JP2013108787A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2013108787A
JP2013108787A JP2011252627A JP2011252627A JP2013108787A JP 2013108787 A JP2013108787 A JP 2013108787A JP 2011252627 A JP2011252627 A JP 2011252627A JP 2011252627 A JP2011252627 A JP 2011252627A JP 2013108787 A JP2013108787 A JP 2013108787A
Authority
JP
Japan
Prior art keywords
measured
current sensor
current
conductive paths
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011252627A
Other languages
Japanese (ja)
Inventor
Takeshi Suenaga
健 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Green Devices Co Ltd
Original Assignee
Alps Green Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Green Devices Co Ltd filed Critical Alps Green Devices Co Ltd
Priority to JP2011252627A priority Critical patent/JP2013108787A/en
Publication of JP2013108787A publication Critical patent/JP2013108787A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a current sensor in which influence of an induction field from an adjacent conductive path is reduced, and which can be sufficiently miniaturized.SOLUTION: A current sensor (1) is equipped with a plurality of conductive paths (10a-10c) and a magnetic detection element (21) arranged in each of the conductive paths (10a-10c), while each of the plurality of conductive paths (10a-10c) has linear parts (11a, 11b) extending in a specific direction and a crank portion (12) linked to the linear parts (11a, 11b). The crank portion (12) includes: a linear part to be measured (12a); a first arm (12b) linked to one edge portion of the part to be measured (12a) and linked to the linear part (11a); and a second arm (12c) linked to the other edge portion of the part to be measured (12a) and linked to the linear part (11b), while angles formed between extension directions of the linear parts (11a, 11b)and extension directions of the first arm (12b) and the second arm (12c) are obtuse angles.

Description

本発明は、被測定電流の電流値を測定する電流センサに関し、例えば、複数の導電路を備えた電流センサに関する。   The present invention relates to a current sensor that measures a current value of a current to be measured, for example, a current sensor including a plurality of conductive paths.

従来、3相交流のU相、V相及びW相の各被測定電流を通流する3つの導電路を備えた電流センサが知られている。この電流センサにおいては、U相、V相及びW相の被測定電流を通流する3つの導電路にそれぞれ磁気センサを配設し、この磁気センサを介して各導電路を通流する被測定電流からの誘導磁界を検出することにより、3相交流のU相、V相及びW相の被測定電流の電流値をそれぞれ測定する。   2. Description of the Related Art Conventionally, a current sensor having three conductive paths through which currents to be measured of U-phase, V-phase, and W-phase of three-phase alternating current are passed is known. In this current sensor, a magnetic sensor is disposed in each of three conductive paths that pass U-phase, V-phase, and W-phase currents to be measured, and each current path that passes through each magnetic path is measured. By detecting the induced magnetic field from the current, the current values of the measured currents of the U-phase, V-phase, and W-phase of the three-phase AC are measured.

ところで、複数の導電路を備えた電流センサにおいては、各導電路に配設された磁気センサに対して、隣接して配置された導電路を通流する被測定電流からの誘導磁界が印加され、測定精度に誤差が生じる場合がある。このような隣接して配置された導電路からの誘導磁界の影響を低減するためには、各導電路間に誘導磁界を吸収する磁気シールドを設けることが有効である。一方で、磁気シールドのみで隣接して配置された導電路からの誘導磁界を遮断しようとすると、磁気シールドを厚くする必要があり、電流センサの小型化が困難になると共に、製造コストも増大する。このため、磁気シールドを用いずに隣接導電路からの誘導磁界の影響を低減できる電流センサが提案されている(例えば、特許文献1参照)。   By the way, in a current sensor having a plurality of conductive paths, an induced magnetic field from a current to be measured flowing through a conductive path disposed adjacent to the magnetic sensor disposed in each conductive path is applied. An error may occur in measurement accuracy. In order to reduce the influence of the induction magnetic field from such adjacent conductive paths, it is effective to provide a magnetic shield that absorbs the induction magnetic field between the conductive paths. On the other hand, if an attempt is made to block an induced magnetic field from a conductive path disposed adjacently only by a magnetic shield, it is necessary to increase the thickness of the magnetic shield, making it difficult to reduce the size of the current sensor and increasing the manufacturing cost. . For this reason, a current sensor that can reduce the influence of an induced magnetic field from an adjacent conductive path without using a magnetic shield has been proposed (see, for example, Patent Document 1).

かかる電流センサは、同一平面内に並列に配置されるクランク部を有する略S字形状を持つ3つの導電路を備える。各導電路は、特定方向に延長する第1直線部と、一方の端部で第1直線部の一方の端部と連接し、特定方向に直交する方向に延びる被測定部と、被測定部の他方の端部と一方の端部とが連接し、特定方向に延長する第2直線部とを有する。すなわち、各導電路は、第1直線部が特定方向に延長し、被測定部との連接部分で方向を変えて特定方向に直交する方向に延長し、第2直線部との連接部分で方向を変えて特定方向に延長する。各導電路の第1直線部の他方の端部には、電流センサに対する入力側の電流路(例えば、バッテリー側の電流路)が接続され、第2直線部の他方の端部には、電流センサからの出力側の電流路(例えば、モータ等の負荷側の電流路)が接続される。   Such a current sensor includes three conductive paths having a substantially S shape having crank portions arranged in parallel in the same plane. Each conductive path includes a first straight line portion extending in a specific direction, a measurement target portion connected to one end portion of the first straight line portion at one end portion, and extending in a direction orthogonal to the specific direction, and a measurement target portion The other end portion and the one end portion are connected to each other and have a second straight line portion extending in a specific direction. That is, each conductive path extends in a direction perpendicular to the specific direction by changing the direction of the first straight line portion in a specific direction, connected to the portion to be measured, and directed in the direction connected to the second straight line portion. Change to extend in a specific direction. The other end of the first straight line portion of each conductive path is connected to an input-side current path (for example, a current path on the battery side) to the current sensor, and the other end of the second straight line portion is connected to the current end. A current path on the output side from the sensor (for example, a current path on the load side of a motor or the like) is connected.

この電流センサにおいては、各導電路の被測定部が同一平面内で同一直線上になるように配置されるので、隣接して配設された各導電路の被測定部を通流する被測定電流からの誘導磁界の方向が互いに平行になる。このため、各磁気センサの感度軸を誘導磁界の方向と一致させることにより、磁気シールドを設けずに隣接する導電路を通流する被測定電流からの誘導磁界の影響を低減できる。   In this current sensor, since the measured parts of each conductive path are arranged on the same straight line in the same plane, the measured object flowing through the measured parts of the conductive paths arranged adjacent to each other The directions of the induced magnetic field from the current are parallel to each other. For this reason, by making the sensitivity axis of each magnetic sensor coincide with the direction of the induced magnetic field, it is possible to reduce the influence of the induced magnetic field from the current to be measured flowing through the adjacent conductive path without providing a magnetic shield.

特開2005−233692号公報Japanese Patent Laid-Open No. 2005-233692

しかしながら、特許文献1記載の電流センサにおいては、クランク部を有するので、すなわち、各導電路の被測定部が電流センサの幅方向に延長するので、電流センサの幅方向においては、被測定部の長さの導電路数分の幅が必要となる。このため、直線状の導電路を用いた場合と比較し、電流センサの幅方向の寸法が大きくなり、入出力側の電流路を含めた電流センサ全体の小型化が困難となる問題があった。   However, since the current sensor described in Patent Document 1 has a crank portion, that is, the measured portion of each conductive path extends in the width direction of the current sensor, in the width direction of the current sensor, A width corresponding to the length of the number of conductive paths is required. For this reason, compared with the case where a linear conductive path is used, there is a problem that the size in the width direction of the current sensor becomes large, and it is difficult to downsize the entire current sensor including the current path on the input / output side. .

本発明は、かかる点に鑑みてなされたものであり、隣接して配置された導電路からの誘導磁界の影響を低減でき、入出力側の電流路を含めた全体の小型化を実現できる電流センサを提供することを目的とする。   The present invention has been made in view of the above points, and can reduce the influence of an induced magnetic field from adjacent conductive paths, and can realize an overall downsizing including a current path on the input / output side. An object is to provide a sensor.

