WO2012035906A1 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
WO2012035906A1
WO2012035906A1 PCT/JP2011/067889 JP2011067889W WO2012035906A1 WO 2012035906 A1 WO2012035906 A1 WO 2012035906A1 JP 2011067889 W JP2011067889 W JP 2011067889W WO 2012035906 A1 WO2012035906 A1 WO 2012035906A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
sensitivity
sensor
magnetic sensor
magnetic
Prior art date
Application number
PCT/JP2011/067889
Other languages
French (fr)
Japanese (ja)
Inventor
蛇口 広行
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Publication of WO2012035906A1 publication Critical patent/WO2012035906A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Definitions

  • the present invention relates to a current sensor that measures the magnitude of current.
  • the present invention relates to a current sensor in which a decrease in measurement accuracy due to a disturbance magnetic field is suppressed.
  • a current sensor capable of measuring a large current in a non-contact manner is required for such applications.
  • a current sensor a system that detects a change in a magnetic field caused by a current to be measured by a magnetic sensor has been put into practical use.
  • a current sensor using a magnetic sensor has a problem in that the measurement accuracy is deteriorated due to the influence of a disturbing magnetic field.
  • Patent Document 1 As a method for suppressing a decrease in measurement accuracy due to the influence of a disturbance magnetic field, for example, a method of taking a differential between output signals of two magnetic sensors has been proposed (see Patent Document 1). In this configuration, in the output signals of the two magnetic sensors, the influence of the magnetic field formed by the current to be measured appears in the opposite phase, and the influence of the disturbance magnetic field appears in the same phase. Can be removed.
  • a GMR element As a magnetic sensor used for the above-described current sensor, a GMR (Giant Magneto Resistance) element or the like can be used in addition to the Hall element.
  • the GMR element may have sensitivity in a direction orthogonal to the sensitivity axis because of its structure.
  • the sensitivity may be about several tens of percent of the sensitivity in the sensitivity axis direction.
  • Patent Document 1 uses a magnetic sensor element that does not have sensitivity in a direction orthogonal to the sensitivity axis, such as a magnetic impedance element or a Hall element. This is because the use of a magnetic sensor element having sensitivity also in the direction orthogonal to the sensitivity axis is not considered.
  • the present invention has been made in view of such points, and in the case of using a magnetic sensor element having sensitivity in a direction orthogonal to the sensitivity axis, such as a GMR element, the influence of a disturbance magnetic field is reduced, and current measurement accuracy is reduced.
  • An object is to provide a current sensor that can be suppressed.
  • the current sensor according to the present invention is arranged around a current line through which a current to be measured flows, and outputs an output signal having a reverse phase by an induced magnetic field from the current flowing through the current line.
  • a pair of magnetic sensors each having sensitivity, and an arithmetic device connected to the pair of magnetic sensors and differentially calculating output signals of the pair of magnetic sensors, the magnetic sensor having its insensitive axis Is arranged so as to face the direction of the induced magnetic field from the current flowing through the current line adjacent to the current line.
  • the sensitivity axis and the axis that faces the direction in which the sensitivity is minimum among the directions orthogonal to the sensitivity axis (hereinafter sometimes referred to as an insensitive axis) are provided.
  • the insensitive axis of the magnetic sensor having sensitivity also in a direction orthogonal to the direction of current flows from a current passing through a current line adjacent to the current line through which the current to be measured flows (hereinafter sometimes referred to as an adjacent current line).
  • the magnetic sensor is arranged so as to face the direction of the induction magnetic field. For this reason, the influence of the induced magnetic field from the current flowing through the adjacent current line can be sufficiently reduced, and the decrease in current measurement accuracy due to the influence of the current flowing through the adjacent current line can be suppressed.
  • the term “current line” merely indicates a component capable of guiding current, and is not used for the purpose of limiting that the shape is a “line” shape.
  • the “current line” includes a plate-shaped conductive member, a thin-film conductive member (conductive pattern), and the like.
  • the “sensitivity axis” refers to an axis that faces the direction in which the sensitivity of the magnetic sensor (or magnetic sensor element) is maximized
  • the “insensitive axis” refers to a direction orthogonal to the sensitivity axis. Of these, the axis oriented in the direction where the sensitivity is minimized is assumed.
  • the magnetic sensor may be arranged such that a direction perpendicular to the sensitivity axis and having sensitivity coincides with a direction in which the current line extends. Since the direction of the induced magnetic field is orthogonal to the direction of the current, that is, the direction of the current line, the direction perpendicular to the sensitivity axis and having the sensitivity extends the current line through which the current to be measured flows. By matching with the direction in which the adjacent current line extends (same as the direction in which the adjacent current line extends), the influence of the induced magnetic field from the current flowing through the adjacent current line can be sufficiently reduced. That is, it is possible to suppress a decrease in current measurement accuracy due to the influence of the adjacent current line.
  • the expression “coincidence” in the direction is used to include a substantial coincidence that does not lose the effect of the invention. For example, a deviation in a direction that does not affect the measurement accuracy is allowed.
  • the pair of magnetic sensors may be arranged such that directions that are perpendicular to the sensitivity axis and have sensitivity are opposite to each other. According to this configuration, the influence from the current line extending in the direction orthogonal to the sensitivity axis and not parallel to the direction having sensitivity (for example, the direction orthogonal) is canceled by differential calculation. There are things that can be done. For this reason, it is possible to suppress a decrease in current measurement accuracy.
  • the magnetic sensor may include a GMR element. According to this configuration, sufficient current measurement accuracy can be ensured by using the GMR element.
  • the direction of the sensitivity axis and the direction perpendicular to the sensitivity axis and having sensitivity coincide with one of the directions parallel to the main surface of the substrate on which the GMR element is provided
  • the direction of the insensitive axis may coincide with the direction perpendicular to the main surface of the substrate.
  • the pair of magnetic sensors is mounted, and includes a circuit board disposed in a plane perpendicular to the current line, and the direction of the sensitivity axis and the direction of the insensitive axis are: It may coincide with one of the directions parallel to the main surface of the circuit board. In this configuration, since the direction of the insensitive axis of the magnetic sensor coincides with the direction parallel to the main surface of the circuit board, it is possible to save the space of the current sensor.
  • the influence of the induced magnetic field from the current flowing through the adjacent current line is sufficiently reduced by devising the arrangement of the magnetic sensor having sensitivity in the direction orthogonal to the sensitivity axis. For this reason, even when such a magnetic sensor is used, it is possible to suppress a decrease in current measurement accuracy due to the influence of the current flowing through the adjacent current line.
  • the present inventors have sensitivity in a direction perpendicular to a sensitivity axis of a GMR element or the like in an environment where a current line (adjacent current line) adjacent to the current sensor such as a switchboard or a three-phase motor exists.
  • the magnetic sensor including the magnetic sensor element is arranged so as to reduce the influence of the induced magnetic field from the current flowing through the adjacent current line, thereby suppressing a decrease in current measurement accuracy. Found that you can.
  • the magnetic sensor is arranged such that the insensitive axis of the magnetic sensor faces the direction of the induced magnetic field from the current flowing through the adjacent current line, or the direction that is perpendicular to the sensitivity axis of the magnetic sensor and is sensitive.
  • the influence of the induced magnetic field from the current flowing through the adjacent current line can be sufficiently reduced to reduce the current measurement accuracy. It was found that it can be effectively suppressed.
  • the essence of the present invention is that the current sensor of the type that removes the influence of the disturbance magnetic field by differential calculation uses a magnetic sensor having sensitivity also in the direction orthogonal to the sensitivity axis.
  • the magnetic sensor is arranged so as to face the direction of the induced magnetic field from the current flowing through the adjacent current line, or the direction having the sensitivity perpendicular to the sensitivity axis of the magnetic sensor is the adjacent current line. It is intended to suppress a decrease in current measurement accuracy by arranging it so as to coincide with the extending direction.
  • FIG. 1 is a schematic diagram showing the current sensor 1 of the present embodiment.
  • FIG. 1A is a perspective view schematically showing the configuration of the current sensor 1 and its periphery
  • FIG. 1B is a plan view thereof.
  • solid arrows given to the current line 11 and the adjacent current line 21 indicate that the direction of the current flowing through them is upward on the page. That is, here, the current to be measured and the adjacent current flow in directions parallel to each other.
  • FIGS. 1 is a schematic diagram showing the current sensor 1 of the present embodiment.
  • FIG. 1A is a perspective view schematically showing the configuration of the current sensor 1 and its periphery
  • FIG. 1B is a plan view thereof.
  • solid arrows given to the current line 11 and the adjacent current line 21 indicate that the direction of the current flowing through them is upward on the page. That is, here, the current to be measured and the adjacent current flow in directions parallel to each other.
  • a long solid arrow 14a, a short solid arrow 14b, and a broken arrow 14c applied to the first magnetic sensor 12a and the second magnetic sensor 12b are ,
  • two long and short solid arrows and a broken arrow attached to the first magnetic sensor 12a indicate that the direction of the sensitivity axis of the first magnetic sensor 12a is the upper right direction in FIG. 14a), the sensitivity is also upward in FIG. 1A (short arrow 14b), and the insensitive axis is rightward in FIG. 1A (dashed arrow 14c).
  • a mark given to the current line 11 and the adjacent current line 21 indicates that current flows forward in the drawing.
  • FIG. 1 is a schematic diagram, the size, quantity, arrangement, and the like of each component can be changed as appropriate. Moreover, since FIG. 1 is a figure for showing the feature point of this Embodiment in an easy-to-understand manner, a part of the configuration of the current sensor 1 may be omitted in FIG.
  • the current sensor 1 includes a current line 11 through which a current to be measured flows, and a first magnetic sensor 12a and a second magnetic sensor 12b arranged around the current line 11.
  • the current line 11 extends in a predetermined direction (the vertical direction in FIG. 1A).
  • the current sensor 1 includes an arithmetic device (not shown) that differentially calculates the output signals of the first magnetic sensor 12a and the second magnetic sensor 12b.
  • the first magnetic sensor 12a and the second magnetic sensor 12b are preferably a magnetic proportional sensor or a magnetic balanced sensor.
  • the magnetic proportional sensor is configured to include, for example, a bridge circuit including two magnetoresistive elements that are magnetic sensor elements and two fixed resistance elements.
  • the magnetic balance sensor is, for example, a bridge circuit composed of two magnetoresistive elements and two fixed resistance elements that are magnetic sensor elements, and a magnetic field in a direction that cancels the magnetic field generated by the current to be measured. And a feedback coil.
  • a configuration relating to a feedback coil and its control such as a magnetic balance sensor, is not required, so that the configuration can be simplified and the current sensor can be reduced in size.
  • a magnetic balance sensor when a magnetic balance sensor is employed, a current sensor having a high response speed and a small temperature dependence can be easily realized.
  • the magnetoresistive effect element used for the first magnetic sensor 12a and the second magnetic sensor 12b includes a GMR (Giant Magneto Resistance) element and a TMR (Tunnel Magneto Resistance) element.
  • the magnetoresistive effect element is orthogonal to the sensitivity axis.
  • a GMR element having sensitivity also in the direction to be used is used.
  • a magnetoresistive element such as a GMR element has a property that a resistance value changes by application of an induced magnetic field from a current to be measured, and this is used for the first magnetic sensor 12a and the second magnetic sensor 12b. Thus, sufficient current measurement accuracy can be ensured.
  • the magnetoresistive effect element used for the first magnetic sensor 12a and the second magnetic sensor 12b is a GMR as long as it has sensitivity in the direction orthogonal to the sensitivity axis. It is not limited to being an element.
  • the first magnetic sensor 12 a and the second magnetic sensor 12 b are arranged such that an output signal having a reverse phase is output by an induced magnetic field from a current flowing through the current line 11.
  • the current line 11 is sandwiched between the first magnetic sensor 12a and the second magnetic sensor 12b, and the sensitivity of the first magnetic sensor 12a and the second magnetic sensor 12b.
  • the same direction (FIG. 1B) in the plane perpendicular to the direction in which the current line 11 extends see FIG. 1B so that the axis is in a direction perpendicular to the direction in which the current line 11 extends. (See the arrow 14a in FIG. 1).
  • the “reverse phase output signal” means an output signal in which the positive and negative voltages are reversed except for noise components.
  • the relationship is such that current measurement can be performed with a desired accuracy, it is not required that the voltage value be strictly reversed in polarity.
  • the first magnetic sensor 12a and the second magnetic sensor 12b are arranged so that the influence of the induced magnetic field from the current flowing through the adjacent current line 21 is reduced. More specifically, the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed to the direction of the induced magnetic field from the current flowing through the adjacent current line (see arrow 14c in FIG. 1). Or the direction perpendicular to the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b and having sensitivity coincides with the direction in which the adjacent current line extends (arrow in FIG. 1). 14b), the first magnetic sensor 12a and the second magnetic sensor 12b are arranged.
  • the insensitive axis here does not require that the sensitivity be strictly zero.
  • the magnetic sensor 12 a and the magnetic sensor 12 b have an induced magnetic field 31 from a current flowing through the adjacent current line 21 in the direction of the sensitivity axis and the direction perpendicular to the sensitivity axis and having sensitivity. They are arranged so as not to coincide with the direction (see FIG. 1B).
  • the insensitive axis is oriented in a direction perpendicular to the current line 11 and the adjacent current line 13 (in a direction perpendicular to the plane 32 including the current line 11 and the adjacent current line 13 (see FIG. 1A)). It may be said that it is arranged.
  • the current flows through the adjacent current line 21. This is because the current measurement accuracy is degraded under the influence of the induced magnetic field from the current to be generated.
  • the magnetic sensor 12a and the magnetic sensor 12b are arranged so that the direction perpendicular to the sensitivity axis and having sensitivity coincides with the direction of the current flowing through the adjacent current line 21. Since the direction in which the current line 11 extends and the direction in which the adjacent current line 21 adjacent to the current line 11 extend are the same, the direction perpendicular to the sensitivity axis and having sensitivity is the current line 11. It can also be said that they are arranged so as to coincide with the direction of the current flowing therethrough.
  • the direction that is orthogonal to the sensitivity axis and has sensitivity matches the direction of the current that flows through the adjacent current line 21, at least in the above direction, the current that flows through the adjacent current line 21 This is because there is no need to be affected by the induced magnetic field, and the decrease in accuracy of current measurement can be suppressed.
  • the circuit board 15 When the circuit board 15 is arranged in a plane perpendicular to the current line 11 in relation to the circuit board 15 on which the magnetic sensor 12a and the magnetic sensor 12b are mounted, the direction of the sensitivity axis and the insensitive axis It can also be said that the direction coincides with one of the directions parallel to the main surface of the circuit board 15. In some cases, such an arrangement can save space.
  • the influence of the induced magnetic field from the current flowing through the adjacent current line 21 can be reduced as compared with the current sensor 2 shown in FIG. That is, a decrease in current measurement accuracy can be suppressed.
  • the current sensor 2 shown in FIG. 2 includes a current line 11 through which a current to be measured flows and a first magnetic sensor 12a and a second magnetic sensor 12b arranged around the current line 11. 1 is common to the current sensor 1 shown in FIG.
  • the direction (indicated by the arrow 14b) perpendicular to the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b and having sensitivity passes through the adjacent current line 21. It differs from the current sensor 1 in that it is arranged so as to coincide with the direction 31 of the induced magnetic field from the flowing current.
  • the configuration shown in FIG. 2 is adopted because it is advantageous when the magnetic sensor 12a and the magnetic sensor 12b are mounted on the circuit board 15.
  • the adjacent current line 21 is connected.
  • the insensitive axes of the magnetic sensor 12a and the magnetic sensor 12b are directed to the direction of the induced magnetic field from the current flowing through the adjacent current line.
  • the direction perpendicular to the sensitivity axis of the magnetic sensor 12a and the magnetic sensor 12b and having the sensitivity coincides with the direction in which the adjacent current line extends, and the magnetic sensor 12a and the magnetic sensor 12b.
  • the first magnetic sensor 12 a and the second magnetic sensor 12 a and the second magnetic sensor 12 a are reduced so that the influence of the combined magnetic field obtained by combining the induced magnetic fields from the currents flowing through the adjacent current lines 21 is reduced.
  • the magnetic sensor 12b may be disposed. For example, as shown in FIG. 3, when a first adjacent current line 21a and a second adjacent current line 21b exist, it is considered that a magnetic sensor is disposed at a point A.
  • the magnetic sensor is magnetically oriented such that the insensitive axis of the magnetic sensor faces the direction of the combined magnetic field 23 of the induced magnetic field 22a by the first adjacent current line 21a and the induced magnetic field 22b by the second adjacent current line 21b.
  • position a sensor is just to arrange
  • the induced magnetic field from the current flowing through the adjacent current line 21 in consideration of the magnitude of the current flowing through each adjacent current line 21 and the distance between the current line 11 and each adjacent current line 21. You may arrange
  • the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed to the direction of the maximum of the induced magnetic fields from the currents flowing through the plurality of adjacent current lines.
  • One magnetic sensor 12a and second magnetic sensor 12b can be arranged. In any case, a decrease in current measurement accuracy can be effectively suppressed by making the direction of the insensitive axis coincide with the direction of the magnetic field that is likely to adversely affect the current measurement.
  • FIG. 4 shows a block diagram relating to the circuit configuration of the current sensor 1.
  • the current sensor 1 has an arithmetic device 13 connected to the output terminals of the first magnetic sensor 12 a and the second magnetic sensor 12 b.
  • the arithmetic device 13 has at least a function of differentially calculating the output signals of the first magnetic sensor 12a and the second magnetic sensor 12b.
  • the arithmetic unit 13 can calculate and output the difference between the two output signals. Then, by taking the difference between the two output signals, the influence of the disturbance magnetic field can be canceled and the current measurement accuracy can be improved.
  • the function of the arithmetic device 13 may be realized by hardware or software.
  • the cancellation of the influence of the disturbance magnetic field is realized by the following principle.
  • the output of the first magnetic sensor 12a caused only by the magnetic flux ⁇ when the magnetic flux ⁇ is generated around the current line by the current i flowing through the current line 11 is defined as O 1 . Since the first magnetic sensor 12a and the second magnetic sensor 12b are arranged so that output signals of opposite phases are output, the output of the second magnetic sensor 12b caused only by the magnetic flux ⁇ is ⁇ O 1 .
  • the output of the first magnetic sensor 12a according to a uniform magnetic field disturbance (noise) When N 1, the output of the second magnetic sensor 12b is likewise N 1.
  • the output of the first magnetic sensor 12a including the noise component is O 1 + N 1
  • FIG. 5 shows an example of the film configuration of the GMR element used for the first magnetic sensor 12a and the second magnetic sensor 12b.
  • the GMR element has a laminated structure of a plurality of films provided on the substrate 101. That is, the GMR element includes a seed layer 102, a first ferromagnetic film 103, an antiparallel coupling film 104, a second ferromagnetic film 105, a nonmagnetic intermediate layer 106, a soft magnetic free layer (free magnetic layer) 107, and A protective layer 108 is included.
