JP6144597B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP6144597B2
JP6144597B2 JP2013206613A JP2013206613A JP6144597B2 JP 6144597 B2 JP6144597 B2 JP 6144597B2 JP 2013206613 A JP2013206613 A JP 2013206613A JP 2013206613 A JP2013206613 A JP 2013206613A JP 6144597 B2 JP6144597 B2 JP 6144597B2
Authority
JP
Japan
Prior art keywords
axis
current sensor
sensitivity
magnetic field
symmetry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013206613A
Other languages
Japanese (ja)
Other versions
JP2015072124A (en
Inventor
稔 安部
稔 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2013206613A priority Critical patent/JP6144597B2/en
Publication of JP2015072124A publication Critical patent/JP2015072124A/en
Application granted granted Critical
Publication of JP6144597B2 publication Critical patent/JP6144597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、導体に流れる電流の誘導磁界に基づいて電流を検出する電流センサに係り、特に、磁電変換素子を用いて電流を検出する電流センサに関するものである。   The present invention relates to a current sensor that detects a current based on an induced magnetic field of a current flowing through a conductor, and more particularly to a current sensor that detects a current using a magnetoelectric conversion element.

電流を検出する方法として、一般に、電流経路に設けた抵抗器(シャント抵抗)の電圧降下を検出する方法や、カレント・トランス(CT:current transformer)を用いる方法、磁電変換素子(ホール素子,磁気抵抗素子等)を用いる方法などが知られている。抵抗器の電圧降下を検出する方法は、直流と交流の広い周波数帯域で電流を検出できるものの、測定系と被測定系を絶縁するためにフォトカプラ等の回路を追加しなければならない。これに対し、カレント・トランスを用いる方法は、測定系と被測定系が絶縁されており、構成が比較的簡易で安価なことから、主に交流電流を扱う機器や設備において広く使用されている。   As a method of detecting current, generally, a method of detecting a voltage drop of a resistor (shunt resistor) provided in a current path, a method of using a current transformer (CT), a magnetoelectric conversion element (Hall element, magnetic) A method using a resistance element or the like is known. Although the method of detecting the voltage drop of the resistor can detect a current in a wide frequency band of direct current and alternating current, a circuit such as a photocoupler must be added to insulate the measurement system from the system to be measured. On the other hand, the method using a current transformer is widely used mainly in equipment and facilities that handle alternating current because the measurement system and the system to be measured are insulated and the configuration is relatively simple and inexpensive. .

他方、ホール素子等の磁電変換素子を用いる方法は、検出対象の電流経路に発生する磁界を電圧や電気抵抗に変換することにより電流を検出するものである。この方法は、測定系と被測定系が絶縁されていることに加えて、直流と交流の広い周波数帯域で電流を検出できるなどの優れた特徴がある。   On the other hand, a method using a magnetoelectric conversion element such as a Hall element detects current by converting a magnetic field generated in a current path to be detected into voltage or electrical resistance. This method has an excellent feature that, in addition to the measurement system and the system to be measured being insulated, the current can be detected in a wide frequency band of direct current and alternating current.

下記の特許文献1には、車載バッテリの端子に取り付けられた導電性部材(バスバー)に流れる電流を磁電変換素子によって検出するように構成された電流センサが記載されている。この電流センサは、被検出電流が流れる導電性部材を収容するスリットと、そのスリットに収容された状態の導電性部材の表面又は裏面と直交する位置に設けられた磁電変換素子及びバイアス磁石を有する。磁電変換素子及びバイアス磁石は、回路基板上に実装される。   Patent Document 1 below describes a current sensor configured to detect a current flowing in a conductive member (bus bar) attached to a terminal of an in-vehicle battery by a magnetoelectric conversion element. This current sensor has a slit for accommodating a conductive member through which a current to be detected flows, and a magnetoelectric conversion element and a bias magnet provided at a position orthogonal to the front surface or the back surface of the conductive member accommodated in the slit. . The magnetoelectric conversion element and the bias magnet are mounted on a circuit board.

特開2011−242367号公報JP 2011-242367 A

通常、磁電変換素子には、磁界の検出感度が最大となる感度軸が存在する。ところが、比較的感度の高い磁電変換素子(ハードバイアスを備えたGMR素子やTMR素子,磁気収束板を備えたホール素子など)の中には、この感度軸に加えて、磁界の検出感度に影響を与える軸(感度影響軸)が存在するものがある。このような高感度の磁電変換素子を用いる場合、被検出電流の誘導磁界に含まれる感度影響軸の磁界成分は、検出感度の線形性を低下させる要因となる。   Usually, a magnetoelectric conversion element has a sensitivity axis that maximizes the magnetic field detection sensitivity. However, some magneto-electric transducers with relatively high sensitivity (such as GMR elements with hard bias, TMR elements, and Hall elements with magnetic converging plates) affect the sensitivity of magnetic field detection in addition to this sensitivity axis. There is an axis (sensitivity influence axis) that gives When such a highly sensitive magnetoelectric conversion element is used, the magnetic field component of the sensitivity influence axis included in the induced magnetic field of the current to be detected becomes a factor that lowers the linearity of the detection sensitivity.

図13は、細長い板状のバスバーに流れる電流を検出する電流センサの構成の一例を示す図であり、バスバーの断面方向から見た図である。バスバー100の電流Iは、紙面の表から裏の方向(Y方向)に流れる。バスバー100の周囲に描かれた点線は、バスバー100に流れる電流Iによって生じる誘導磁界の磁束線を表す。磁束線は、バスバー100の周りを囲む楕円状の閉曲線となっている。   FIG. 13 is a diagram illustrating an example of a configuration of a current sensor that detects a current flowing through an elongated plate-like bus bar, and is a diagram viewed from a cross-sectional direction of the bus bar. The current I of the bus bar 100 flows from the front side to the back side (Y direction). A dotted line drawn around the bus bar 100 represents a magnetic flux line of an induced magnetic field generated by the current I flowing through the bus bar 100. The magnetic flux lines are oval closed curves surrounding the bus bar 100.

図13に示す電流センサは、バスバー100の上面側と下面側に配置された2つの磁電変換素子(200A,200B)を有する。これらの磁電変換素子(200A,200B)は、検出感度が最大となる感度軸(S1A,S1B)と、これに直交した感度影響軸(S2A,S2B)をそれぞれ有する。感度軸(S1A,S1B)はバスバー100の表面に対して平行な方向(X方向)を向き、感度影響軸(S2A,S2B)はバスバー100の表面に対して垂直な方向(Z方向)を向いている。   The current sensor shown in FIG. 13 has two magnetoelectric conversion elements (200A, 200B) arranged on the upper surface side and the lower surface side of the bus bar 100. These magnetoelectric transducers (200A, 200B) each have a sensitivity axis (S1A, S1B) at which the detection sensitivity is maximum and a sensitivity influence axis (S2A, S2B) orthogonal thereto. The sensitivity axes (S1A, S1B) face in the direction parallel to the surface of the bus bar 100 (X direction), and the sensitivity influence axes (S2A, S2B) face in the direction perpendicular to the surface of the bus bar 100 (Z direction). ing.

図14は、細長い板状のバスバーに流れる電流による誘導磁界の方向をシミュレーションより求めた結果を示す図である。図14のシミュレーション結果から分かるように、バスバー100の幅方向の中央付近においては磁界の向きが水平に近くなり、X方向の磁界成分が支配的になる。従って、感度軸(S1A,S1B)をX方向に向けることで、誘導磁界を感度良く検出することができる。   FIG. 14 is a diagram illustrating a result of obtaining the direction of the induced magnetic field due to the current flowing in the long and narrow plate-like bus bar by simulation. As can be seen from the simulation results in FIG. 14, the direction of the magnetic field is nearly horizontal near the center in the width direction of the bus bar 100, and the magnetic field component in the X direction becomes dominant. Therefore, by directing the sensitivity axis (S1A, S1B) in the X direction, the induced magnetic field can be detected with high sensitivity.

他方、図15は、細長い板状のバスバーに流れる電流による誘導磁界の強さをシミュレーションにより求めた結果を示すグラフである。図15における「Hx」,「Hy」,「Hz」は、それぞれX方向,Y方向,Z方向の磁界成分を表す。図15の縦軸は各磁界成分の強さを示し、横軸はX方向の位置[mm]を示す。横軸における20[mm]の位置が、バスバー100の幅方向の中央に対応する。
図15のシミュレーション結果からも、バスバー100の幅方向の中央付近では、X方向の磁界成分Hxが他の磁界成分に比べて概ね大きいことが分かる。しかしながら、感度影響軸(S2A,S2B)と平行な磁界成分Hzも、少なからず存在している。磁界成分Hzは、バスバー100の幅方向の中央(図15の横軸における20[mm]の位置)においてゼロになるが、この中央から離れるにつれて直線的に大きくなる。すなわち、磁界成分Hzは、バスバー100の幅方向の中央から僅かにずれた位置でも発生し、ずれが大きくなるほど直線的に増大する。
On the other hand, FIG. 15 is a graph showing the result of the simulation for the strength of the induced magnetic field caused by the current flowing in the elongated plate-like bus bar. “Hx”, “Hy”, and “Hz” in FIG. 15 represent magnetic field components in the X, Y, and Z directions, respectively. The vertical axis in FIG. 15 indicates the strength of each magnetic field component, and the horizontal axis indicates the position [mm] in the X direction. The position of 20 [mm] on the horizontal axis corresponds to the center of the bus bar 100 in the width direction.
From the simulation result of FIG. 15, it can be seen that the magnetic field component Hx in the X direction is substantially larger than the other magnetic field components near the center in the width direction of the bus bar 100. However, there are not a few magnetic field components Hz parallel to the sensitivity influence axes (S2A, S2B). The magnetic field component Hz becomes zero at the center in the width direction of the bus bar 100 (position of 20 [mm] on the horizontal axis in FIG. 15), but increases linearly as the distance from the center increases. That is, the magnetic field component Hz is generated even at a position slightly deviated from the center of the bus bar 100 in the width direction, and increases linearly as the deviation increases.

このように、図13に示す電流センサでは、磁電変換素子(200A,200B)の位置がバスバー100の幅方向の中央から僅かにずれただけで、感度影響軸(S2A,S2B)に平行な磁界成分Hzが現れてしまい、検出感度の線形性が低下するという問題がある。検出対象の誘導磁界に感度影響軸の成分が存在すると、磁電変換素子の後段の回路におけるゲイン調整やオフセット調整などでは、線形性の改善が困難になる。   As described above, in the current sensor shown in FIG. 13, the magnetic field parallel to the sensitivity influence axis (S2A, S2B) is obtained only by slightly shifting the position of the magnetoelectric conversion element (200A, 200B) from the center in the width direction of the bus bar 100. There is a problem that the component Hz appears and the linearity of the detection sensitivity is lowered. If the sensitivity-inducing axis component is present in the induced magnetic field to be detected, it is difficult to improve the linearity by gain adjustment or offset adjustment in the subsequent circuit of the magnetoelectric transducer.

本発明はかかる事情に鑑みてなされたものであり、その目的は、被検出電流の誘導磁界に含まれる磁界成分のうち、磁電変換素子の感度影響軸と平行な磁界成分を減らすことができる電流センサを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to reduce a magnetic field component parallel to the sensitivity influence axis of a magnetoelectric conversion element among magnetic field components included in an induced magnetic field of a detected current. It is to provide a sensor.