本発明の電流センサは、同一平面内に並設された複数の導電路と、各導電路にそれぞれ配設され、前記導電路を通流する被測定電流からの誘導磁界により出力信号を出力する磁電変換素子とを具備し、前記複数の導電路は、同一直線上に離間して配置された一対の直線部と、前記一対の直線部の間に前記直線部と連接するクランク部と、をそれぞれ備え、前記クランク部は、前記磁電変換素子が配設される共に両端部を持つ直線状の被測定部と、前記被測定部の一方の端部と連接すると共に一方の直線部と連接する第1の腕部と、前記被測定部の他方の端部と連接すると共に他方の直線部と連接する第2の腕部と、を有し、前記被測定部と前記第1の腕部とのなす角が直角であり、前記被測定部と前記第2の腕部とのなす角が直角であり、前記直線部と前記第1の腕部とのなす角度が鈍角であり、前記直線部と前記第2の腕部とのなす角度が鈍角であることを特徴とする。   The current sensor according to the present invention outputs an output signal by a plurality of conductive paths arranged in parallel in the same plane, and an induced magnetic field from a current to be measured that is disposed in each conductive path and flows through the conductive paths. A plurality of conductive paths, a pair of straight portions spaced apart on the same straight line, and a crank portion connected to the straight portion between the pair of straight portions. Each of the crank portions includes a linear measured portion having both end portions on which the magnetoelectric conversion element is disposed, and is connected to one end portion of the measured portion and to one linear portion. A first arm portion, and a second arm portion connected to the other end portion of the measurement target portion and connected to the other straight portion, the measurement target portion and the first arm portion, The angle between the measured portion and the second arm portion is a right angle. An angle between the first arm portion and the straight portion is an obtuse angle, wherein the angle between said straight portion and the second arm portion is an obtuse angle.

この構成によれば、隣接して配置された各導電路の被測定部を通流する被測定電流からの誘導磁界の方向が平行となるので、隣接して配設された各導電路を通流する被測定電流からの誘導磁界による磁電変換素子への影響を従来同様低減できる。また、被測定部が延びる方向に対して直角に連接する第1の腕部及び第2の腕部と一対の直線部の延長方向とのなす角度が鈍角となるようにクランク部を直線部に連接するので、直線部に接続される入出力側の電流路を同一直線上に配置することができる。これにより、入出力側の電流路を含めた電流センサ全体の小型化を実現できる。   According to this configuration, the direction of the induced magnetic field from the current to be measured flowing through the measured part of each conductive path arranged adjacent to each other is parallel, so that each conductive path arranged adjacent to each other is passed through. The influence on the magnetoelectric transducer due to the induced magnetic field from the current to be measured can be reduced as in the conventional case. In addition, the crank part is a straight part so that the angle formed by the first arm part and the second arm part that are connected at right angles to the direction in which the measured part extends and the extending direction of the pair of straight parts is an obtuse angle. Since they are connected, the current paths on the input / output side connected to the straight line portion can be arranged on the same straight line. As a result, the entire current sensor including the current path on the input / output side can be reduced in size.

本発明の電流センサにおいては、前記複数の導電路に配設された各前記磁電変換素子は、前記直線部の延長方向と直交する方向に沿って配設されたことが好ましい。この構成により、隣接する各導電路の間隔を短くできるので、電流センサを更に小型化できる。   In the current sensor according to the aspect of the invention, it is preferable that each of the magnetoelectric conversion elements disposed in the plurality of conductive paths is disposed along a direction orthogonal to an extending direction of the linear portion. With this configuration, the interval between adjacent conductive paths can be shortened, so that the current sensor can be further miniaturized.

本発明の電流センサにおいては、前記磁電変換素子は、当該磁電変換素子を配置された導電路の両側の導電路の被測定部が延長した方向に沿う2つの仮想線の間に配置されたことが好ましい。この構成により、各磁電変換素子が、各導電路のクランク部における第1の腕部又は第2の腕部と被測定部との境界部近傍を通流する被測定電流によって誘導磁界が乱れる領域外に配置されるので、隣接して配置された導電路からの誘導磁界の影響を更に低減することができる。   In the current sensor of the present invention, the magnetoelectric conversion element is disposed between two virtual lines along a direction in which the measured portions of the conductive path on both sides of the conductive path on which the magnetoelectric conversion element is disposed extend. Is preferred. With this configuration, each magnetoelectric conversion element has a region in which the induced magnetic field is disturbed by the measured current flowing near the boundary between the first arm portion or the second arm portion and the measured portion in the crank portion of each conductive path. Since it is disposed outside, it is possible to further reduce the influence of the induced magnetic field from the conductive path disposed adjacently.

本発明の電流センサにおいては、前記磁電変換素子は、感度軸の他に感度影響軸を有しており、前記感度影響軸が前記被測定部における被測定電流の通流方向に沿うように配設されたことが好ましい。この構成により、クランク部の第1の腕部及び第2の腕部を通流する被測定電流からの誘導磁界の方向に対して、感度影響軸の方向が略直交するので、感度影響軸に基づく出力信号の線形性の低下を抑制できる。   In the current sensor of the present invention, the magnetoelectric conversion element has a sensitivity influence axis in addition to the sensitivity axis, and is arranged so that the sensitivity influence axis is along the flow direction of the current to be measured in the part to be measured. It is preferable to be provided. With this configuration, the direction of the sensitivity influence axis is substantially orthogonal to the direction of the induced magnetic field from the current to be measured flowing through the first arm portion and the second arm portion of the crank portion. The degradation of the linearity of the output signal based on it can be suppressed.

本発明の電流センサにおいては、前記磁電変換素子は、前記被測定部の両面に配設された一対の磁電変換素子であることが好ましい。この構成により、一対の磁電変換素子に対する被測定電流からの誘導磁界の方向と外部磁界の方向とが逆になるので、一対の磁電変換素子の出力信号を差動又は合算演算することにより、外部磁界によるノイズ成分をキャンセルすることができる。   In the current sensor according to the aspect of the invention, it is preferable that the magnetoelectric conversion elements are a pair of magnetoelectric conversion elements arranged on both surfaces of the measured part. With this configuration, the direction of the induced magnetic field from the current to be measured with respect to the pair of magnetoelectric conversion elements and the direction of the external magnetic field are reversed. The noise component due to the magnetic field can be canceled.

本発明の電流センサにおいては、前記直線部及び前記クランク部が導電部材で一体に形成されたことが好ましい。この構成により、直線部とクランク部との境界部における電気抵抗を低減できるので、被測定電流が大電流の場合であっても、電流センサの発熱などを低減することができる。   In the current sensor of the present invention, it is preferable that the linear portion and the crank portion are integrally formed of a conductive member. With this configuration, the electrical resistance at the boundary between the straight line portion and the crank portion can be reduced, so that heat generation of the current sensor can be reduced even when the current to be measured is a large current.

本発明によれば、隣接して配置された導電路からの誘導磁界の影響を低減でき、十分な小型化が可能な電流センサを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the influence of the induction magnetic field from the conductive path arrange | positioned adjacently can be reduced, and the current sensor which can fully be reduced in size can be provided.

一実施の形態に係る電流センサの平面図である。It is a top view of the current sensor concerning one embodiment. 一実施の形態に係る電流センサの磁気検知素子の配置を示す図である。It is a figure which shows arrangement | positioning of the magnetic sensing element of the current sensor which concerns on one embodiment. 一実施の形態に係る電流センサの他の構成例を示す平面図である。It is a top view which shows the other structural example of the current sensor which concerns on one embodiment. 一実施の形態に係る電流センサの他の構成例を示す平面図である。It is a top view which shows the other structural example of the current sensor which concerns on one embodiment. 一実施の形態に係る電流センサの磁気検知素子の配置を示す図である。It is a figure which shows arrangement | positioning of the magnetic sensing element of the current sensor which concerns on one embodiment. 一実施の形態に係る電流センサのブロック図である。It is a block diagram of the current sensor which concerns on one embodiment.

本発明者は、同一平面内に並設されたクランク部を有する略S字形状を持つ複数の導電路を備えた電流センサにおいて、電流センサの小型化を妨げる要因が各導電路に対する入出力側の電流路の配置にあることに着目した。そして、本発明者らは、同一直線上に離間して設けられた一対の直線部の間にクランク部を有する略S字形状を持つ複数の導電路を同一平面内に並設し、一対の直線部とクランク部の一端部及び他端部を鈍角に連接することにより、隣接して配置された導電路を通流する被測定電流からの誘導磁界の影響を低減しつつ、電流センサ全体の小型化を実現できることを見出し、本発明を完成させるに至った。   In the current sensor having a plurality of conductive paths having a substantially S shape having crank portions arranged in parallel in the same plane, the present inventor has a factor that hinders downsizing of the current sensor on the input / output side for each conductive path. We focused on the current path arrangement. Then, the inventors have arranged a plurality of conductive paths having a substantially S shape having a crank portion between a pair of linear portions spaced apart on the same straight line in the same plane, By connecting one end and the other end of the straight line portion and the crank portion at an obtuse angle, the influence of the induced magnetic field from the current to be measured flowing through the adjacent conductive path is reduced, and the entire current sensor is The present inventors have found that downsizing can be realized and have completed the present invention.