  • the GMR element includes a seed layer 102, a first ferromagnetic film 103, an antiparallel coupling film 104, a second ferromagnetic film 105, a nonmagnetic intermediate layer 106, a soft magnetic free layer (free magnetic layer) 107, and A protective layer 108 is included.
  • a base layer other than the GMR element is omitted, but, for example, Ta, Hf, Nb, Zr, and the like are interposed between the substrate 101 and the seed layer 102.
  • An underlayer composed of a nonmagnetic material containing at least one element of Ti, Mo, W, or the like may be provided.
  • the seed layer 102 is made of NiFeCr or Cr.
  • the first ferromagnetic film 103 is preferably made of a CoFe alloy containing 40 atomic% to 80 atomic% of Fe. This is because a CoFe alloy having this composition range has a large coercive force and can stably maintain magnetization with respect to an external magnetic field.
  • the antiparallel coupling film 104 of the ferromagnetic fixed layer is made of Ru or the like.
  • the second ferromagnetic film 105 is preferably made of a CoFe alloy containing 0 atomic% to 40 atomic% of Fe.
  • the nonmagnetic intermediate layer 106 is made of Cu or the like.
  • the soft magnetic free layer (free layer) 107 is made of a magnetic material such as a CoFe alloy, a NiFe alloy, or a CoFeNi alloy.
  • the soft magnetic free layer 107 is preferably applied with a magnetic field in the longitudinal direction of the meander-shaped stripe during the film formation, and induced magnetic anisotropy is imparted to the soft magnetic free layer 107 after the film formation. Thereby, in the magnetoresistive effect element, the resistance is linearly changed with respect to the external magnetic field in the stripe width direction, and the hysteresis can be reduced.
  • the protective layer 108 is made of Ta, Ru, or the like.
  • the GMR element as described above has sensitivity in a direction parallel to the film constituting the laminated structure. That is, the direction of the sensitivity axis and the direction orthogonal to the sensitivity axis and having sensitivity coincide with either the direction parallel to the main surface of the substrate 101 provided with the GMR element. On the other hand, there is no substantial sensitivity in the direction perpendicular to the film. That is, the direction of the insensitive axis coincides with the direction perpendicular to the main surface of the substrate 101. For example, in FIG.
  • the X-axis direction is the direction of the sensitivity axis
  • the Y-axis direction is the direction perpendicular to the sensitivity axis and having sensitivity
  • the Z-axis direction is the direction of the insensitive axis.
  • the magnetic sensor 12a and the magnetic sensor 12b include a direction parallel to the direction in which the current line 11 or the adjacent current line 21 extends (that is, the direction in which the current flows), the magnetic sensor 12a, and the magnetic sensor. It can also be said that the direction parallel to the main surface 101 of the substrate on which the GMR element is formed in 12b coincides.
  • the configuration shown in FIG. 1 is adopted to save the space of the current sensor. There is also an advantage of being able to.
  • FIG. 6 is a schematic diagram showing the current sensor 1 of the present embodiment.
  • FIG. 6A is a perspective view schematically showing the configuration of the current sensor 1 and its periphery
  • FIG. 6B is a plan view of the current sensor 1 as viewed from the direction in which adjacent current lines extend.
  • the solid arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward
  • the solid arrow given to the adjacent current line 21 is This indicates that the direction of the current flowing through is downward left on the page. That is, here, the direction of the current to be measured and the direction of the adjacent current are orthogonal.
  • FIGS. 1 is a perspective view schematically showing the configuration of the current sensor 1 and its periphery
  • FIG. 6B is a plan view of the current sensor 1 as viewed from the direction in which adjacent current lines extend.
  • the solid arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward
  • the solid arrow given to the adjacent current line 21 is
  • a long solid arrow 14a, a short solid arrow 14b, and a broken arrow 14c applied to the first magnetic sensor 12a and the second magnetic sensor 12b are ,
  • two long and short solid arrows and a dashed arrow attached to the first magnetic sensor 12a indicate that the direction of the sensitivity axis of the first magnetic sensor 12a is the upper right direction in FIG. 6A (long arrow). 14a), the sensitivity is also upward in FIG. 6A (short arrow 14b), and the insensitive axis is rightward in FIG. 6A (dashed arrow 14c).
  • the solid arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward, and the mark given to the adjacent current line 21 is Indicates that current flows forward.
  • FIG. 6 is a schematic diagram, the size, quantity, arrangement, and the like of each component can be changed as appropriate.
  • FIG. 6 is a diagram for easy understanding of the feature points of the present embodiment, and therefore, part of the configuration of the current sensor 1 may be omitted in FIG. 6.
  • the current sensor 1 includes a current line 11 through which a current to be measured flows, and a first magnetic sensor 12 a and a second magnetic sensor 12 b arranged around the current line 11.
  • the current sensor 1 includes an arithmetic device (not shown) that differentially calculates the output signals of the first magnetic sensor 12a and the second magnetic sensor 12b.
  • the first magnetic sensor 12a and the second magnetic sensor 12b are preferably a magnetic proportional sensor or a magnetic balanced sensor.
  • a GMR element having sensitivity also in the direction orthogonal to the sensitivity axis is used as the magnetoresistive effect element.
  • the magnetoresistive element is not limited to a GMR element as long as it has sensitivity in a direction orthogonal to the sensitivity axis.
  • Embodiment Mode 1 can be referred to, and thus the description thereof is omitted here.
  • the first magnetic sensor 12 a and the second magnetic sensor 12 b are arranged such that an output signal having a reverse phase is output by an induced magnetic field from a current flowing through the current line 11.
  • the current line 11 is sandwiched between the first magnetic sensor 12a and the second magnetic sensor 12b, and the sensitivity of the first magnetic sensor 12a and the second magnetic sensor 12b.
  • the axes are respectively arranged so as to face the direction perpendicular to the direction in which the current line 11 extends (see arrow 14a in FIG. 6).
  • the first magnetic sensor 12a and the second magnetic sensor 12b are arranged so that the influence of the induced magnetic field from the current flowing through the adjacent current line 21 is reduced. More specifically, the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed to the direction of the induced magnetic field from the current flowing through the adjacent current line (see arrow 14c in FIG. 6). The direction perpendicular to the sensitivity axis of the first magnetic sensor 12a and having sensitivity is opposite to the direction perpendicular to the sensitivity axis of the second magnetic sensor 12b and having sensitivity. (Refer to arrow 14b in FIG. 6), the first magnetic sensor 12a and the second magnetic sensor 12b are arranged.
  • the first magnetic sensor 12 a and the second magnetic sensor 12 b pass through the adjacent current line 21 in the direction of the sensitivity axis and the direction perpendicular to the sensitivity axis and having sensitivity. It arrange
  • the first magnetic sensor 12a and the second magnetic sensor 12b have a direction that is perpendicular to the sensitivity axis and has sensitivity, and the direction of the current flowing through the adjacent current line 21 Is not parallel to (for example, orthogonal). In this case, it is affected by the induced magnetic field from the current flowing through the adjacent current line 21, but the components in the direction of the arrow 14b of the induced magnetic field 31 are the first magnetic sensor 12a and the second magnetic field.
  • the effect is reversed in the first magnetic sensor 12a and the second magnetic sensor 12b (see FIG. 5B) due to the reverse direction in the sensor 12b (see FIG.
  • the adjacent current line 21 is arranged by arranging the direction perpendicular to the sensitivity axis and having sensitivity and the direction perpendicular to the sensitivity axis of the second magnetic sensor 12b and having sensitivity to each other in the opposite directions.
  • the influence of the induced magnetic field from the flowing current can be canceled by differential calculation, and the decrease in current measurement accuracy can be suppressed.
  • the direction perpendicular to the sensitivity axis and having sensitivity is the sensitivity axis of the induced magnetic field 31 from the current flowing through the adjacent current line 21. It is possible to express that the component in the direction perpendicular to the direction and having sensitivity (the component in the direction of arrow 14b) is arranged so as to be canceled by the differential calculation.
  • the induced magnetic field 31 in FIG. 6B has a component upward in the drawing in the vicinity of the first magnetic sensor 12a, and has a component in the downward direction in the vicinity of the second magnetic sensor 12b.
  • the direction of the first magnetic sensor 12a and the second magnetic sensor 12b that is perpendicular to the sensitivity axis and has sensitivity is the same direction as the component of the induction magnetic field 31 described above.
  • the influence of the induction magnetic field 31 appears in the same phase in the first magnetic sensor 12a and the second magnetic sensor 12b, and cancellation by differential calculation becomes possible.
  • the first magnetic sensor 12 a and the second magnetic sensor 12 a and the second magnetic sensor 12 a are reduced so that the influence of the combined magnetic field obtained by combining the induced magnetic fields from the currents flowing through the adjacent current lines 21 is reduced.
  • the magnetic sensor 12b may be disposed. For example, as shown in FIG.
  • the insensitive axis of the magnetic sensor is The magnetic sensor may be arranged so as to face the direction of the combined magnetic field 23 of the induced magnetic field 22a by the first adjacent current line 21a and the induced magnetic field 22b by the second adjacent current line 21b.
  • the induced magnetic field from the current flowing through the adjacent current line 21 in consideration of the magnitude of the current flowing through each adjacent current line 21 and the distance between the current line 11 and each adjacent current line 21. You may arrange
  • the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed to the direction of the maximum of the induced magnetic fields from the currents flowing through the plurality of adjacent current lines.
  • One magnetic sensor 12a and second magnetic sensor 12b can be arranged. In any case, a decrease in current measurement accuracy can be effectively suppressed by making the direction of the insensitive axis coincide with the direction of the magnetic field that is likely to adversely affect the current measurement.
  • the circuit configuration of the current sensor 1 and the structure of the GMR element are the same as those in the first embodiment. For details, the description of Embodiment Mode 1, FIG. 4 and FIG.
  • the direction of the first magnetic sensor 12a and the second magnetic sensor 12b that is perpendicular to the sensitivity axis and has sensitivity is parallel to the direction of the current flowing through the adjacent current line 21.
  • the first magnetic sensor 12a By arranging the direction that is perpendicular to the sensitivity axis and has sensitivity and the direction that is perpendicular to the sensitivity axis of the second magnetic sensor 12b and has sensitivity, the current measurement accuracy is reversed. It may be possible to suppress the decrease in.
  • the above arrangement can be applied without any problem even when the direction that is perpendicular to the sensitivity axis and has sensitivity and the direction of the current flowing through the adjacent current line 21 are in a parallel relationship.
  • the direction that is perpendicular to the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b and has sensitivity is directed in a direction parallel to the current flowing through the adjacent current line 21 (adjacent current).
  • the direction perpendicular to the sensitivity axis of the first magnetic sensor 12a and having sensitivity, and the direction perpendicular to the sensitivity axis of the second magnetic sensor 12b and sensitivity What is necessary is just to arrange
  • FIG. 7 is a schematic diagram showing an example of the current sensor 1 of the present embodiment.
  • FIG. 7A is a perspective view schematically showing the configuration of the current sensor 1 and its periphery
  • FIG. 7B is a plan view of the current sensor 1 as viewed from the direction in which adjacent current lines extend.
  • the solid line arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward
  • the solid line arrow given to the adjacent current line 21 is This indicates that the direction of the current flowing through is downward left on the page. That is, here, the direction of the current to be measured and the direction of the adjacent current are orthogonal.
  • a long solid arrow 14a, a short solid arrow 14b, and a broken arrow 14c applied to the first magnetic sensor 12a and the second magnetic sensor 12b are ,
  • two long and short solid arrows and a broken arrow attached to the first magnetic sensor 12a indicate that the direction of the sensitivity axis of the first magnetic sensor 12a is the upper right direction in FIG. 7A (long arrow). 14a), the sensitivity is also upward in FIG. 7A (short arrow 14b), indicating that the insensitive axis is rightward in FIG. 7A (dashed arrow 14c).
  • the solid arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward, and the mark given to the adjacent current line 21 is Indicates that current flows forward.
  • FIG. 8 is a schematic diagram showing another example of the current sensor 1 of the present embodiment.
  • FIG. 8A is a perspective view schematically showing the configuration of the current sensor 1 and its periphery
  • FIG. 8B is a plan view of the current sensor 1 as viewed from the direction in which adjacent current lines extend.
  • the solid line arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward
  • the solid line arrow given to the adjacent current line 21 is Indicates that the direction of the current flowing through is rightward on the page. That is, here, the direction of the current to be measured and the direction of the adjacent current are orthogonal.
  • a long solid arrow 14a, a short solid arrow 14b, and a broken arrow 14c applied to the first magnetic sensor 12a and the second magnetic sensor 12b are ,
  • two long and short solid arrows and a dashed arrow attached to the first magnetic sensor 12a indicate that the direction of the sensitivity axis of the first magnetic sensor 12a is the upper right direction in FIG. 8A (long arrow). 14a), the sensitivity is also upward in FIG. 8A (short arrow 14b), and the insensitive axis is the right direction in FIG. 8A (dashed arrow 14c).
  • the solid arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward, and the mark given to the adjacent current line 21 is Indicates that current flows forward.
  • FIG.7 and FIG.8 is a schematic diagram, the magnitude
  • FIG.7 and FIG.8 is a figure for showing the feature point of this Embodiment intelligibly, a part of structure of the current sensor 1 may be abbreviate
  • the current sensor 1 includes a current line 11 through which a current to be measured flows, and a first magnetic sensor 12a and a second magnetic sensor 12b arranged around the current line 11. Including.
  • the current sensor 1 includes an arithmetic device (not shown) that differentially calculates the output signals of the first magnetic sensor 12a and the second magnetic sensor 12b.
  • the first magnetic sensor 12a and the second magnetic sensor 12b are preferably a magnetic proportional sensor or a magnetic balanced sensor.
  • a GMR element having sensitivity also in the direction orthogonal to the sensitivity axis is used as the magnetoresistive effect element.
  • the magnetoresistive element is not limited to a GMR element as long as it has sensitivity in a direction orthogonal to the sensitivity axis.
  • Embodiment Mode 1 can be referred to, and thus the description thereof is omitted here.
  • the first magnetic sensor 12 a and the second magnetic sensor 12 b are arranged such that an output signal having a reverse phase is output by an induced magnetic field from a current flowing through the current line 11.
  • the current line 11 is sandwiched between the first magnetic sensor 12a and the second magnetic sensor 12b, and the first magnetic sensor 12a and the second magnetic sensor.
  • the sensitivity axes of 12b are arranged so as to face the direction perpendicular to the direction in which the current line 11 extends (see the arrow 14a in FIGS. 7 and 8).
  • the first magnetic sensor 12a and the second magnetic sensor 12b are arranged so that the influence of the induced magnetic field from the current flowing through the adjacent current line 21 is reduced. More specifically, the direction that is perpendicular to the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b and has sensitivity is directed to the direction of the induced magnetic field from the current flowing through the adjacent current line. In the case (in the case of FIG. 7), or the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed in the direction of the induced magnetic field from the current flowing through the adjacent current line (in the case of FIG. 8).
  • the sensitivity of the first magnetic sensor 12a The direction that is orthogonal to the axis and has sensitivity, and the direction that is orthogonal to the sensitivity axis of the second magnetic sensor 12b and has sensitivity have the same direction (see FIGS. 7 and 8). Arrow 14b), first magnetic sensor 12a and the second magnetic sensor 12b is disposed.
  • the configuration of the current sensor according to the present embodiment is such that the direction that is perpendicular to the sensitivity axis and has sensitivity is the direction that the induced magnetic field 31 from the current flowing through the adjacent current line 21 is perpendicular to the sensitivity axis.
  • the component in the direction having sensitivity (the component in the direction of the arrow 14b) is arranged so as to be canceled by the differential calculation.
  • the induction magnetic field 31 in FIG. 7B has a downward component in the drawing in the vicinity of the first magnetic sensor 12a, and has a downward component in the drawing in the vicinity of the second magnetic sensor 12b.
  • the direction of the first magnetic sensor 12a and the second magnetic sensor 12b that is perpendicular to the sensitivity axis and has sensitivity is the same direction as the component of the induction magnetic field 31 described above.
  • the influence of the induction magnetic field 31 appears in the same phase in the first magnetic sensor 12a and the second magnetic sensor 12b, and cancellation by differential calculation becomes possible.
  • the circuit configuration of the current sensor 1 and the structure of the GMR element are the same as those in the first embodiment. For details, the description of Embodiment Mode 1, FIG. 4 and FIG.
  • the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b cannot be arranged so as to face the direction of the induced magnetic field from the current flowing through the adjacent current line 21
  • the influence of the induced magnetic field from the current flowing through the adjacent current line 21 appears similarly in the first magnetic sensor 12a and the second magnetic sensor 12b, it is orthogonal to the sensitivity axis of the first magnetic sensor 12a.
  • the direction that is the direction and having the sensitivity and the direction that is perpendicular to the sensitivity axis of the second magnetic sensor 12b and that has the sensitivity are directed in the same direction, so that the current flowing through the adjacent current line 21 can be The influence of the induced magnetic field can be canceled by differential calculation, and a decrease in current measurement accuracy can be suppressed.
  • the current measurement accuracy in the current sensor 1 of the first embodiment was confirmed.
  • the current sensor 1 having the configuration shown in FIG. 1 was used.
  • the cross section of the current line 11 and the adjacent current line 21 is a rectangular shape of 10 mm ⁇ 2 mm (see FIG. 9).
  • the evaluation of the current measurement accuracy is based on the measurement result obtained in the state where current is not passed through the adjacent current line 21 as the reference value, and the measurement result obtained when current is passed through the adjacent current line 21 and the reference value.
  • the current measurement accuracy in the current sensor 2 was confirmed under the same conditions as in the above example.
  • the measurement system is the current sensor 2 having the configuration shown in FIG. Similarly, the cross sections of the current line 11 and the adjacent current line 21 have a rectangular shape of 10 mm ⁇ 2 mm.
  • the vertical axis represents the measurement error e (%)
  • the horizontal axis represents the center distance d (mm).
  • the measurement error is suppressed to less than 1% even when the distance between the centers is as close as about 40 mm. That is, a decrease in current measurement accuracy is suppressed.
  • the measurement error is close to 4% when the distance between the centers is close to about 40 mm. It can be seen that in order to achieve a measurement error of less than 1% in the current sensor 2, the center-to-center distance needs to be about 80 mm.
  • the measurement accuracy decreases when the distance between the current sensor 2 and the adjacent current line 21 is small. Therefore, in order to ensure the measurement accuracy of the current sensor 2,
  • the system including the current line 21 needs to be enlarged to some extent.
  • the system including the current sensor 1 and the adjacent current line 21 can be easily downsized. For example, when a measurement error of 1% is allowed in the above-described configuration, the system including the current sensor 1 and the adjacent current line 21 is simply calculated as compared with the system including the current sensor 2 and the adjacent current line 21. Therefore, it is possible to reduce the size and space by 40 mm.
  • the current sensor of the present invention sufficiently reduces the influence of the induced magnetic field from the current flowing through the adjacent current line by devising the arrangement of the magnetic sensor having sensitivity in the direction orthogonal to the sensitivity axis. is doing. For this reason, when such a magnetic sensor is used, the fall of the current measurement precision by the influence of the electric current which flows through an adjacent current line can be suppressed. This also makes it possible to reduce the size and space of the system including the current sensor.
  • the current sensor of the present invention can be used, for example, to detect the magnitude of a current for driving a motor of an electric vehicle or a hybrid car.