本発明の第1の観点に係る電流センサは、磁界の検出感度が最大となる感度軸と、磁界の検出感度に影響を与える感度影響軸とを有する少なくとも1つの磁気抵抗効果素子と、被検出電流が流れる方向へ直線状に延伸し、当該延伸方向と垂直な断面が仮想的な第1の対称軸に対して線対称な形状を有する導電部材とを備える。前記導電部材は、前記第1の対称軸が通る空隙を隔てて互いに離間し、前記被検出電流の分流電流がそれぞれ同じ方向に流れる第1導電部及び第2導電部を含む。前記磁気抵抗効果素子は、前記感度影響軸が前記第1の対称軸と平行となる姿勢で、前記空隙の外側の領域であって、前記第1の対称軸と平行な方向から見て前記空隙と重なる領域に配置される。 A current sensor according to a first aspect of the present invention includes at least one magnetoresistive element having a sensitivity axis that maximizes the magnetic field detection sensitivity, a sensitivity influence axis that affects the magnetic field detection sensitivity, A conductive member that extends linearly in the direction in which the current flows, and that has a cross section perpendicular to the extending direction and a shape that is symmetric with respect to a virtual first symmetry axis. The conductive member includes a first conductive portion and a second conductive portion that are spaced apart from each other with a gap through which the first axis of symmetry passes, and the shunt currents of the detected current flow in the same direction. The magnetoresistive element is in a posture before Symbol sensitivity effect axis is parallel to the first axis of symmetry, an outer region of the gap, the viewed from the first axis of symmetry parallel to direction It arrange | positions in the area | region which overlaps with a space | gap .

上記の構成によれば、前記空隙の外側の領域であって、前記第1の対称軸と平行な方向から見て前記空隙と重なる領域では、前記空隙に電流が流れていないことによって、前記空隙を通る前記第1の対称軸と平行な方向における磁界成分が小さくなる。従って、前記磁電変換素子をこの領域に配置し、前記感度影響軸が前記第1の対称軸と平行となるような姿勢を持たせることによって、前記感度影響軸の磁界成分が小さくなり、検出感度の線形性の低下が効果的に抑制される。   According to the above configuration, in the region outside the gap and overlapping with the gap as viewed from the direction parallel to the first symmetry axis, no current flows in the gap, and thus the gap The magnetic field component in the direction parallel to the first axis of symmetry passing through is reduced. Therefore, by arranging the magnetoelectric conversion element in this region and giving the posture that the sensitivity influence axis is parallel to the first symmetry axis, the magnetic field component of the sensitivity influence axis is reduced, and the detection sensitivity The decrease in linearity is effectively suppressed.

好適に、前記磁気抵抗効果素子は、前記感度影響軸が前記第1の対称軸と重なる位置であって、前記感度影響軸と平行な磁界成分が極小となる位置に配置されてよい。これにより、検出感度の線形性の低下がより効果的に抑制される。   Preferably, the magnetoresistive effect element may be arranged at a position where the sensitivity influence axis overlaps the first symmetry axis and a magnetic field component parallel to the sensitivity influence axis is minimized. Thereby, the fall of the linearity of a detection sensitivity is suppressed more effectively.

好適に、前記磁気抵抗効果素子は、前記第1の対称軸と平行な方向から見て、前記延伸方向における前記空隙の中央に配置されてよい。これにより、前記空隙の端部における磁界の対称性の乱れによる前記感度影響軸の磁界成分への影響が低減される。   Suitably, the said magnetoresistive effect element may be arrange | positioned in the center of the said space | gap in the said extending | stretching direction seeing from the direction parallel to the said 1st symmetry axis. Thereby, the influence on the magnetic field component of the sensitivity influence axis by the disturbance of the magnetic field symmetry at the end of the gap is reduced.

好適に、前記延伸方向における前記第1導電部及び前記第2導電部の断面は、前記第1の対称軸と直交する第2の対称軸に対して線対称な形状をしていてもよい。この場合、上記第1の観点に係る電流センサーは、前記第1の対称軸と平行な方向において前記空隙を挟んで対向する位置に配置された一対の前記磁気抵抗効果素子と、前記一対の磁気抵抗効果素子の出力信号に基づいて電流の検出値を演算する演算部とを有してよい。   Suitably, the cross section of the said 1st electroconductive part in the said extending | stretching direction and the said 2nd electroconductive part may have the shape symmetrical with respect to the 2nd symmetry axis orthogonal to the said 1st symmetry axis. In this case, the current sensor according to the first aspect includes a pair of the magnetoresistive effect elements disposed at positions facing each other with the gap in a direction parallel to the first symmetry axis, and the pair of magnetic sensors. And a calculation unit that calculates a detected current value based on an output signal of the resistance effect element.

好適に、上記第1の観点に係る電流センサは、前記導電部材の前記延伸方向と直交する平面に沿って配置された回路基板を有してよい。前記回路基板は、前記導電部材の前記空隙を挟んで対向する第1腕部と第2腕部を含んでよい。前記一対の磁気抵抗効果素子の一方が前記第1腕部に取り付けられ、前記一対の磁気抵抗効果素子の他方が前記第2腕部に取り付けられてもよい。これにより、前記一対の磁気抵抗効果素子の相対的な位置決めの精度が向上する。   Suitably, the current sensor which concerns on the said 1st viewpoint may have a circuit board arrange | positioned along the plane orthogonal to the said extending | stretching direction of the said electrically-conductive member. The circuit board may include a first arm portion and a second arm portion facing each other with the gap of the conductive member interposed therebetween. One of the pair of magnetoresistive elements may be attached to the first arm, and the other of the pair of magnetoresistive elements may be attached to the second arm. This improves the accuracy of relative positioning of the pair of magnetoresistive elements.

好適に、上記第1の観点に係る電流センサは、前記一対の磁気抵抗効果素子を挟んで対向する位置に配置された一対の磁気シールドを有してよい。これにより、外来磁界の検出精度への影響が緩和される。   Preferably, the current sensor according to the first aspect may include a pair of magnetic shields disposed at positions facing each other with the pair of magnetoresistive elements interposed therebetween. Thereby, the influence on the detection accuracy of the external magnetic field is mitigated.

好適に、前記第1導電部及び前記第2導電部は、前記延伸方向と垂直な断面が矩形形状を有してよい。この場合、前記空隙を形成する前記第1導電部の一側面と前記第2導電部の一側面とが互いに平行でもよい。   Preferably, the first conductive portion and the second conductive portion may have a rectangular shape in cross section perpendicular to the extending direction. In this case, one side surface of the first conductive part and the one side surface of the second conductive part that form the gap may be parallel to each other.

本発明の第2の観点に係る電流センサは、磁界の検出感度が最大となる感度軸と、磁界の検出感度に影響を与える感度影響軸とを有する少なくとも1つの磁気抵抗効果素子と、
被検出電流が流れる方向へ直線状に延伸し、当該延伸方向と垂直な断面が仮想的な第1の対称軸に対して線対称な形状を有する導電部材とを備える。前記導電部材は、前記第1の対称軸が通り、当該第1の対称軸の方向に凹んだ溝を有する。前記磁気抵抗効果素子は、前記感度影響軸が前記第1の対称軸と平行となる姿勢で、前記溝の外側の領域であって、前記第1の対称軸と平行な方向から見て前記溝と重なる領域に配置される。
A current sensor according to a second aspect of the present invention includes at least one magnetoresistive element having a sensitivity axis that maximizes magnetic field detection sensitivity and a sensitivity influence axis that affects magnetic field detection sensitivity;
A conductive member that extends linearly in the direction in which the current to be detected flows and whose cross section perpendicular to the extending direction has a line-symmetric shape with respect to a virtual first symmetry axis. The conductive member has a groove that passes through the first axis of symmetry and is recessed in the direction of the first axis of symmetry. The magnetoresistive element is in a posture before Symbol sensitivity effect axis is parallel to the first axis of symmetry, wherein a region outside the groove, the viewed from the first axis of symmetry parallel to direction It arrange | positions in the area | region which overlaps with a groove | channel .

上記の構成によれば、前記溝の外側の領域であって、前記第1の対称軸と平行な方向から見て前記溝と重なる領域では、前記溝の空間に電流が流れていないことによって、前記溝を通る前記第1の対称軸と平行な方向における磁界成分が小さくなる。従って、前記磁電変換素子をこの領域に配置し、前記感度影響軸が前記第1の対称軸と平行となるような姿勢を持たせることによって、前記感度影響軸の磁界成分が小さくなり、検出感度の線形性の低下が効果的に抑制される。   According to the above configuration, in the region outside the groove and overlapping the groove when viewed from the direction parallel to the first symmetry axis, no current flows in the groove space, The magnetic field component in the direction parallel to the first axis of symmetry passing through the groove is reduced. Therefore, by arranging the magnetoelectric conversion element in this region and giving the posture that the sensitivity influence axis is parallel to the first symmetry axis, the magnetic field component of the sensitivity influence axis is reduced, and the detection sensitivity The decrease in linearity is effectively suppressed.

好適に、前記磁気抵抗効果素子は、前記感度影響軸が前記第1の対称軸と重なる位置であって、前記感度影響軸と平行な磁界成分が極小となる位置に配置されてよい。これにより、検出感度の線形性の低下がより効果的に抑制される。   Preferably, the magnetoresistive effect element may be arranged at a position where the sensitivity influence axis overlaps the first symmetry axis and a magnetic field component parallel to the sensitivity influence axis is minimized. Thereby, the fall of the linearity of a detection sensitivity is suppressed more effectively.

好適、前記磁気抵抗効果素子は、前記第1の対称軸と平行な方向から見て、前記溝の前記延伸方向における中央に配置されてよい。これにより、前記空隙の端部における磁界の対称性の乱れによる前記感度影響軸の磁界成分への影響が低減される。   Preferably, the magnetoresistive effect element may be disposed at the center of the groove in the extending direction when viewed from a direction parallel to the first symmetry axis. Thereby, the influence on the magnetic field component of the sensitivity influence axis by the disturbance of the magnetic field symmetry at the end of the gap is reduced.

好適に、前記延伸方向における前記導電部材の断面は、前記第1の対称軸と直交する第2の対称軸に対して線対称な形状をしていてもよい。この場合、前記導電部材は、前記延伸方向に延びた一対の前記溝を有してよい。上記第2の観点に係る電流センサは、前記第1の対称軸と平行な方向において前記一対の溝を挟んで対向する位置に配置された一対の前記磁気抵抗効果素子と、前記一対の磁気抵抗効果素子の出力信号に基づいて電流の検出値を演算する演算部とを有してよい。   Suitably, the cross section of the said electrically-conductive member in the said extending | stretching direction may have the shape symmetrical with respect to the 2nd symmetry axis orthogonal to the said 1st symmetry axis. In this case, the conductive member may have a pair of grooves extending in the extending direction. The current sensor according to the second aspect includes a pair of the magnetoresistive elements disposed at positions facing each other across the pair of grooves in a direction parallel to the first symmetry axis, and the pair of magnetoresistive elements. A calculation unit that calculates a detected current value based on an output signal of the effect element.