以下、本発明の一実施の形態について、添付図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係る電流センサ1の平面図である。図1に示すように、本実施の形態に係る電流センサ1は、略同一平面内に配置され被測定電流を通流する複数の導電路10a〜10cと、各導電路10a〜10cを通流する被測定電流からの誘導磁界により出力信号を出力する複数の磁気検知素子(磁電変換素子)21とを備える。なお、複数の導電路10a〜10cは、本発明の効果を奏する範囲であれば、必ずしも略同一平面内に配置する必要はない。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a plan view of a current sensor 1 according to an embodiment of the present invention. As shown in FIG. 1, the current sensor 1 according to the present embodiment includes a plurality of conductive paths 10 a to 10 c that are arranged in substantially the same plane and pass the current to be measured, and each of the conductive paths 10 a to 10 c. And a plurality of magnetic sensing elements (magnetoelectric conversion elements) 21 for outputting an output signal by an induced magnetic field from the current to be measured. Note that the plurality of conductive paths 10a to 10c are not necessarily arranged in substantially the same plane as long as the effects of the present invention are achieved.

複数の導電路10a〜10cは、平行に配置され所定の方向(図1におけるY軸方向)に延長し、互いに離間して配置された一対の直線部11a,11bを備える。各導電路10a〜10cの一対の直線部11a,11bは、それぞれ延長方向が略同一直線上に配置されている。各導電路10a〜10cの一方の直線部11aには、電流センサ1に対する入力側の電流路(例えば、バッテリー側の電流路)が接続され、各導電路10a〜10cの他方の直線部11bには、電流センサ1からの出力側の電流路(例えば、モータ等の負荷側の電流路)が接続される。   The plurality of conductive paths 10a to 10c include a pair of linear portions 11a and 11b that are arranged in parallel, extend in a predetermined direction (Y-axis direction in FIG. 1), and are spaced apart from each other. The pair of straight portions 11a and 11b of the respective conductive paths 10a to 10c are arranged on substantially the same straight line in the extending direction. An input-side current path (for example, a battery-side current path) for the current sensor 1 is connected to one linear portion 11a of each of the conductive paths 10a to 10c, and the other linear portion 11b of each of the conductive paths 10a to 10c is connected to the other linear portion 11b. Is connected to an output-side current path from the current sensor 1 (for example, a load-side current path of a motor or the like).

離間して配置される一対の直線部11a,11bの一方の直線部11aと他方の直線部11bとの間には、クランク部12が連接されている。クランク部12は、磁気検知素子21が配設される領域を含み、両端部を持つ直線状の被測定部12aと、この被測定部12aの一方の端部に連接された第1の腕部12bと、被測定部12aの他方の端部に連接された第2の腕部12cと、を有する。各導電路10a〜10cの被測定部12aは、電流センサ1の幅方向に対して所定の角度θ1をなすように延長し、略同一直線上(図1の二点鎖線L1参照)に略平行に配置されている。   A crank portion 12 is connected between one straight portion 11a and the other straight portion 11b of the pair of straight portions 11a and 11b that are spaced apart from each other. The crank portion 12 includes a region where the magnetic detection element 21 is disposed, and has a linear measured portion 12a having both ends, and a first arm portion connected to one end portion of the measured portion 12a. 12b, and a second arm portion 12c connected to the other end of the measured portion 12a. The measured portions 12a of the respective conductive paths 10a to 10c extend so as to form a predetermined angle θ1 with respect to the width direction of the current sensor 1, and are substantially parallel to substantially the same straight line (see the two-dot chain line L1 in FIG. 1). Is arranged.

第1の腕部12bは、被測定部12aが延長する方向に対して所定の角度を持って延長し、離間して配置された一方の直線部11aと連接している。本実施の形態においては、第1の腕部12bは、被測定部12aが延長する方向に対して直角に延長する。また、第1の腕部12bは、一方の直線部11aの延長方向と第1の腕部12bの延長方向とのなす角度θ2が鈍角となるように連接している。   The first arm portion 12b extends at a predetermined angle with respect to the direction in which the portion to be measured 12a extends, and is connected to one linear portion 11a that is spaced apart. In the present embodiment, the first arm portion 12b extends at a right angle to the direction in which the measured portion 12a extends. The first arm portion 12b is connected so that an angle θ2 formed by the extending direction of the one straight portion 11a and the extending direction of the first arm portion 12b is an obtuse angle.

第2の腕部12cは、被測定部12aが延長する方向に対して所定の角度を持って延長し、離間して配置された他方の直線部11bと連接している。本実施の形態においては、第2の腕部12bは、被測定部12aが延長する方向に対して直角に延長する。第2の腕部12cは、他方の直線部11bの延長方向と第2の腕部12cの延長方向とのなす角度θ3が鈍角となるように連接している。   The second arm portion 12c extends at a predetermined angle with respect to the direction in which the portion to be measured 12a extends, and is connected to the other straight portion 11b that is spaced apart. In the present embodiment, the second arm portion 12b extends at a right angle to the direction in which the measured portion 12a extends. The second arm portion 12c is connected so that an angle θ3 formed by the extending direction of the other straight portion 11b and the extending direction of the second arm portion 12c is an obtuse angle.

本実施の形態においては、各導電路10a〜10cのクランク部12は、金属などの導電部材で一体に形成され、第1の腕部12bがY軸方向に延長し、被測定部12aとの連接部分で方向を変えてY軸方向に直交するX軸方向に被測定部12aが延長し、第2の腕部との連接部分で方向を変えて第2の腕部12cがY軸方向に延長する。   In the present embodiment, the crank portion 12 of each of the conductive paths 10a to 10c is integrally formed of a conductive member such as metal, the first arm portion 12b extends in the Y-axis direction, and the measured portion 12a is connected to the measured portion 12a. The measured portion 12a extends in the X-axis direction orthogonal to the Y-axis direction by changing the direction at the connecting portion, and the second arm portion 12c is changed in the Y-axis direction by changing the direction at the connecting portion with the second arm portion. Extend.

すなわち、本実施の形態に係る電流センサ1においては、入出力側の電流路に接続される各導電路10a〜10cの一対の直線部11a,11bを略同一直線上に配置すると共に、各導電路10a〜10cの一対の直線部11a,11bの延長方向と各導電路10a〜10cの第1の腕部12b及び第2の腕部12cの延長方向とがなす角度θ2,θ3が鈍角となるように、一対の直線部11a,11bとクランク部12とが連接している。この構成により、一方の直線部11aに接続される入力側の電流路(例えば、バッテリー側の電流路)と他方の直線部11bに接続される出力側の電流路(例えば、モータ等の負荷側の電流路)とを略同一直線上に配置できるので、入出力側の電流路を含めた電流センサ全体のセンサ1全体の小型化を実現できる。なお、図1に示す電流センサ1においては、各導電路10a〜10cの一対の直線部11a,11bを略同一直線上に配置した例について示しているが、一対の直線部は、本発明の効果を奏する範囲であれば、必ずしも延長方向が略同一直線上となるように配置する必要はない。例えば、一方の直線部11aの延長方向に対して、他方の直線部11bの延長方向が所定の角度をなすように配置してもよい。   That is, in the current sensor 1 according to the present embodiment, the pair of linear portions 11a and 11b of the respective conductive paths 10a to 10c connected to the current path on the input / output side are arranged on substantially the same straight line, and each conductive Angles θ2 and θ3 formed by the extending direction of the pair of straight portions 11a and 11b of the paths 10a to 10c and the extending directions of the first arm part 12b and the second arm part 12c of the conductive paths 10a to 10c are obtuse angles. Thus, a pair of linear part 11a, 11b and the crank part 12 are connected. With this configuration, an input-side current path (for example, a battery-side current path) connected to one straight line portion 11a and an output-side current path (for example, a load side such as a motor) connected to the other straight line portion 11b. Can be arranged on substantially the same straight line, so that the entire sensor 1 including the current path on the input / output side can be reduced in size. In addition, in the current sensor 1 shown in FIG. 1, although shown about the example which has arrange | positioned a pair of linear part 11a, 11b of each electrically conductive path 10a-10c on a substantially identical straight line, a pair of linear part is shown by this invention. It is not always necessary to arrange the extending directions so as to be on substantially the same straight line as long as the effect is achieved. For example, you may arrange | position so that the extension direction of the other linear part 11b may make a predetermined angle with respect to the extension direction of one linear part 11a.

また、本実施の形態に係る電流センサ1においては、各導電路10a〜10cのクランク部12は、それぞれの被測定部12aの延長方向が電流センサ1の幅方向DであるY軸方向に対して所定の角度θ1をなすように配置されると共に、それぞれの被測定部12aの延長方向が略同一直線上になるように配置される。このように配置することにより、所定の角度θ1に応じて電流センサ1の幅方向Dにおける寸法を小さくすることができるので、更に電流センサを小型化できる。   Further, in the current sensor 1 according to the present embodiment, the crank portion 12 of each of the conductive paths 10 a to 10 c is in the Y-axis direction in which the extending direction of each measured portion 12 a is the width direction D of the current sensor 1. Are arranged so as to form a predetermined angle θ1, and the extending directions of the respective measured portions 12a are arranged on substantially the same straight line. By arranging in this way, the dimension in the width direction D of the current sensor 1 can be reduced according to the predetermined angle θ1, so that the current sensor can be further miniaturized.