Abstract

The purpose of the present invention is to provide a current sensor which can reduce the influence of magnetic disturbances and suppress a drop in current measuring accuracy, when using a magnetic sensor element, such as a GMR element, which has sensitivity in the direction orthogonal to the sensitive axis. This current sensor (1) is equipped with: a pair of magnetic sensors (12a, 12b) which are arranged around an electric wire (11) through which the current being measured flows, and which output a reversed phase output signal by means of the induction field from the current flowing through the electric wire (11), and which each have sensitivity in the direction orthogonal to the sensitive axis; and a calculation device (13) which is connected to the pair of magnetic sensors (12a, 12b), and which carries out a differential calculation on the output signals from the pair of magnetic sensors (12a, 12b). The current sensor (1) is characterised in that the magnetic sensors (12a, 12b) are arranged such that the non-sensitive axes thereof face in the direction of the induction field from the current flowing through an electric wire (adjacent electric wire (21)) which is adjacent to the electric wire (11).

Description

電流センサCurrent sensor
 本発明は、電流の大きさを測定する電流センサに関する。特に、外乱磁界に起因する測定精度の低下が抑制された電流センサに関する。 The present invention relates to a current sensor that measures the magnitude of current. In particular, the present invention relates to a current sensor in which a decrease in measurement accuracy due to a disturbance magnetic field is suppressed.
 電気自動車やハイブリッドカーにおけるモータ駆動技術などの分野では、比較的大きな電流が取り扱われるため、このような用途向けに、大電流を非接触で測定することが可能な電流センサが求められている。そして、このような電流センサとして、被測定電流によって生じる磁界の変化を磁気センサによって検出する方式のものが実用化されている。磁気センサを用いる電流センサは、外乱磁界の影響による測定精度の低下が問題となるため、これを抑制する方式が提案されている。 In fields such as motor drive technology in electric vehicles and hybrid cars, a relatively large current is handled, and thus a current sensor capable of measuring a large current in a non-contact manner is required for such applications. As such a current sensor, a system that detects a change in a magnetic field caused by a current to be measured by a magnetic sensor has been put into practical use. A current sensor using a magnetic sensor has a problem in that the measurement accuracy is deteriorated due to the influence of a disturbing magnetic field.
 外乱磁界の影響による測定精度の低下を抑制する方式としては、例えば、二つの磁気センサの出力信号の差動をとるものが提案されている(特許文献1参照)。この構成では、二つの磁気センサの出力信号において、被測定電流が形成する磁界の影響が逆相で現れ、外乱磁界の影響が同相で現れるため、その差動を取ることで外乱磁界の影響を除去することができる。 As a method for suppressing a decrease in measurement accuracy due to the influence of a disturbance magnetic field, for example, a method of taking a differential between output signals of two magnetic sensors has been proposed (see Patent Document 1). In this configuration, in the output signals of the two magnetic sensors, the influence of the magnetic field formed by the current to be measured appears in the opposite phase, and the influence of the disturbance magnetic field appears in the same phase. Can be removed.
特開2002-131342号公報JP 2002-131342 A
 ところで、上述の電流センサに用いられる磁気センサには、ホール素子の他に、GMR(Giant Magneto Resistance)素子などが用いられ得る。GMR素子は、その構造上、感度軸と直交する方向にも感度を有してしまうことがあり、例えば、その感度は、感度軸方向における感度の数十%程度になることもある。このような、感度軸と直交する方向にも感度を有する磁気センサ素子を電流センサに用いる場合には、特許文献1に記載の技術を単に適用しても、外乱磁界の影響を十分に抑制することは難しい。これは、特許文献1に記載の技術が、磁気インピーダンス素子やホール素子などの感度軸と直交する方向には感度を有さない磁気センサ素子の使用を前提に考えられており、GMR素子などの感度軸と直交する方向にも感度を有する磁気センサ素子の使用を前提に考えられていないためである。 Incidentally, as a magnetic sensor used for the above-described current sensor, a GMR (Giant Magneto Resistance) element or the like can be used in addition to the Hall element. The GMR element may have sensitivity in a direction orthogonal to the sensitivity axis because of its structure. For example, the sensitivity may be about several tens of percent of the sensitivity in the sensitivity axis direction. When such a magnetic sensor element having sensitivity also in the direction orthogonal to the sensitivity axis is used for the current sensor, the influence of the disturbance magnetic field is sufficiently suppressed even if the technique described in Patent Document 1 is simply applied. It ’s difficult. This is based on the premise that the technique described in Patent Document 1 uses a magnetic sensor element that does not have sensitivity in a direction orthogonal to the sensitivity axis, such as a magnetic impedance element or a Hall element. This is because the use of a magnetic sensor element having sensitivity also in the direction orthogonal to the sensitivity axis is not considered.
 本発明はかかる点に鑑みてなされたものであり、GMR素子などの感度軸と直交する方向に感度を有する磁気センサ素子を用いる場合において、外乱磁界の影響を低減し、電流測定精度の低下を抑制することができる電流センサを提供することを目的とする。 The present invention has been made in view of such points, and in the case of using a magnetic sensor element having sensitivity in a direction orthogonal to the sensitivity axis, such as a GMR element, the influence of a disturbance magnetic field is reduced, and current measurement accuracy is reduced. An object is to provide a current sensor that can be suppressed.
 本発明の電流センサは、被測定電流が通流する電流線の周囲に配置され、前記電流線を通流する電流からの誘導磁界により逆相の出力信号を出力する、感度軸と直交する方向に感度をそれぞれ有する一対の磁気センサと、前記一対の磁気センサに接続され、前記一対の磁気センサの出力信号を差動演算する演算装置と、を具備し、前記磁気センサは、その無感度軸が、前記電流線に隣接する電流線を通流する電流からの誘導磁界の方向を向くように配置されたことを特徴とする。 The current sensor according to the present invention is arranged around a current line through which a current to be measured flows, and outputs an output signal having a reverse phase by an induced magnetic field from the current flowing through the current line. A pair of magnetic sensors each having sensitivity, and an arithmetic device connected to the pair of magnetic sensors and differentially calculating output signals of the pair of magnetic sensors, the magnetic sensor having its insensitive axis Is arranged so as to face the direction of the induced magnetic field from the current flowing through the current line adjacent to the current line.
 この構成によれば、感度軸と、感度軸に直交する方向のうち、感度が最小となる方向を向いた軸(以下、無感度軸と呼ぶことがある。)と、を有し、感度軸と直交する方向にも感度を有する磁気センサの無感度軸が、被測定電流が通流する電流線に隣接する電流線(以下、隣接電流線と呼ぶことがある。)を通流する電流からの誘導磁界の方向を向くように、磁気センサが配置されることになる。このため、隣接電流線を通流する電流からの誘導磁界の影響を十分に低減することができ、隣接電流線を通流する電流の影響による電流測定精度の低下を抑制することができる。 According to this configuration, the sensitivity axis and the axis that faces the direction in which the sensitivity is minimum among the directions orthogonal to the sensitivity axis (hereinafter sometimes referred to as an insensitive axis) are provided. The insensitive axis of the magnetic sensor having sensitivity also in a direction orthogonal to the direction of current flows from a current passing through a current line adjacent to the current line through which the current to be measured flows (hereinafter sometimes referred to as an adjacent current line). The magnetic sensor is arranged so as to face the direction of the induction magnetic field. For this reason, the influence of the induced magnetic field from the current flowing through the adjacent current line can be sufficiently reduced, and the decrease in current measurement accuracy due to the influence of the current flowing through the adjacent current line can be suppressed.
 なお、本明細書において、「電流線」の用語は、電流を導くことが可能な構成要素を示すにすぎず、その形状が「線」状であることを限定する趣旨で用いるものではない。たとえば、「電流線」には、板状の導電部材や、薄膜状の導電部材(導電パターン)などが含まれる。また、本明細書において、「感度軸」とは、磁気センサ(または磁気センサ素子)の感度が最大となる方向を向いた軸をいい、「無感度軸」とは、感度軸に直交する方向のうち、感度が最小となる方向を向いた軸をいうものとする。 In the present specification, the term “current line” merely indicates a component capable of guiding current, and is not used for the purpose of limiting that the shape is a “line” shape. For example, the “current line” includes a plate-shaped conductive member, a thin-film conductive member (conductive pattern), and the like. In this specification, the “sensitivity axis” refers to an axis that faces the direction in which the sensitivity of the magnetic sensor (or magnetic sensor element) is maximized, and the “insensitive axis” refers to a direction orthogonal to the sensitivity axis. Of these, the axis oriented in the direction where the sensitivity is minimized is assumed.
 本発明の電流センサにおいて、前記磁気センサは、前記感度軸と直交する方向であって感度を有する方向が、前記電流線が延在する方向と一致するように配置されることがある。誘導磁界の方向は、電流の方向、すなわち電流線の方向と直交することになるため、感度軸と直交する方向であって感度を有する方向が、被測定電流が通流する電流線が延在する方向(隣接電流線が延在する方向に同じ)と一致することによって、隣接電流線を通流する電流からの誘導磁界の影響を十分に低減することができる。つまり、隣接電流線の影響による電流測定精度の低下を抑制することができる。 In the current sensor of the present invention, the magnetic sensor may be arranged such that a direction perpendicular to the sensitivity axis and having sensitivity coincides with a direction in which the current line extends. Since the direction of the induced magnetic field is orthogonal to the direction of the current, that is, the direction of the current line, the direction perpendicular to the sensitivity axis and having the sensitivity extends the current line through which the current to be measured flows. By matching with the direction in which the adjacent current line extends (same as the direction in which the adjacent current line extends), the influence of the induced magnetic field from the current flowing through the adjacent current line can be sufficiently reduced. That is, it is possible to suppress a decrease in current measurement accuracy due to the influence of the adjacent current line.
 なお、本明細書において、方向の「一致」の表現は、発明の効果を失わない程度の実質的な一致を含む趣旨で用いる。例えば、測定精度に影響を与えない程度の方向のずれは許容される。 In the present specification, the expression “coincidence” in the direction is used to include a substantial coincidence that does not lose the effect of the invention. For example, a deviation in a direction that does not affect the measurement accuracy is allowed.
 本発明の電流センサにおいて、前記一対の磁気センサは、前記感度軸と直交する方向であって感度を有する方向が、互いに逆向きになるように配置されることがある。この構成によれば、感度軸と直交する方向であって感度を有する方向に対して平行ではない方向(例えば、直交する方向)に延在する電流線からの影響を、差動演算によってキャンセルすることができることがある。このため、電流測定精度の低下を抑制することができる。 In the current sensor according to the present invention, the pair of magnetic sensors may be arranged such that directions that are perpendicular to the sensitivity axis and have sensitivity are opposite to each other. According to this configuration, the influence from the current line extending in the direction orthogonal to the sensitivity axis and not parallel to the direction having sensitivity (for example, the direction orthogonal) is canceled by differential calculation. There are things that can be done. For this reason, it is possible to suppress a decrease in current measurement accuracy.
 本発明の電流センサにおいて、前記磁気センサは、GMR素子を含んで構成されることがある。この構成によれば、GMR素子を用いることによって、十分な電流測定精度を確保することができる。 In the current sensor of the present invention, the magnetic sensor may include a GMR element. According to this configuration, sufficient current measurement accuracy can be ensured by using the GMR element.
 本発明の電流センサにおいて、前記感度軸の方向および前記感度軸と直交する方向であって感度を有する方向は、前記GMR素子が設けられた基板の主表面に平行な方向のいずれかと一致し、前記無感度軸の方向は、前記基板の主表面に垂直な方向と一致することがある。この構成では、電流線とGMR素子が設けられた基板の主表面とが平行になるため、電流センサの省スペース化を図ることが可能である。 In the current sensor of the present invention, the direction of the sensitivity axis and the direction perpendicular to the sensitivity axis and having sensitivity coincide with one of the directions parallel to the main surface of the substrate on which the GMR element is provided, The direction of the insensitive axis may coincide with the direction perpendicular to the main surface of the substrate. In this configuration, since the current line and the main surface of the substrate on which the GMR element is provided are parallel, it is possible to save the space of the current sensor.
 本発明の電流センサにおいて、前記一対の磁気センサが実装されると共に、前記電流線に垂直な面内に配置される回路基板を具備し、前記感度軸の方向および前記無感度軸の方向が、回路基板の主表面に平行な方向のいずれかと一致していることがある。この構成では、磁気センサの無感度軸の方向と、回路基板の主表面に平行な方向とが一致することになるため、電流センサの省スペース化を図ることが可能である。 In the current sensor of the present invention, the pair of magnetic sensors is mounted, and includes a circuit board disposed in a plane perpendicular to the current line, and the direction of the sensitivity axis and the direction of the insensitive axis are: It may coincide with one of the directions parallel to the main surface of the circuit board. In this configuration, since the direction of the insensitive axis of the magnetic sensor coincides with the direction parallel to the main surface of the circuit board, it is possible to save the space of the current sensor.
 本発明の電流センサは、感度軸と直交する方向に感度を有する磁気センサの配置を工夫することによって、隣接電流線を通流する電流からの誘導磁界の影響を十分に低減している。このため、このような磁気センサを用いる場合であっても、隣接電流線を通流する電流の影響による電流測定精度の低下を抑制することができる。 In the current sensor of the present invention, the influence of the induced magnetic field from the current flowing through the adjacent current line is sufficiently reduced by devising the arrangement of the magnetic sensor having sensitivity in the direction orthogonal to the sensitivity axis. For this reason, even when such a magnetic sensor is used, it is possible to suppress a decrease in current measurement accuracy due to the influence of the current flowing through the adjacent current line.
電流センサの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a current sensor. 電流センサの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a current sensor. 二つの隣接電流線が存在する場合の磁界の様子を示す図である。It is a figure which shows the mode of a magnetic field in case two adjacent current lines exist. 電流センサの回路構成例を示す図である。It is a figure which shows the circuit structural example of a current sensor. GMR素子の積層構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the laminated structure of a GMR element. 電流センサの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a current sensor. 電流センサの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a current sensor. 電流センサの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a current sensor. 実施例における測定系を示す図である。It is a figure which shows the measurement system in an Example. 実施例および比較例の構成における測定誤差を示す図である。It is a figure which shows the measurement error in the structure of an Example and a comparative example.
 本発明者らは、配電盤や三相モータなどの電流センサに隣接する電流線(隣接電流線)が存在する環境下において、電流センサにGMR素子などの感度軸と直交する方向にも感度を有する磁気センサ素子を用いる場合には、隣接電流線を通流する電流からの誘導磁界の影響が低減されるように上記磁気センサ素子を含む磁気センサを配置することで、電流測定精度の低下を抑制することができることを見出した。特に、磁気センサの無感度軸が、隣接電流線を通流する電流からの誘導磁界の方向を向くように磁気センサを配置するか、または、磁気センサの感度軸と直交する方向であって感度を有する方向が、隣接電流線が延在する方向と一致するように配置することにより、隣接電流線を通流する電流からの誘導磁界の影響を十分に低減して、電流測定精度の低下を効果的に抑制することが可能であることを見出した。 The present inventors have sensitivity in a direction perpendicular to a sensitivity axis of a GMR element or the like in an environment where a current line (adjacent current line) adjacent to the current sensor such as a switchboard or a three-phase motor exists. When using a magnetic sensor element, the magnetic sensor including the magnetic sensor element is arranged so as to reduce the influence of the induced magnetic field from the current flowing through the adjacent current line, thereby suppressing a decrease in current measurement accuracy. Found that you can. In particular, the magnetic sensor is arranged such that the insensitive axis of the magnetic sensor faces the direction of the induced magnetic field from the current flowing through the adjacent current line, or the direction that is perpendicular to the sensitivity axis of the magnetic sensor and is sensitive. By arranging so that the direction with the current line coincides with the direction in which the adjacent current line extends, the influence of the induced magnetic field from the current flowing through the adjacent current line can be sufficiently reduced to reduce the current measurement accuracy. It was found that it can be effectively suppressed.
