensitivity axis is used.

また、本実施の形態に係る電流センサ1においては、導電部材13を挟むように一対の感磁素子12a,12bを対向して配置したので、一対の感磁素子12a,12bに対して略同一方向から外部磁界Hαが印加され、一対の感磁素子12a,12bから略同相の出力信号が出力される。このため、一対の感磁素子12a,12bの出力信号を差動演算することにより、外部磁界Hαによるノイズ成分をキャンセルすることができる。   Further, in the current sensor 1 according to the present embodiment, the pair of magnetosensitive elements 12a and 12b are disposed so as to face each other with the conductive member 13 interposed therebetween, so that they are substantially the same as the pair of magnetosensitive elements 12a and 12b. An external magnetic field Hα is applied from the direction, and an approximately in-phase output signal is output from the pair of magnetosensitive elements 12a and 12b. For this reason, the noise component due to the external magnetic field Hα can be canceled by differentially calculating the output signals of the pair of magnetosensitive elements 12a and 12b.

さらに、本実施の形態に係る電流センサ1においては、絶縁基板11上に一対の感磁素子12a,12bを配設すると共に、絶縁基板11の切り欠き部11aに導電部材13を挿入したので、一対の感磁素子12a,12bの角度の調整及び位置合わせが容易になると共に、絶縁基板11を小型化することができる。   Furthermore, in the current sensor 1 according to the present embodiment, the pair of magnetosensitive elements 12a and 12b are disposed on the insulating substrate 11, and the conductive member 13 is inserted into the cutout portion 11a of the insulating substrate 11. Adjustment and positioning of the angle of the pair of magnetosensitive elements 12a and 12b are facilitated, and the insulating substrate 11 can be downsized.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In addition, this invention is not limited to the said embodiment, It can change and implement variously. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

例えば、上述した実施の形態においては、感磁素子12a,12bの感度軸S1を略同一方向に揃えた例について説明したが、感磁素子12a,12bの感度軸S1は、互いに逆方向にしてもよい。この場合、信号処理回路21は、感磁素子12a、12bから出力された出力信号を加算して、電流値を算出することにより、上記同様に、外部磁界Bαに基づく出力信号が相殺され、被測定電流Iからの誘導磁界Hに基づく出力信号が加算される。この結果、外部磁界Hαの影響を排除でき、電流値の測定精度を向上させることができる。   For example, in the above-described embodiment, the example in which the sensitivity axes S1 of the magnetic sensing elements 12a and 12b are aligned in substantially the same direction has been described. Also good. In this case, the signal processing circuit 21 adds the output signals output from the magnetosensitive elements 12a and 12b and calculates the current value, thereby canceling the output signal based on the external magnetic field Bα as described above. An output signal based on the induced magnetic field H from the measurement current I is added. As a result, the influence of the external magnetic field Hα can be eliminated, and the current value measurement accuracy can be improved.

本発明は、高感度な感磁素子を用いた場合であっても、出力信号の線形性を確保できる測定レンジの広い電流センサを実現できるという効果を有し、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知するために用いることが可能である。   The present invention has the effect of realizing a current sensor with a wide measurement range that can ensure the linearity of an output signal even when a highly sensitive magnetosensitive element is used. It can be used to detect the magnitude of the current for driving the motor.

1 電流センサ
11 絶縁基板
12a,12b 感磁素子
13 導電部材
21 信号処理回路
DESCRIPTION OF SYMBOLS 1 Current sensor 11 Insulating board 12a, 12b Magnetosensitive element 13 Conductive member 21 Signal processing circuit

Claims (8)

被測定電流からの誘導磁界により出力信号を出力する感磁素子を備え、
前記感磁素子は、感度軸及び当該感度軸と直交する感度影響軸を有し、前記感度軸が前記誘導磁界の方向に対して所定の角度をなすように配置され、前記感度影響軸が前記被測定電流の通流方向及び前記誘導磁界の方向に対して直交に配置されたことを特徴とする電流センサ。
A magnetosensitive element that outputs an output signal by an induced magnetic field from a current to be measured is provided.
The magnetosensitive element has a sensitivity axis and a sensitivity influence axis orthogonal to the sensitivity axis, the sensitivity axis is disposed at a predetermined angle with respect to the direction of the induction magnetic field, and the sensitivity influence axis is A current sensor, wherein the current sensor is disposed perpendicular to the direction of current flow and the direction of the induction magnetic field.
前記感度影響軸が副感度軸であることを特徴とする請求項1記載の電流センサ。   The current sensor according to claim 1, wherein the sensitivity influence axis is a secondary sensitivity axis. 前記感磁素子がGMR素子であることを特徴とする請求項2記載の電流センサ。   The current sensor according to claim 2, wherein the magnetosensitive element is a GMR element. 前記感磁素子が磁気収束板を備えたホール素子であることを特徴とする請求項2記載の電流センサ。   The current sensor according to claim 2, wherein the magnetosensitive element is a Hall element provided with a magnetic focusing plate. 前記感度影響軸が感度変化軸であることを特徴とする請求項1記載の電流センサ。   The current sensor according to claim 1, wherein the sensitivity influence axis is a sensitivity change axis. 前記感磁素子がGMR素子であることを特徴とする請求項5記載の電流センサ。   The current sensor according to claim 5, wherein the magnetosensitive element is a GMR element. 前記感磁素子が一対の感磁素子であり、前記一対の感磁素子の出力信号を差動演算して前記被測定電流の電流値を算出する演算回路を備えることを特徴とする請求項1から請求項6のいずれかに記載の電流センサ。   The magnetic sensing element is a pair of magnetic sensing elements, and includes an arithmetic circuit that calculates a current value of the current to be measured by differentially calculating an output signal of the pair of magnetic sensitive elements. The current sensor according to claim 6. 切り欠き部を有する絶縁基板を備え、前記一対の感磁素子は、前記切り欠き部を挟むように前記絶縁基板に配設されており、前記切り欠き部に前記導電部材が挿入されたことを特徴とする請求項7記載の電流センサ。   An insulating substrate having a notch, wherein the pair of magnetosensitive elements are disposed on the insulating substrate so as to sandwich the notch, and the conductive member is inserted into the notch. The current sensor according to claim 7, wherein:
JP2011231297A 2011-10-21 2011-10-21 Current sensor Pending JP2013088370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011231297A JP2013088370A (en) 2011-10-21 2011-10-21 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231297A JP2013088370A (en) 2011-10-21 2011-10-21 Current sensor