好適に、上記第2の観点に係る電流センサは、前記導電部材の前記延伸方向と直交する平面に沿って配置された回路基板を有してよい。前記回路基板は、前記一対の溝を挟んで対向する第1腕部と第2腕部を含んでよい。前記一対の磁気抵抗効果素子の一方が前記第1腕部に取り付けられ、前記一対の磁気抵抗効果素子の他方が前記第2腕部に取り付けられてよい。これにより、前記一対の磁気抵抗効果素子の相対的な位置決めの精度が向上する。   Suitably, the current sensor which concerns on the said 2nd viewpoint may have a circuit board arrange | positioned along the plane orthogonal to the said extending | stretching direction of the said electrically-conductive member. The circuit board may include a first arm portion and a second arm portion facing each other with the pair of grooves interposed therebetween. One of the pair of magnetoresistive elements may be attached to the first arm, and the other of the pair of magnetoresistive elements may be attached to the second arm. This improves the accuracy of relative positioning of the pair of magnetoresistive elements.

好適に、上記第2の観点に係る電流センサは、前記一対の磁気抵抗効果素子を挟んで対向する位置に配置された一対の磁気シールドを有してよい。これにより、外来磁界の検出精度への影響が緩和される。   Preferably, the current sensor according to the second aspect may include a pair of magnetic shields disposed at positions facing each other with the pair of magnetoresistive elements interposed therebetween. Thereby, the influence on the detection accuracy of the external magnetic field is mitigated.

好適に、前記溝は、前記延伸方向と垂直な断面が矩形状若しくは台形状に形成されてよい。
好適に、前記磁気抵抗効果素子は、前記被検出電流により生じる磁束線が平らになる位置に配置されてよい。
Preferably, the groove may have a rectangular or trapezoidal cross section perpendicular to the extending direction.
Preferably, the magnetoresistive effect element may be arranged at a position where a magnetic flux line generated by the detected current becomes flat.

本発明によれば、被検出電流の誘導磁界に含まれる磁界成分のうち、磁電変換素子の感度影響軸と平行な磁界成分を減らすことができる。   According to the present invention, among magnetic field components included in the induced magnetic field of the current to be detected, magnetic field components parallel to the sensitivity influence axis of the magnetoelectric conversion element can be reduced.

本発明の第1の実施形態に係る電流センサの構成の一例を示す図であり、導電部材の延伸方向に対して垂直な方向から見た図である。It is a figure which shows an example of a structure of the current sensor which concerns on the 1st Embodiment of this invention, and is the figure seen from the direction perpendicular | vertical with respect to the extending | stretching direction of an electrically-conductive member. 本発明の第1の実施形態に係る電流センサの構成の一例を示す図であり、図1のY1−Y1線における断面図である。It is a figure which shows an example of a structure of the current sensor which concerns on the 1st Embodiment of this invention, and is sectional drawing in the Y1-Y1 line | wire of FIG. 本発明の第1の実施形態に係る電流センサの回路構成の一例を示す図である。It is a figure which shows an example of the circuit structure of the current sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る電流センサの構成の一例を示す図であり、磁電変換素子が実装される回路基板と磁気シールドを導電部材とともに図解した図である。It is a figure which shows an example of a structure of the current sensor which concerns on the 1st Embodiment of this invention, and is the figure which illustrated the circuit board and magnetic shield in which a magnetoelectric conversion element is mounted with a conductive member. 図1に示す電流センサにおける誘導磁界の方向をシミュレーションにより求めた結果の一例を示す図である。It is a figure which shows an example of the result of having calculated | required the direction of the induction magnetic field in the current sensor shown in FIG. 1 by simulation. 図1に示す電流センサにおける誘導磁界の強さをシミュレーションにより求めた結果の一例を示す図である。It is a figure which shows an example of the result of having calculated | required the intensity | strength of the induction magnetic field in the current sensor shown in FIG. 1 by simulation. 第1の実施形態に係る電流センサの一変形例を示す図である。It is a figure which shows the modification of the current sensor which concerns on 1st Embodiment. 本発明の第2の実施形態に係る電流センサの構成の一例を示す図であり、導電部材の延伸方向に対して垂直な方向から見た図である。It is a figure which shows an example of a structure of the current sensor which concerns on the 2nd Embodiment of this invention, and is the figure seen from the direction perpendicular | vertical with respect to the extending | stretching direction of an electrically-conductive member. 本発明の第2の実施形態に係る電流センサの構成の一例を示す図であり、図8のY2−Y2線における断面図である。It is a figure which shows an example of a structure of the current sensor which concerns on the 2nd Embodiment of this invention, and is sectional drawing in the Y2-Y2 line | wire of FIG. 本発明の第2の実施形態に係る電流センサの構成の一例を示す図であり、磁電変換素子が実装される回路基板と磁気シールドを導電部材とともに図解した図である。It is a figure which shows an example of a structure of the current sensor which concerns on the 2nd Embodiment of this invention, and is the figure which illustrated the circuit board and magnetic shield in which a magnetoelectric conversion element is mounted with a conductive member. 図8に示す電流センサにおける誘導磁界の方向をシミュレーションにより求めた結果の一例を示す図である。It is a figure which shows an example of the result of having calculated | required the direction of the induction magnetic field in the current sensor shown in FIG. 8 by simulation. 図8に示す電流センサにおける誘導磁界の強さをシミュレーションにより求めた結果の一例を示す図である。It is a figure which shows an example of the result of having calculated | required the intensity | strength of the induction magnetic field in the current sensor shown in FIG. 8 by simulation. 細長い板状のバスバーに流れる電流を検出する電流センサの構成の一例を示す図であり、バスバーの断面方向から見た図である。It is a figure which shows an example of a structure of the current sensor which detects the electric current which flows into an elongate plate-shaped bus bar, and is the figure seen from the cross-sectional direction of the bus bar. 細長い板状のバスバーに流れる電流による誘導磁界の方向をシミュレーションより求めた結果を示す図である。It is a figure which shows the result of having calculated | required the direction of the induced magnetic field by the electric current which flows into an elongate plate-shaped bus bar by simulation. 細長い板状のバスバーに流れる電流による誘導磁界の強さをシミュレーションにより求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the intensity | strength of the induced magnetic field by the electric current which flows into an elongate plate-shaped bus bar by simulation.

<第1の実施形態>
図1は、本発明の第1の実施形態に係る電流センサ1の構成の一例を示す図であり、導電部材10の延伸方向に対して垂直な方向から見た図である。図2は、図1に示す電流センサ1のY1−Y1線における断面図である。
本実施形態に係る電流センサ1は、被検出電流が流れる導電部材10と、その導電部材10に流れる被検出電流による誘導磁界を検出する磁電変換素子20A,20Bを有する。
<First Embodiment>
FIG. 1 is a diagram illustrating an example of the configuration of the current sensor 1 according to the first embodiment of the present invention, and is a diagram viewed from a direction perpendicular to the extending direction of the conductive member 10. 2 is a cross-sectional view taken along line Y1-Y1 of the current sensor 1 shown in FIG.
The current sensor 1 according to the present embodiment includes a conductive member 10 through which a current to be detected flows, and magnetoelectric conversion elements 20A and 20B that detect an induced magnetic field due to the current to be detected flowing through the conductive member 10.

導電部材10は、直線状に(真っ直ぐに)延伸しており、その延伸方向に被検出電流が流れる。図1の例において、導電部材10は紙面の縦方向(Y方向)に伸び、被検出電流もこれと同じ方向に流れる。   The conductive member 10 extends linearly (straightly), and a detected current flows in the extending direction. In the example of FIG. 1, the conductive member 10 extends in the vertical direction (Y direction) of the paper surface, and the detected current flows in the same direction.

導電部材10の延伸方向と垂直な断面は、図2における第1の対称軸L1及び第2の対称軸L2に対して線対称な形状を有する。第1の対称軸L1は図2の紙面の縦方向(Z方向)に伸び、第2の対称軸L2は図2の紙面の横方向(X方向)に伸びる。図2において、導電部材10の被検出電流は、紙面の表から裏の方向(Y方向)へ流れる。   The cross section perpendicular to the extending direction of the conductive member 10 has a shape that is line symmetric with respect to the first symmetry axis L1 and the second symmetry axis L2 in FIG. The first symmetry axis L1 extends in the vertical direction (Z direction) of the paper surface of FIG. 2, and the second symmetry axis L2 extends in the horizontal direction (X direction) of the paper surface of FIG. In FIG. 2, the current to be detected of the conductive member 10 flows in the direction from the front to the back (Y direction).

図2に示すように、被検出電流が流れる方向と垂直な導電部材10の断面が線対称な形状を有していることから、この断面を囲む被検出電流の磁束線も、導電部材10の断面と同様に、第1の対称軸L1及び第2の対称軸L2に対して線対称な形状を持った閉曲線となる。   As shown in FIG. 2, since the cross section of the conductive member 10 perpendicular to the direction in which the detected current flows has a line-symmetric shape, the magnetic flux lines of the detected current surrounding this cross section are also connected to the conductive member 10. Similar to the cross section, a closed curve having a line-symmetric shape with respect to the first symmetry axis L1 and the second symmetry axis L2.

また、導電部材10は、空隙5を隔てて互いに離間した第1導体部11及び第2導体部12を有する。この空隙5には、上述した第1の対称軸L1が通る。そのため、導電部材10の延伸方向(Y方向)と垂直な第1導体部11及び第2導体部12の断面は、図2に示すように、第1の対称軸L1に関して対称な形状を有する。   In addition, the conductive member 10 includes a first conductor portion 11 and a second conductor portion 12 that are separated from each other with the gap 5 therebetween. The first symmetry axis L1 described above passes through the gap 5. Therefore, the cross sections of the first conductor portion 11 and the second conductor portion 12 perpendicular to the extending direction (Y direction) of the conductive member 10 have a symmetrical shape with respect to the first symmetry axis L1, as shown in FIG.

また、導電部材10の延伸方向(Y方向)と垂直な第1導体部11及び第2導体部12の断面は、導電部材10の延伸方向(Y方向)の各位置において一様である。すなわち、第1導体部11及び第2導体部12が形成される領域AR1(図1)の任意の位置において、Y方向に垂直な断面が同一となっている。   The cross sections of the first conductor portion 11 and the second conductor portion 12 perpendicular to the extending direction (Y direction) of the conductive member 10 are uniform at each position in the extending direction (Y direction) of the conductive member 10. That is, the cross section perpendicular to the Y direction is the same at any position in the region AR1 (FIG. 1) where the first conductor portion 11 and the second conductor portion 12 are formed.

導電部材10に流れる被検出電流は、第1導体部11と第2導体部12に分流する。第1導体部11には分流電流I11が流れ、第2導体部12には分流電流I12が流れる。第1導体部11及び第2導体部12は同一の導電材料によって形成されており、また、上記のように互いに対称な形状を有することから、第1導体部11の分流電流I11と第2導体部12の分流電流I12は略同じになる。   The detected current flowing through the conductive member 10 is divided into the first conductor portion 11 and the second conductor portion 12. A shunt current I11 flows through the first conductor portion 11, and a shunt current I12 flows through the second conductor portion 12. Since the first conductor portion 11 and the second conductor portion 12 are made of the same conductive material and have a symmetrical shape as described above, the shunt current I11 of the first conductor portion 11 and the second conductor The shunt current I12 of the part 12 is substantially the same.