 すなわち、本発明の骨子は、差動演算によって外乱磁界の影響を除去するタイプの電流センサにおいて、感度軸と直交する方向にも感度を有する磁気センサを用いる場合には、磁気センサの無感度軸が、隣接電流線を通流する電流からの誘導磁界の方向を向くように磁気センサを配置するか、または、磁気センサの感度軸と直交する方向であって感度を有する方向が、隣接電流線が延在する方向と一致するように配置することによって、電流測定精度の低下を抑制しようというものである。以下、本発明の実施の形態について、図面を参照して詳細に説明する。 That is, the essence of the present invention is that the current sensor of the type that removes the influence of the disturbance magnetic field by differential calculation uses a magnetic sensor having sensitivity also in the direction orthogonal to the sensitivity axis. However, the magnetic sensor is arranged so as to face the direction of the induced magnetic field from the current flowing through the adjacent current line, or the direction having the sensitivity perpendicular to the sensitivity axis of the magnetic sensor is the adjacent current line. It is intended to suppress a decrease in current measurement accuracy by arranging it so as to coincide with the extending direction. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施の形態1)
 本実施の形態では、本発明の電流センサ1の一例について説明する。図1は、本実施の形態の電流センサ1について示す模式図である。図1(A)は電流センサ1およびその周辺の構成を模式的に示した斜視図であり、図1(B)はその平面図である。図1(A)において、電流線11および隣接電流線21に付与された実線の矢印は、これらを通流する電流の向きが紙面上向きであることを示す。つまり、ここでは、被測定電流と隣接電流とは、互いに平行な方向に通流している。また、図1(A)および図1(B)において、第一の磁気センサ12aや第二の磁気センサ12bに付与された長い実線の矢印14a、短い実線の矢印14b、および破線の矢印14cは、それぞれ、感度軸の方向、感度軸と直交する方向であって感度を有する方向、および無感度軸の方向を示す。例えば、第一の磁気センサ12aに付された長短二つの実線の矢印および破線の矢印は、第一の磁気センサ12aの感度軸の向きが図1(A)において紙面右上向きであり(長い矢印14a)、図1(A)の紙面上向きにも感度を有し(短い矢印14b)、無感度軸が図1(A)において紙面右向きである(破線の矢印14c)ことを示す。また、図1(B)において、電流線11および隣接電流線21に付与された印は、紙面手前向きに電流が通流することを示す。
(Embodiment 1)
In the present embodiment, an example of the current sensor 1 of the present invention will be described. FIG. 1 is a schematic diagram showing the current sensor 1 of the present embodiment. FIG. 1A is a perspective view schematically showing the configuration of the current sensor 1 and its periphery, and FIG. 1B is a plan view thereof. In FIG. 1A, solid arrows given to the current line 11 and the adjacent current line 21 indicate that the direction of the current flowing through them is upward on the page. That is, here, the current to be measured and the adjacent current flow in directions parallel to each other. In FIGS. 1A and 1B, a long solid arrow 14a, a short solid arrow 14b, and a broken arrow 14c applied to the first magnetic sensor 12a and the second magnetic sensor 12b are , The direction of the sensitivity axis, the direction perpendicular to the sensitivity axis and having sensitivity, and the direction of the insensitive axis, respectively. For example, two long and short solid arrows and a broken arrow attached to the first magnetic sensor 12a indicate that the direction of the sensitivity axis of the first magnetic sensor 12a is the upper right direction in FIG. 14a), the sensitivity is also upward in FIG. 1A (short arrow 14b), and the insensitive axis is rightward in FIG. 1A (dashed arrow 14c). Further, in FIG. 1B, a mark given to the current line 11 and the adjacent current line 21 indicates that current flows forward in the drawing.
 なお、電流線11および隣接電流線21を通流する電流の向きや、磁気センサの感度軸の向きなどは、逆向きになることがある。また、図1は模式図であるから、各構成の大きさ、数量、配置などは適宜変更され得る。また、図1は、本実施の形態の特徴点を分かりやすく示すための図であるから、図1では、電流センサ1の構成の一部が省略されていることがある。 In addition, the direction of the current flowing through the current line 11 and the adjacent current line 21 and the direction of the sensitivity axis of the magnetic sensor may be reversed. Since FIG. 1 is a schematic diagram, the size, quantity, arrangement, and the like of each component can be changed as appropriate. Moreover, since FIG. 1 is a figure for showing the feature point of this Embodiment in an easy-to-understand manner, a part of the configuration of the current sensor 1 may be omitted in FIG.
 図1に示されるように、電流センサ1は、被測定電流が通流する電流線11と、その周囲に配置された第一の磁気センサ12aおよび第二の磁気センサ12bと、を含む。ここで、電流線11は所定の方向(図1(A)では、その上下方向)に延在している。なお、電流センサ1は他に、第一の磁気センサ12aおよび第二の磁気センサ12bの出力信号を差動演算する演算装置(図示しない)を含む。 As shown in FIG. 1, the current sensor 1 includes a current line 11 through which a current to be measured flows, and a first magnetic sensor 12a and a second magnetic sensor 12b arranged around the current line 11. Here, the current line 11 extends in a predetermined direction (the vertical direction in FIG. 1A). In addition, the current sensor 1 includes an arithmetic device (not shown) that differentially calculates the output signals of the first magnetic sensor 12a and the second magnetic sensor 12b.
 第一の磁気センサ12aおよび第二の磁気センサ12bは、磁気比例式センサまたは磁気平衡式センサであることが望ましい。磁気比例式センサは、例えば、磁気センサ素子である二つの磁気抵抗効果素子および二つの固定抵抗素子からなるブリッジ回路を含むように構成される。また、磁気平衡式センサは、例えば、磁気センサ素子である二つの磁気抵抗効果素子および二つの固定抵抗素子からなるブリッジ回路と、被測定電流によって発生する磁界を打ち消す方向の磁界を発生可能に配置されたフィードバックコイルと、を含むように構成される。磁気比例式センサを採用する場合には、磁気平衡式センサのようなフィードバックコイルおよびその制御に関する構成が不要になるため、構成を簡略化し、電流センサの小型化を図れる。一方で、磁気平衡式センサを採用する場合には、応答速度が高く、温度依存の小さい電流センサを容易に実現できる。 The first magnetic sensor 12a and the second magnetic sensor 12b are preferably a magnetic proportional sensor or a magnetic balanced sensor. The magnetic proportional sensor is configured to include, for example, a bridge circuit including two magnetoresistive elements that are magnetic sensor elements and two fixed resistance elements. In addition, the magnetic balance sensor is, for example, a bridge circuit composed of two magnetoresistive elements and two fixed resistance elements that are magnetic sensor elements, and a magnetic field in a direction that cancels the magnetic field generated by the current to be measured. And a feedback coil. When a magnetic proportional sensor is employed, a configuration relating to a feedback coil and its control, such as a magnetic balance sensor, is not required, so that the configuration can be simplified and the current sensor can be reduced in size. On the other hand, when a magnetic balance sensor is employed, a current sensor having a high response speed and a small temperature dependence can be easily realized.
 第一の磁気センサ12aおよび第二の磁気センサ12bに用いられる磁気抵抗効果素子には、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などがあるが、ここでは、感度軸と直交する方向にも感度を有するGMR素子を用いる。GMR素子などの磁気抵抗効果素子は、被測定電流からの誘導磁界の印加により抵抗値が変化するという性質を有しており、これを第一の磁気センサ12aおよび第二の磁気センサ12bに用いることで、十分な電流測定精度を確保することができる。なお、本実施の形態の電流センサ1において、第一の磁気センサ12aおよび第二の磁気センサ12bに用いられる磁気抵抗効果素子は、感度軸と直交する方向にも感度を有する素子であればGMR素子であることに限られない。 The magnetoresistive effect element used for the first magnetic sensor 12a and the second magnetic sensor 12b includes a GMR (Giant Magneto Resistance) element and a TMR (Tunnel Magneto Resistance) element. Here, the magnetoresistive effect element is orthogonal to the sensitivity axis. A GMR element having sensitivity also in the direction to be used is used. A magnetoresistive element such as a GMR element has a property that a resistance value changes by application of an induced magnetic field from a current to be measured, and this is used for the first magnetic sensor 12a and the second magnetic sensor 12b. Thus, sufficient current measurement accuracy can be ensured. In the current sensor 1 of the present embodiment, the magnetoresistive effect element used for the first magnetic sensor 12a and the second magnetic sensor 12b is a GMR as long as it has sensitivity in the direction orthogonal to the sensitivity axis. It is not limited to being an element.
 電流センサ1において、第一の磁気センサ12aおよび第二の磁気センサ12bは、電流線11を通流する電流からの誘導磁界により、逆相の出力信号が出力されるように配置される。例えば、図1では、電流線11が、第一の磁気センサ12aと第二の磁気センサ12bとの間に挟み込まれるように、かつ、第一の磁気センサ12aおよび第二の磁気センサ12bの感度軸が、電流線11が延在する方向に垂直な方向を向くように(電流線11が延在する方向に垂直な平面内(図1(B)参照)において同じ方向(図1(B)の紙面右方向)を向くように)配置されている(図1の矢印14a参照)。このような配置により、電流線11を通流する電流からの誘導磁界による逆相の出力信号が得られるため、差動演算による外乱磁界の影響のキャンセルが容易になる。ここで、「逆相の出力信号」とは、ノイズ成分などを除いて、電圧の正負が反転した関係にある出力信号のことをいう。ただし、所望の精度で電流測定をおこなうことができる程度の関係にあれば良いから、厳密に正負が反転した電圧値となることは要求されない。 In the current sensor 1, the first magnetic sensor 12 a and the second magnetic sensor 12 b are arranged such that an output signal having a reverse phase is output by an induced magnetic field from a current flowing through the current line 11. For example, in FIG. 1, the current line 11 is sandwiched between the first magnetic sensor 12a and the second magnetic sensor 12b, and the sensitivity of the first magnetic sensor 12a and the second magnetic sensor 12b. The same direction (FIG. 1B) in the plane perpendicular to the direction in which the current line 11 extends (see FIG. 1B) so that the axis is in a direction perpendicular to the direction in which the current line 11 extends. (See the arrow 14a in FIG. 1). With such an arrangement, an output signal having a reverse phase due to the induced magnetic field from the current flowing through the current line 11 can be obtained, so that the influence of the disturbance magnetic field by the differential operation can be easily canceled. Here, the “reverse phase output signal” means an output signal in which the positive and negative voltages are reversed except for noise components. However, since it is sufficient if the relationship is such that current measurement can be performed with a desired accuracy, it is not required that the voltage value be strictly reversed in polarity.
 また、第一の磁気センサ12aおよび第二の磁気センサ12bは、隣接電流線21を通流する電流からの誘導磁界の影響が低減されるように配置される。より詳細には、第一の磁気センサ12aおよび第二の磁気センサ12bの無感度軸が、隣接電流線を通流する電流からの誘導磁界の方向を向くように(図1の矢印14c参照)、または、第一の磁気センサ12aおよび第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向が、隣接電流線が延在する方向と一致するように(図1の矢印14b参照)、第一の磁気センサ12aおよび第二の磁気センサ12bが配置される。なお、ここでいう無感度軸には、感度が厳密にゼロであることは要求されない。 Also, the first magnetic sensor 12a and the second magnetic sensor 12b are arranged so that the influence of the induced magnetic field from the current flowing through the adjacent current line 21 is reduced. More specifically, the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed to the direction of the induced magnetic field from the current flowing through the adjacent current line (see arrow 14c in FIG. 1). Or the direction perpendicular to the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b and having sensitivity coincides with the direction in which the adjacent current line extends (arrow in FIG. 1). 14b), the first magnetic sensor 12a and the second magnetic sensor 12b are arranged. The insensitive axis here does not require that the sensitivity be strictly zero.
 例えば、図1では、磁気センサ12aおよび磁気センサ12bは、その感度軸の方向および感度軸と直交する方向であって感度を有する方向が、隣接電流線21を通流する電流からの誘導磁界31(図1(B)参照)の方向と一致しないように配置されている。無感度軸が、電流線11および隣接電流線13に垂直な方向を向くように(電流線11および隣接電流線13を含む平面32(図1(A)参照)に垂直な方向を向くように)配置されている、といっても良い。感度軸の方向または感度軸と直交する方向であって感度を有する方向が、隣接電流線21を通流する電流からの誘導磁界31の方向と一致してしまうと、隣接電流線21を通流する電流からの誘導磁界の影響を大きく受けて、電流測定精度が低下してしまうことになるためである。 For example, in FIG. 1, the magnetic sensor 12 a and the magnetic sensor 12 b have an induced magnetic field 31 from a current flowing through the adjacent current line 21 in the direction of the sensitivity axis and the direction perpendicular to the sensitivity axis and having sensitivity. They are arranged so as not to coincide with the direction (see FIG. 1B). The insensitive axis is oriented in a direction perpendicular to the current line 11 and the adjacent current line 13 (in a direction perpendicular to the plane 32 including the current line 11 and the adjacent current line 13 (see FIG. 1A)). It may be said that it is arranged. If the direction of the sensitivity axis or the direction perpendicular to the sensitivity axis and having sensitivity matches the direction of the induced magnetic field 31 from the current flowing through the adjacent current line 21, the current flows through the adjacent current line 21. This is because the current measurement accuracy is degraded under the influence of the induced magnetic field from the current to be generated.
 また、磁気センサ12aおよび磁気センサ12bは、その感度軸と直交する方向であって感度を有する方向が、隣接電流線21を通流する電流の方向と一致するように配置されている。電流線11の延在する方向と、電流線11に隣接する隣接電流線21の延在する方向とは同じであるから、感度軸と直交する方向であって感度を有する方向が、電流線11を通流する電流の方向と一致するように配置されている、ということもできる。感度軸と直交する方向であって感度を有する方向が、隣接電流線21を通流する電流の方向と一致する場合には、少なくとも、上記方向においては、隣接電流線21を通流する電流からの誘導磁界の影響を受けずに済み、電流測定精度の低下を抑制できるためである。 Further, the magnetic sensor 12a and the magnetic sensor 12b are arranged so that the direction perpendicular to the sensitivity axis and having sensitivity coincides with the direction of the current flowing through the adjacent current line 21. Since the direction in which the current line 11 extends and the direction in which the adjacent current line 21 adjacent to the current line 11 extend are the same, the direction perpendicular to the sensitivity axis and having sensitivity is the current line 11. It can also be said that they are arranged so as to coincide with the direction of the current flowing therethrough. When the direction that is orthogonal to the sensitivity axis and has sensitivity matches the direction of the current that flows through the adjacent current line 21, at least in the above direction, the current that flows through the adjacent current line 21 This is because there is no need to be affected by the induced magnetic field, and the decrease in accuracy of current measurement can be suppressed.
 なお、磁気センサ12aおよび磁気センサ12bが実装される回路基板15との関係において、電流線11に垂直な面内に回路基板15を配置する場合には、感度軸の方向と、無感度軸の方向とが、回路基板15の主表面に平行な方向のいずれかと一致している、ということもできる。なお、このような配置とすることにより、省スペース化を図ることができる場合もある。 When the circuit board 15 is arranged in a plane perpendicular to the current line 11 in relation to the circuit board 15 on which the magnetic sensor 12a and the magnetic sensor 12b are mounted, the direction of the sensitivity axis and the insensitive axis It can also be said that the direction coincides with one of the directions parallel to the main surface of the circuit board 15. In some cases, such an arrangement can save space.
 上述のような構成により、例えば、図2に示す電流センサ2などと比較して、隣接電流線21を通流する電流からの誘導磁界の影響を低減することができる。つまり、電流測定精度の低下を抑制することができる。なお、図2に示す電流センサ2は、被測定電流が通流する電流線11と、その周囲に配置された第一の磁気センサ12aおよび第二の磁気センサ12bと、を含む点において、図1に示す電流センサ1と共通している。一方で、電流センサ2は、第一の磁気センサ12aおよび第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向(矢印14bが示す方向)が、隣接電流線21を通流する電流からの誘導磁界の方向31と一致するように配置されている点において、電流センサ1とは異なっている。 With the configuration as described above, for example, the influence of the induced magnetic field from the current flowing through the adjacent current line 21 can be reduced as compared with the current sensor 2 shown in FIG. That is, a decrease in current measurement accuracy can be suppressed. Note that the current sensor 2 shown in FIG. 2 includes a current line 11 through which a current to be measured flows and a first magnetic sensor 12a and a second magnetic sensor 12b arranged around the current line 11. 1 is common to the current sensor 1 shown in FIG. On the other hand, in the current sensor 2, the direction (indicated by the arrow 14b) perpendicular to the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b and having sensitivity passes through the adjacent current line 21. It differs from the current sensor 1 in that it is arranged so as to coincide with the direction 31 of the induced magnetic field from the flowing current.
 図2に示される構成がとられるのは、磁気センサ12aおよび磁気センサ12bを回路基板15に実装する際に有利なためであるが、このような構成の電流センサ2では、隣接電流線21を通流する電流からの誘導磁界の影響を受けて、電流測定精度が低下してしまう。そこで、本実施の形態の電流センサ1では、磁気センサ12aおよび磁気センサ12bの無感度軸が、隣接電流線を通流する電流からの誘導磁界の方向を向くように磁気センサ12aおよび磁気センサ12bを配置するか、または、磁気センサ12aおよび磁気センサ12bの感度軸と直交する方向であって感度を有する方向が、隣接電流線が延在する方向と一致するように磁気センサ12aおよび磁気センサ12bを配置することにより、隣接電流線を通流する電流からの誘導磁界の影響を十分に低減して、電流測定精度の低下を効果的に抑制せんとするのである。 The configuration shown in FIG. 2 is adopted because it is advantageous when the magnetic sensor 12a and the magnetic sensor 12b are mounted on the circuit board 15. In the current sensor 2 having such a configuration, the adjacent current line 21 is connected. Under the influence of the induced magnetic field from the flowing current, the current measurement accuracy decreases. Therefore, in the current sensor 1 according to the present embodiment, the insensitive axes of the magnetic sensor 12a and the magnetic sensor 12b are directed to the direction of the induced magnetic field from the current flowing through the adjacent current line. Or the direction perpendicular to the sensitivity axis of the magnetic sensor 12a and the magnetic sensor 12b and having the sensitivity coincides with the direction in which the adjacent current line extends, and the magnetic sensor 12a and the magnetic sensor 12b. By sufficiently arranging, the influence of the induced magnetic field from the current flowing through the adjacent current line is sufficiently reduced, and the decrease in current measurement accuracy is effectively suppressed.