Publications (1)

Publication Number Publication Date
JP2013088370A true JP2013088370A (en) 2013-05-13

Family

ID=48532401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231297A Pending JP2013088370A (en) 2011-10-21 2011-10-21 Current sensor

Country Status (1)

Country Link
JP (1) JP2013088370A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072124A (en) * 2013-10-01 2015-04-16 アルプス・グリーンデバイス株式会社 Curent sensor
JP2015090316A (en) * 2013-11-06 2015-05-11 アルプス・グリーンデバイス株式会社 Current sensor
WO2017002678A1 (en) * 2015-07-01 2017-01-05 株式会社村田製作所 Current sensor
WO2017010219A1 (en) * 2015-07-10 2017-01-19 株式会社村田製作所 Current sensor
JPWO2016125367A1 (en) * 2015-02-02 2017-06-15 株式会社村田製作所 Current sensor
JP2018072299A (en) * 2016-11-04 2018-05-10 日立金属株式会社 Current sensor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072124A (en) * 2013-10-01 2015-04-16 アルプス・グリーンデバイス株式会社 Curent sensor
JP2015090316A (en) * 2013-11-06 2015-05-11 アルプス・グリーンデバイス株式会社 Current sensor
US10605835B2 (en) 2015-02-02 2020-03-31 Murata Manufacturing Co., Ltd. Current sensor
JP2018119994A (en) * 2015-02-02 2018-08-02 株式会社村田製作所 Current sensor
JPWO2016125367A1 (en) * 2015-02-02 2017-06-15 株式会社村田製作所 Current sensor
CN107615079A (en) * 2015-07-01 2018-01-19 株式会社村田制作所 Current sensor
JPWO2017002678A1 (en) * 2015-07-01 2017-11-30 株式会社村田製作所 Current sensor
US10006945B2 (en) 2015-07-01 2018-06-26 Murata Manufacturing Co., Ltd. Electric current sensor
CN107615079B (en) * 2015-07-01 2019-11-12 株式会社村田制作所 Current sensor
WO2017002678A1 (en) * 2015-07-01 2017-01-05 株式会社村田製作所 Current sensor
CN107533089A (en) * 2015-07-10 2018-01-02 株式会社村田制作所 Current sensor
JPWO2017010219A1 (en) * 2015-07-10 2017-11-16 株式会社村田製作所 Current sensor
WO2017010219A1 (en) * 2015-07-10 2017-01-19 株式会社村田製作所 Current sensor
US10281497B2 (en) 2015-07-10 2019-05-07 Murata Manufacturing Co., Ltd. Current sensor including a first flow portion and a second flow portion
CN107533089B (en) * 2015-07-10 2020-04-10 株式会社村田制作所 Current sensor
JP2018072299A (en) * 2016-11-04 2018-05-10 日立金属株式会社 Current sensor

Similar Documents

Publication Publication Date Title
JP5531215B2 (en) Current sensor
US9400315B2 (en) Current sensor
JP5531217B2 (en) Current sensor
JP5648246B2 (en) Current sensor
JP5906488B2 (en) Current sensor
JP5544502B2 (en) Current sensor
JP6118416B2 (en) Magnetic sensor
JP5532166B1 (en) Magnetic sensor and magnetic sensor system
JP2013088370A (en) Current sensor
WO2013099504A1 (en) Current sensor
JP5816958B2 (en) Current sensor
JP6311790B2 (en) Current sensor
JP6321323B2 (en) Magnetic sensor
WO2013038867A1 (en) Electric-current sensor
JP2015036636A (en) Current sensor
JP2013108787A (en) Current sensor
WO2012046547A1 (en) Current sensor
JP5487403B2 (en) Current sensor
JP2012052980A (en) Current sensor
JP2013142604A (en) Current sensor
JP2013142569A (en) Current sensor
JP2014066623A (en) Current sensor
WO2012035906A1 (en) Current sensor
JP2015090316A (en) Current sensor
JP2015031647A (en) Current sensor and manufacturing method therefor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130620

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115