分流電流I11,I12によって生じる磁束線は、図2の点線で示すように、空隙5の中央を通る第1の対称軸L1に対して対称な形状を持った閉曲線となる。空隙5には電流が流れていないため、空隙5の付近で磁界は弱くなる。第1導体部11,第2導体部12に近接した磁束線は、例えば図2に示すように空隙5を貫通し、第1導体部11,第2導体部12を個別に囲む閉曲線となる。第1導体部11,第2導体部12からやや離れると、磁束線は空隙5を貫通せず、第1導体部11,第2導体部12の両方を囲む閉曲線となる。ただし、空隙5の付近の磁界が弱いため、磁束線は空隙5に近づく方向へ凹んだ閉曲線となる。第1導体部11,第2導体部12から離れるにつれて、空隙5の方向への磁束線の凹みは小さくなり、第1導体部11,第2導体部12からある距離を隔てたところで、磁束線は略平らになる。磁束線が平らになるということは、空隙5を通る第1の対称軸L1と平行な方向(Z方向)における磁界成分が極小になることを意味する。   The magnetic flux lines generated by the shunt currents I11 and I12 are closed curves having a symmetrical shape with respect to the first symmetry axis L1 passing through the center of the gap 5, as indicated by the dotted lines in FIG. Since no current flows through the gap 5, the magnetic field becomes weak in the vicinity of the gap 5. For example, as shown in FIG. 2, the magnetic flux lines close to the first conductor portion 11 and the second conductor portion 12 pass through the gap 5 and form a closed curve that individually surrounds the first conductor portion 11 and the second conductor portion 12. When slightly separated from the first conductor portion 11 and the second conductor portion 12, the magnetic flux lines do not penetrate the gap 5, and become a closed curve that surrounds both the first conductor portion 11 and the second conductor portion 12. However, since the magnetic field in the vicinity of the gap 5 is weak, the magnetic flux lines become a closed curve that is recessed toward the gap 5. As the distance from the first conductor portion 11 and the second conductor portion 12 increases, the dent of the magnetic flux line in the direction of the air gap 5 decreases, and the magnetic flux line is separated from the first conductor portion 11 and the second conductor portion 12 by a certain distance. Becomes almost flat. The flat magnetic flux line means that the magnetic field component in the direction (Z direction) parallel to the first axis of symmetry L1 passing through the air gap 5 is minimized.

図2の例において第1導体部11及び第2導体部12は、導電部材10の延伸方向(Y方向)と垂直な断面が矩形形状を有している。また、空隙5を形成する第1導体部11の一側面51と第2導体部12の一側面52は、互いに平行になっている。このような導電部材10の形状は、例えば細長い板状の導電板の中央に、打ち抜き加工によって穴を開けることで簡単に形成できる。   In the example of FIG. 2, the first conductor portion 11 and the second conductor portion 12 have a rectangular cross section perpendicular to the extending direction (Y direction) of the conductive member 10. Further, one side surface 51 of the first conductor part 11 and one side surface 52 of the second conductor part 12 forming the gap 5 are parallel to each other. Such a shape of the conductive member 10 can be easily formed by, for example, punching a hole in the center of an elongated plate-like conductive plate.

磁電変換素子20A,30Bは、被検出電流の誘導磁界に応じた抵抗や電圧などの変化を検出信号として出力する素子であり、例えばGMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などの磁気抵抗変換素子を含んで構成される。磁電変換素子20A,30Bは、磁界の検出感度が最大となる感度軸に加えて、磁界の検出感度に影響を与える感度影響軸を有する。磁電変換素子20Aは、互いに直交する感度軸S1Aと感度影響軸S2Aを有する。磁電変換素子20Bは、互いに直交する感度軸S1Bと感度影響軸S2Bを有する。   The magnetoelectric conversion elements 20A and 30B are elements that output a change in resistance, voltage, or the like according to the induced magnetic field of the current to be detected as a detection signal. The magnetoresistive conversion element is configured. The magnetoelectric conversion elements 20A and 30B have a sensitivity influence axis that affects the detection sensitivity of the magnetic field in addition to the sensitivity axis that maximizes the detection sensitivity of the magnetic field. The magnetoelectric conversion element 20A has a sensitivity axis S1A and a sensitivity influence axis S2A that are orthogonal to each other. The magnetoelectric conversion element 20B has a sensitivity axis S1B and a sensitivity influence axis S2B that are orthogonal to each other.

例えば、ハードバイアス層を備えるGMR素子やTMR素子などの磁気抵抗変化素子では、ハードバイアス層のバイアス磁界によって、強磁性固定層(PIN)の磁化方向に対する磁化自由層の磁化方向の向きを一定方向にバイアスする。これにより、磁界に応じて抵抗値が線形に変化する範囲を広げることができる。このバイアス磁界と同じ方向が、感度影響軸に相当する。バイアス磁界と同じ方向に磁界が加わると、実質的にバイアス磁界が変動することになるため、検出感度の線形性が低下する。バイアス磁界による感度影響軸は、一般に感度軸と直交する。
また、感度の高い磁電変換素子には、感度軸と直交する軸において感度軸より相対的に弱い検出感度を有するものがある。このような感度の弱い軸(副感度軸と呼ばれる場合がある。)も、検出感度に影響を与える軸となる。
For example, in a magnetoresistive change element such as a GMR element or a TMR element including a hard bias layer, the magnetization direction of the magnetization free layer with respect to the magnetization direction of the ferromagnetic pinned layer (PIN) is set to a certain direction by the bias magnetic field of the hard bias layer. To bias. Thereby, the range in which the resistance value changes linearly according to the magnetic field can be expanded. The same direction as the bias magnetic field corresponds to the sensitivity influence axis. When a magnetic field is applied in the same direction as the bias magnetic field, the bias magnetic field substantially fluctuates, so that the linearity of detection sensitivity decreases. The sensitivity influence axis by the bias magnetic field is generally orthogonal to the sensitivity axis.
Some magnetoelectric transducers with high sensitivity have detection sensitivity relatively weaker than the sensitivity axis in an axis orthogonal to the sensitivity axis. Such a weakly sensitive axis (sometimes called a secondary sensitivity axis) is also an axis that affects the detection sensitivity.

磁電変換素子20A,20Bは、空隙5の外側の領域であって、第1の対称軸L1と平行な方向から見て空隙5と重なる領域に配置される。この領域は、空隙5に電流が流れていないことによって、空隙5を通る第1の対称軸L1と平行な方向における磁界成分(Z方向の磁界成分)が小さくなっている。磁電変換素子20A,20Bは、この領域において感度影響軸S2A,S2Bが第1の対称軸L1(Z方向)と平行となる姿勢で配置される。これにより、感度影響軸S2A,S2Bの磁界成分が小さくなるため、検出感度の線形性の低下を抑えることができる。   The magnetoelectric conversion elements 20A and 20B are arranged in a region outside the gap 5 and overlapping the gap 5 when viewed from the direction parallel to the first symmetry axis L1. In this region, since no current flows through the gap 5, the magnetic field component (magnetic field component in the Z direction) in the direction parallel to the first symmetry axis L1 passing through the gap 5 is small. In this region, the magnetoelectric conversion elements 20A and 20B are arranged in such a posture that the sensitivity influence axes S2A and S2B are parallel to the first symmetry axis L1 (Z direction). Thereby, since the magnetic field component of sensitivity influence axis | shaft S2A and S2B becomes small, the fall of the linearity of detection sensitivity can be suppressed.

また、磁電変換素子20A,20Bは、感度影響軸S2A,S2Bが第1の対称軸L1と重なる位置であって、第1の対称軸L1と平行な磁界成分(Z方向の磁界成分)が極小となる位置に配置される。すなわち、磁電変換素子20A,20Bは、第1の対称軸L1の上であって、第1導体部11,第2導体部12から適度な距離を隔てたところにそれぞれ配置される。この位置に磁電変換素子20A,20Bを配置することで、感度影響軸S2A,S2Bの磁界成分を極小にすることができる。   Further, the magnetoelectric conversion elements 20A and 20B are positions where the sensitivity influence axes S2A and S2B overlap with the first symmetry axis L1, and the magnetic field component parallel to the first symmetry axis L1 (magnetic field component in the Z direction) is minimal. It is arranged at the position. That is, the magnetoelectric conversion elements 20 </ b> A and 20 </ b> B are respectively arranged on the first symmetry axis L <b> 1 and at an appropriate distance from the first conductor portion 11 and the second conductor portion 12. By disposing the magnetoelectric conversion elements 20A and 20B at this position, the magnetic field components of the sensitivity affecting axes S2A and S2B can be minimized.

更に、磁電変換素子20A,20Bは、第1の対称軸L1と平行な方向(Z方向)から見て、導電部材10の延伸方向(Y方向)における空隙5の中央(図1における領域AR1の中央)に配置される。空隙5の端部付近では、Y方向の磁界の対称性が乱れているため、Z方向の磁界成分が生じ易くなっている。空隙5の両端部から最も離れた空隙5の中央では、この対称性の乱れによる影響が緩和されるため、感度影響軸S2A,S2Bと平行なZ方向の磁界成分が抑えられる。従って、この位置に感度影響軸S2A,S2Bを配置することで、感度影響軸S2A,S2Bの磁界成分をより小さくすることができる。   Furthermore, the magnetoelectric conversion elements 20A and 20B are viewed from the direction parallel to the first symmetry axis L1 (Z direction), and the center of the gap 5 in the extending direction (Y direction) of the conductive member 10 (in the region AR1 in FIG. 1). (Center). Near the end of the gap 5, the symmetry of the magnetic field in the Y direction is disturbed, so that a magnetic field component in the Z direction is likely to occur. At the center of the gap 5 farthest from both ends of the gap 5, the influence of this symmetry disturbance is alleviated, so that the magnetic field component in the Z direction parallel to the sensitivity influence axes S2A and S2B is suppressed. Therefore, by arranging the sensitivity influence axes S2A and S2B at this position, the magnetic field components of the sensitivity influence axes S2A and S2B can be further reduced.

磁電変換素子20Aと磁電変換素子20Bは、導電部材10の空隙5を挟んで対向する位置に配置される。例えば図2に示すように、共通の第1の対称軸L1の上であって、第1導体部11及び第2導体部12から略等しい距離だけ離れた位置に配置される。第1導体部11及び第2導体部12の断面は第2の対称軸L2に対して線対称な形状を有しているため、磁電変換素子20Aと磁電変換素子20Bにおける被検出電流の誘導磁界の大きさは略等しくなる。   The magnetoelectric conversion element 20 </ b> A and the magnetoelectric conversion element 20 </ b> B are arranged at positions facing each other with the gap 5 of the conductive member 10 interposed therebetween. For example, as shown in FIG. 2, they are arranged on a common first symmetry axis L <b> 1 and at a position separated from the first conductor portion 11 and the second conductor portion 12 by a substantially equal distance. Since the cross sections of the first conductor portion 11 and the second conductor portion 12 have a line-symmetric shape with respect to the second symmetry axis L2, the induced magnetic field of the detected current in the magnetoelectric conversion element 20A and the magnetoelectric conversion element 20B. Are substantially equal in size.