 なお、本実施の形態では、一の隣接電流線21が存在する場合を想定しているが、隣接電流線21は複数存在していても良い。複数の隣接電流線21が存在する場合には、各隣接電流線21を通流する電流からの誘導磁界を合成した合成磁界の影響が低減されるように、第一の磁気センサ12aおよび第二の磁気センサ12bを配置すればよい。例えば、図3に示すように、第一の隣接電流線21aと第二の隣接電流線21bとが存在する場合において、点Aに磁気センサを配置することを考える。この場合には、磁気センサの無感度軸が、第一の隣接電流線21aによる誘導磁界22aと、第二の隣接電流線21bによる誘導磁界22bとの合成磁界23の方向を向くように、磁気センサを配置すればよい。または、各隣接電流線21を通流する電流の大きさや、電流線11と各隣接電流線21との距離などを考慮して、隣接電流線21を通流する電流からの誘導磁界のうちで最も大きいものの影響が低減されるように、第一の磁気センサ12aおよび第二の磁気センサ12bを配置しても良い。例えば、第一の磁気センサ12aおよび第二の磁気センサ12bの無感度軸が、複数の隣接電流線を通流する電流からの各誘導磁界のうちで最大となるものの方向を向くように、第一の磁気センサ12aおよび第二の磁気センサ12bを配置することができる。いずれにしても、無感度軸の方向を、電流測定に悪影響を与える可能性の高い磁界の方向と一致させることで、電流測定精度の低下を効果的に抑制することが可能である。 In the present embodiment, it is assumed that there is one adjacent current line 21, but a plurality of adjacent current lines 21 may exist. When there are a plurality of adjacent current lines 21, the first magnetic sensor 12 a and the second magnetic sensor 12 a and the second magnetic sensor 12 a are reduced so that the influence of the combined magnetic field obtained by combining the induced magnetic fields from the currents flowing through the adjacent current lines 21 is reduced. The magnetic sensor 12b may be disposed. For example, as shown in FIG. 3, when a first adjacent current line 21a and a second adjacent current line 21b exist, it is considered that a magnetic sensor is disposed at a point A. In this case, the magnetic sensor is magnetically oriented such that the insensitive axis of the magnetic sensor faces the direction of the combined magnetic field 23 of the induced magnetic field 22a by the first adjacent current line 21a and the induced magnetic field 22b by the second adjacent current line 21b. What is necessary is just to arrange | position a sensor. Alternatively, in the induced magnetic field from the current flowing through the adjacent current line 21 in consideration of the magnitude of the current flowing through each adjacent current line 21 and the distance between the current line 11 and each adjacent current line 21. You may arrange | position the 1st magnetic sensor 12a and the 2nd magnetic sensor 12b so that the influence of the largest may be reduced. For example, the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed to the direction of the maximum of the induced magnetic fields from the currents flowing through the plurality of adjacent current lines. One magnetic sensor 12a and second magnetic sensor 12b can be arranged. In any case, a decrease in current measurement accuracy can be effectively suppressed by making the direction of the insensitive axis coincide with the direction of the magnetic field that is likely to adversely affect the current measurement.
 図4には、電流センサ1の回路構成にかかるブロック図を示す。図4に示されるように、電流センサ1は、第一の磁気センサ12aおよび第二の磁気センサ12bの出力端子に接続された演算装置13を有する。ここで、演算装置13は、第一の磁気センサ12aおよび第二の磁気センサ12bの出力信号を差動演算する機能を少なくとも有している。これにより、電流線11に電流が通流して電流線11の周囲に誘導磁界が発生し、第一の磁気センサ12aおよび第二の磁気センサ12bから電流に対応した出力信号が出力されると、出力信号を受けた演算装置13は、当該二つの出力信号の差分を計算して出力することができる。そして、二つの出力信号の差分をとることで、外乱磁界の影響をキャンセルし、電流の測定精度を高めることができる。なお、演算装置13の機能は、ハードウェアで実現しても良いし、ソフトウェアで実現しても良い。 FIG. 4 shows a block diagram relating to the circuit configuration of the current sensor 1. As shown in FIG. 4, the current sensor 1 has an arithmetic device 13 connected to the output terminals of the first magnetic sensor 12 a and the second magnetic sensor 12 b. Here, the arithmetic device 13 has at least a function of differentially calculating the output signals of the first magnetic sensor 12a and the second magnetic sensor 12b. As a result, when a current flows through the current line 11 and an induced magnetic field is generated around the current line 11, an output signal corresponding to the current is output from the first magnetic sensor 12a and the second magnetic sensor 12b. Receiving the output signal, the arithmetic unit 13 can calculate and output the difference between the two output signals. Then, by taking the difference between the two output signals, the influence of the disturbance magnetic field can be canceled and the current measurement accuracy can be improved. Note that the function of the arithmetic device 13 may be realized by hardware or software.
 なお、外乱磁界の影響のキャンセルは、次の原理によって実現する。まず、電流線11を通流する電流iによって電流線の周辺に磁束φが生じた場合の、磁束φのみに起因して生じる第一の磁気センサ12aの出力をOとする。第一の磁気センサ12aと第二の磁気センサ12bは、逆相の出力信号が出力されるように配置されているため、磁束φのみに起因して生じる第二の磁気センサ12bの出力は-Oである。一方で、一様な外乱磁界による第一の磁気センサ12aの出力(ノイズ)をNとすると、第二の磁気センサ12bの出力も同様にNである。よって、ノイズ成分を含めた第一の磁気センサ12aの出力はO+Nとなり、ノイズ成分を含めた第二の磁気センサ12bの出力は-O+Nとなる。二つの磁気センサの出力の差は、(O+N)-(-O+N)=2・Oであるから、二つの磁気センサの出力の差動値をとることで一様な外乱磁界によるノイズ成分が除去される。 Note that the cancellation of the influence of the disturbance magnetic field is realized by the following principle. First, the output of the first magnetic sensor 12a caused only by the magnetic flux φ when the magnetic flux φ is generated around the current line by the current i flowing through the current line 11 is defined as O 1 . Since the first magnetic sensor 12a and the second magnetic sensor 12b are arranged so that output signals of opposite phases are output, the output of the second magnetic sensor 12b caused only by the magnetic flux φ is − O 1 . On the other hand, the output of the first magnetic sensor 12a according to a uniform magnetic field disturbance (noise) When N 1, the output of the second magnetic sensor 12b is likewise N 1. Therefore, the output of the first magnetic sensor 12a including the noise component is O 1 + N 1 , and the output of the second magnetic sensor 12b including the noise component is −O 1 + N 1 . Since the difference between the outputs of the two magnetic sensors is (O 1 + N 1 ) − (− O 1 + N 1 ) = 2 · O 1 , it is uniform by taking the differential value of the outputs of the two magnetic sensors. Noise components due to the disturbance magnetic field are removed.
 図5には、第一の磁気センサ12aおよび第二の磁気センサ12bに用いられるGMR素子の膜構成の例を示す。GMR素子は、図5に示すように、基板101に設けられた複数の膜の積層構造でなる。すなわち、GMR素子は、シード層102、第一の強磁性膜103、反平行結合膜104、第二の強磁性膜105、非磁性中間層106、軟磁性自由層(フリー磁性層)107、および保護層108を含む。なお、図5においては、説明の簡単のため、GMR素子以外の下地層などは省略して示しているが、基板101とシード層102との間に、例えば、Ta、Hf、Nb、Zr、Ti、Mo、Wなどのうち少なくとも一の元素を含む非磁性材料で構成される下地層が設けられていても良い。 FIG. 5 shows an example of the film configuration of the GMR element used for the first magnetic sensor 12a and the second magnetic sensor 12b. As shown in FIG. 5, the GMR element has a laminated structure of a plurality of films provided on the substrate 101. That is, the GMR element includes a seed layer 102, a first ferromagnetic film 103, an antiparallel coupling film 104, a second ferromagnetic film 105, a nonmagnetic intermediate layer 106, a soft magnetic free layer (free magnetic layer) 107, and A protective layer 108 is included. In FIG. 5, for simplicity of explanation, a base layer other than the GMR element is omitted, but, for example, Ta, Hf, Nb, Zr, and the like are interposed between the substrate 101 and the seed layer 102. An underlayer composed of a nonmagnetic material containing at least one element of Ti, Mo, W, or the like may be provided.
 シード層102は、NiFeCrあるいはCrなどで構成される。第一の強磁性膜103は、40原子%~80原子%のFeを含むCoFe合金で構成されていることが好ましい。これは、この組成範囲のCoFe合金が、大きな保磁力を有し、外部磁場に対して磁化を安定に維持できるからである。強磁性固定層の反平行結合膜104は、Ruなどにより構成される。また、第二の強磁性膜105は、0原子%~40原子%のFeを含むCoFe合金で構成されていることが好ましい。これは、この組成範囲のCoFe合金が小さな保磁力を有し、第一の強磁性膜103が優先的に磁化する方向に対して反平行方向(180°異なる方向)に磁化し易くなるためである。非磁性中間層106は、Cuなどにより構成される。また、軟磁性自由層(フリー層)107は、CoFe合金、NiFe合金、CoFeNi合金などの磁性材料で構成される。なお、軟磁性自由層107は、その成膜中にミアンダ形状のストライプ長手方向に磁場が印加され、成膜後の軟磁性自由層107には誘導磁気異方性が付与されることが好ましい。これにより、磁気抵抗効果素子においては、ストライプ幅方向の外部磁場に対して線形的に抵抗変化し、ヒステリシスを小さくすることができる。保護層108は、Ta、Ruなどで構成される。 The seed layer 102 is made of NiFeCr or Cr. The first ferromagnetic film 103 is preferably made of a CoFe alloy containing 40 atomic% to 80 atomic% of Fe. This is because a CoFe alloy having this composition range has a large coercive force and can stably maintain magnetization with respect to an external magnetic field. The antiparallel coupling film 104 of the ferromagnetic fixed layer is made of Ru or the like. The second ferromagnetic film 105 is preferably made of a CoFe alloy containing 0 atomic% to 40 atomic% of Fe. This is because a CoFe alloy having this composition range has a small coercive force, and is easily magnetized in an antiparallel direction (direction different by 180 °) with respect to the direction in which the first ferromagnetic film 103 is preferentially magnetized. is there. The nonmagnetic intermediate layer 106 is made of Cu or the like. The soft magnetic free layer (free layer) 107 is made of a magnetic material such as a CoFe alloy, a NiFe alloy, or a CoFeNi alloy. The soft magnetic free layer 107 is preferably applied with a magnetic field in the longitudinal direction of the meander-shaped stripe during the film formation, and induced magnetic anisotropy is imparted to the soft magnetic free layer 107 after the film formation. Thereby, in the magnetoresistive effect element, the resistance is linearly changed with respect to the external magnetic field in the stripe width direction, and the hysteresis can be reduced. The protective layer 108 is made of Ta, Ru, or the like.
 上述のようなGMR素子では、積層構造を構成する膜に平行な方向に感度を有する。すなわち、感度軸の方向および感度軸と直交する方向であって感度を有する方向は、GMR素子が設けられた基板101の主表面に平行な方向のいずれかと一致する。一方で、膜に垂直な方向には実質的な感度を有しない。つまり、無感度軸の方向は、基板101の主表面に垂直な方向と一致する。例えば、図5では、X軸方向を感度軸の方向とし、Y軸方向を感度軸と直交する方向であって感度を有する方向とし、Z軸方向を無感度軸の方向としている。これを考慮すれば、磁気センサ12aおよび磁気センサ12bは、電流線11または隣接電流線21が延在する方向(すなわち、電流が通流する方向)に平行な方向と、磁気センサ12aおよび磁気センサ12bにおいてGMR素子が形成される基板の主表面101に平行な方向と、が一致するように配置されている、ということもできる。 The GMR element as described above has sensitivity in a direction parallel to the film constituting the laminated structure. That is, the direction of the sensitivity axis and the direction orthogonal to the sensitivity axis and having sensitivity coincide with either the direction parallel to the main surface of the substrate 101 provided with the GMR element. On the other hand, there is no substantial sensitivity in the direction perpendicular to the film. That is, the direction of the insensitive axis coincides with the direction perpendicular to the main surface of the substrate 101. For example, in FIG. 5, the X-axis direction is the direction of the sensitivity axis, the Y-axis direction is the direction perpendicular to the sensitivity axis and having sensitivity, and the Z-axis direction is the direction of the insensitive axis. In consideration of this, the magnetic sensor 12a and the magnetic sensor 12b include a direction parallel to the direction in which the current line 11 or the adjacent current line 21 extends (that is, the direction in which the current flows), the magnetic sensor 12a, and the magnetic sensor. It can also be said that the direction parallel to the main surface 101 of the substrate on which the GMR element is formed in 12b coincides.
 なお、上述のGMR素子を用いた磁気センサは、基板101の主表面に垂直な方向のサイズが小であるため、図1に示す構成を採用することにより、電流センサの省スペース化を図ることができるというメリットもある。 Since the magnetic sensor using the GMR element described above has a small size in the direction perpendicular to the main surface of the substrate 101, the configuration shown in FIG. 1 is adopted to save the space of the current sensor. There is also an advantage of being able to.
(実施の形態2)
 本実施の形態では、本発明の電流センサ1の別の一例について説明する。図6は、本実施の形態の電流センサ1について示す模式図である。図6(A)は電流センサ1およびその周辺の構成を模式的に示した斜視図であり、図6(B)は、それを隣接電流線が延在する方向から見た平面図である。図6(A)において、電流線11に付与された実線の矢印は、これを通流する電流の向きが紙面上向きであることを示し、隣接電流線21に付与された実線の矢印は、これを通流する電流の向きが紙面左下向きであることを示す。つまり、ここでは、被測定電流の向きと隣接電流の向きとが直交している。また、図6(A)および図6(B)において、第一の磁気センサ12aや第二の磁気センサ12bに付与された長い実線の矢印14a、短い実線の矢印14b、および破線の矢印14cは、それぞれ、感度軸の方向、感度軸と直交する方向であって感度を有する方向、および無感度軸の方向を示す。例えば、第一の磁気センサ12aに付された長短二つの実線の矢印および破線の矢印は、第一の磁気センサ12aの感度軸の向きが図6(A)において紙面右上向きであり(長い矢印14a)、図6(A)の紙面上向きにも感度を有し(短い矢印14b)、無感度軸が図6(A)において紙面右向きである(破線の矢印14c)ことを示す。また、図6(B)において、電流線11に付与された実線の矢印は、これを通流する電流の向きが紙面上向きであることを示し、隣接電流線21に付与された印は、紙面手前向きに電流が通流することを示す。
(Embodiment 2)
In the present embodiment, another example of the current sensor 1 of the present invention will be described. FIG. 6 is a schematic diagram showing the current sensor 1 of the present embodiment. FIG. 6A is a perspective view schematically showing the configuration of the current sensor 1 and its periphery, and FIG. 6B is a plan view of the current sensor 1 as viewed from the direction in which adjacent current lines extend. In FIG. 6A, the solid arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward, and the solid arrow given to the adjacent current line 21 is This indicates that the direction of the current flowing through is downward left on the page. That is, here, the direction of the current to be measured and the direction of the adjacent current are orthogonal. In FIGS. 6A and 6B, a long solid arrow 14a, a short solid arrow 14b, and a broken arrow 14c applied to the first magnetic sensor 12a and the second magnetic sensor 12b are , The direction of the sensitivity axis, the direction perpendicular to the sensitivity axis and having sensitivity, and the direction of the insensitive axis, respectively. For example, two long and short solid arrows and a dashed arrow attached to the first magnetic sensor 12a indicate that the direction of the sensitivity axis of the first magnetic sensor 12a is the upper right direction in FIG. 6A (long arrow). 14a), the sensitivity is also upward in FIG. 6A (short arrow 14b), and the insensitive axis is rightward in FIG. 6A (dashed arrow 14c). In FIG. 6B, the solid arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward, and the mark given to the adjacent current line 21 is Indicates that current flows forward.
 なお、電流線11および隣接電流線21を通流する電流の向きや、磁気センサの感度軸の向きなどは、逆向きになることがある。また、図6は模式図であるから、各構成の大きさ、数量、配置などは適宜変更され得る。また、図6は、本実施の形態の特徴点を分かりやすく示すための図であるから、図6では、電流センサ1の構成の一部が省略されていることがある。 In addition, the direction of the current flowing through the current line 11 and the adjacent current line 21 and the direction of the sensitivity axis of the magnetic sensor may be reversed. Since FIG. 6 is a schematic diagram, the size, quantity, arrangement, and the like of each component can be changed as appropriate. In addition, FIG. 6 is a diagram for easy understanding of the feature points of the present embodiment, and therefore, part of the configuration of the current sensor 1 may be omitted in FIG. 6.
 図6に示されるように、電流センサ1は、被測定電流が通流する電流線11と、その周囲に配置された第一の磁気センサ12aおよび第二の磁気センサ12bと、を含む。なお、電流センサ1は他に、第一の磁気センサ12aおよび第二の磁気センサ12bの出力信号を差動演算する演算装置(図示しない)を含む。 As shown in FIG. 6, the current sensor 1 includes a current line 11 through which a current to be measured flows, and a first magnetic sensor 12 a and a second magnetic sensor 12 b arranged around the current line 11. In addition, the current sensor 1 includes an arithmetic device (not shown) that differentially calculates the output signals of the first magnetic sensor 12a and the second magnetic sensor 12b.