さらに、本実施の形態においては、各導電路10a〜10cのクランク部12が、金属などの導電部材で一体に形成されるので、第1の腕部12b及び第2の腕部12cと被測定部12aとの間の境界部における電気抵抗を低減することができ、被測定電流が大電流の場合であっても、発熱などを抑制することができる。   Further, in the present embodiment, the crank portion 12 of each of the conductive paths 10a to 10c is integrally formed of a conductive member such as metal, so that the first arm portion 12b and the second arm portion 12c and the device under test are measured. The electrical resistance at the boundary with the portion 12a can be reduced, and heat generation can be suppressed even when the current to be measured is a large current.

各導電路10a〜10cの被測定部12aの延長方向における中央部には、各導電路10a〜10cを通流する被測定電流からの誘導磁界H1により出力信号を出力する磁気検知素子21がそれぞれ配設される。各導電路10a〜10cの磁気検知素子21は、検出感度が最大となる感度軸S1の方向が誘導磁界H1の方向と略一致するように配設される。各導電路10a〜10cの磁気検知素子21は、各導電路10a〜10cの被測定部12aを通流する被測定電流からの誘導磁界H1により、それぞれ出力信号を出力する。各導電路10a〜10cの磁気検知素子21から出力された出力信号は、配線パターン(不図示)を介して演算回路としての信号処理回路22(図1において不図示、図6参照)に入力される。信号処理回路22では、被測定電流の電流値が算出される。   Magnetic detecting elements 21 that output an output signal by the induced magnetic field H1 from the current to be measured flowing through each of the conductive paths 10a to 10c are respectively provided in the central part in the extending direction of the measured part 12a of each of the conductive paths 10a to 10c. Arranged. The magnetic sensing elements 21 of the respective conductive paths 10a to 10c are arranged so that the direction of the sensitivity axis S1 at which the detection sensitivity is maximized substantially coincides with the direction of the induction magnetic field H1. The magnetic sensing elements 21 of the respective conductive paths 10a to 10c output output signals by the induced magnetic field H1 from the measured current flowing through the measured part 12a of the respective conductive paths 10a to 10c. Output signals output from the magnetic detection elements 21 of the respective conductive paths 10a to 10c are input to a signal processing circuit 22 (not shown in FIG. 1, refer to FIG. 6) as an arithmetic circuit via a wiring pattern (not shown). The In the signal processing circuit 22, the current value of the current to be measured is calculated.

図2は、電流センサ1の磁気検知素子21の配置を示す図である。なお、実際には、横から見ると各導電路10a〜10cが重なってしまうために、図2においては、図1に示した各導電路10a〜10cの軸方向(Y軸方向)を回転軸として、各導電路10a〜10cを時計回りに90°回転させた状態を示している。   FIG. 2 is a diagram showing the arrangement of the magnetic detection elements 21 of the current sensor 1. Actually, the conductive paths 10a to 10c overlap each other when viewed from the side. Therefore, in FIG. 2, the axis direction (Y-axis direction) of the conductive paths 10a to 10c shown in FIG. As shown, the conductive paths 10a to 10c are rotated 90 degrees clockwise.

図2に示すように、各磁気検知素子21は、被測定部12aの一方側の面上に配設される。各磁気検知素子21は、感度軸S1が略同一方向に揃うように配設される。本実施の形態に係る電流センサ1においては、各導電路10a〜10cの被測定部12aが略平行に配置されるので、各導電路10a〜10cの被測定部12aを通流する被測定電流からの誘導磁界H1の方向が略同一方向(図2の点線参照)となる。このため、各導電路10a〜10cに配設される磁気検知素子21の感度軸S1の方向と被測定電流からの誘導磁界H1の方向とが略一致するように磁気検知素子21を配設することにより、隣接して配置された導電路10a〜10cを通流する被測定電流からの誘導磁界H1の影響を低減することができる。   As shown in FIG. 2, each magnetic sensing element 21 is disposed on one surface of the part to be measured 12a. Each magnetic sensing element 21 is arranged such that the sensitivity axes S1 are aligned in substantially the same direction. In the current sensor 1 according to the present embodiment, since the measured portions 12a of the respective conductive paths 10a to 10c are arranged substantially in parallel, the measured current flowing through the measured portions 12a of the respective conductive paths 10a to 10c. The direction of the induction magnetic field H1 from the center is substantially the same direction (see the dotted line in FIG. 2). For this reason, the magnetic sensing element 21 is disposed so that the direction of the sensitivity axis S1 of the magnetic sensing element 21 disposed in each of the conductive paths 10a to 10c substantially coincides with the direction of the induced magnetic field H1 from the current to be measured. Thereby, the influence of the induced magnetic field H1 from the current to be measured flowing through the conductive paths 10a to 10c arranged adjacent to each other can be reduced.

また、本実施の形態においては、各導電路10a〜10cの被測定部12aが略平行に配置されると共に、各導電路10a〜10cの第1の腕部12b及び第2の腕部12cが被測定部12aの延長方向に対して略直交する方向に延長する。この構成により、各導電路10a〜10cの被測定部12aを通流する被測定電流からの誘導磁界H1の方向が略平行になると共に、各導電路10a〜10cにおける被測定部12aを通流する被測定部からの誘導磁界H1の方向と第1の腕部12b及び第2の腕部12cを通流する被測定電流からの誘導磁界H2の方向(図1参照)とが直交する。このため、各導電路10a〜10cに配設される磁気検知素子21の感度軸S1の方向と被測定部12aを通流する被測定電流からの誘導磁界H1の方向とを略一致させることにより、隣接して配置された各導電路10a〜10cからの誘導磁界H1の影響を低減できると共に、各導電路10a〜10cの第1の腕部12b及び第2の腕部12cを通流する被測定電流からの誘導磁界H2に基づく出力信号が実質的にゼロとなる。これにより、各導電路10a〜10cの第1の腕部12b及び第2の腕部12cを通流する被測定電流からの誘導磁界H2の影響を低減できる測定精度が高い電流センサ1を実現できる。   Moreover, in this Embodiment, while the to-be-measured part 12a of each conductive path 10a-10c is arrange | positioned substantially in parallel, the 1st arm part 12b and the 2nd arm part 12c of each conductive path 10a-10c are provided. It extends in a direction substantially orthogonal to the extending direction of the part 12a to be measured. With this configuration, the direction of the induced magnetic field H1 from the current to be measured flowing through the measured portion 12a of each of the conductive paths 10a to 10c becomes substantially parallel, and the flow of the measured portion 12a in each of the conductive paths 10a to 10c flows. The direction of the induced magnetic field H1 from the measured part to be measured is perpendicular to the direction of the induced magnetic field H2 from the measured current flowing through the first arm part 12b and the second arm part 12c (see FIG. 1). For this reason, by making the direction of the sensitivity axis S1 of the magnetic detection element 21 disposed in each of the conductive paths 10a to 10c substantially coincide with the direction of the induced magnetic field H1 from the current to be measured flowing through the measured part 12a. The influence of the induction magnetic field H1 from each of the conductive paths 10a to 10c arranged adjacent to each other can be reduced, and the first arm 12b and the second arm 12c of each of the conductive paths 10a to 10c can be reduced. The output signal based on the induced magnetic field H2 from the measurement current becomes substantially zero. Thereby, it is possible to realize the current sensor 1 with high measurement accuracy capable of reducing the influence of the induced magnetic field H2 from the current to be measured flowing through the first arm portion 12b and the second arm portion 12c of each of the conductive paths 10a to 10c. .

磁気検知素子21としては、被測定電流からの誘導磁界H1により出力信号を出力するものであれば、特に制限はない。磁気検知素子21としては、例えば、GMR(Giant Magneto Resistance)素子及びTMR(Tunnel Magneto Resistance)素子などの磁気抵抗効果素子や、磁束コンセントレータを用いて素子面内に磁界感度軸を持たせたホール素子や、ハードバイアスを備えたGMR素子及びTMR素子などを用いることができる。   The magnetic detection element 21 is not particularly limited as long as it outputs an output signal by the induced magnetic field H1 from the current to be measured. Examples of the magnetic sensing element 21 include a magnetoresistive element such as a GMR (Giant Magneto Resistance) element and a TMR (Tunnel Magneto Resistance) element, or a Hall element having a magnetic field sensitivity axis in the element plane using a magnetic flux concentrator. Alternatively, a GMR element or a TMR element having a hard bias can be used.