図2の例において、磁電変換素子20Aの感度軸S1Aと磁電変換素子20Bの感度軸S1Bは同一方向(X方向)を向いており、磁電変換素子20Aの感度影響軸S2Aと磁電変換素子20Bの感度影響軸S2Bも同一方向(Z方向)を向いている。そのため、2つの磁電変換素子(20A,20B)の感度軸(S1A,S1B)に作用する被検出電流の誘導磁界は互いに逆方向となり、これらの感度影響軸(S2A,S2B)に作用する被検出電流の誘導磁界も互いに逆方向となる。従って、被検出電流の誘導磁界による磁電変換素子20A及び磁電変換素子20Bの検出信号は、感度軸(S1A,S1B)について逆の極性となり、感度影響軸(S2A,S2B)についても逆の極性となる。   In the example of FIG. 2, the sensitivity axis S1A of the magnetoelectric conversion element 20A and the sensitivity axis S1B of the magnetoelectric conversion element 20B are in the same direction (X direction), and the sensitivity influence axis S2A of the magnetoelectric conversion element 20A and the magnetoelectric conversion element 20B The sensitivity affecting axis S2B is also directed in the same direction (Z direction). Therefore, the induced magnetic fields of the detected currents acting on the sensitivity axes (S1A, S1B) of the two magnetoelectric transducers (20A, 20B) are opposite to each other, and the detected fields acting on these sensitivity influence axes (S2A, S2B). The induced magnetic fields of the currents are also opposite to each other. Accordingly, the detection signals of the magnetoelectric conversion element 20A and the magnetoelectric conversion element 20B due to the induced magnetic field of the detected current have opposite polarities with respect to the sensitivity axes (S1A, S1B), and also with respect to the sensitivity influence axes (S2A, S2B). Become.

図3は、本実施形態に係る電流センサ1の回路構成の一例を示す図である。
本実施形態に係る電流センサ1は、一対の磁電変換素子20A,20Bの出力信号に基づいて電流の検出値を演算する演算部50を有する。この演算部50は、図2に示すように感度軸S1A及び感度軸S1Bが同一方向かつ感度影響軸S2A及び感度影響軸S2Aが同一方向の場合、一対の磁電変換素子20A,20Bの出力信号の差に応じて電流の検出値を演算する。これにより、一対の磁電変換素子20A,20Bにおいて互いに逆の極性を有する誘導磁界の検出信号が、差の演算によって足し合わされる。また、被検出電流とは無関係な外来磁界によって一対の磁電変換素子20A,20Bに生じる検出信号は、被検出電流の誘導磁界の場合と異なり同一の極性を持つことから、演算部50の差の演算によってキャンセルすることができる。
FIG. 3 is a diagram illustrating an example of a circuit configuration of the current sensor 1 according to the present embodiment.
The current sensor 1 according to the present embodiment includes a calculation unit 50 that calculates a detected current value based on the output signals of the pair of magnetoelectric conversion elements 20A and 20B. As shown in FIG. 2, when the sensitivity axis S1A and the sensitivity axis S1B are in the same direction and the sensitivity influence axis S2A and the sensitivity influence axis S2A are in the same direction, the calculation unit 50 outputs the output signals of the pair of magnetoelectric transducers 20A and 20B. The detected current value is calculated according to the difference. Thereby, the detection signals of the induced magnetic fields having opposite polarities in the pair of magnetoelectric conversion elements 20A and 20B are added together by calculating the difference. In addition, the detection signal generated in the pair of magnetoelectric transducers 20A and 20B by the external magnetic field unrelated to the detected current has the same polarity as in the case of the induced magnetic field of the detected current. Can be canceled by calculation.

図4は、本実施形態に係る電流センサの構成の一例を示す図であり、磁電変換素子20A,20Bが実装される回路基板30と磁気シールド40A,40Bを導電部材10とともに図解した図である。
本実施形態に係る電流センサ1は、例えば図4において示すように、導電部材10の延伸方向(Y方向)と直交する平面に沿って配置された回路基板30を有する。この回路基板30は、導電部材10の空隙5を挟んで対向する第1腕部31と第2腕部32を備える。磁電変換素子20Aは第1腕部31に取り付けられ、磁電変換素子20Bは第2腕部32に取り付けられる。このように、一対の磁電変換素子20A,20Bを共通の回路基板30上に取り付けることで、両者を高い精度で位置決めすることが可能となり、位置ずれによる検出精度の低下を抑えることができる。
FIG. 4 is a diagram showing an example of the configuration of the current sensor according to the present embodiment, and is a diagram illustrating the circuit board 30 on which the magnetoelectric conversion elements 20A and 20B are mounted and the magnetic shields 40A and 40B together with the conductive member 10. .
For example, as illustrated in FIG. 4, the current sensor 1 according to the present embodiment includes a circuit board 30 arranged along a plane orthogonal to the extending direction (Y direction) of the conductive member 10. The circuit board 30 includes a first arm portion 31 and a second arm portion 32 that face each other with the gap 5 of the conductive member 10 interposed therebetween. The magnetoelectric conversion element 20 </ b> A is attached to the first arm portion 31, and the magnetoelectric conversion element 20 </ b> B is attached to the second arm portion 32. In this way, by attaching the pair of magnetoelectric conversion elements 20A and 20B on the common circuit board 30, both can be positioned with high accuracy, and a decrease in detection accuracy due to misalignment can be suppressed.

また、本実施形態に係る電流センサ1は、例えば図4において示すように、一対の磁電変換素子20A,20Bを挟んで対向する位置に配置された一対の磁気シールド40A,40Bを有する。導電部材10及び一対の磁電変換素子20A,20Bの外側に磁気シールド40A,40Bを設けることによって、外来磁界の影響を効果的に低減することができる。   Moreover, the current sensor 1 according to the present embodiment includes a pair of magnetic shields 40A and 40B disposed at positions facing each other with the pair of magnetoelectric conversion elements 20A and 20B interposed therebetween, as shown in FIG. 4, for example. By providing the magnetic shields 40A and 40B outside the conductive member 10 and the pair of magnetoelectric conversion elements 20A and 20B, the influence of the external magnetic field can be effectively reduced.

図5は、電流センサ1における誘導磁界の方向をシミュレーションにより求めた結果の一例を示す図である。図5と図14を比較すると、図5に示すシミュレーション結果の方が、導電部材10の幅方向中央付近における磁界の向きが水平に近くなっている。   FIG. 5 is a diagram illustrating an example of a result of obtaining the direction of the induced magnetic field in the current sensor 1 by simulation. When FIG. 5 is compared with FIG. 14, the direction of the magnetic field in the vicinity of the center in the width direction of the conductive member 10 is closer to the horizontal in the simulation result shown in FIG.

図6は、電流センサ1における誘導磁界の強さをシミュレーションにより求めた結果の一例を示すグラフである。図6における「Hx」,「Hy」,「Hz」は、それぞれX方向,Y方向,Z方向の磁界成分を表す。図6の縦軸は各磁界成分の強さを示し、横軸はX方向の位置[mm]を示す。横軸における20[mm]の位置が、導電部材10の幅方向の中央に対応する。
図6と図15を比較すると、図6のシミュレーション結果では、導電部材10の幅方向の中央付近(横軸における20[mm]付近)においてZ方向の磁界成分Hzが略ゼロになっており、このゼロの範囲が幅方向の中央付近において2mm程度も存在している。すなわち、Z方向の磁界成分Hzが極小になる範囲が、従来に比べて格段に広くなっている。
FIG. 6 is a graph showing an example of the result of obtaining the strength of the induced magnetic field in the current sensor 1 by simulation. “Hx”, “Hy”, and “Hz” in FIG. 6 represent magnetic field components in the X, Y, and Z directions, respectively. The vertical axis in FIG. 6 indicates the strength of each magnetic field component, and the horizontal axis indicates the position [mm] in the X direction. The position of 20 [mm] on the horizontal axis corresponds to the center in the width direction of the conductive member 10.
6 and FIG. 15, in the simulation result of FIG. 6, the magnetic field component Hz in the Z direction is substantially zero near the center in the width direction of the conductive member 10 (near 20 [mm] on the horizontal axis). This zero range is about 2 mm near the center in the width direction. That is, the range in which the magnetic field component Hz in the Z direction is minimized is much wider than in the past.

以上説明したように、本実施形態に係る電流センサ1において、導電部材10は、被検出電流の流れる方向へ直線状に延伸しており、その延伸方向に対して垂直な断面が線対称な形状を有している。また、導電部材10は、第1の対称軸L1が通る空隙5を隔てて互いに離間した第1導体部11及び第1導体部11を有しており、被検出電流の分流電流が第1導体部11及び第1導体部11のそれぞれに同じ方向へ流れている。そのため、空隙5の外側の領域であって、第1の対称軸L1と平行な方向から見て空隙5と重なる領域では、空隙5に電流が流れていないことによって、空隙5を通る第1の対称軸L1と平行な方向における磁界成分(Z方向の磁界成分)が小さくなる。従って、磁電変換素子20A,20Bをこの領域に配置し、感度影響軸S2A,S2Bが第1の対称軸L1(Z方向)と平行となるような姿勢を持たせることによって、感度影響軸S2A,S2Bの磁界成分が小さくなり、検出感度の線形性の低下を効果的に抑制することが可能となる。   As described above, in the current sensor 1 according to the present embodiment, the conductive member 10 extends linearly in the direction in which the current to be detected flows, and the cross section perpendicular to the extending direction is line symmetrical. have. In addition, the conductive member 10 includes a first conductor portion 11 and a first conductor portion 11 that are separated from each other with a gap 5 through which the first axis of symmetry L1 passes, and the shunt current of the detected current is the first conductor. The part 11 and the first conductor part 11 flow in the same direction. Therefore, in the area outside the gap 5 and overlapping the gap 5 when viewed from the direction parallel to the first symmetry axis L1, the first current passing through the gap 5 is not flowing through the gap 5. The magnetic field component (magnetic field component in the Z direction) in the direction parallel to the symmetry axis L1 is reduced. Accordingly, the magnetoelectric conversion elements 20A and 20B are arranged in this region, and the sensitivity influencing axes S2A and S2B are arranged such that the sensitivity influencing axes S2A and S2B are parallel to the first symmetry axis L1 (Z direction). The magnetic field component of S2B is reduced, and it is possible to effectively suppress a decrease in detection sensitivity linearity.

なお、上記の実施形態では、導電部材10に1つの空隙5を形成して2本の導体部(11,12)に被検出電流を分流させているが、空隙の数は更に多くてもよい。図7は、本実施形態に係る電流センサの一変形例を示す図であり、3つの空隙(5,6,7)が設けられた導電部材10Aを有する電流センサ1Aを示す。図7に示す導電部材10Aは、図1に示す導電部材10の空隙5の両側に空隙6,7を設けたものである。導電部材10Aにおける第1導体部11は、空隙6により隔てられた2つの導体部101及び102を含む。導電部材10Aにおける第2導体部12は、空隙7により隔てられた2つの導体部103,104を含む。これらの導体部により、被検出電流は4つの電流(I101,I102,I103,I104)に分流する。上記のような導電部材10Aを有する電流センサ1Aにおいても、感度影響軸S2A,S2Bの磁界成分を低減でき、電流センサ1と同様な効果を奏することが可能である。   In the above embodiment, one gap 5 is formed in the conductive member 10 and the current to be detected is divided into the two conductor portions (11, 12). However, the number of gaps may be larger. . FIG. 7 is a view showing a modification of the current sensor according to the present embodiment, and shows a current sensor 1A having a conductive member 10A provided with three gaps (5, 6, 7). The conductive member 10A shown in FIG. 7 is provided with gaps 6 and 7 on both sides of the gap 5 of the conductive member 10 shown in FIG. The first conductor portion 11 in the conductive member 10 </ b> A includes two conductor portions 101 and 102 separated by the gap 6. The second conductor portion 12 in the conductive member 10 </ b> A includes two conductor portions 103 and 104 separated by the gap 7. By these conductor portions, the detected current is divided into four currents (I101, I102, I103, and I104). Also in the current sensor 1A having the conductive member 10A as described above, the magnetic field components of the sensitivity affecting axes S2A and S2B can be reduced, and the same effect as the current sensor 1 can be obtained.

<第2の実施形態>
次に、本発明の第2の実施形態に係る電流センサについて説明する。
上述した第1の実施形態に係る電流センサにおいては、導電部材に空隙を形成することによって感度影響軸の磁界成分が小さくなる領域が形成されるが、本実施形態に係る電流センサにおいては、導電部材に溝を形成することによって感度影響軸の磁界成分が小さくなる領域が形成される。
<Second Embodiment>
Next, a current sensor according to a second embodiment of the present invention will be described.
In the current sensor according to the first embodiment described above, a region where the magnetic field component of the sensitivity influence axis is reduced by forming a gap in the conductive member is formed. By forming the groove in the member, a region where the magnetic field component of the sensitivity influence axis is reduced is formed.

図8は、第2の実施形態に係る電流センサ1Bの構成の一例を示す図であり、導電部材10Bの延伸方向に対して垂直な方向から見た図である。図9は、第2の実施形態に係る電流センサの構成の一例を示す図であり、図8のY2−Y2線における断面図である。図10は、磁電変換素子20A,20Bが実装される回路基板30と磁気シールド40A,40Bを導電部材10Bとともに図解した図である。
本実施形態に係る電流センサ1Bは、被検出電流が流れる導電部材10Bと、その導電部材10Bに流れる被検出電流による誘導磁界を検出する磁電変換素子20A,20Bと、磁電変換素子20A,20Bの出力信号を処理する演算部50と、磁電変換素子20A,20Bが実装される回路基板30と、磁気シールド40A,40Bを有する。磁電変換素子20A,20B、演算部50、回路基板30及び磁気シールド40A,40Bは、既に説明した第1の実施形態に係る電流センサ1と同じものであるため、説明を割愛する。
FIG. 8 is a diagram illustrating an example of the configuration of the current sensor 1B according to the second embodiment, and is a diagram viewed from a direction perpendicular to the extending direction of the conductive member 10B. FIG. 9 is a diagram illustrating an example of the configuration of the current sensor according to the second embodiment, and is a cross-sectional view taken along line Y2-Y2 of FIG. FIG. 10 is a diagram illustrating the circuit board 30 on which the magnetoelectric conversion elements 20A and 20B are mounted and the magnetic shields 40A and 40B together with the conductive member 10B.
The current sensor 1B according to the present embodiment includes a conductive member 10B through which a detected current flows, magnetoelectric conversion elements 20A and 20B that detect an induced magnetic field due to the detected current flowing through the conductive member 10B, and magnetoelectric conversion elements 20A and 20B. It has the calculating part 50 which processes an output signal, the circuit board 30 in which the magnetoelectric conversion elements 20A and 20B are mounted, and magnetic shields 40A and 40B. Since the magnetoelectric conversion elements 20A and 20B, the calculation unit 50, the circuit board 30, and the magnetic shields 40A and 40B are the same as those of the current sensor 1 according to the first embodiment already described, the description thereof is omitted.

導電部材10Bは、直線状に(真っ直ぐに)延伸しており、その延伸方向に被検出電流が流れる。図8の例において、導電部材10は紙面の縦方向(Y方向)に伸び、被検出電流もこれと同じ方向に流れる。   The conductive member 10B extends linearly (straight), and a current to be detected flows in the extending direction. In the example of FIG. 8, the conductive member 10 extends in the vertical direction (Y direction) of the paper surface, and the detected current flows in the same direction.

導電部材10の延伸方向と垂直な断面は、図9における第1の対称軸L1及び第2の対称軸L2に対して対称な形状を有する。第1の対称軸L1は図9の紙面の縦方向(Z方向)に伸び、第2の対称軸L2は図9の紙面の横方向(X方向)に伸びる。図9において、導電部材10Bの被検出電流は、紙面の表から裏の方向(Y方向)へ流れる。   The cross section perpendicular to the extending direction of the conductive member 10 has a symmetrical shape with respect to the first symmetry axis L1 and the second symmetry axis L2 in FIG. The first symmetry axis L1 extends in the vertical direction (Z direction) of the paper surface of FIG. 9, and the second symmetry axis L2 extends in the horizontal direction (X direction) of the paper surface of FIG. In FIG. 9, the detected current of the conductive member 10B flows from the front side to the back side (Y direction).

図9に示すように、被検出電流が流れる方向と垂直な導電部材10Bの断面が線対称な形状を有していることから、この断面を囲む被検出電流の磁束線も、導電部材10Bの断面と同様に、第1の対称軸L1及び第2の対称軸L2に対して線対称な形状を持った閉曲線となる。   As shown in FIG. 9, since the cross section of the conductive member 10B perpendicular to the direction in which the detected current flows has a line-symmetric shape, the magnetic flux lines of the detected current surrounding this cross section are also connected to the conductive member 10B. Similar to the cross section, a closed curve having a line-symmetric shape with respect to the first symmetry axis L1 and the second symmetry axis L2.

また、導電部材10Bは、その表面において第1の対称軸L1の方向に凹んだ一対の溝13A,13Bを有する。図9の例において、導電部材10Bは細長い板状の部材であり、溝13A,13Bは、板状部材の延伸方向(Y方向)と垂直な断面が矩形形状を有している。この溝13A,13Bには、上述した第1の対称軸L1が通る。そのため、導電部材10の延伸方向(Y方向)と垂直な溝13A,13Bの断面は、図9に示すように、第1の対称軸L1に関して対称な形状を有する。また、溝13Aと溝13Bの端面は、第2の対称軸L2に対しても対称な形状を有する。   Further, the conductive member 10B has a pair of grooves 13A and 13B that are recessed in the direction of the first axis of symmetry L1 on the surface thereof. In the example of FIG. 9, the conductive member 10 </ b> B is an elongated plate-like member, and the grooves 13 </ b> A and 13 </ b> B have a rectangular cross section perpendicular to the extending direction (Y direction) of the plate-like member. The first symmetry axis L1 passes through the grooves 13A and 13B. Therefore, the cross sections of the grooves 13A and 13B perpendicular to the extending direction (Y direction) of the conductive member 10 have a symmetrical shape with respect to the first symmetry axis L1, as shown in FIG. Further, the end surfaces of the grooves 13A and 13B have a symmetrical shape with respect to the second symmetry axis L2.

溝13A,13Bが形成される領域AR2において導電部材10Bの延伸方向(Y方向)と垂直な断面は、導電部材10Bの延伸方向(Y方向)の各位置において一様である。すなわち、溝13A,13Bが形成される領域AR1(図1)の任意の位置において、Y方向に垂直な断面が同一となっている。   In the area AR2 where the grooves 13A and 13B are formed, the cross section perpendicular to the extending direction (Y direction) of the conductive member 10B is uniform at each position in the extending direction (Y direction) of the conductive member 10B. That is, the cross section perpendicular to the Y direction is the same at any position in the region AR1 (FIG. 1) where the grooves 13A and 13B are formed.

導電部材10Bに流れる被検出電流によって生じる磁束線は、図9の点線で示すように、溝13A,13Bの中央を通る第1の対称軸L1に対して対称な形状を持った閉曲線となる。溝13A,13Bの空間には電流が流れていないため、溝13A,13Bの付近で磁界は弱くなる。そのため、導電部材10Bを囲む磁束線は、溝13A,13Bに近づく方向へ凹んだ閉曲線となる。導電部材10Bから離れるにつれて、溝13A,13Bの方向への磁束線の凹みは小さくなり、導電部材10Bからある距離を隔てたところで、磁束線は略平らになる。磁束線が平らになるということは、溝13A,13Bを通る第1の対称軸L1と平行な方向(Z方向)における磁界成分が極小になることを意味する。   The magnetic flux lines generated by the detected current flowing through the conductive member 10B are closed curves having a symmetrical shape with respect to the first symmetry axis L1 passing through the centers of the grooves 13A and 13B, as shown by the dotted lines in FIG. Since no current flows in the spaces of the grooves 13A and 13B, the magnetic field becomes weak in the vicinity of the grooves 13A and 13B. Therefore, the magnetic flux lines surrounding the conductive member 10B are closed curves that are recessed in a direction approaching the grooves 13A and 13B. As the distance from the conductive member 10B increases, the dents of the magnetic flux lines in the direction of the grooves 13A and 13B become smaller, and the magnetic flux lines become substantially flat at a distance from the conductive member 10B. The flat magnetic flux line means that the magnetic field component in the direction (Z direction) parallel to the first axis of symmetry L1 passing through the grooves 13A and 13B is minimized.

磁電変換素子20A,20Bは、溝13A,13Bの外側の領域であって、第1の対称軸L1と平行な方向から見て溝13A,13Bと重なる領域に配置される。この領域は、溝13A,13Bの空間に電流が流れていないことによって、溝13A,13Bを通る第1の対称軸L1と平行な方向における磁界成分(Z方向の磁界成分)が小さくなっている。磁電変換素子20A,20Bは、この領域において感度影響軸S2A,S2Bが第1の対称軸L1(Z方向)と平行となる姿勢で配置される。これにより、感度影響軸S2A,S2Bの磁界成分が小さくなるため、検出感度の線形性の低下を抑えることができる   The magnetoelectric conversion elements 20A and 20B are disposed in regions outside the grooves 13A and 13B and overlapping the grooves 13A and 13B when viewed from a direction parallel to the first symmetry axis L1. In this region, since no current flows in the spaces of the grooves 13A and 13B, the magnetic field component in the direction parallel to the first axis of symmetry L1 passing through the grooves 13A and 13B (the magnetic field component in the Z direction) is small. . In this region, the magnetoelectric conversion elements 20A and 20B are arranged in such a posture that the sensitivity influence axes S2A and S2B are parallel to the first symmetry axis L1 (Z direction). As a result, the magnetic field components of the sensitivity-affected axes S2A and S2B are reduced, so that a decrease in linearity of detection sensitivity can be suppressed.

磁電変換素子20A,20Bは、感度影響軸S2A,S2Bが第1の対称軸L1と重なる位置であって、第1の対称軸L1と平行な磁界成分(Z方向の磁界成分)が極小となる位置に配置される。すなわち、磁電変換素子20A,20Bは、第1の対称軸L1の上であって、導電部材10Bから適度な距離を隔てたところにそれぞれ配置される。この位置に磁電変換素子20A,20Bを配置することで、感度影響軸S2A,S2Bの磁界成分を極小にすることができる。   The magnetoelectric conversion elements 20A and 20B are positions where the sensitivity influence axes S2A and S2B overlap the first symmetry axis L1, and the magnetic field component parallel to the first symmetry axis L1 (magnetic field component in the Z direction) is minimized. Placed in position. That is, the magnetoelectric conversion elements 20A and 20B are respectively arranged on the first symmetry axis L1 and at an appropriate distance from the conductive member 10B. By disposing the magnetoelectric conversion elements 20A and 20B at this position, the magnetic field components of the sensitivity affecting axes S2A and S2B can be minimized.

更に、磁電変換素子20A,20Bは、第1の対称軸L1と平行な方向(Z方向)から見て、導電部材10Bの延伸方向(Y方向)における溝13A,13Bの中央(図8における領域AR2の中央)に配置される。溝13A,13Bの端部付近では、Y方向の磁界の対称性が乱れているため、Z方向の磁界成分が生じ易くなっている。溝13A,13Bの両端部から最も離れた溝13A,13Bの中央では、この対称性の乱れによる影響が緩和されるため、感度影響軸S2A,S2Bと平行なZ方向の磁界成分が抑えられる。従って、この位置に感度影響軸S2A,S2Bを配置することで、感度影響軸S2A,S2Bの磁界成分をより小さくすることができる。   Furthermore, the magnetoelectric conversion elements 20A and 20B are viewed from the direction parallel to the first symmetry axis L1 (Z direction), and the center of the grooves 13A and 13B in the extending direction (Y direction) of the conductive member 10B (region in FIG. 8). Arranged at the center of AR2. Near the ends of the grooves 13A and 13B, the symmetry of the magnetic field in the Y direction is disturbed, so that a magnetic field component in the Z direction is likely to be generated. At the center of the grooves 13A and 13B farthest from both ends of the grooves 13A and 13B, the influence of this symmetry disturbance is alleviated, so that the magnetic field component in the Z direction parallel to the sensitivity affecting axes S2A and S2B is suppressed. Therefore, by arranging the sensitivity influence axes S2A and S2B at this position, the magnetic field components of the sensitivity influence axes S2A and S2B can be further reduced.

磁電変換素子20Aと磁電変換素子20Bは、導電部材10Bの溝13A,13Bを挟んで対向する位置に配置される。例えば図9に示すように、共通の第1の対称軸L1の上であって、導電部材10Bから略等しい距離だけ離れた位置に配置される。導電部材10Bの断面は第2の対称軸L2において線対称な形状を有しているため、磁電変換素子20Aと磁電変換素子20Bにおける被検出電流の誘導磁界の大きさは略等しくなる。   The magnetoelectric conversion element 20A and the magnetoelectric conversion element 20B are arranged at positions facing each other across the grooves 13A and 13B of the conductive member 10B. For example, as shown in FIG. 9, it is arranged on the common first symmetry axis L1 and at a position away from the conductive member 10B by a substantially equal distance. Since the cross section of the conductive member 10B has a line-symmetric shape with respect to the second symmetry axis L2, the magnitudes of the induced magnetic fields of the detected currents in the magnetoelectric conversion element 20A and the magnetoelectric conversion element 20B are substantially equal.

図11は、電流センサ1Bにおける誘導磁界の方向をシミュレーションにより求めた結果の一例を示す図である。図11と図14を比較すると、図11に示すシミュレーション結果の方が、導電部材10Bの幅方向中央付近における磁界の向きが水平に近くなっている。   FIG. 11 is a diagram illustrating an example of a result of obtaining the direction of the induced magnetic field in the current sensor 1B by simulation. Comparing FIG. 11 and FIG. 14, in the simulation result shown in FIG. 11, the direction of the magnetic field near the center in the width direction of the conductive member 10B is closer to the horizontal.

図12は、電流センサ1における誘導磁界の強さをシミュレーションにより求めた結果の一例を示すグラフである。図6に示すシミュレーション結果と同様に、横軸における20[mm]の位置が導電部材10Bの幅方向の中央に対応する。
図12と図15を比較すると、図12のシミュレーション結果では、導電部材10の幅方向の中央付近においてZ方向の磁界成分Hzが略ゼロになっており、このゼロの範囲が幅方向の中央付近において1mm程度存在している。すなわち、Z方向の磁界成分Hzが極小になる範囲が、従来に比べて格段に広くなっている。
FIG. 12 is a graph showing an example of the result of obtaining the strength of the induced magnetic field in the current sensor 1 by simulation. Similar to the simulation result shown in FIG. 6, the position of 20 [mm] on the horizontal axis corresponds to the center in the width direction of the conductive member 10B.
12 and FIG. 15, in the simulation result of FIG. 12, the magnetic field component Hz in the Z direction is substantially zero near the center in the width direction of the conductive member 10, and this zero range is near the center in the width direction. About 1 mm. That is, the range in which the magnetic field component Hz in the Z direction is minimized is much wider than in the past.

以上説明したように、本実施形態に係る電流センサ1Bにおいて、導電部材10Bは、被検出電流の流れる方向へ直線状に延伸しており、その延伸方向に対して垂直な断面が線対称な形状を有している。また導電部材10Bの表面には、第1の対称軸L1が通る溝13A,13Bが設けられている。そのため、溝13A,13Bの外側の領域であって、第1の対称軸L1と平行な方向から見て溝13A,13Bと重なる領域では、溝13A,13Bの空間に電流が流れていないことによって、溝13A,13Bを通る第1の対称軸L1と平行な方向における磁界成分(Z方向の磁界成分)が小さくなる。従って、磁電変換素子20A,20Bをこの領域に配置し、感度影響軸S2A,S2Bが第1の対称軸L1(Z方向)と平行となるような姿勢を持たせることによって、感度影響軸S2A,S2Bの磁界成分が小さくなり、検出感度の線形性の低下を効果的に抑制することが可能となる。   As described above, in the current sensor 1B according to the present embodiment, the conductive member 10B extends linearly in the direction in which the current to be detected flows, and the cross section perpendicular to the extending direction is line symmetrical. have. Further, grooves 13A and 13B through which the first axis of symmetry L1 passes are provided on the surface of the conductive member 10B. Therefore, in the region outside the grooves 13A and 13B and overlapping with the grooves 13A and 13B when viewed from the direction parallel to the first symmetry axis L1, no current flows in the spaces of the grooves 13A and 13B. The magnetic field component (magnetic field component in the Z direction) in the direction parallel to the first axis of symmetry L1 passing through the grooves 13A and 13B is reduced. Accordingly, the magnetoelectric conversion elements 20A and 20B are arranged in this region, and the sensitivity influencing axes S2A and S2B are arranged such that the sensitivity influencing axes S2A and S2B are parallel to the first symmetry axis L1 (Z direction). The magnetic field component of S2B is reduced, and it is possible to effectively suppress a decrease in detection sensitivity linearity.

以上、本発明の幾つかの実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、種々のバリエーションを含んでいる。   As mentioned above, although several embodiment of this invention was described, this invention is not limited to embodiment mentioned above, Various modifications are included.

上述した実施形態では、2つの磁電変換素子(20A,20B)の感度軸(S1A,S1B)が同一方向を向き、これらの感度影響軸(S2A,S2B)も同一方向を向く例を挙げているが、本発明はこれに限定されない。本発明の他の実施形態では、2つの磁電変換素子(20A,20B)の感度軸(S1A,S1B)が逆方向を向き、これらの感度影響軸(S2A,S2B)も逆方向を向くようにしてよい。この場合、演算部50は、2つの磁電変換素子(20A,20B)の出力信号の和に応じて電流の検出値を演算する。これにより、被検出電流に応じた検出値が得られるとともに、外来磁界による検出値の誤差を和の演算によってキャンセルできる。   In the above-described embodiment, the sensitivity axes (S1A, S1B) of the two magnetoelectric transducers (20A, 20B) are directed in the same direction, and the sensitivity influence axes (S2A, S2B) are also directed in the same direction. However, the present invention is not limited to this. In another embodiment of the present invention, the sensitivity axes (S1A, S1B) of the two magnetoelectric transducers (20A, 20B) are directed in opposite directions, and the sensitivity influence axes (S2A, S2B) are also directed in opposite directions. It's okay. In this case, the computing unit 50 computes the detected current value according to the sum of the output signals of the two magnetoelectric transducers (20A, 20B). As a result, a detection value corresponding to the current to be detected can be obtained, and an error in the detection value due to the external magnetic field can be canceled by calculating the sum.

上述した実施形態では、2つの磁電変換素子20A,20Bを用いて電流センサを構成する例を挙げたが、磁電変換素子の数は1つでもよいし、3以上でもよい。   In the embodiment described above, an example in which a current sensor is configured using two magnetoelectric conversion elements 20A and 20B has been described, but the number of magnetoelectric conversion elements may be one or three or more.

上述した実施形態では、溝13A,13Bが矩形であったが、台形でも良い。   In the embodiment described above, the grooves 13A and 13B are rectangular, but may be trapezoidal.

1,1A,1B…電流センサ、10,10A,10B…導電部材、11…第1導電部、12…第2導電部、5,6,7…空隙、13A,13B…溝、20A,20B…磁電変換素子、30…回路基板、31…第1腕部、32…第2腕部、40A,40B…磁気シールド、50…演算部、S1A,S1B…感度軸、S2A,S2B…感度影響軸、L1…第1の対称軸、L2…第2の対称軸。
DESCRIPTION OF SYMBOLS 1,1A, 1B ... Current sensor 10, 10A, 10B ... Conductive member, 11 ... 1st conductive part, 12 ... 2nd conductive part, 5, 6, 7 ... Air gap, 13A, 13B ... Groove, 20A, 20B ... Magnetoelectric conversion element, 30 ... circuit board, 31 ... first arm, 32 ... second arm, 40A, 40B ... magnetic shield, 50 ... arithmetic unit, S1A, S1B ... sensitivity axis, S2A, S2B ... sensitivity influence axis, L1 ... first symmetry axis, L2 ... second symmetry axis.

Claims (15)

磁界の検出感度が最大となる感度軸と、磁界の検出感度に影響を与える感度影響軸とを有する少なくとも1つの磁気抵抗効果素子と、
被検出電流が流れる方向へ直線状に延伸し、当該延伸方向と垂直な断面が仮想的な第1の対称軸に対して線対称な形状を有する導電部材と
を備え、
前記導電部材は、前記第1の対称軸が通る空隙を隔てて互いに離間し、前記被検出電流の分流電流がそれぞれ同じ方向に流れる第1導電部及び第2導電部を含み、
前記磁気抵抗効果素子は、前記感度影響軸が前記第1の対称軸と平行となる姿勢で、前記空隙の外側の領域であって、前記第1の対称軸と平行な方向から見て前記空隙と重なる領域に配置される
ことを特徴とする電流センサ。
At least one magnetoresistive element having a sensitivity axis that maximizes the magnetic field detection sensitivity and a sensitivity influence axis that affects the magnetic field detection sensitivity;
A conductive member extending linearly in the direction in which the current to be detected flows, and having a cross section perpendicular to the extending direction and a line symmetric shape with respect to a virtual first symmetry axis;
The conductive member includes a first conductive portion and a second conductive portion that are spaced apart from each other with a gap through which the first axis of symmetry passes, and the shunt currents of the detected current flow in the same direction,
The magnetoresistive element is in a posture before Symbol sensitivity effect axis is parallel to the first axis of symmetry, an outer region of the gap, the viewed from the first axis of symmetry parallel to direction A current sensor characterized in that it is arranged in a region that overlaps with the air gap .
前記磁気抵抗効果素子は、前記感度影響軸が前記第1の対称軸と重なる位置であって、前記感度影響軸と平行な磁界成分が極小となる位置に配置される
ことを特徴とする請求項1に記載の電流センサ。
The magnetoresistive effect element is arranged at a position where the sensitivity influence axis overlaps the first symmetry axis and a magnetic field component parallel to the sensitivity influence axis is minimized. The current sensor according to 1.
前記磁気抵抗効果素子は、前記第1の対称軸と平行な方向から見て、前記延伸方向における前記空隙の中央に配置される
ことを特徴とする請求項1又は2に記載の電流センサ。
The current sensor according to claim 1, wherein the magnetoresistive element is disposed at a center of the gap in the extending direction when viewed from a direction parallel to the first symmetry axis.
前記延伸方向における前記第1導電部及び前記第2導電部の断面は、前記第1の対称軸と直交する第2の対称軸に対して線対称な形状をしており、
前記第1の対称軸と平行な方向において前記空隙を挟んで対向する位置に配置された一対の前記磁気抵抗効果素子と、
前記一対の磁気抵抗効果素子の出力信号に基づいて電流の検出値を演算する演算部とを有する
ことを特徴する請求項1乃至3のいずれか一項に記載の電流センサ。
Cross sections of the first conductive portion and the second conductive portion in the extending direction have a shape that is line symmetric with respect to a second symmetry axis that is orthogonal to the first symmetry axis;
A pair of magnetoresistive elements disposed at positions facing each other across the gap in a direction parallel to the first symmetry axis;
The current sensor according to any one of claims 1 to 3, further comprising a calculation unit that calculates a detected current value based on output signals of the pair of magnetoresistive elements.
前記導電部材の前記延伸方向と直交する平面に沿って配置された回路基板を有し、
前記回路基板は、前記導電部材の前記空隙を挟んで対向する第1腕部と第2腕部を含み、
前記一対の磁気抵抗効果素子の一方が前記第1腕部に取り付けられ、
前記一対の磁気抵抗効果素子の他方が前記第2腕部に取り付けられる
ことを特徴とする請求項4に記載の電流センサ。
A circuit board disposed along a plane orthogonal to the extending direction of the conductive member;
The circuit board includes a first arm portion and a second arm portion facing each other across the gap of the conductive member,
One of the pair of magnetoresistive elements is attached to the first arm,
The current sensor according to claim 4, wherein the other of the pair of magnetoresistive elements is attached to the second arm portion.
前記一対の磁気抵抗効果素子を挟んで対向する位置に配置された一対の磁気シールドを有する
ことを特徴とする請求項4又は5に記載の電流センサ。
6. The current sensor according to claim 4, further comprising a pair of magnetic shields disposed at positions facing each other with the pair of magnetoresistive elements interposed therebetween.
前記第1導電部及び前記第2導電部は、前記延伸方向と垂直な断面が矩形形状を有し、
前記空隙を形成する前記第1導電部の一側面と前記第2導電部の一側面とが互いに平行である
ことを特徴とする請求項1乃至6のいずれか一項に記載の電流センサ。
The first conductive part and the second conductive part have a rectangular cross section perpendicular to the extending direction,
The current sensor according to claim 1, wherein one side surface of the first conductive portion and one side surface of the second conductive portion that form the gap are parallel to each other.
磁界の検出感度が最大となる感度軸と、磁界の検出感度に影響を与える感度影響軸とを有する少なくとも1つの磁気抵抗効果素子と、
被検出電流が流れる方向へ直線状に延伸し、当該延伸方向と垂直な断面が仮想的な第1の対称軸に対して線対称な形状を有する導電部材と
を備え、
前記導電部材は、前記第1の対称軸が通り、当該第1の対称軸の方向に凹んだ溝を有し、
前記磁気抵抗効果素子は、前記感度影響軸が前記第1の対称軸と平行となる姿勢で、前記溝の外側の領域であって、前記第1の対称軸と平行な方向から見て前記溝と重なる領域に配置される
ことを特徴とする電流センサ。
At least one magnetoresistive element having a sensitivity axis that maximizes the magnetic field detection sensitivity and a sensitivity influence axis that affects the magnetic field detection sensitivity;
A conductive member extending linearly in the direction in which the current to be detected flows, and having a cross section perpendicular to the extending direction and a line symmetric shape with respect to a virtual first symmetry axis;
The conductive member has a groove that passes through the first axis of symmetry and is recessed in the direction of the first axis of symmetry;
The magnetoresistive element is in a posture before Symbol sensitivity effect axis is parallel to the first axis of symmetry, wherein a region outside the groove, the viewed from the first axis of symmetry parallel to direction A current sensor characterized by being arranged in a region overlapping with a groove .
前記磁気抵抗効果素子は、前記感度影響軸が前記第1の対称軸と重なる位置であって、前記感度影響軸と平行な磁界成分が極小となる位置に配置される
ことを特徴とする請求項8に記載の電流センサ。
The magnetoresistive effect element is arranged at a position where the sensitivity influence axis overlaps the first symmetry axis and a magnetic field component parallel to the sensitivity influence axis is minimized. The current sensor according to claim 8.
前記磁気抵抗効果素子は、前記第1の対称軸と平行な方向から見て、前記溝の前記延伸方向における中央に配置される
ことを特徴とする請求項8又は9に記載の電流センサ。
10. The current sensor according to claim 8, wherein the magnetoresistive element is arranged at a center in the extending direction of the groove when viewed from a direction parallel to the first symmetry axis.
前記延伸方向における前記導電部材の断面は、前記第1の対称軸と直交する第2の対称軸に対して線対称な形状をしており、
前記導電部材は、前記延伸方向に延びた一対の前記溝を有しており、
前記第1の対称軸と平行な方向において前記一対の溝を挟んで対向する位置に配置された一対の前記磁気抵抗効果素子と、
前記一対の磁気抵抗効果素子の出力信号に基づいて電流の検出値を演算する演算部とを有する
ことを特徴する請求項8乃至10のいずれか一項に記載の電流センサ。
The cross section of the conductive member in the extending direction has a shape that is line symmetric with respect to a second symmetry axis that is orthogonal to the first symmetry axis;
The conductive member has a pair of grooves extending in the extending direction,
A pair of magnetoresistive elements disposed at positions facing each other across the pair of grooves in a direction parallel to the first symmetry axis;
The current sensor according to any one of claims 8 to 10, further comprising: an arithmetic unit that calculates a detected current value based on output signals of the pair of magnetoresistive elements.
前記導電部材の前記延伸方向と直交する平面に沿って配置された回路基板を有し、
前記回路基板は、前記一対の溝を挟んで対向する第1腕部と第2腕部を含み、
前記一対の磁気抵抗効果素子の一方が前記第1腕部に取り付けられ、
前記一対の磁気抵抗効果素子の他方が前記第2腕部に取り付けられる
ことを特徴とする請求項11に記載の電流センサ。
A circuit board disposed along a plane orthogonal to the extending direction of the conductive member;
The circuit board includes a first arm portion and a second arm portion facing each other across the pair of grooves,
One of the pair of magnetoresistive elements is attached to the first arm,
The current sensor according to claim 11, wherein the other of the pair of magnetoresistive elements is attached to the second arm portion.
前記一対の磁気抵抗効果素子を挟んで対向する位置に配置された一対の磁気シールドを有する
ことを特徴とする請求項11又は12に記載の電流センサ。
The current sensor according to claim 11, further comprising a pair of magnetic shields disposed at positions facing each other with the pair of magnetoresistive elements interposed therebetween.
前記溝は、前記延伸方向と垂直な断面が矩形状若しくは台形状に形成される、
ことを特徴とする請求項8乃至13のいずれか一項に記載の電流センサ。
The groove is formed in a rectangular or trapezoidal cross section perpendicular to the extending direction.
The current sensor according to claim 8, wherein the current sensor is a current sensor.
前記磁気抵抗効果素子は、前記被検出電流により生じる磁束線が平らになる位置に配置されるThe magnetoresistive element is disposed at a position where a magnetic flux line generated by the detected current is flattened.
ことを特徴とする請求項1乃至14のいずれか一項に記載の電流センサ。The current sensor according to claim 1, wherein the current sensor is a current sensor.
JP2013206613A 2013-10-01 2013-10-01 Current sensor Active JP6144597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206613A JP6144597B2 (en) 2013-10-01 2013-10-01 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206613A JP6144597B2 (en) 2013-10-01 2013-10-01 Current sensor

Publications (2)

Publication Number Publication Date
JP2015072124A JP2015072124A (en) 2015-04-16
JP6144597B2 true JP6144597B2 (en) 2017-06-07

Family

ID=53014606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206613A Active JP6144597B2 (en) 2013-10-01 2013-10-01 Current sensor

Country Status (1)

Country Link
JP (1) JP6144597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6651956B2 (en) * 2016-04-01 2020-02-19 日立金属株式会社 Current sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9500974D0 (en) * 1995-01-18 1995-03-08 Horstmann Timers & Controls Electricity measurement apparatus
DE19838536A1 (en) * 1998-08-25 2000-03-02 Lust Antriebstechnik Gmbh Device and method for forming one or more magnetic field gradients through a straight conductor
JP3631925B2 (en) * 1999-09-07 2005-03-23 矢崎総業株式会社 Current detector and electrical junction box using the same
JP2002277491A (en) * 2001-03-21 2002-09-25 Stanley Electric Co Ltd Current sensor
JP2003028899A (en) * 2001-07-13 2003-01-29 Stanley Electric Co Ltd Current sensor
JP2005283451A (en) * 2004-03-30 2005-10-13 Asahi Kasei Electronics Co Ltd Current measuring device and current measuring method
DE102008039568B4 (en) * 2008-08-25 2015-03-26 Seuffer gmbH & Co. KG Current detection device
US8975889B2 (en) * 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
JP5773813B2 (en) * 2011-09-09 2015-09-02 三菱電機株式会社 Current detector and semiconductor device including the same
JP2013088370A (en) * 2011-10-21 2013-05-13 Alps Green Devices Co Ltd Current sensor
JP5985847B2 (en) * 2012-03-22 2016-09-06 スタンレー電気株式会社 Current detector

Also Published As

Publication number Publication date
JP2015072124A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US10184960B2 (en) Current sensor
JP5531217B2 (en) Current sensor
JP6651956B2 (en) Current sensor
JP5489145B1 (en) Current sensor
JP6711086B2 (en) Current sensor
JP5648246B2 (en) Current sensor
JP6303527B2 (en) Current sensor
JP6690433B2 (en) Current sensor
JP2013148512A (en) Current sensor
JPWO2016148022A1 (en) Current sensor
EP2899551A2 (en) Current detection structure
JP2013142623A (en) Current sensor
JP2015036636A (en) Current sensor
WO2013038867A1 (en) Electric-current sensor
JP2016200438A (en) Current sensor
JP2019100922A (en) Current sensor
JP6144597B2 (en) Current sensor
JP3191252U (en) Current sensor
JP2013210216A (en) Current detection device and current detection method
JP6671986B2 (en) Current sensor and method of manufacturing the same
JP2014066623A (en) Current sensor
EP4043890A1 (en) Magnetic sensor and current detection device comprising same
JP2015132516A (en) Electric current detection structure
US20200018804A1 (en) Electric current sensor
WO2024085258A1 (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170511

R150 Certificate of patent or registration of utility model

Ref document number: 6144597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350