 第一の磁気センサ12aおよび第二の磁気センサ12bは、磁気比例式センサまたは磁気平衡式センサであることが望ましい。また、磁気抵抗効果素子として、感度軸と直交する方向にも感度を有するGMR素子を用いる。なお、磁気抵抗効果素子は、感度軸と直交する方向にも感度を有する素子であればGMR素子であることに限られない。詳細については、実施の形態1の記載を参酌できるため、ここでは省略する。 The first magnetic sensor 12a and the second magnetic sensor 12b are preferably a magnetic proportional sensor or a magnetic balanced sensor. Further, as the magnetoresistive effect element, a GMR element having sensitivity also in the direction orthogonal to the sensitivity axis is used. The magnetoresistive element is not limited to a GMR element as long as it has sensitivity in a direction orthogonal to the sensitivity axis. For details, the description of Embodiment Mode 1 can be referred to, and thus the description thereof is omitted here.
 電流センサ1において、第一の磁気センサ12aおよび第二の磁気センサ12bは、電流線11を通流する電流からの誘導磁界により、逆相の出力信号が出力されるように配置される。例えば、図6では、電流線11が、第一の磁気センサ12aと第二の磁気センサ12bとの間に挟み込まれるように、かつ、第一の磁気センサ12aおよび第二の磁気センサ12bの感度軸が、電流線11が延在する方向に垂直な方向を向くようにそれぞれ配置されている(図6の矢印14a参照)。このような配置により、電流線11を通流する電流からの誘導磁界による逆相の出力信号が得られるため、差動演算による外乱磁界の影響のキャンセルが容易になる。 In the current sensor 1, the first magnetic sensor 12 a and the second magnetic sensor 12 b are arranged such that an output signal having a reverse phase is output by an induced magnetic field from a current flowing through the current line 11. For example, in FIG. 6, the current line 11 is sandwiched between the first magnetic sensor 12a and the second magnetic sensor 12b, and the sensitivity of the first magnetic sensor 12a and the second magnetic sensor 12b. The axes are respectively arranged so as to face the direction perpendicular to the direction in which the current line 11 extends (see arrow 14a in FIG. 6). With such an arrangement, an output signal having a reverse phase due to the induced magnetic field from the current flowing through the current line 11 can be obtained, so that the influence of the disturbance magnetic field by the differential operation can be easily canceled.
 また、第一の磁気センサ12aおよび第二の磁気センサ12bは、隣接電流線21を通流する電流からの誘導磁界の影響が低減されるように配置される。より詳細には、第一の磁気センサ12aおよび第二の磁気センサ12bの無感度軸が、隣接電流線を通流する電流からの誘導磁界の方向を向くように(図6の矢印14c参照)、かつ、第一の磁気センサ12aの感度軸と直交する方向であって感度を有する方向と、第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向とが、逆向きになるように(図6の矢印14b参照)、第一の磁気センサ12aおよび第二の磁気センサ12bが配置される。 Also, the first magnetic sensor 12a and the second magnetic sensor 12b are arranged so that the influence of the induced magnetic field from the current flowing through the adjacent current line 21 is reduced. More specifically, the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed to the direction of the induced magnetic field from the current flowing through the adjacent current line (see arrow 14c in FIG. 6). The direction perpendicular to the sensitivity axis of the first magnetic sensor 12a and having sensitivity is opposite to the direction perpendicular to the sensitivity axis of the second magnetic sensor 12b and having sensitivity. (Refer to arrow 14b in FIG. 6), the first magnetic sensor 12a and the second magnetic sensor 12b are arranged.
 例えば、図6では、第一の磁気センサ12aおよび第二の磁気センサ12bは、その感度軸の方向および感度軸と直交する方向であって感度を有する方向が、隣接電流線21を通流する電流からの誘導磁界31(図6(B)参照)の方向と一致しないように配置されている。感度軸の方向または感度軸と直交する方向であって感度を有する方向が、隣接電流線21を通流する電流からの誘導磁界31の方向と一致してしまうと、隣接電流線21を通流する電流からの誘導磁界の影響を大きく受けて、電流測定精度が低下してしまうことになるためである。 For example, in FIG. 6, the first magnetic sensor 12 a and the second magnetic sensor 12 b pass through the adjacent current line 21 in the direction of the sensitivity axis and the direction perpendicular to the sensitivity axis and having sensitivity. It arrange | positions so that it may not correspond with the direction of the induction magnetic field 31 (refer FIG.6 (B)) from an electric current. If the direction of the sensitivity axis or the direction perpendicular to the sensitivity axis and having sensitivity matches the direction of the induced magnetic field 31 from the current flowing through the adjacent current line 21, the current flows through the adjacent current line 21. This is because the current measurement accuracy is degraded under the influence of the induced magnetic field from the current to be generated.
 なお、本実施の形態では、第一の磁気センサ12aおよび第二の磁気センサ12bは、その感度軸と直交する方向であって感度を有する方向が、隣接電流線21を通流する電流の方向と平行の関係にない(例えば、直交している)。この場合には、隣接電流線21を通流する電流からの誘導磁界の影響を受けてしまうことになるが、誘導磁界31の矢印14b方向の成分が第一の磁気センサ12aおよび第二の磁気センサ12bで逆向きになることにより、その影響が、第一の磁気センサ12aおよび第二の磁気センサ12bで逆に表れる場合(図5(B)参照)には、第一の磁気センサ12aの感度軸と直交する方向であって感度を有する方向と、第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向とを、逆向きに配置することで、隣接電流線21を通流する電流からの誘導磁界の影響を差動演算によってキャンセルして、電流測定精度の低下を抑制できる。 In the present embodiment, the first magnetic sensor 12a and the second magnetic sensor 12b have a direction that is perpendicular to the sensitivity axis and has sensitivity, and the direction of the current flowing through the adjacent current line 21 Is not parallel to (for example, orthogonal). In this case, it is affected by the induced magnetic field from the current flowing through the adjacent current line 21, but the components in the direction of the arrow 14b of the induced magnetic field 31 are the first magnetic sensor 12a and the second magnetic field. When the effect is reversed in the first magnetic sensor 12a and the second magnetic sensor 12b (see FIG. 5B) due to the reverse direction in the sensor 12b (see FIG. 5B), the first magnetic sensor 12a The adjacent current line 21 is arranged by arranging the direction perpendicular to the sensitivity axis and having sensitivity and the direction perpendicular to the sensitivity axis of the second magnetic sensor 12b and having sensitivity to each other in the opposite directions. The influence of the induced magnetic field from the flowing current can be canceled by differential calculation, and the decrease in current measurement accuracy can be suppressed.
 このような観点からすれば、本実施の形態の電流センサは、感度軸と直交する方向であって感度を有する方向が、隣接電流線21を通流する電流からの誘導磁界31の、感度軸と直交する方向であって感度を有する方向の成分(矢印14b方向成分)を、前記差動演算によってキャンセルできるように配置されている、と表現することが可能である。例えば、図6(B)の誘導磁界31は、第一の磁気センサ12a近傍において図面上向き成分を有し、第二の磁気センサ12b近傍において図面下向き成分を有する。この状況において、第一の磁気センサ12aおよび第二の磁気センサ12bの、感度軸と直交する方向であって感度を有する方向(矢印14bの方向)が、上述の誘導磁界31の成分と同じ方向を向くように配置されることで、誘導磁界31の影響が第一の磁気センサ12aおよび第二の磁気センサ12bにおいて同相で表れ、差動演算によるキャンセルが可能になるのである。 From this point of view, in the current sensor of the present embodiment, the direction perpendicular to the sensitivity axis and having sensitivity is the sensitivity axis of the induced magnetic field 31 from the current flowing through the adjacent current line 21. It is possible to express that the component in the direction perpendicular to the direction and having sensitivity (the component in the direction of arrow 14b) is arranged so as to be canceled by the differential calculation. For example, the induced magnetic field 31 in FIG. 6B has a component upward in the drawing in the vicinity of the first magnetic sensor 12a, and has a component in the downward direction in the vicinity of the second magnetic sensor 12b. In this situation, the direction of the first magnetic sensor 12a and the second magnetic sensor 12b that is perpendicular to the sensitivity axis and has sensitivity (the direction of the arrow 14b) is the same direction as the component of the induction magnetic field 31 described above. The influence of the induction magnetic field 31 appears in the same phase in the first magnetic sensor 12a and the second magnetic sensor 12b, and cancellation by differential calculation becomes possible.
 なお、本実施の形態では、一の隣接電流線21が存在する場合を想定しているが、隣接電流線21は複数存在していても良い。複数の隣接電流線21が存在する場合には、各隣接電流線21を通流する電流からの誘導磁界を合成した合成磁界の影響が低減されるように、第一の磁気センサ12aおよび第二の磁気センサ12bを配置すればよい。例えば、図3に示すように、第一の隣接電流線21aと第二の隣接電流線21bとが存在する場合において、点Aに磁気センサを配置するのであれば、磁気センサの無感度軸が、第一の隣接電流線21aによる誘導磁界22aと、第二の隣接電流線21bによる誘導磁界22bとの合成磁界23の方向を向くように、磁気センサを配置すればよい。または、各隣接電流線21を通流する電流の大きさや、電流線11と各隣接電流線21との距離などを考慮して、隣接電流線21を通流する電流からの誘導磁界のうちで最も大きいものの影響が低減されるように、第一の磁気センサ12aおよび第二の磁気センサ12bを配置しても良い。例えば、第一の磁気センサ12aおよび第二の磁気センサ12bの無感度軸が、複数の隣接電流線を通流する電流からの各誘導磁界のうちで最大となるものの方向を向くように、第一の磁気センサ12aおよび第二の磁気センサ12bを配置することができる。いずれにしても、無感度軸の方向を、電流測定に悪影響を与える可能性の高い磁界の方向と一致させることで、電流測定精度の低下を効果的に抑制することが可能である。 In the present embodiment, it is assumed that there is one adjacent current line 21, but a plurality of adjacent current lines 21 may exist. When there are a plurality of adjacent current lines 21, the first magnetic sensor 12 a and the second magnetic sensor 12 a and the second magnetic sensor 12 a are reduced so that the influence of the combined magnetic field obtained by combining the induced magnetic fields from the currents flowing through the adjacent current lines 21 is reduced. The magnetic sensor 12b may be disposed. For example, as shown in FIG. 3, in the case where the first adjacent current line 21a and the second adjacent current line 21b exist, if the magnetic sensor is arranged at the point A, the insensitive axis of the magnetic sensor is The magnetic sensor may be arranged so as to face the direction of the combined magnetic field 23 of the induced magnetic field 22a by the first adjacent current line 21a and the induced magnetic field 22b by the second adjacent current line 21b. Alternatively, in the induced magnetic field from the current flowing through the adjacent current line 21 in consideration of the magnitude of the current flowing through each adjacent current line 21 and the distance between the current line 11 and each adjacent current line 21. You may arrange | position the 1st magnetic sensor 12a and the 2nd magnetic sensor 12b so that the influence of the largest may be reduced. For example, the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed to the direction of the maximum of the induced magnetic fields from the currents flowing through the plurality of adjacent current lines. One magnetic sensor 12a and second magnetic sensor 12b can be arranged. In any case, a decrease in current measurement accuracy can be effectively suppressed by making the direction of the insensitive axis coincide with the direction of the magnetic field that is likely to adversely affect the current measurement.
 電流センサ1の回路構成やGMR素子の構造などは、実施の形態1の場合と同様である。詳細については実施の形態1の記載や図4、図5などを参酌すれば良いから、ここでは省略する。 The circuit configuration of the current sensor 1 and the structure of the GMR element are the same as those in the first embodiment. For details, the description of Embodiment Mode 1, FIG. 4 and FIG.
 以上のように、第一の磁気センサ12aおよび第二の磁気センサ12bの、感度軸と直交する方向であって感度を有する方向と、隣接電流線21を通流する電流の方向とを、平行の関係にできない場合において、隣接電流線を通流する電流からの誘導磁界の影響が、第一の磁気センサ12aおよび第二の磁気センサ12bで逆に表れる場合には、第一の磁気センサ12aの感度軸と直交する方向であって感度を有する方向と、第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向とを、逆向きに配置することで、電流測定精度の低下を抑制できることがある。なお、感度軸と直交する方向であって感度を有する方向と、隣接電流線21を通流する電流の方向とが、平行の関係にある場合においても、上述の配置は問題なく適用できる。この場合、第一の磁気センサ12aおよび第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向を、隣接電流線21を通流する電流に平行な方向に向ける(隣接電流線が延在する方向に向ける)と共に、第一の磁気センサ12aの感度軸と直交する方向であって感度を有する方向と、第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向とを、逆向きになるように配置すればよい。 As described above, the direction of the first magnetic sensor 12a and the second magnetic sensor 12b that is perpendicular to the sensitivity axis and has sensitivity is parallel to the direction of the current flowing through the adjacent current line 21. In the case where the influence of the induced magnetic field from the current flowing through the adjacent current line is reversed in the first magnetic sensor 12a and the second magnetic sensor 12b, the first magnetic sensor 12a By arranging the direction that is perpendicular to the sensitivity axis and has sensitivity and the direction that is perpendicular to the sensitivity axis of the second magnetic sensor 12b and has sensitivity, the current measurement accuracy is reversed. It may be possible to suppress the decrease in. The above arrangement can be applied without any problem even when the direction that is perpendicular to the sensitivity axis and has sensitivity and the direction of the current flowing through the adjacent current line 21 are in a parallel relationship. In this case, the direction that is perpendicular to the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b and has sensitivity is directed in a direction parallel to the current flowing through the adjacent current line 21 (adjacent current). And the direction perpendicular to the sensitivity axis of the first magnetic sensor 12a and having sensitivity, and the direction perpendicular to the sensitivity axis of the second magnetic sensor 12b and sensitivity. What is necessary is just to arrange | position so that it may become a reverse direction.
(実施の形態3)
 本実施の形態では、本発明の電流センサ1の別の例について説明する。図7は、本実施の形態の電流センサ1の一例について示す模式図である。図7(A)は電流センサ1およびその周辺の構成を模式的に示した斜視図であり、図7(B)は、それを隣接電流線が延在する方向から見た平面図である。図7(A)において、電流線11に付与された実線の矢印は、これを通流する電流の向きが紙面上向きであることを示し、隣接電流線21に付与された実線の矢印は、これを通流する電流の向きが紙面左下向きであることを示す。つまり、ここでは、被測定電流の向きと隣接電流の向きとが直交している。また、図7(A)および図7(B)において、第一の磁気センサ12aや第二の磁気センサ12bに付与された長い実線の矢印14a、短い実線の矢印14b、および破線の矢印14cは、それぞれ、感度軸の方向、感度軸と直交する方向であって感度を有する方向、および無感度軸の方向を示す。例えば、第一の磁気センサ12aに付された長短二つの実線の矢印および破線の矢印は、第一の磁気センサ12aの感度軸の向きが図7(A)において紙面右上向きであり(長い矢印14a)、図7(A)の紙面上向きにも感度を有し(短い矢印14b)、無感度軸が図7(A)において紙面右向きである(破線の矢印14c)ことを示す。また、図7(B)において、電流線11に付与された実線の矢印は、これを通流する電流の向きが紙面上向きであることを示し、隣接電流線21に付与された印は、紙面手前向きに電流が通流することを示す。
(Embodiment 3)
In the present embodiment, another example of the current sensor 1 of the present invention will be described. FIG. 7 is a schematic diagram showing an example of the current sensor 1 of the present embodiment. FIG. 7A is a perspective view schematically showing the configuration of the current sensor 1 and its periphery, and FIG. 7B is a plan view of the current sensor 1 as viewed from the direction in which adjacent current lines extend. In FIG. 7A, the solid line arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward, and the solid line arrow given to the adjacent current line 21 is This indicates that the direction of the current flowing through is downward left on the page. That is, here, the direction of the current to be measured and the direction of the adjacent current are orthogonal. 7A and 7B, a long solid arrow 14a, a short solid arrow 14b, and a broken arrow 14c applied to the first magnetic sensor 12a and the second magnetic sensor 12b are , The direction of the sensitivity axis, the direction perpendicular to the sensitivity axis and having sensitivity, and the direction of the insensitive axis, respectively. For example, two long and short solid arrows and a broken arrow attached to the first magnetic sensor 12a indicate that the direction of the sensitivity axis of the first magnetic sensor 12a is the upper right direction in FIG. 7A (long arrow). 14a), the sensitivity is also upward in FIG. 7A (short arrow 14b), indicating that the insensitive axis is rightward in FIG. 7A (dashed arrow 14c). In FIG. 7B, the solid arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward, and the mark given to the adjacent current line 21 is Indicates that current flows forward.