ところで、磁気検知素子21として、検出感度が高いGMR素子及び磁束コンセントレータを備えたホール素子や、ハードバイアスを備えたGMR素子及びTMR素子を用いる場合には、感度軸S1に対して直交する方向に、被測定電流の測定精度に影響を及ぼす感度影響軸S2(図1参照)が生じる場合がある。本実施の形態においては、磁気検知素子21としては、角度軸の他に感度影響軸S2を有するものを用いることも可能である。   By the way, in the case of using a Hall element having a high detection sensitivity GMR element and a magnetic flux concentrator, a GMR element having a hard bias, and a TMR element as the magnetic sensing element 21, the direction is perpendicular to the sensitivity axis S <b> 1. A sensitivity affecting axis S2 (see FIG. 1) that affects the measurement accuracy of the current to be measured may occur. In the present embodiment, it is also possible to use a magnetic detection element 21 having a sensitivity influence axis S2 in addition to the angle axis.

例えば、検出感度が高いGMR素子やホール素子においては、感度軸S1の方向に対して略直交する方向に、被測定電流からの誘導磁界H1により、感度軸S1に基づく出力信号に対して相対的に低い出力信号が生じる感度影響軸S2(GMR素子においては副感度軸)を有する。このように、感度影響軸S2が生じると、感度影響軸S2に基づく出力信号により、出力信号の線形性が低下するなど測定精度に影響を及ぼす場合がある。このような検出感度が高いGMR素子や磁束コンセントレータを備えたホール素子を磁気検知素子21として用いる場合においては、感度影響軸S2の方向が被測定部12aの延長方向と略一致するように、すなわち被測定部12aにおける被測定電流の通流方向に沿うように磁気検知素子21を配設することが好ましい。これにより、感度影響軸S2の方向が、被測定電流からの誘導磁界H1の方向と略直交するので、被測定電流からの誘導磁界H1による感度影響軸S2に基づく出力信号が実質的にゼロとなる。この結果、感度影響軸S2を有する検出感度が高いGMR素子やホール素子を用いた場合においても、感度影響軸S2に基づく出力信号に起因する電流センサの出力信号の線形性の低下を抑制することができる。   For example, in a GMR element or a Hall element having high detection sensitivity, relative to the output signal based on the sensitivity axis S1 by the induced magnetic field H1 from the current to be measured in a direction substantially orthogonal to the direction of the sensitivity axis S1. 2 has a sensitivity influence axis S2 (a secondary sensitivity axis in the GMR element) at which a low output signal is generated. Thus, when the sensitivity influence axis S2 occurs, the output signal based on the sensitivity influence axis S2 may affect the measurement accuracy, for example, the linearity of the output signal is lowered. In the case of using a Hall element equipped with such a GMR element or a magnetic flux concentrator with high detection sensitivity as the magnetic sensing element 21, the direction of the sensitivity affecting axis S2 is substantially coincident with the extension direction of the measured portion 12a, that is, It is preferable to arrange the magnetic sensing element 21 along the direction of current flow to be measured in the measured part 12a. Thereby, since the direction of the sensitivity influence axis S2 is substantially orthogonal to the direction of the induced magnetic field H1 from the current to be measured, the output signal based on the sensitivity influence axis S2 by the induced magnetic field H1 from the current to be measured is substantially zero. Become. As a result, even when a GMR element or a Hall element having a sensitivity influence axis S2 and high detection sensitivity is used, it is possible to suppress a decrease in linearity of the output signal of the current sensor due to the output signal based on the sensitivity influence axis S2. Can do.

また、ハードバイアスを備えたGMR素子やTMR素子においては、ハードバイアスからのバイアス磁界をGMR素子やTMR素子に印加することにより、磁化自由層の磁化方向をPIN層の磁化方向に平行させることが容易となるので、被測定電流からの誘導磁界H1による出力信号の線形性を向上することができる。また、バイアス磁界の印加によりGMR素子やTMR素子に印加される実効的な誘導磁界H1が減少するので、ヒステリシスを低減することもできる。この場合、ハードバイアスからのバイアス磁界の印加方向は、誘導磁界H1の方向に直交する方向であり、このバイアス磁界の印加方向が被測定電流の測定精度に影響を及ぼす感度影響軸S2となる。このようなハードバイアスを備えたGMR素子やTMR素子を磁気検知素子21として用いる場合には、ハードバイアスからのバイアス磁界の印加方向である感度影響軸S2が被測定部12aが延長する方向と略一致するように磁気検知素子21を配設することが好ましい。これにより、バイアス磁界の印加方向に対して略直交する方向から被測定電流による誘導磁界H1が印加されることになり、バイアス磁界に対する被測定電流からの誘導磁界H1の影響が実質的にゼロとなる。この結果、感度影響軸S2を有するハードバイアスを備えたGMR素子やTMR素子を磁気検知素子21として用いる場合においても、上述した出力信号の線形性の向上やヒステリシスの低減を実現できる。   In a GMR element or TMR element having a hard bias, the magnetization direction of the magnetization free layer can be made parallel to the magnetization direction of the PIN layer by applying a bias magnetic field from the hard bias to the GMR element or TMR element. Since it becomes easy, the linearity of the output signal by the induced magnetic field H1 from the current to be measured can be improved. Further, since the effective induction magnetic field H1 applied to the GMR element or the TMR element is reduced by applying the bias magnetic field, the hysteresis can be reduced. In this case, the application direction of the bias magnetic field from the hard bias is a direction orthogonal to the direction of the induction magnetic field H1, and the application direction of the bias magnetic field becomes the sensitivity influence axis S2 that affects the measurement accuracy of the current to be measured. When a GMR element or TMR element having such a hard bias is used as the magnetic sensing element 21, the sensitivity influence axis S2, which is the direction in which the bias magnetic field is applied from the hard bias, is substantially the same as the direction in which the measured portion 12a extends. It is preferable to arrange the magnetic detection elements 21 so as to match. As a result, the induced magnetic field H1 due to the measured current is applied from a direction substantially orthogonal to the direction in which the bias magnetic field is applied, and the influence of the induced magnetic field H1 from the measured current on the bias magnetic field is substantially zero. Become. As a result, even when a GMR element or TMR element having a hard bias having the sensitivity influence axis S2 is used as the magnetic sensing element 21, the above-described linearity improvement of the output signal and the reduction of hysteresis can be realized.

なお、上述した実施の形態においては、各導電路10a〜10cの被測定部12aの延長方向が略同一直線上になるように、各導電路10a〜10cを配置する例について説明したが、各導電路10a〜10cの配置は、本発明の効果の効果を奏する範囲で適宜変更可能である。   In the above-described embodiment, the example in which the conductive paths 10a to 10c are arranged so that the extending directions of the measured portions 12a of the conductive paths 10a to 10c are substantially on the same straight line has been described. The arrangement of the conductive paths 10a to 10c can be changed as appropriate as long as the effects of the present invention are achieved.

図3は、電流センサ1の他の構成例を示す平面図であり、各導電路10a〜10cの配置を変更した電流センサ1の一例を示している。図3に示すように、この電流センサ1においては、各導電路10a〜10cに配設された各磁気検知素子21が、電流センサ1の一対の直線部11a,11bの延長方向(幅方向Dに略直交するY軸方向)と直交する方向(X軸方向)に沿って配設される(図3の二点鎖線L2参照)。このように各導電路10a〜10cを配置することにより、電流センサ1の幅方向Dに直交するY軸方向における寸法を低減することが可能となり、電流センサ1を更に小型化することができる。なお、その他の構成については、図1及び図2に示した電流センサ1と同様のため、説明を省略する。   FIG. 3 is a plan view showing another configuration example of the current sensor 1, and shows an example of the current sensor 1 in which the arrangement of the conductive paths 10a to 10c is changed. As shown in FIG. 3, in this current sensor 1, each magnetic sensing element 21 disposed in each of the conductive paths 10 a to 10 c is extended in the extending direction (width direction D) of the pair of linear portions 11 a and 11 b of the current sensor 1. Are disposed along a direction (X-axis direction) orthogonal to the Y-axis direction (see FIG. 3). By arranging the conductive paths 10a to 10c in this way, it is possible to reduce the dimension in the Y-axis direction orthogonal to the width direction D of the current sensor 1, and the current sensor 1 can be further reduced in size. Other configurations are the same as those of the current sensor 1 shown in FIG. 1 and FIG.

図4は、電流センサ1の他の構成例を示す平面図であり、各導電路10a〜10cの配置を変更した電流センサ1の他の例を示している。図4に示すように、クランク部12を有する導電路10a〜10cに被測定電流を通流する場合においては、クランク部12の
第1の腕部12b及び第2の腕部12cと被測定部12aとの間の境界部近傍に、特定の導電路(例えば、導電路10b)を通流する被測定電流からの誘導磁界H1,H2が、当該特定の導電路10bに隣接して配置された両側の導電路(例えば、導電路10a,10c)に影響を及ぼす特定領域A(図4の斜線領域参照)が生じる場合がある。この特定領域Aは、各導電路10a〜10cの被測定部12aが延長する方向に沿う仮想線(例えば、仮想線L3,L4)と第1の腕部12bが延長する方向に沿う仮想線(例えば、仮想線L5)又は第2の腕部12cが延長する方向に沿う仮想線(例えば、仮想線L6)との間における約90°の範囲に生じる。この特定領域Aに磁気検知素子21が配置されると、各磁気検知素子21が隣接して配置された導電路10a〜10cに被測定電流が通流した際に生じる誘導磁界H1,H2の影響を受ける場合がある。
FIG. 4 is a plan view showing another configuration example of the current sensor 1, and shows another example of the current sensor 1 in which the arrangement of the conductive paths 10a to 10c is changed. As shown in FIG. 4, when the current to be measured is passed through the conductive paths 10a to 10c having the crank portion 12, the first arm portion 12b and the second arm portion 12c of the crank portion 12 and the measured portion. Inductive magnetic fields H1 and H2 from a current to be measured flowing through a specific conductive path (for example, conductive path 10b) are arranged adjacent to the specific conductive path 10b in the vicinity of the boundary with 12a. There may be a specific area A (see the hatched area in FIG. 4) that affects the conductive paths on both sides (for example, the conductive paths 10a and 10c). The specific region A includes a virtual line (for example, virtual lines L3 and L4) along the direction in which the measured portion 12a of each of the conductive paths 10a to 10c extends and a virtual line along the direction in which the first arm portion 12b extends ( For example, it occurs in a range of about 90 ° between the virtual line L5) or a virtual line (for example, the virtual line L6) along the direction in which the second arm portion 12c extends. When the magnetic sensing element 21 is arranged in the specific area A, the influence of the induction magnetic fields H1 and H2 generated when the current to be measured flows through the conductive paths 10a to 10c in which the magnetic sensing elements 21 are arranged adjacent to each other. May receive.

図4に示す電流センサ1においては、導電路10bの一方側に配置された導電路10aの被測定部12aが延長する方向に沿う仮想線L3と導電路10bの他方側に配置された導電路10cの被測定部12aが延長する方向に沿う仮想線L4との間に、導電路10bの磁気検知素子21が配置されるように導電路10bを配置する。すなわち、各磁気検知素子21が、当該磁気検知素子21を配置した導電路10a〜10cの両側の導電路10a〜10cの被測定部12aが延長する方向に沿う2つの仮想線(例えば、仮想線L3,L4)の間に配置されるように各導電路10a〜10aを配置する。このように、各導電路10a〜10cを配置することにより、各磁気検知素子21が各導電路10a〜10cの第1の導電路12b又は第2の導電路12cと被測定部12aとの境界部近傍に生じる特定領域A内に配置されることを回避できるので、隣接して配置された導電路10a〜10cからの誘導磁界の影響を特に低減することができる。なお、その他の構成については、図1及び図2に示した電流センサ1と同様のため、説明を省略する。   In the current sensor 1 shown in FIG. 4, the imaginary line L3 along the direction in which the measured portion 12a of the conductive path 10a disposed on one side of the conductive path 10b extends and the conductive path disposed on the other side of the conductive path 10b. The conductive path 10b is arranged so that the magnetic detection element 21 of the conductive path 10b is arranged between the imaginary line L4 along the direction in which the measured part 12a of 10c extends. That is, each magnetic sensing element 21 has two virtual lines (for example, virtual lines) along the direction in which the measured portions 12a of the conductive paths 10a to 10c on both sides of the conductive paths 10a to 10c on which the magnetic sensing elements 21 are arranged extend. The conductive paths 10a to 10a are arranged so as to be arranged between L3 and L4). Thus, by arranging the respective conductive paths 10a to 10c, each magnetic sensing element 21 has a boundary between the first conductive path 12b or the second conductive path 12c of each of the conductive paths 10a to 10c and the measured part 12a. Since it can avoid being arranged in the specific area A generated in the vicinity of the portion, the influence of the induction magnetic field from the conductive paths 10a to 10c arranged adjacent to each other can be particularly reduced. Other configurations are the same as those of the current sensor 1 shown in FIG. 1 and FIG.

また、上述した実施の形態においては、導電路10a〜10cの一方側の面上に磁気検知素子21を配設した例について説明したが、磁気検知素子21の配置は、本発明の効果を奏する範囲で適宜変更可能である。   Moreover, in embodiment mentioned above, although the example which arrange | positioned the magnetic detection element 21 on the surface of one side of the electrically conductive path 10a-10c was demonstrated, arrangement | positioning of the magnetic detection element 21 has an effect of this invention. The range can be changed as appropriate.

図5は、電流センサ1の磁気検知素子21の他の配置例を示す図である。なお、図5においては、図2と同様に図1に示した各導電路10a〜10cの軸方向(Y軸方向)を回転軸として、各導電路10a〜10cを時計回りに90°回転させた状態を示している。   FIG. 5 is a diagram illustrating another arrangement example of the magnetic detection elements 21 of the current sensor 1. In FIG. 5, similarly to FIG. 2, the conductive paths 10 a to 10 c are rotated 90 ° clockwise with the axial direction (Y-axis direction) of the conductive paths 10 a to 10 c shown in FIG. 1 as the rotation axis. Shows the state.

図5に示すように、この電流センサ1においては、磁気検知素子21として、各導電路10a〜10cの被測定部12aを挟むように、被測定部12aの両面に配設された一対の磁気検知素子21a,21bを用いる。この一対の磁気検知素子21a,21bは、感度軸S1の方向が被測定電流からの誘導磁界H1の方向と略一致すると共に、感度軸S1の方向が互いに逆方向となるように配設される。また、感度影響軸S2を有する一対の磁気検知素子21a,21bを用いた場合には、感度影響軸S2が被測定部12aの延長方向に沿うように配置される。このように一対の磁気検知素子21a,21bを配設した場合には、上述したように、隣接して配置された導電路10a〜10cからの誘導磁界H1の影響を低減できると共に、一対の磁気検知素子21a,21bの感度軸S1の方向に対して、被測定電流からの誘導磁界H1が同一方向から印加され、外部磁界Hαが逆方向から印加される。このため、一対の磁気検知素子21a,21bから被測定電流からの誘導磁界H1に基づく同相の出力信号が出力され、外部磁界Hαに基づく逆相の出力信号が出力される。したがって、一対の磁気検知素子21a,21bの出力信号を合算することにより、外部磁界Hαに基づくノイズ成分をキャンセルすることができる。なお、一対の磁気検知素子21a,21bの感度軸S1の方向を同一方向とした場合には、一対の磁気検知素子21a,21bから被測定電流からの誘導磁界H1に基づく逆相の出力信号が出力され、外部磁界Hαに基づく同相の出力信号が出力される。したがって、一対の磁気検知素子21a,21bの出力信号を差動演算することにより、外部磁界Hαに基づくノイズ成分をキャンセルすることができる。また、その他の構成については、図1及び図2に示した電流センサ1と同様のため、説明を省略する。   As shown in FIG. 5, in the current sensor 1, a pair of magnetic elements disposed on both surfaces of the measured part 12 a so as to sandwich the measured part 12 a of each of the conductive paths 10 a to 10 c as the magnetic sensing element 21. Sensing elements 21a and 21b are used. The pair of magnetic sensing elements 21a and 21b are disposed such that the direction of the sensitivity axis S1 substantially coincides with the direction of the induced magnetic field H1 from the current to be measured and the directions of the sensitivity axis S1 are opposite to each other. . When a pair of magnetic sensing elements 21a and 21b having a sensitivity influence axis S2 is used, the sensitivity influence axis S2 is arranged along the extending direction of the measured portion 12a. When the pair of magnetic sensing elements 21a and 21b are arranged in this way, as described above, the influence of the induction magnetic field H1 from the adjacent conductive paths 10a to 10c can be reduced and the pair of magnetic sensing elements can be reduced. The induced magnetic field H1 from the current to be measured is applied from the same direction and the external magnetic field Hα is applied from the opposite direction with respect to the direction of the sensitivity axis S1 of the detection elements 21a and 21b. Therefore, an in-phase output signal based on the induced magnetic field H1 from the current to be measured is output from the pair of magnetic sensing elements 21a and 21b, and an anti-phase output signal based on the external magnetic field Hα is output. Therefore, the noise component based on the external magnetic field Hα can be canceled by adding the output signals of the pair of magnetic sensing elements 21a and 21b. When the direction of the sensitivity axis S1 of the pair of magnetic detection elements 21a and 21b is the same direction, an output signal having a reverse phase based on the induced magnetic field H1 from the current to be measured is output from the pair of magnetic detection elements 21a and 21b. And an in-phase output signal based on the external magnetic field Hα is output. Therefore, the noise component based on the external magnetic field Hα can be canceled by differentially calculating the output signals of the pair of magnetic sensing elements 21a and 21b. Other configurations are the same as those of the current sensor 1 shown in FIG. 1 and FIG.

図6は、本実施の形態に係る電流センサ1のブロック図である。図6に示す電流センサ1は、一対の磁気検知素子21a、21bと、それぞれの磁気検知素子21a、21bからの出力信号を信号処理(電流値を演算)して出力する信号処理回路(演算回路)22とから構成されている。なお、以下においては、図5に示す電流センサ1の演算処理について説明するが、図1〜図4に示す電流センサ1においても同様にして演算処理が実施される。   FIG. 6 is a block diagram of the current sensor 1 according to the present embodiment. The current sensor 1 shown in FIG. 6 includes a pair of magnetic detection elements 21a and 21b and a signal processing circuit (arithmetic circuit) that outputs an output signal from each of the magnetic detection elements 21a and 21b by performing signal processing (calculating a current value). ) 22. In the following, the calculation process of the current sensor 1 shown in FIG. 5 will be described, but the calculation process is similarly performed in the current sensor 1 shown in FIGS.

磁気検知素子21aは、各導電路10a〜10cを通流する被測定電流からの誘導磁界H1を検出し、検出した誘導磁界H1の磁界強度に比例した大きさとなる電圧信号が信号処理回路22に出力される。例えば、地磁気などの外部磁界をHαとすると、磁気検知素子21aから出力される電圧信号Vaは、kを比例定数として下記式(1)で示される。なお磁気検知素子12aの感度軸S1の方向と同じ向きの磁界は+、逆向きの磁界を−としている。
Va=k×(H1−Hα) …(1)
The magnetic detection element 21a detects the induced magnetic field H1 from the current to be measured flowing through the conductive paths 10a to 10c, and a voltage signal having a magnitude proportional to the magnetic field strength of the detected induced magnetic field H1 is supplied to the signal processing circuit 22. Is output. For example, when an external magnetic field such as geomagnetism is Hα, the voltage signal Va output from the magnetic sensing element 21a is expressed by the following formula (1), where k is a proportional constant. The magnetic field in the same direction as the direction of the sensitivity axis S1 of the magnetic detection element 12a is +, and the magnetic field in the opposite direction is-.
Va = k × (H1−Hα) (1)

同様に、磁気検知素子21bは、各導電路10a〜10cを通流する被測定電流からの誘導磁界H1を検出し、検出した磁界強度に比例した大きさとなる電圧信号が信号処理回路22に出力される。例えば、地磁気などの外部磁界をHαとすると、磁気検知素子21bから出力される電圧信号Vbは、kを比例定数として下記式(2)で示される。なお、磁気検知素子21bの感度軸S1の方向と同じ向きの磁界は+、逆向きの磁界を−としている。
Vb=k×(H1+Hα) …(2)
Similarly, the magnetic sensing element 21b detects the induced magnetic field H1 from the current to be measured flowing through each of the conductive paths 10a to 10c, and outputs a voltage signal having a magnitude proportional to the detected magnetic field strength to the signal processing circuit 22. Is done. For example, assuming that an external magnetic field such as geomagnetism is Hα, the voltage signal Vb output from the magnetic sensing element 21b is expressed by the following formula (2), where k is a proportional constant. The magnetic field in the same direction as the direction of the sensitivity axis S1 of the magnetic detection element 21b is +, and the magnetic field in the opposite direction is-.
Vb = k × (H1 + Hα) (2)

信号処理回路22は、磁気検知素子21a、21bから出力された電圧信号Va、Vbに対して差動演算処理を行う。例えば、図5に示すように、感度軸S1の方向が互いに逆向きとなるように磁気検知素子21a、21bが配置される場合、信号処理回路21は、磁気検知素子21a、21bから出力された電圧信号Va、Vbを下記式(3)に示すように加算して、導電路10a〜10cを通流する被測定電流の電流値を算出する。
Va+Vb=k×(H1−Hα)+k×(H1+Hα)=k×2H …(3)
The signal processing circuit 22 performs differential arithmetic processing on the voltage signals Va and Vb output from the magnetic detection elements 21a and 21b. For example, as shown in FIG. 5, when the magnetic detection elements 21a and 21b are arranged so that the directions of the sensitivity axes S1 are opposite to each other, the signal processing circuit 21 is output from the magnetic detection elements 21a and 21b. The voltage signals Va and Vb are added as shown in the following formula (3) to calculate the current value of the current to be measured flowing through the conductive paths 10a to 10c.
Va + Vb = k × (H1−Hα) + k × (H1 + Hα) = k × 2H (3)

上記式(3)に示されるように、電圧信号Va,Vbを加算することにより、外部磁界Hαに基づく出力信号が相殺され、被測定電流Iからの誘導磁界H1に基づく出力信号が加算される。この結果、外部磁界Hαの影響を排除でき、電流値の測定精度を向上させることができる。なお、磁気検知素子21a,21bの感度軸S1の方向を略同一方向とした場合には、電圧信号Va,Vbを減算することにより、上記同様に、外部磁界Hαに基づく出力信号が相殺され、被測定電流Iからの誘導磁界H1に基づく出力信号が加算される。   As shown in the above equation (3), by adding the voltage signals Va and Vb, the output signal based on the external magnetic field Hα is canceled and the output signal based on the induced magnetic field H1 from the current I to be measured is added. . As a result, the influence of the external magnetic field Hα can be eliminated, and the current value measurement accuracy can be improved. When the directions of the sensitivity axes S1 of the magnetic detection elements 21a and 21b are substantially the same direction, the output signal based on the external magnetic field Hα is canceled as described above by subtracting the voltage signals Va and Vb. An output signal based on the induced magnetic field H1 from the current I to be measured is added.

以上説明したように、本実施の形態に係る電流センサ1においては、入出力側の電流路に接続される各導電路10a〜10cの一対の直線部11a,11bを略同一直線上に配置すると共に、電流センサ1の幅方向Dと各導電路10a〜10cのクランク部12の被測定部12aの延長方向とが所定の角度θ1をなし、各導電路10a〜10cの一対の直線部11a,11bの延長方向とクランク部12の第1の腕部12bの延長方向とがなす角度θ2及び第2の腕部12cの延長方向とがなす角度θ3が鈍角になるようにクランク部12と一対の直線部11a,11bとを連接する。この構成により、一方の直線部11a及び他方の直線部11bに接続される電流センサ1の入出力側の電流路同一直線上に配置できるので、入出力側の電流路を含めた電流センサ全体のセンサ1全体の小型化を実現できる。   As described above, in the current sensor 1 according to the present embodiment, the pair of linear portions 11a and 11b of the respective conductive paths 10a to 10c connected to the current path on the input / output side are arranged on substantially the same straight line. In addition, the width direction D of the current sensor 1 and the extending direction of the measured portion 12a of the crank portion 12 of each of the conductive paths 10a to 10c form a predetermined angle θ1, and the pair of straight portions 11a of each of the conductive paths 10a to 10c, The crank portion 12 and the pair of crank portions 12 are paired so that an angle θ2 formed by the extending direction of 11b and the extending direction of the first arm portion 12b of the crank portion 12 and an angle θ3 formed by the extending direction of the second arm portion 12c are obtuse angles. The straight portions 11a and 11b are connected to each other. With this configuration, since the current path on the input / output side of the current sensor 1 connected to the one linear part 11a and the other linear part 11b can be arranged on the same straight line, the entire current sensor including the current path on the input / output side can be arranged. The entire sensor 1 can be reduced in size.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。また、上記実施の形態において、「直角」、「平行」、「同相」、「逆相」、「同一直線」などの用語については、本発明の効果を発揮する範囲内であれば、完全な「直角」、「平行」、「同相」、「逆相」、「同一直線」でなくともよい。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In addition, this invention is not limited to the said embodiment, It can change and implement variously. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. Further, in the above embodiment, terms such as “right angle”, “parallel”, “in phase”, “reverse phase”, “same straight line”, etc. are completely within the range where the effect of the present invention is exhibited. It does not have to be “right angle”, “parallel”, “in phase”, “reverse phase”, or “same straight line”. In addition, various modifications can be made without departing from the scope of the object of the present invention.

例えば、本実施の形態においては、直線部11a,11bとクランク部12とが別部材で構成された例について説明したが、直線部11a,11b及びクランク部12を金属などの導電部材で一体に形成してもよい。この場合には、各部材の接続部の抵抗が減少するので、大電流を測定する場合などの発熱を抑制できる。   For example, in the present embodiment, an example in which the straight portions 11a and 11b and the crank portion 12 are configured as separate members has been described. However, the straight portions 11a and 11b and the crank portion 12 are integrated with a conductive member such as metal. It may be formed. In this case, since the resistance of the connection part of each member decreases, heat generation such as when measuring a large current can be suppressed.

また、上述した実施の形態においては、被測定部12a、第1の腕部12b及び第2の腕部12cを金属などの導電部材で一体に形成した例について説明したが、第1の腕部12b及び第2の腕部12cは、必ずしも一体形成する必要はなく、別部材として形成された被測定部12a、第1の腕部12b及び第2の腕部12を互いに接続してもよい。   In the above-described embodiment, the example in which the part to be measured 12a, the first arm part 12b, and the second arm part 12c are integrally formed of a conductive member such as metal has been described. The part 12b and the second arm part 12c are not necessarily formed integrally, and the part to be measured 12a, the first arm part 12b, and the second arm part 12 formed as separate members may be connected to each other.

本発明は、隣接導電路からの誘導磁界の影響を低減でき、十分な小型化が可能な電流センサを実現できるという効果を有し、特に、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知する電流センサとして好適に用いることが可能である。   The present invention has an effect that an influence of an induced magnetic field from an adjacent conductive path can be reduced and a current sensor that can be sufficiently miniaturized can be realized. In particular, for example, a current for driving a motor of an electric vehicle or a hybrid car. It can be suitably used as a current sensor for detecting the magnitude of.

1 電流センサ
10a〜10c 導電路
11a,11b 直線部
12 クランク部
12a 被測定部
12b 第1の腕部
12c 第2の腕部
21,21a,21b 磁気検知素子
22 信号処理回路
DESCRIPTION OF SYMBOLS 1 Current sensor 10a-10c Conductive path 11a, 11b Linear part 12 Crank part 12a Measured part 12b 1st arm part 12c 2nd arm part 21, 21a, 21b Magnetic sensing element 22 Signal processing circuit

Claims (6)

同一平面内に並設された複数の導電路と、各導電路にそれぞれ配設され、前記導電路を通流する被測定電流からの誘導磁界により出力信号を出力する磁電変換素子とを具備し、
前記複数の導電路は、同一直線上に離間して配置された一対の直線部と、前記一対の直線部の間に前記直線部と連接するクランク部と、をそれぞれ備え、
前記クランク部は、前記磁電変換素子が配設されると共に両端部を持つ直線状の被測定部と、前記被測定部の一方の端部と連接すると共に一方の直線部と連接する第1の腕部と、前記被測定部の他方の端部と連接すると共に他方の直線部と連接する第2の腕部と、を有し、
前記被測定部と前記第1の腕部とのなす角が直角であり、
前記被測定部と前記第2の腕部とのなす角が直角であり、
前記直線部と前記第1の腕部とのなす角度が鈍角であり、前記直線部と前記第2の腕部とのなす角度が鈍角であることを特徴とする電流センサ。
A plurality of conductive paths arranged in parallel in the same plane; and a magnetoelectric conversion element that is disposed in each conductive path and outputs an output signal by an induced magnetic field from a current to be measured flowing through the conductive path. ,
Each of the plurality of conductive paths includes a pair of linear portions spaced apart on the same straight line, and a crank portion connected to the linear portion between the pair of linear portions,
The crank portion is provided with the magnetoelectric conversion element and has a linear measured portion having both ends, and is connected to one end portion of the measured portion and the first linear portion. An arm portion and a second arm portion connected to the other end portion of the portion to be measured and connected to the other linear portion;
The angle formed by the part to be measured and the first arm part is a right angle,
The angle formed by the part to be measured and the second arm part is a right angle,
The current sensor characterized in that an angle formed between the straight line portion and the first arm portion is an obtuse angle, and an angle formed between the straight line portion and the second arm portion is an obtuse angle.
前記複数の導電路に配設された各前記磁電変換素子は、前記直線部の延長方向と直交する方向に沿って配設されたことを特徴とする請求項1記載の電流センサ。   2. The current sensor according to claim 1, wherein each of the magnetoelectric conversion elements disposed in the plurality of conductive paths is disposed along a direction orthogonal to an extending direction of the linear portion. 前記磁電変換素子は、当該磁電変換素子を配置された導電路の両側の導電路の被測定部が延長した方向に沿う2つの仮想線の間に配置されたことを特徴とする請求項1又は請求項2記載の電流センサ。   The said magnetoelectric conversion element is arrange | positioned between the two virtual lines along the direction where the to-be-measured part of the conductive path of the both sides of the conductive path where the said magnetoelectric conversion element was arrange | positioned extended. The current sensor according to claim 2. 前記磁電変換素子は、感度軸の他に感度影響軸を有しており、前記感度影響軸が前記被測定部における被測定電流の通流方向に沿うように配設されたことを特徴とする請求項1から請求項3のいずれかに記載の電流センサ。   The magnetoelectric conversion element has a sensitivity influence axis in addition to a sensitivity axis, and is arranged so that the sensitivity influence axis is along the flow direction of the current to be measured in the measured part. The current sensor according to claim 1. 前記磁電変換素子は、前記被測定部の両面に配設された一対の磁電変換素子であることを特徴とする請求項1から請求項4のいずれかに記載の電流センサ。   5. The current sensor according to claim 1, wherein the magnetoelectric conversion elements are a pair of magnetoelectric conversion elements disposed on both surfaces of the measured part. 前記直線部及び前記クランク部が導電部材で一体に形成されたことを特徴とする請求項1から請求項5のいずれかに記載の電流センサ。   6. The current sensor according to claim 1, wherein the linear portion and the crank portion are integrally formed of a conductive member.
JP2011252627A 2011-11-18 2011-11-18 Current sensor Pending JP2013108787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252627A JP2013108787A (en) 2011-11-18 2011-11-18 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252627A JP2013108787A (en) 2011-11-18 2011-11-18 Current sensor

Publications (1)

Publication Number Publication Date
JP2013108787A true JP2013108787A (en) 2013-06-06

Family

ID=48705698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252627A Pending JP2013108787A (en) 2011-11-18 2011-11-18 Current sensor

Country Status (1)

Country Link
JP (1) JP2013108787A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018306A1 (en) * 2015-07-24 2017-02-02 株式会社村田製作所 Electric current sensor
JP2017133842A (en) * 2016-01-25 2017-08-03 アルプス電気株式会社 Current sensor and current detection device
JP2017167003A (en) * 2016-03-16 2017-09-21 パナソニックIpマネジメント株式会社 Current sensor, and cabinet panel with the same
JP2020204585A (en) * 2019-06-19 2020-12-24 三菱電機株式会社 Current detector and manufacturing method for current detector
JP2020204584A (en) * 2019-06-19 2020-12-24 三菱電機株式会社 Current detector and manufacturing method for current detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018306A1 (en) * 2015-07-24 2017-02-02 株式会社村田製作所 Electric current sensor
JPWO2017018306A1 (en) * 2015-07-24 2017-11-24 株式会社村田製作所 Current sensor
CN107615078A (en) * 2015-07-24 2018-01-19 株式会社村田制作所 Current sensor
US10274523B2 (en) 2015-07-24 2019-04-30 Murata Manufacturing Co., Ltd. Current sensor including a first current sensor and a second current sensor unit
JP2017133842A (en) * 2016-01-25 2017-08-03 アルプス電気株式会社 Current sensor and current detection device
JP2017167003A (en) * 2016-03-16 2017-09-21 パナソニックIpマネジメント株式会社 Current sensor, and cabinet panel with the same
JP2020204585A (en) * 2019-06-19 2020-12-24 三菱電機株式会社 Current detector and manufacturing method for current detector
JP2020204584A (en) * 2019-06-19 2020-12-24 三菱電機株式会社 Current detector and manufacturing method for current detector

Similar Documents

Publication Publication Date Title
JP5648246B2 (en) Current sensor
JP5489145B1 (en) Current sensor
JP5531215B2 (en) Current sensor
JP6288482B1 (en) Angle sensor and angle sensor system
JP5732679B2 (en) Current sensor
JP5482736B2 (en) Current sensor
JP5906488B2 (en) Current sensor
WO2013099504A1 (en) Current sensor
JP2013108787A (en) Current sensor
WO2016056135A1 (en) Current detection device and current detection method
JP6311790B2 (en) Current sensor
JP5816958B2 (en) Current sensor
JP2013088370A (en) Current sensor
WO2012046547A1 (en) Current sensor
JP2012052980A (en) Current sensor
JP5487403B2 (en) Current sensor
JP2015190781A (en) Circuit board
JP2013142604A (en) Current sensor
JP2012063285A (en) Current sensor
JP5504483B2 (en) Current sensor
JP5678285B2 (en) Current sensor
JP5504488B2 (en) Current sensor
JP2014066623A (en) Current sensor
WO2012035906A1 (en) Current sensor
JP4029653B2 (en) 3-phase AC ammeter, 3-phase AC current measurement method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130620

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115