 また、図8は、本実施の形態の電流センサ1の別の一例について示す模式図である。図8(A)は電流センサ1およびその周辺の構成を模式的に示した斜視図であり、図8(B)は、それを隣接電流線が延在する方向から見た平面図である。図8(A)において、電流線11に付与された実線の矢印は、これを通流する電流の向きが紙面上向きであることを示し、隣接電流線21に付与された実線の矢印は、これを通流する電流の向きが紙面右向きであることを示す。つまり、ここでは、被測定電流の向きと隣接電流の向きとが直交している。また、図8(A)および図8(B)において、第一の磁気センサ12aや第二の磁気センサ12bに付与された長い実線の矢印14a、短い実線の矢印14b、および破線の矢印14cは、それぞれ、感度軸の方向、感度軸と直交する方向であって感度を有する方向、および無感度軸の方向を示す。例えば、第一の磁気センサ12aに付された長短二つの実線の矢印および破線の矢印は、第一の磁気センサ12aの感度軸の向きが図8(A)において紙面右上向きであり(長い矢印14a)、図8(A)の紙面上向きにも感度を有し(短い矢印14b)、無感度軸が図8(A)において紙面右向きである(破線の矢印14c)ことを示す。また、図8(B)において、電流線11に付与された実線の矢印は、これを通流する電流の向きが紙面上向きであることを示し、隣接電流線21に付与された印は、紙面手前向きに電流が通流することを示す。 FIG. 8 is a schematic diagram showing another example of the current sensor 1 of the present embodiment. FIG. 8A is a perspective view schematically showing the configuration of the current sensor 1 and its periphery, and FIG. 8B is a plan view of the current sensor 1 as viewed from the direction in which adjacent current lines extend. In FIG. 8A, the solid line arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward, and the solid line arrow given to the adjacent current line 21 is Indicates that the direction of the current flowing through is rightward on the page. That is, here, the direction of the current to be measured and the direction of the adjacent current are orthogonal. 8A and 8B, a long solid arrow 14a, a short solid arrow 14b, and a broken arrow 14c applied to the first magnetic sensor 12a and the second magnetic sensor 12b are , The direction of the sensitivity axis, the direction perpendicular to the sensitivity axis and having sensitivity, and the direction of the insensitive axis, respectively. For example, two long and short solid arrows and a dashed arrow attached to the first magnetic sensor 12a indicate that the direction of the sensitivity axis of the first magnetic sensor 12a is the upper right direction in FIG. 8A (long arrow). 14a), the sensitivity is also upward in FIG. 8A (short arrow 14b), and the insensitive axis is the right direction in FIG. 8A (dashed arrow 14c). In FIG. 8B, the solid arrow given to the current line 11 indicates that the direction of the current flowing through the current line 11 is upward, and the mark given to the adjacent current line 21 is Indicates that current flows forward.
 なお、電流線11および隣接電流線21を通流する電流の向きや、磁気センサの感度軸の向きなどは、逆向きになることがある。また、図7や図8は模式図であるから、各構成の大きさ、数量、配置などは適宜変更され得る。また、図7や図8は、本実施の形態の特徴点を分かりやすく示すための図であるから、電流センサ1の構成の一部が省略されていることがある。 In addition, the direction of the current flowing through the current line 11 and the adjacent current line 21 and the direction of the sensitivity axis of the magnetic sensor may be reversed. Moreover, since FIG.7 and FIG.8 is a schematic diagram, the magnitude | size, quantity, arrangement | positioning, etc. of each structure can be changed suitably. Moreover, since FIG.7 and FIG.8 is a figure for showing the feature point of this Embodiment intelligibly, a part of structure of the current sensor 1 may be abbreviate | omitted.
 図7や図8に示されるように、電流センサ1は、被測定電流が通流する電流線11と、その周囲に配置された第一の磁気センサ12aおよび第二の磁気センサ12bと、を含む。なお、電流センサ1は他に、第一の磁気センサ12aおよび第二の磁気センサ12bの出力信号を差動演算する演算装置(図示しない)を含む。 As shown in FIGS. 7 and 8, the current sensor 1 includes a current line 11 through which a current to be measured flows, and a first magnetic sensor 12a and a second magnetic sensor 12b arranged around the current line 11. Including. In addition, the current sensor 1 includes an arithmetic device (not shown) that differentially calculates the output signals of the first magnetic sensor 12a and the second magnetic sensor 12b.
 第一の磁気センサ12aおよび第二の磁気センサ12bは、磁気比例式センサまたは磁気平衡式センサであることが望ましい。また、磁気抵抗効果素子として、感度軸と直交する方向にも感度を有するGMR素子を用いる。なお、磁気抵抗効果素子は、感度軸と直交する方向にも感度を有する素子であればGMR素子であることに限られない。詳細については、実施の形態1の記載を参酌できるため、ここでは省略する。 The first magnetic sensor 12a and the second magnetic sensor 12b are preferably a magnetic proportional sensor or a magnetic balanced sensor. Further, as the magnetoresistive effect element, a GMR element having sensitivity also in the direction orthogonal to the sensitivity axis is used. The magnetoresistive element is not limited to a GMR element as long as it has sensitivity in a direction orthogonal to the sensitivity axis. For details, the description of Embodiment Mode 1 can be referred to, and thus the description thereof is omitted here.
 電流センサ1において、第一の磁気センサ12aおよび第二の磁気センサ12bは、電流線11を通流する電流からの誘導磁界により、逆相の出力信号が出力されるように配置される。例えば、図7や図8では、電流線11が、第一の磁気センサ12aと第二の磁気センサ12bとの間に挟み込まれるように、かつ、第一の磁気センサ12aおよび第二の磁気センサ12bの感度軸が、電流線11が延在する方向に垂直な方向を向くようにそれぞれ配置されている(図7や図8の矢印14a参照)。このような配置により、電流線11を通流する電流からの誘導磁界による逆相の出力信号が得られるため、差動演算による外乱磁界の影響のキャンセルが容易になる。 In the current sensor 1, the first magnetic sensor 12 a and the second magnetic sensor 12 b are arranged such that an output signal having a reverse phase is output by an induced magnetic field from a current flowing through the current line 11. For example, in FIGS. 7 and 8, the current line 11 is sandwiched between the first magnetic sensor 12a and the second magnetic sensor 12b, and the first magnetic sensor 12a and the second magnetic sensor. The sensitivity axes of 12b are arranged so as to face the direction perpendicular to the direction in which the current line 11 extends (see the arrow 14a in FIGS. 7 and 8). With such an arrangement, an output signal having a reverse phase due to the induced magnetic field from the current flowing through the current line 11 can be obtained, so that the influence of the disturbance magnetic field by the differential operation can be easily canceled.
 また、第一の磁気センサ12aおよび第二の磁気センサ12bは、隣接電流線21を通流する電流からの誘導磁界の影響が低減されるように配置される。より詳細には、第一の磁気センサ12aおよび第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向が、隣接電流線を通流する電流からの誘導磁界の方向を向く場合(図7の場合)、または、第一の磁気センサ12aおよび第二の磁気センサ12bの感度軸が、隣接電流線を通流する電流からの誘導磁界の方向を向く場合(図8の場合)であって、隣接電流線を通流する電流からの誘導磁界の影響が、第一の磁気センサ12aおよび第二の磁気センサ12bで同様に表れる場合には、第一の磁気センサ12aの感度軸と直交する方向であって感度を有する方向と、第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向とが、同じ方向を向くように(図7や図8の矢印14b参照)、第一の磁気センサ12aおよび第二の磁気センサ12bが配置される。 Also, the first magnetic sensor 12a and the second magnetic sensor 12b are arranged so that the influence of the induced magnetic field from the current flowing through the adjacent current line 21 is reduced. More specifically, the direction that is perpendicular to the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b and has sensitivity is directed to the direction of the induced magnetic field from the current flowing through the adjacent current line. In the case (in the case of FIG. 7), or the sensitivity axes of the first magnetic sensor 12a and the second magnetic sensor 12b are directed in the direction of the induced magnetic field from the current flowing through the adjacent current line (in the case of FIG. 8). In the case where the influence of the induced magnetic field from the current flowing through the adjacent current line appears similarly in the first magnetic sensor 12a and the second magnetic sensor 12b, the sensitivity of the first magnetic sensor 12a The direction that is orthogonal to the axis and has sensitivity, and the direction that is orthogonal to the sensitivity axis of the second magnetic sensor 12b and has sensitivity have the same direction (see FIGS. 7 and 8). Arrow 14b), first magnetic sensor 12a and the second magnetic sensor 12b is disposed.
 なお、本実施の形態の電流センサの構成は、感度軸と直交する方向であって感度を有する方向が、隣接電流線21を通流する電流からの誘導磁界31の、感度軸と直交する方向であって感度を有する方向の成分(矢印14b方向成分)を、前記差動演算によってキャンセルできるように配置されている、と表現できることがある。例えば、図7(B)の誘導磁界31は、第一の磁気センサ12a近傍において図面下向き成分を有し、第二の磁気センサ12b近傍において図面下向き成分を有する。この状況において、第一の磁気センサ12aおよび第二の磁気センサ12bの、感度軸と直交する方向であって感度を有する方向(矢印14bの方向)が、上述の誘導磁界31の成分と同じ方向を向くように配置されることで、誘導磁界31の影響が第一の磁気センサ12aおよび第二の磁気センサ12bにおいて同相で表れ、差動演算によるキャンセルが可能になるのである。 The configuration of the current sensor according to the present embodiment is such that the direction that is perpendicular to the sensitivity axis and has sensitivity is the direction that the induced magnetic field 31 from the current flowing through the adjacent current line 21 is perpendicular to the sensitivity axis. However, it may be expressed that the component in the direction having sensitivity (the component in the direction of the arrow 14b) is arranged so as to be canceled by the differential calculation. For example, the induction magnetic field 31 in FIG. 7B has a downward component in the drawing in the vicinity of the first magnetic sensor 12a, and has a downward component in the drawing in the vicinity of the second magnetic sensor 12b. In this situation, the direction of the first magnetic sensor 12a and the second magnetic sensor 12b that is perpendicular to the sensitivity axis and has sensitivity (the direction of the arrow 14b) is the same direction as the component of the induction magnetic field 31 described above. The influence of the induction magnetic field 31 appears in the same phase in the first magnetic sensor 12a and the second magnetic sensor 12b, and cancellation by differential calculation becomes possible.
 このような配置とすることにより、隣接電流線21を通流する電流からの誘導磁界の影響を差動演算によってキャンセルして、電流測定精度の低下を抑制できる。 By adopting such an arrangement, it is possible to cancel the influence of the induced magnetic field from the current flowing through the adjacent current line 21 by differential calculation, and to suppress a decrease in current measurement accuracy.
 電流センサ1の回路構成やGMR素子の構造などは、実施の形態1の場合と同様である。詳細については実施の形態1の記載や図4、図5などを参酌すれば良いから、ここでは省略する。 The circuit configuration of the current sensor 1 and the structure of the GMR element are the same as those in the first embodiment. For details, the description of Embodiment Mode 1, FIG. 4 and FIG.
 以上のように、第一の磁気センサ12aおよび第二の磁気センサ12bの無感度軸が、隣接電流線21を通流する電流からの誘導磁界の方向を向くように配置できない場合であって、隣接電流線21を通流する電流からの誘導磁界の影響が、第一の磁気センサ12aおよび第二の磁気センサ12bで同様に表れる場合には、第一の磁気センサ12aの感度軸と直交する方向であって感度を有する方向と、第二の磁気センサ12bの感度軸と直交する方向であって感度を有する方向とを、同じ方向に向けることで、隣接電流線21を通流する電流からの誘導磁界の影響を差動演算によってキャンセルして、電流測定精度の低下を抑制できる。 As described above, when the insensitive axes of the first magnetic sensor 12a and the second magnetic sensor 12b cannot be arranged so as to face the direction of the induced magnetic field from the current flowing through the adjacent current line 21, When the influence of the induced magnetic field from the current flowing through the adjacent current line 21 appears similarly in the first magnetic sensor 12a and the second magnetic sensor 12b, it is orthogonal to the sensitivity axis of the first magnetic sensor 12a. The direction that is the direction and having the sensitivity and the direction that is perpendicular to the sensitivity axis of the second magnetic sensor 12b and that has the sensitivity are directed in the same direction, so that the current flowing through the adjacent current line 21 can be The influence of the induced magnetic field can be canceled by differential calculation, and a decrease in current measurement accuracy can be suppressed.
 実施の形態1の電流センサ1における電流測定精度を確認した。測定系としては、図1に示す構成の電流センサ1を用いた。なお、電流線11および隣接電流線21の断面は、10mm×2mmの長方形状としている(図9参照)。電流測定精度の評価は、隣接電流線21に電流を通流させない状態で得られた測定結果を基準値として、隣接電流線21に電流を通流させた状態で得られる測定結果と、基準値との差を、基準値に対する百分率で表した測定誤差e(%)と、電流線11と隣接電流線21との中心間距離d(mm)とを用いて行った。 The current measurement accuracy in the current sensor 1 of the first embodiment was confirmed. As the measurement system, the current sensor 1 having the configuration shown in FIG. 1 was used. In addition, the cross section of the current line 11 and the adjacent current line 21 is a rectangular shape of 10 mm × 2 mm (see FIG. 9). The evaluation of the current measurement accuracy is based on the measurement result obtained in the state where current is not passed through the adjacent current line 21 as the reference value, and the measurement result obtained when current is passed through the adjacent current line 21 and the reference value. Was measured using the measurement error e (%) expressed as a percentage of the reference value and the center-to-center distance d (mm) between the current line 11 and the adjacent current line 21.
(比較例)
 上記実施例と同様の条件で、電流センサ2における電流測定精度を確認した。測定系は、図2に示す構成の電流センサ2である。また、電流線11および隣接電流線21の断面も、同様に10mm×2mmの長方形状である。
(Comparative example)
The current measurement accuracy in the current sensor 2 was confirmed under the same conditions as in the above example. The measurement system is the current sensor 2 having the configuration shown in FIG. Similarly, the cross sections of the current line 11 and the adjacent current line 21 have a rectangular shape of 10 mm × 2 mm.
 実施例および比較例の評価結果を図10に示す。図10において、縦軸は測定誤差e(%)、横軸は中心間距離d(mm)である。図10から分かるように、実施例の構成、すなわち、電流センサ1では、中心間距離が40mm程度と近接した状態であっても、測定誤差が1%未満に抑えられている。つまり、電流測定精度の低下が抑制されている。一方で、比較例の構成、すなわち、電流センサ2では、中心間距離が40mm程度と近接した状態において、測定誤差が4%近くになっている。電流センサ2において1%未満の測定誤差を達成するためには、中心間距離は80mm程度必要であることが分かる。 The evaluation results of Examples and Comparative Examples are shown in FIG. In FIG. 10, the vertical axis represents the measurement error e (%), and the horizontal axis represents the center distance d (mm). As can be seen from FIG. 10, in the configuration of the example, that is, the current sensor 1, the measurement error is suppressed to less than 1% even when the distance between the centers is as close as about 40 mm. That is, a decrease in current measurement accuracy is suppressed. On the other hand, in the configuration of the comparative example, that is, the current sensor 2, the measurement error is close to 4% when the distance between the centers is close to about 40 mm. It can be seen that in order to achieve a measurement error of less than 1% in the current sensor 2, the center-to-center distance needs to be about 80 mm.
 このように、電流センサ2では、電流センサ2と隣接電流線21との距離が小さい場合に測定精度が低下してしまうため、電流センサ2の測定精度を確保するために、電流センサ2および隣接電流線21を含むシステムを、ある程度大きくする必要が生じる。一方で、実施の形態1の電流センサ1では、電流センサ1と隣接電流線21との距離が小さい状況でも電流測定精度を確保することが容易である。つまり、電流センサ1および隣接電流線21を含むシステムを小型化しやすいというメリットがある。例えば、上述の構成において1%の測定誤差が許容される場合には、電流センサ1および隣接電流線21を含むシステムでは、電流センサ2および隣接電流線21を含むシステムと比較して、単純計算で40mmの小型化・省スペース化が可能である。 As described above, in the current sensor 2, the measurement accuracy decreases when the distance between the current sensor 2 and the adjacent current line 21 is small. Therefore, in order to ensure the measurement accuracy of the current sensor 2, The system including the current line 21 needs to be enlarged to some extent. On the other hand, in the current sensor 1 of the first embodiment, it is easy to ensure current measurement accuracy even when the distance between the current sensor 1 and the adjacent current line 21 is small. That is, there is an advantage that the system including the current sensor 1 and the adjacent current line 21 can be easily downsized. For example, when a measurement error of 1% is allowed in the above-described configuration, the system including the current sensor 1 and the adjacent current line 21 is simply calculated as compared with the system including the current sensor 2 and the adjacent current line 21. Therefore, it is possible to reduce the size and space by 40 mm.
 以上のように、本発明の電流センサは、感度軸と直交する方向に感度を有する磁気センサの配置を工夫することによって、隣接電流線を通流する電流からの誘導磁界の影響を十分に低減している。このため、このような磁気センサを用いる場合の、隣接電流線を通流する電流の影響による電流測定精度の低下を抑制することができる。また、これにより、電流センサを含むシステムの小型化・省スペース化を図ることができる。 As described above, the current sensor of the present invention sufficiently reduces the influence of the induced magnetic field from the current flowing through the adjacent current line by devising the arrangement of the magnetic sensor having sensitivity in the direction orthogonal to the sensitivity axis. is doing. For this reason, when such a magnetic sensor is used, the fall of the current measurement precision by the influence of the electric current which flows through an adjacent current line can be suppressed. This also makes it possible to reduce the size and space of the system including the current sensor.
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態における各素子の接続関係、大きさなどは適宜変更して実施することが可能である。また、上記実施の形態1~3に示す構成は、適宜組み合わせて実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。 Note that the present invention is not limited to the above embodiment, and can be implemented with various modifications. For example, the connection relationship, size, and the like of each element in the above embodiment can be changed as appropriate. Further, the structures shown in Embodiments 1 to 3 can be implemented in appropriate combination. In addition, the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
 本発明の電流センサは、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知するために用いることが可能である。 The current sensor of the present invention can be used, for example, to detect the magnitude of a current for driving a motor of an electric vehicle or a hybrid car.
 本出願は、2010年9月17日出願の特願2010-209430に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2010-209430 filed on Sep. 17, 2010. All this content is included here.

Claims (6)

  1.  被測定電流が通流する電流線の周囲に配置され、前記電流線を通流する電流からの誘導磁界により逆相の出力信号を出力する、感度軸と直交する方向に感度をそれぞれ有する一対の磁気センサと、
     前記一対の磁気センサに接続され、前記一対の磁気センサの出力信号を差動演算する演算装置と、
     を具備し、
     前記磁気センサは、その無感度軸が、前記電流線に隣接する電流線を通流する電流からの誘導磁界の方向を向くように配置されたことを特徴とする電流センサ。
    A pair of sensitivities that are arranged around the current line through which the current to be measured flows, and that output an output signal having a reverse phase by an induced magnetic field from the current flowing through the current line, each having sensitivity in a direction orthogonal to the sensitivity axis A magnetic sensor;
    An arithmetic device connected to the pair of magnetic sensors and differentially calculating output signals of the pair of magnetic sensors;
    Comprising
    The current sensor, wherein the insensitive axis is arranged so as to face the direction of the induced magnetic field from the current flowing through the current line adjacent to the current line.
  2.  前記磁気センサは、前記感度軸と直交する方向であって感度を有する方向が、前記電流線が延在する方向と一致するように配置されたことを特徴とする請求項1に記載の電流センサ。 The current sensor according to claim 1, wherein the magnetic sensor is arranged so that a direction perpendicular to the sensitivity axis and having sensitivity coincides with a direction in which the current line extends. .
  3.  前記一対の磁気センサは、前記感度軸と直交する方向であって感度を有する方向が、互いに逆向きになるように配置されたことを特徴とする請求項1または請求項2に記載の電流センサ。 3. The current sensor according to claim 1, wherein the pair of magnetic sensors are arranged such that directions that are perpendicular to the sensitivity axis and have sensitivity are opposite to each other. 4. .
  4.  前記磁気センサは、GMR素子を含んで構成されたことを特徴とする請求項1から請求項3のいずれか一に記載の電流センサ。 The current sensor according to any one of claims 1 to 3, wherein the magnetic sensor includes a GMR element.
  5.  前記感度軸の方向および前記感度軸と直交する方向であって感度を有する方向は、前記GMR素子が設けられた基板の主表面に平行な方向のいずれかと一致し、前記無感度軸の方向は、前記基板の主表面に垂直な方向と一致することを特徴とする請求項4に記載の電流センサ。 The direction of the sensitivity axis and the direction perpendicular to the sensitivity axis and having sensitivity coincide with one of the directions parallel to the main surface of the substrate on which the GMR element is provided, and the direction of the insensitive axis is The current sensor according to claim 4, wherein the current sensor coincides with a direction perpendicular to the main surface of the substrate.
  6.  前記一対の磁気センサが実装されると共に、前記電流線に垂直な面内に配置される回路基板を具備し、
     前記感度軸の方向および前記無感度軸の方向が、回路基板の主表面に平行な方向のいずれかと一致していることを特徴とする請求項1から請求項5のいずれか一に記載の電流センサ。
    A pair of magnetic sensors are mounted and a circuit board is disposed in a plane perpendicular to the current line;
    6. The current according to claim 1, wherein a direction of the sensitivity axis and a direction of the insensitivity axis coincide with any one of directions parallel to the main surface of the circuit board. Sensor.
PCT/JP2011/067889 2010-09-17 2011-08-04 Current sensor WO2012035906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010209430 2010-09-17
JP2010-209430 2010-09-17

Publications (1)

Publication Number Publication Date
WO2012035906A1 true WO2012035906A1 (en) 2012-03-22

Family

ID=45831380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067889 WO2012035906A1 (en) 2010-09-17 2011-08-04 Current sensor

Country Status (1)

Country Link
WO (1) WO2012035906A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090316A (en) * 2013-11-06 2015-05-11 アルプス・グリーンデバイス株式会社 Current sensor
EP2851691A4 (en) * 2012-05-16 2016-03-09 Alps Green Devices Co Ltd Current sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090769A1 (en) * 2005-02-23 2006-08-31 Asahi Kasei Emd Corporation Current measuring instrument
JP2009162499A (en) * 2007-12-28 2009-07-23 Alps Electric Co Ltd Magnetometric sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090769A1 (en) * 2005-02-23 2006-08-31 Asahi Kasei Emd Corporation Current measuring instrument
JP2009162499A (en) * 2007-12-28 2009-07-23 Alps Electric Co Ltd Magnetometric sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851691A4 (en) * 2012-05-16 2016-03-09 Alps Green Devices Co Ltd Current sensor
JP2015090316A (en) * 2013-11-06 2015-05-11 アルプス・グリーンデバイス株式会社 Current sensor

Similar Documents

Publication Publication Date Title
JP5544502B2 (en) Current sensor
JP5544501B2 (en) Current sensor
US9244136B2 (en) Magnetic sensor with reduced effect of interlayer coupling magnetic field
JP5906488B2 (en) Current sensor
JP5888402B2 (en) Magnetic sensor element
WO2013099504A1 (en) Current sensor
JP6311790B2 (en) Current sensor
JP5816958B2 (en) Current sensor
JP2015036636A (en) Current sensor
JP2015190781A (en) Circuit board
US20230204630A1 (en) Magnetic sensor device, inverter apparatus, and battery apparatus
JP2012052980A (en) Current sensor
JP5487403B2 (en) Current sensor
US11675028B2 (en) Magnetic sensor, and a current sensor and position detection device using a magnetic sensor
WO2012035906A1 (en) Current sensor
JP2013047610A (en) Magnetic balance type current sensor
JP2015001467A (en) Magnetic sensor
JP2013142569A (en) Current sensor
US11543469B2 (en) Current sensor, and electric control apparatus including the current sensor
JP7215451B2 (en) CURRENT SENSOR AND MANUFACTURING METHOD THEREOF, ELECTRICAL CONTROL DEVICE, AND CURRENT SENSOR DESIGN METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP