JP6671985B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP6671985B2
JP6671985B2 JP2016014024A JP2016014024A JP6671985B2 JP 6671985 B2 JP6671985 B2 JP 6671985B2 JP 2016014024 A JP2016014024 A JP 2016014024A JP 2016014024 A JP2016014024 A JP 2016014024A JP 6671985 B2 JP6671985 B2 JP 6671985B2
Authority
JP
Japan
Prior art keywords
conductor
current
magnetic sensor
conductive region
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016014024A
Other languages
Japanese (ja)
Other versions
JP2017133942A (en
Inventor
蛇口 広行
広行 蛇口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Alps Alpine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Alps Alpine Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2016014024A priority Critical patent/JP6671985B2/en
Publication of JP2017133942A publication Critical patent/JP2017133942A/en
Application granted granted Critical
Publication of JP6671985B2 publication Critical patent/JP6671985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、導電体を流れる電流を検出する電流センサに関するものである。   The present invention relates to a current sensor that detects a current flowing through a conductor.

電流路(バスバー)となる導電体に貫通穴を設け、当該貫通穴に2つの磁気センサを設けた電流センサが特許文献1に開示されている。この電流センサでは、2つの磁気センサを近づけて設けているため、空間的に偏った外来磁場(ノイズとなる磁場)の原因となる磁気ノイズ源がある場合でも、2つの磁気センサ付近に生じる外来磁場をほぼ等しくできる。そのため、2つの磁気センサ付近の磁界検出結果の差を算出することで、外来磁場の磁界成分を除去でき、測定誤差を小さくできる。   Patent Literature 1 discloses a current sensor in which a through hole is provided in a conductor serving as a current path (bus bar), and two magnetic sensors are provided in the through hole. In this current sensor, since two magnetic sensors are provided close to each other, even if there is a magnetic noise source that causes a spatially biased external magnetic field (magnetic field that is a noise), an external noise generated near the two magnetic sensors may occur. The magnetic fields can be almost equal. Therefore, by calculating the difference between the magnetic field detection results near the two magnetic sensors, the magnetic field component of the external magnetic field can be removed, and the measurement error can be reduced.

特開2006−184269号公報JP 2006-184269 A 特開平9−93771号公報JP-A-9-93771 特開平10−73619号公報JP-A-10-73619 特開2003−28899号公報JP 2003-28899 A 特開2010−85228号公報JP 2010-85228 A 特開2010−112767号公報JP 2010-112767 A 特開2010−117165号公報JP 2010-117165 A 特開2010−121983号公報JP 2010-121983 A 特開2014−55790号公報JP 2014-55790 A 特開2015−72124号公報JP-A-2005-72124 特開2015−135267号公報JP 2015-135267 A 特開2015−137892号公報JP 2015-137892 A 特開2015−137894号公報JP 2015-137894 A

しかしながら、上述した従来の電流センサでは、2つの磁気センサを近づけすぎると、当該2つの磁気センサ付近に生じる誘導磁界の差が小さくなり、S/N特性が低下してしまうという問題がある。   However, in the above-described conventional current sensor, if the two magnetic sensors are too close to each other, there is a problem that the difference between the induced magnetic fields generated in the vicinity of the two magnetic sensors is reduced, and the S / N characteristics are reduced.

また、特許文献2〜13には、バスバーを開口部により分流する構成の電流センサが開示されている。しかしながら、特許文献2〜13に開示された電流センサでは、開口部の幅に対して高さ(厚さ)が薄く、開口部内における磁束密度勾配が小さい。そのため、2つの磁気センサを近づけすぎると、当該2つの磁気センサ付近に生じる誘導磁界の差が小さくなり、S/N特性が低下してしまうという問題がある。   Patent Documents 2 to 13 disclose current sensors having a configuration in which a bus bar is divided by an opening. However, in the current sensors disclosed in Patent Documents 2 to 13, the height (thickness) is smaller than the width of the opening, and the magnetic flux density gradient in the opening is small. Therefore, if the two magnetic sensors are too close to each other, the difference between the induced magnetic fields generated in the vicinity of the two magnetic sensors becomes small, and there is a problem that the S / N characteristics are reduced.

本発明は、外来磁場の影響を抑制して導電体を流れる電流を高精度に検出できる電流センサを提供することを目的とする。   An object of the present invention is to provide a current sensor that can detect a current flowing through a conductor with high accuracy while suppressing the influence of an external magnetic field.

上述した従来技術の問題点を解決し、上述した目的を達成するために、本発明の電流センサは、電流流入部同士および電流流出部同士がそれぞれ電気的に接続され、相互に平行して延在する第1の導体部および第2の導体部と、前記第1の導体部と第2の導体部との間に形成された非導領域内において前記第1の導体部および前記第2の導体部との間の距離が相互に異なる位置に設けられ、前記第1の導体部および前記第2の導体部を流れる電流によって生じる誘導磁界を検出する第1の磁気センサおよび第2の磁気センサと、
を有し、前記非導領域の幅となる前記第1の導体部と前記第2の導体部との間の距離である非導電領域幅xと、前記非導電領域幅xの方向と前記第1の導体部および前記第2の導体部の電流方向との双方に直交する方向の高さtとの下記式(1)
[数1]
R=t/x …(1)
で示される比率Rが、下記式(2)
[数2]
1/4≦R≦1 …(2)
を満たし、
前記第1の磁気センサは前記第2の磁気センサに比べて前記第1の導体部側に設けられ、
前記第2の磁気センサは前記第1の磁気センサに比べて前記第2の導体部側に設けられ、
前記第1の導体部と前記第2の導体部とは、前記高さの方向および電流の通流方向の双方に沿った仮想面に対して面対称であり、
前記第1の導体部と前記第1の磁気センサの距離と、前記第2の導体部と前記第2の磁気センサの距離とが等しく、
前記比率Rは、前記式(2)の範囲において、前記非導電領域内の前記非導電領域幅xの方向における中心の磁束密度勾配が最大となるように規定されている。
In order to solve the above-mentioned problems of the related art and achieve the above-described object, the current sensor of the present invention is configured such that current inflow portions and current outflow portions are electrically connected to each other and extend in parallel with each other. the first conductor section and a second conductor portion, the first conductor portion and said first conductor portion and the non-conductive region formed between the second conductor portion and the second for standing A first magnetic sensor and a second magnetic sensor that are provided at different positions with respect to each other and detect an induced magnetic field generated by a current flowing through the first conductor and the second conductor. Sensors and
The a, a non-conductive region width x which is the distance between the width and becomes the second conductor portion and the first conductor portion of the non-conductive region, wherein the direction of the non-conductive region width x The following expression (1) with the height t in the direction perpendicular to both the current direction of the first conductor and the second conductor.
[Equation 1]
R = t / x (1)
The ratio R represented by the following formula (2)
[Equation 2]
1/4 ≦ R ≦ 1 (2)
The filling,
The first magnetic sensor is provided closer to the first conductor than the second magnetic sensor,
The second magnetic sensor is provided closer to the second conductor than the first magnetic sensor,
The first conductor portion and the second conductor portion are plane-symmetric with respect to an imaginary plane along both the height direction and the current flowing direction,
The distance between the first conductor and the first magnetic sensor is equal to the distance between the second conductor and the second magnetic sensor,
The ratio R is defined such that the magnetic flux density gradient at the center in the direction of the non-conductive region width x in the non-conductive region is maximized in the range of the expression (2).

この構成によれば、第1の磁気センサおよび第2の磁気センサに、それぞれ第1の導電部および第2の導電部から逆方向の磁界が与えられる。また、第1の磁気センサおよび第2の磁気センサには、略同じ大きさ且つ略同一方向の外来磁界が与えられる。
そのため、第1の磁気センサおよび第2の磁気センサの検出結果の差から、前記第1の導体部および前記第2の導体部を流れる電流値を算出できる。
また、この構成によれば、第1の磁気センサおよび第2の磁気センサが位置する非導体領域内の磁束密度勾配を大きくできるので、第1の磁気センサおよび第2の磁気センサに生じる第1の導電部および第2の導電部を流れる電流の誘導磁界の差を大きくすることができ、高い測定精度を得ることができる。
According to this configuration, the first magnetic sensor and the second magnetic sensor are provided with the opposite magnetic fields from the first conductive unit and the second conductive unit, respectively. An external magnetic field having substantially the same size and substantially the same direction is applied to the first magnetic sensor and the second magnetic sensor.
Therefore, the value of the current flowing through the first conductor and the second conductor can be calculated from the difference between the detection results of the first magnetic sensor and the second magnetic sensor.
In addition, according to this configuration, the magnetic flux density gradient in the non-conductor region where the first magnetic sensor and the second magnetic sensor are located can be increased, so that the first magnetic sensor and the second magnetic sensor have the first magnetic sensor. The difference between the induced magnetic fields of the current flowing through the conductive portion and the second conductive portion can be increased, and high measurement accuracy can be obtained.

また、この構成によれば、第1の磁気センサおよび第2の磁気センサが位置する非導体領域内の磁束密度勾配を大きくできるので、第1の磁気センサおよび第2の磁気センサを近づけることができ、両磁気センサに生じる外来磁場の影響を高精度に除去でき、高い測定精度を実現できる。   Further, according to this configuration, the magnetic flux density gradient in the non-conductor region where the first magnetic sensor and the second magnetic sensor are located can be increased, so that the first magnetic sensor and the second magnetic sensor can be brought closer. As a result, the influence of an external magnetic field generated on both magnetic sensors can be removed with high accuracy, and high measurement accuracy can be realized.

この構成によれば、前記非導体領域内の前記磁束密度勾配を最大にするため、第1の磁気センサおよび第2の磁気センサを最も近づけることができ、外来磁場の影響を除去して、かつ第1の磁気センサおよび第2の磁気センサに生じる第1の導電部および第2の導電部を流れる電流の誘導磁界の差を最大限に大きくすることができ、高い測定精度を得ることができる。   According to this configuration, in order to maximize the magnetic flux density gradient in the non-conductive region, the first magnetic sensor and the second magnetic sensor can be brought closest to each other, and the influence of an external magnetic field can be removed. The difference between the induced magnetic fields of the currents flowing through the first conductive part and the second conductive part, which occur in the first magnetic sensor and the second magnetic sensor, can be maximized, and high measurement accuracy can be obtained. .

この構成によれば、前記第1の導体部と前記第2の導体部とが前記仮想面に対して面対称であり、且つ前記第1の導体部と前記第1の磁気センサの距離と、前記第2の導体部と前記第2の磁気センサの距離とが等しい。そのため、前記第1の磁気センサおよび前記第2の磁気センサの位置決めが容易となり、高い位置決め精度により高精度な測定を行うことができると共に、製造コストを抑えることができる。   According to this configuration, the first conductor and the second conductor are plane-symmetric with respect to the virtual plane, and a distance between the first conductor and the first magnetic sensor; The distance between the second conductor and the second magnetic sensor is equal. Therefore, the first magnetic sensor and the second magnetic sensor can be easily positioned, high-precision measurement can be performed with high positioning accuracy, and the manufacturing cost can be reduced.

好適には本発明の電流センサは、前記Rが下記式(3)を満たす。
[数3]
0. 4≦R≦0.6 …(3)
Preferably, in the current sensor of the present invention, R satisfies the following expression (3).
[Equation 3]
0. 4 ≦ R ≦ 0.6 (3)

好適には本発明の電流センサは、前記第1の導体部および前記第2の導体部の前記電流方向と直交する断面は矩形である。
この構成によれば、前記第1の導体部および前記第2の導体部の電流入部側および電流流出部側の断面を矩形にすれば、比較的、シンプルな形状にすることができ、製造工程を簡単できる。
Preferably, in the current sensor of the present invention, a cross section of the first conductor portion and the second conductor portion orthogonal to the current direction is rectangular.
According to this configuration, if the cross sections of the first conductor portion and the second conductor portion on the current input side and the current outflow side are rectangular, a relatively simple shape can be obtained. Can be easy.

好適には本発明の電流センサは、断面矩形の板状で、前記電流方向に延在する開口部が形成された導電体を有し、前記開口部は、前記導電体において前記電流方向に直交する開口幅の方向の中央に形成され、前記開口部に対して前記開口幅の方向の一方が前記第1の導体部であり、前記開口部に対して前記開口幅の方向の他方が前記第2の導体部であり、前記開口部が前記非導領域である。
この構成によれば、断面矩形の板状の前記導電体に開口部を形成するという比較的簡単な加工により、前記第1の導体部および前記第2の導体部を比較的簡単に形成できる。
Current sensor preferably present invention, in cross-section a rectangular plate shape, has a conductor opening that extends to the current direction is formed, the opening is perpendicular to the current direction in the conductor The first conductor portion is formed in the center of the opening width direction with respect to the opening portion, and one of the opening width directions with respect to the opening portion is the first conductor portion, and the other in the opening width direction with respect to the opening portion is the a second conductor portion, wherein the opening is in the non-conductive region.
According to this configuration, the first conductor portion and the second conductor portion can be relatively easily formed by relatively simple processing of forming an opening in the plate-shaped conductor having a rectangular cross section.

好適には本発明の電流センサは、前記第1の磁気センサと前記第2の磁気センサとの検出結果の差から前記第1の導体部および前記第2の導体部を流れる電流を算出する処理部をさらに有する。
この構成によれば、前記第1の磁気センサと前記第2の磁気センサとの検出結果の差を求めることで、外来磁場の影響を除去できる。
Preferably, the current sensor of the present invention calculates a current flowing through the first conductor and the second conductor from a difference between detection results of the first magnetic sensor and the second magnetic sensor. Further comprising a part.
According to this configuration, the influence of the external magnetic field can be removed by calculating the difference between the detection results of the first magnetic sensor and the second magnetic sensor.

好適には本発明の電流センサは、前記第1の導体部と前記第2の導体部とは別体であり、電流流入部同士および電流流出部同士が、直接あるいは間接的に電気接続されており、前記第1の導体部の前記長辺を形成し前記通流方向に沿った面と、前記第2の導体部の前記長辺を形成し前記通流方向に沿った面とが向かい合っている。
この構成によれば、前記第1の導体部および前記第2の導体部の長方形の断面の長辺を長くするだけで、簡単な加工により、非導電領域の高さを長くできる。すなわち、1本の導体体をくり抜いて非導電領域を形成する場合には、くり抜きが深いと加工が難しくなるが、本発明ではくり抜き加工が不要であり、簡単且つ安価にできる。
Preferably, in the current sensor of the present invention, the first conductor portion and the second conductor portion are separate bodies, and the current inflow portions and the current outflow portions are electrically connected directly or indirectly. And a surface that forms the long side of the first conductor portion and extends along the flow direction and a surface that forms the long side of the second conductor portion and extends along the flow direction face each other. I have.
According to this configuration, the height of the non-conductive region can be increased by simple processing by simply increasing the long sides of the rectangular cross section of the first conductor and the second conductor. That is, when forming a non-conductive region by hollowing out one conductor, processing is difficult if the hollowing is deep, but the present invention does not require hollowing out and can be made simple and inexpensive.

好適には本発明の電流センサの前記第1の導体部および前記第2の導体部は平板状である。
この構成によれば、前記第1の導体部および前記第2の導体部が平板状であるため、簡単な加工により、非導電領域の高さを長くできる。
Preferably, the first conductor portion and the second conductor portion of the current sensor of the present invention have a flat plate shape.
According to this configuration, since the first conductor and the second conductor are flat, the height of the non-conductive region can be increased by simple processing.

好適には本発明の電流センサは、前記第1の導体部は平板状であり、前記第2の導体部は、前記第1の導体部との間に前記非導体領域を形成するように屈曲部を有する。
この構成によれば、前記第2の導体部に屈曲部を持たせることで、前記非導電領域における前記第1の導体部と前記第2の導体部との間の距離を長くすることができる。
Preferably, in the current sensor according to the present invention, the first conductor is flat, and the second conductor is bent to form the non-conductor region between the first conductor and the first conductor. Having a part.
According to this configuration, the distance between the first conductor and the second conductor in the non-conductive region can be increased by providing the second conductor with a bent portion. .

好適には本発明の電流センサは、前記第1の導体部と前記第2の導体部とは、前記通流方向における前記非導電領域の両端で電気的に直接接合している。   Preferably, in the current sensor according to the present invention, the first conductor and the second conductor are electrically directly joined at both ends of the non-conductive region in the flow direction.

好適には本発明の電流センサの前記第2の導体部は、前記第1の導体部と面接する第1の平板部と、前記第1の導体部と面接する第2の平板部と、前記第1の導体部と平行に離間して位置する第3の平板部と、前記第1の平板部と前記第3の平板部の一端との間に介在する第4の平板部と、前記第2の平板部と前記第3の平板部の他端との間に介在する第5の平板部とを有し、前記第1の平板部と前記第4の平板部、前記第3の平板部と前記第4の平板部、前記第2の平板部と前記第5の平板部、前記第3の平板部と前記第5の平板部とが、前記屈曲部を形成している。   Preferably, the second conductor portion of the current sensor according to the present invention includes a first flat plate portion in contact with the first conductor portion, a second flat plate portion in contact with the first conductor portion, A third flat plate portion positioned parallel to and separated from the first conductor portion, a fourth flat plate portion interposed between the first flat plate portion and one end of the third flat plate portion, A second flat plate portion and a fifth flat plate portion interposed between the other end of the third flat plate portion, the first flat plate portion, the fourth flat plate portion, and the third flat plate portion. And the fourth flat plate portion, the second flat plate portion and the fifth flat plate portion, and the third flat plate portion and the fifth flat plate portion form the bent portion.

この構成によれば、前記第1の導体部および前記第2の導体部の双方に前記屈曲部を持たせることで、前記第1の導体部および前記第2の導体部の間の距離を簡単な構成で長くすることができる。
この構成によれば、前記第1の導体部と前記第2の導体部とで、前記電流流入部および前記電流流出部をそれぞれ直接接続するため、前記第1の導体部と前記第2の導体部とを接続するための導電部を別途設ける必要がなく、構成を簡単且つ安価にできる。
この構成によれば、非導電領域内において、前記第1の導体部および前記第2の導体部の双方から発生する誘導磁界の強さの広がりパターンが同一となるので、非導電領域の中央付近の磁束密度勾配が直線に近づき、測定精度を高める設計が容易である。
According to this configuration, by providing both the first conductor portion and the second conductor portion with the bent portion, the distance between the first conductor portion and the second conductor portion can be simplified. With a simple configuration, the length can be increased.
According to this configuration, since the current inflow portion and the current outflow portion are directly connected to each other by the first conductor portion and the second conductor portion, the first conductor portion and the second conductor portion are connected to each other. There is no need to separately provide a conductive part for connecting the parts, and the configuration can be simplified and inexpensive.
According to this configuration, in the non-conductive region, the spread pattern of the intensity of the induced magnetic field generated from both the first conductor portion and the second conductor portion becomes the same, so that the vicinity of the center of the non-conductive region Magnetic flux density gradient approaches a straight line, and it is easy to design to increase measurement accuracy.

好適には本発明の電流センサは、前記第1の導体部と前記第2の導体部とは、前記長辺の方向および前記通流方向の双方に沿った仮想面に対して面対称であり、前記断面方向において、前記第1の導体部と前記第1の磁気センサの距離と、前記第2の導体部と前記第2の磁気センサの距離とが等しい。
この構成によれば、前記第1の磁気センサおよび前記第2の磁気センサの位置決めが容易となり、高い位置決め精度により高精度な測定を行うことができると共に、製造コストを抑えることができる。
Preferably, in the current sensor of the present invention, the first conductor and the second conductor are plane-symmetric with respect to a virtual plane along both the long side direction and the flow direction. In the cross-sectional direction, the distance between the first conductor and the first magnetic sensor is equal to the distance between the second conductor and the second magnetic sensor.
According to this configuration, the first magnetic sensor and the second magnetic sensor can be easily positioned, high-precision measurement can be performed with high positioning accuracy, and the manufacturing cost can be reduced.

本発明によれば、外来磁場の影響を相殺して、導電体を流れる電流を高精度に検出できる電流センサを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the influence of an external magnetic field can be offset and the current sensor which can detect the electric current which flows through a conductor with high precision can be provided.

図1は、本発明の第1実施形態に係る電流センサの構成を説明するための斜視図である。FIG. 1 is a perspective view illustrating the configuration of the current sensor according to the first embodiment of the present invention. 図2は、図1に示す断面線A−Aにおける断面図である。FIG. 2 is a sectional view taken along a sectional line AA shown in FIG. 図3は、図2における導電部を流れる電流によって生じる磁界の分布を説明するための図である。FIG. 3 is a diagram for explaining distribution of a magnetic field generated by a current flowing through the conductive unit in FIG. 図4は、図2における各部の長さの比率を説明するための図である。FIG. 4 is a diagram for explaining the ratio of the length of each part in FIG. 図5は、図1に示す電流センサの非導電領域内の磁束密度分布を説明するための図である。FIG. 5 is a diagram for explaining the magnetic flux density distribution in the non-conductive region of the current sensor shown in FIG. 図6は、図1に示す電流センサの非導電領域幅xが5mmの場合の非導電領域の高さtと、磁束密度勾配の関係を示す図である。FIG. 6 is a diagram showing the relationship between the height t of the non-conductive region and the magnetic flux density gradient when the width x of the non-conductive region of the current sensor shown in FIG. 1 is 5 mm. 図7は、図1に示す電流センサの非導電領域の比率Rと磁束密度勾配の関係を示す図である。FIG. 7 is a diagram showing the relationship between the ratio R of the non-conductive region and the magnetic flux density gradient of the current sensor shown in FIG. 図8は、図1に示す電流センサの隣接導体からの外来磁場の影響を説明するための図である。FIG. 8 is a diagram for explaining the influence of an external magnetic field from an adjacent conductor of the current sensor shown in FIG. 図9は、図1に示す第1の磁気センサと第2の磁気センサとの間の距離と、処理部で算出した差との関係を説明するための図である。FIG. 9 is a diagram for explaining the relationship between the distance between the first magnetic sensor and the second magnetic sensor shown in FIG. 1 and the difference calculated by the processing unit. 図10は、本発明の第2実施形態に係る本実施形態の電流センサを説明するための図である。FIG. 10 is a diagram for explaining the current sensor according to the second embodiment of the present invention. 図11は、図10に示す電流センサの製造工程を説明するためのフローチャートである。FIG. 11 is a flowchart for explaining a manufacturing process of the current sensor shown in FIG. 図12は、本発明の第3実施形態に係る本実施形態の電流センサを説明するための図である。FIG. 12 is a diagram for explaining a current sensor according to the third embodiment of the present invention. 図13は、本発明の第4実施形態に係る本実施形態の電流センサを説明するための図である。FIG. 13 is a view for explaining a current sensor according to the fourth embodiment of the present invention.

以下、本発明の実施形態に係る電流センサを説明する。
図1は、本発明の実施形態に係る電流センサの構成を説明するための斜視図、図2は図1に示す断面線A−Aにおける断面図、図3は図2における導電部を流れる電流によって生じる磁界の分布を説明するための図、図4は図2における各部の長さの比率を説明するための図である。
Hereinafter, a current sensor according to an embodiment of the present invention will be described.
FIG. 1 is a perspective view for explaining a configuration of a current sensor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along a cross-sectional line AA shown in FIG. 1, and FIG. FIG. 4 is a diagram for explaining the distribution of the magnetic field generated by the above, and FIG. 4 is a diagram for explaining the ratio of the length of each part in FIG.

図1に示すように、電流センサ1は、第1の導体部11bおよび第2の導体部11cを備えた導電体11、第1の磁気センサ15、第2の磁気センサ17および処理部21を有する。   As shown in FIG. 1, the current sensor 1 includes a conductor 11, a first magnetic sensor 15, a second magnetic sensor 17, and a processing unit 21 each having a first conductor 11b and a second conductor 11c. Have.

図1および図2に示すように、電流センサ1は、断面矩形の板状で、通流方向(電流方向)であるY1方向の所定の位置に開口部(貫通孔)である非導電領域13が形成された導電体11を有している。
非導電領域13のX1方向側には第1の導体部11bが位置し、X2方向側には第2の導体部11cが位置している。
第1の導体部11bおよび第2の導体部11cの通流方向と直交する断面は長方形であり、例えば同一の大きさである。
As shown in FIGS. 1 and 2, the current sensor 1 is a plate having a rectangular cross section, and has a non-conductive region 13 which is an opening (through hole) at a predetermined position in a Y1 direction which is a flow direction (current direction). Is formed on the conductor 11.
The first conductor portion 11b is located on the X1 direction side of the non-conductive region 13, and the second conductor portion 11c is located on the X2 direction side.
The cross section orthogonal to the flow direction of the first conductor 11b and the second conductor 11c is rectangular, and has, for example, the same size.

第1の導体部11bの電流流入部11b1と、第2の導体部11cの電流流入部11c1とが第3の導電部11aで電気的に接続されている。また、第1の導体部11bの電流流出部11b2と、第2の導体部11cの電流流出部11c2とが第4の導電部11dで電気的に接続されている
第1の導体部11bおよび第2の導体部11cの各々には、図1および図2に示すように、第3の導電部11aおよび第4の導電部11dに流れる電流Iの1/2となる電流Ibおよび電流Icが流れる。
The current inflow portion 11b1 of the first conductor portion 11b and the current inflow portion 11c1 of the second conductor portion 11c are electrically connected by a third conductive portion 11a. Also, the first conductor portion 11b and the fourth conductor portion 11d, in which the current outflow portion 11b2 of the first conductor portion 11b and the current outflow portion 11c2 of the second conductor portion 11c are electrically connected by the fourth conductive portion 11d. As shown in FIGS. 1 and 2, currents Ib and Ic, which are 1 / of the current I flowing through the third conductive portion 11a and the fourth conductive portion 11d, flow through each of the two conductor portions 11c. .

非導電領域13は、X1−X2方向における第1の導体部11bと第2の導体部11cとの間に位置し、導電体11のZ1側およびZ2側の面との間の貫通した直方体形状をしている。   The non-conductive region 13 is located between the first conductor 11b and the second conductor 11c in the X1-X2 direction, and has a rectangular parallelepiped shape penetrating between the Z1 side and the Z2 side of the conductor 11. You are.

非導電領域13内には、第1の導体部11bおよび第2の導体部11cとの間の距離が相互に異なる位置に、第1の磁気センサ15および第2の磁気センサ17が設けられている。
具体的には、第1の磁気センサ15は、第2の導体部11cに比べて第1の導体部11b側に設けられている。第2の磁気センサ17は第1の導体部11bに比べて第2の導体部11c側に設けられている。第1の導体部11bおよび第2の導体部11cは、これらの長方形の断面の長辺の方向および通流方向の双方に沿った仮想面31に対して面対称であり、断面方向(X−Z面方向)において、第1の導体部11bと第1の磁気センサ15との間の距離と、第2の導体部11cと第2の磁気センサ17との間の距離とが等しい。
第1の磁気センサ15および第2の磁気センサ17は、図示しない基板上等に固定されている。
In the non-conductive region 13, a first magnetic sensor 15 and a second magnetic sensor 17 are provided at positions where distances between the first conductor 11b and the second conductor 11c are different from each other. I have.
Specifically, the first magnetic sensor 15 is provided on the first conductor 11b side with respect to the second conductor 11c. The second magnetic sensor 17 is provided closer to the second conductor 11c than to the first conductor 11b. The first conductor 11b and the second conductor 11c are plane-symmetric with respect to the imaginary plane 31 along both the direction of the long side and the direction of flow of these rectangular cross sections, and the cross-sectional direction (X- In the Z-plane direction), the distance between the first conductor 11b and the first magnetic sensor 15 is equal to the distance between the second conductor 11c and the second magnetic sensor 17.
The first magnetic sensor 15 and the second magnetic sensor 17 are fixed on a substrate (not shown) or the like.

第1の磁気センサ15と第2の磁気センサ17とは同じ磁気検出特性を有している。
図3に示すように、第1の磁気センサ15および第2の磁気センサ17は、第1の導体部11bおよび第2の導体部11cを流れる電流によって生じる第1の誘導磁界Bbおよび第2の誘導磁界Bcを検出する。
The first magnetic sensor 15 and the second magnetic sensor 17 have the same magnetic detection characteristics.
As shown in FIG. 3, the first magnetic sensor 15 and the second magnetic sensor 17 include a first induction magnetic field Bb and a second induction magnetic field Bb generated by a current flowing through the first conductor 11b and the second conductor 11c. The induction magnetic field Bc is detected.

第1の磁気センサ15及び第2の磁気センサ17は、例えば磁気抵抗効果素子(GMR素子,TMR素子など)を含んで構成されており、特定の感度軸の磁界に対して強い感度を示す。例えば、第1の磁気センサ15の感度軸S1および第2の磁気センサ17の感度軸S2は何れもZ2の向きである。   Each of the first magnetic sensor 15 and the second magnetic sensor 17 includes, for example, a magnetoresistive element (GMR element, TMR element, or the like), and exhibits strong sensitivity to a magnetic field having a specific sensitivity axis. For example, the sensitivity axis S1 of the first magnetic sensor 15 and the sensitivity axis S2 of the second magnetic sensor 17 both point in the direction of Z2.

本実施形態では、図4に示すように、非導電領域13の幅となる第1の導体部11bと第2の導体部11cとの間のX1−X2方向の距離を非導電領域幅xとする。
また、Z1−Z2方向の非導電領域13の高さをtとする。
In the present embodiment, as shown in FIG. 4, the distance in the X1-X2 direction between the first conductor portion 11b and the second conductor portion 11c, which is the width of the non-conductive region 13, is defined as the non-conductive region width x. I do.
Further, the height of the non-conductive region 13 in the Z1-Z2 direction is represented by t.

図5は、図1に示す電流センサ1の非導電領域13内の磁束密度分布を説明するための図である。
図5では、t=2.2mm、x=5mmとし、第1の導体部11bおよび第2の導体部11cの幅を1.8mmとし、40Aの電流Iを流す場合でシミュレーションした結果である。この場合に、非導電領域13の中心付近の磁束密度勾配は約1.0mT/mmとなり、第1の磁気センサ15と第2の磁気センサ17との間の検出磁界の差が約1mT必要であると、第1の磁気センサ15と第2の磁気センサ17とのX1−X2方向の間隔は1.0mm必要となる。
FIG. 5 is a diagram for explaining the magnetic flux density distribution in the non-conductive region 13 of the current sensor 1 shown in FIG.
FIG. 5 shows a result of a simulation in which t = 2.2 mm, x = 5 mm, the width of the first conductor 11b and the second conductor 11c is 1.8 mm, and a current I of 40 A flows. In this case, the magnetic flux density gradient near the center of the non-conductive region 13 is about 1.0 mT / mm, and the difference in the detection magnetic field between the first magnetic sensor 15 and the second magnetic sensor 17 needs to be about 1 mT. If so, the distance between the first magnetic sensor 15 and the second magnetic sensor 17 in the X1-X2 direction needs to be 1.0 mm.

図6は、図1に示す電流センサ1の非導電領域幅xが5mmの場合の非導電領域13の高さtと、磁束密度勾配の関係を示す図である。
図6のシミュレーションは、図5の場合と同じ条件で行った。
FIG. 6 is a diagram showing the relationship between the height t of the non-conductive region 13 and the magnetic flux density gradient when the non-conductive region width x of the current sensor 1 shown in FIG. 1 is 5 mm.
The simulation in FIG. 6 was performed under the same conditions as in FIG.

図7は図1に示す電流センサ1の非導電領域13の比率Rと磁束密度勾配の関係を示す図である。
図7のシミュレーションは、x=6mmとし、80Aの電流Iを流す場合で行った。
FIG. 7 is a diagram showing the relationship between the ratio R of the non-conductive region 13 of the current sensor 1 shown in FIG. 1 and the magnetic flux density gradient.
The simulation of FIG. 7 was performed when x = 6 mm and a current I of 80 A was passed.

図4〜図7に示すように、電流センサ1では、下記式(1)で示される非導電領域13の非導電領域幅xと高さtとの比率Rが、非導電領域13内のX1−X2方向における磁束密度勾配の最大値から所定の範囲内になるように規定されている。   As shown in FIGS. 4 to 7, in the current sensor 1, the ratio R between the non-conductive region width x and the height t of the non-conductive region 13 represented by the following equation (1) is equal to X 1 in the non-conductive region 13. It is defined to be within a predetermined range from the maximum value of the magnetic flux density gradient in the −X2 direction.

[数1]
R=t/x …(1)
[Equation 1]
R = t / x (1)

比率Rは、好ましくは下記式(2)の条件を満たす。   The ratio R preferably satisfies the condition of the following equation (2).

[数2]
1/4≦R≦1 …(2)
[Equation 2]
1/4 ≦ R ≦ 1 (2)

比率Rは、さらに好ましくは非導電領域13内の磁束密度勾配の最大値付近になるように規定され、例えば、下記式(3)の条件を満たす。   The ratio R is more preferably defined to be near the maximum value of the magnetic flux density gradient in the non-conductive region 13, and satisfies the condition of the following equation (3), for example.

[数3]
0. 4≦R≦0.6 …(3)
[Equation 3]
0. 4 ≦ R ≦ 0.6 (3)

処理部21は、第1の磁気センサ15および第2の磁気センサ17の磁界検出結果を入力し、これらを基に、導電体11を流れる電流値を算出する。
具体的には、処理部21は、第1の磁気センサ15の第1の磁気検出結果と第2の磁気センサ17の第2の磁気検出結果との差から、導電体11を流れる電流値を算出する。
The processing unit 21 receives the magnetic field detection results of the first magnetic sensor 15 and the second magnetic sensor 17 and calculates the value of the current flowing through the conductor 11 based on the results.
Specifically, the processing unit 21 calculates the value of the current flowing through the conductor 11 from the difference between the first magnetic detection result of the first magnetic sensor 15 and the second magnetic detection result of the second magnetic sensor 17. calculate.

以下、電流センサ1の作用を説明する。
導電体11の第3の導電部11aからの電流Iが、第1の導体部11bおよび第2の導体部11cにI/2ずつ分流される。具体的には、第1の導体部11bの電流流入部11b1から電流流出部11b2に向けてI/2の電流Ibが流れる。第2の導体部11cの電流流入部11c1から電流流出部11c2に向けてI/2の電流Icが流れる。
Hereinafter, the operation of the current sensor 1 will be described.
The current I from the third conductive portion 11a of the conductor 11 is shunted by I / 2 to the first conductor portion 11b and the second conductor portion 11c. Specifically, a current Ib of I / 2 flows from the current inflow portion 11b1 of the first conductor portion 11b to the current outflow portion 11b2. A current Ic of I / 2 flows from the current inflow portion 11c1 of the second conductor portion 11c to the current outflow portion 11c2.

図3に示すように、第1の導体部11bを流れる電流Ibにより、電流方向に対する右ネジの方向に第1の誘導磁界Bbが生じる。第2の導体部11cを流れる電流Icにより、電流方向に対する右ネジの方向に第2の誘導磁界Bcが生じる。
ここで、上述したように電流Ibと電流Icとは共にI/2である。そのため、非導電領域13内において、第1の誘導磁界Bbと第2の誘導磁界Bcとは向きが逆で、大きさ同じである。
As shown in FIG. 3, the current Ib flowing through the first conductor portion 11b generates a first induction magnetic field Bb in the direction of the right-handed screw with respect to the current direction. Due to the current Ic flowing through the second conductor 11c, a second induction magnetic field Bc is generated in the right-handed screw direction with respect to the current direction.
Here, both the current Ib and the current Ic are I / 2 as described above. Therefore, in the non-conductive area 13, the first induction magnetic field Bb and the second induction magnetic field Bc have opposite directions and the same magnitude.

具体的には、図3に示すように、非導電領域13内の第1の磁気センサ15の位置には第1の導体部11bによりZ1方向の第1の誘導磁界Bbが生じる。一方、第2の磁気センサ17の位置には第2の導体部11cによりZ2方向の第2の誘導磁界Bcが生じる。両磁界の大きさは略同じである。   Specifically, as shown in FIG. 3, a first induction magnetic field Bb in the Z1 direction is generated by the first conductor 11b at the position of the first magnetic sensor 15 in the non-conductive region 13. On the other hand, a second induced magnetic field Bc in the Z2 direction is generated at the position of the second magnetic sensor 17 by the second conductor 11c. The magnitudes of both magnetic fields are substantially the same.

本実施形態では、非導電領域幅xを「5mm」とし、高さtを「2.2mm」とした。
この場合に、図5および図6に示すように、非導電領域幅x方向における非導電領域13内の磁束密度勾配は最大付近になる。
そのため、非導電領域13内において、第1の磁気センサ15と第2の磁気センサ17とのX1−X2方向の距離を「0.6〜3.0mm」のように近距離にしても、第1の磁気センサ15と第2の磁気センサ17との間に誘導磁界の差を大きくできる。
In the present embodiment, the width x of the non-conductive region is set to “5 mm”, and the height t is set to “2.2 mm”.
In this case, as shown in FIGS. 5 and 6, the magnetic flux density gradient in the non-conductive region 13 in the non-conductive region width x direction is near the maximum.
Therefore, even if the distance between the first magnetic sensor 15 and the second magnetic sensor 17 in the X1-X2 direction is short, such as “0.6 to 3.0 mm”, in the non-conductive region 13, The difference in the induced magnetic field between the first magnetic sensor 15 and the second magnetic sensor 17 can be increased.

ここで、第1の導体部11bの第1の誘導磁界Bbの第1の磁界検出結果をVbとし、第2の導体部11cの第2の誘導磁界Bcの第2の磁界検出結果をVcとする。
処理部21は、下記式(4)に示すように、第1の磁界検出結果をVbと第2の磁界検出結果をVcとの差である。
Here, the first magnetic field detection result of the first induction magnetic field Bb of the first conductor portion 11b is set to Vb, and the second magnetic field detection result of the second induction magnetic field Bc of the second conductor portion 11c is set to Vc. I do.
The processing unit 21 calculates the difference between the first magnetic field detection result Vb and the second magnetic field detection result Vc as shown in the following equation (4).

[数4]
V=Vb−Vc …(4)
[Equation 4]
V = Vb−Vc (4)

処理部21は、上記式(4)を演算して得たVに基づいて、導電体11を流れる電流値を算出する。   The processing unit 21 calculates a current value flowing through the conductor 11 based on V obtained by calculating the above equation (4).

電流センサ1による外来磁界の影響の抑制に関する作用を説明する。
図8は、電流センサ1の隣接導体からの外来磁場の影響を説明するための図である。図9は、第1の磁気センサ15と第2の磁気センサ17との間の距離と、処理部21で算出した差との関係を説明するための図である。
図9は、第1の磁気センサ15と第2の磁気センサ17の中心と隣接導体83の中心との距離(横軸)と、隣接導体83からの外乱磁場による算出電流値への影響(縦軸)との関係を、第1の磁気センサ15と第2の磁気センサ17の複数の距離について示した図である。
The operation of the current sensor 1 for suppressing the influence of an external magnetic field will be described.
FIG. 8 is a diagram for explaining the effect of an external magnetic field from an adjacent conductor of the current sensor 1. FIG. 9 is a diagram for explaining the relationship between the distance between the first magnetic sensor 15 and the second magnetic sensor 17 and the difference calculated by the processing unit 21.
FIG. 9 shows the distance (horizontal axis) between the center of the first magnetic sensor 15 and the second magnetic sensor 17 and the center of the adjacent conductor 83 and the influence on the calculated current value due to the disturbance magnetic field from the adjacent conductor 83 (vertical axis). FIG. 3 is a diagram showing the relationship between the first magnetic sensor 15 and the second magnetic sensor 17 for a plurality of distances.

図8に示すように、隣接導体からの外乱磁界Bnが存在する場合に、第1の磁気センサ15に生じる磁界は、第1の誘導磁界Bbと外来磁界Bnの第1の合成磁界(Bb+Bnb)になる。
また、第2の磁気センサ17に生じる磁界は、第2の磁界Bcと外来磁界Bnの第2の合成磁界(Bc+Bnc)になる。
ここで、第1の磁気センサ15と第2の磁気センサ17とは近接しているため、外来磁界BnbとBncの大きさは略同じになる。
As shown in FIG. 8, when a disturbance magnetic field Bn from an adjacent conductor exists, a magnetic field generated in the first magnetic sensor 15 is a first combined magnetic field (Bb + Bnb) of the first induction magnetic field Bb and the external magnetic field Bn. become.
Further, the magnetic field generated in the second magnetic sensor 17 is a second combined magnetic field (Bc + Bnc) of the second magnetic field Bc and the external magnetic field Bn.
Here, since the first magnetic sensor 15 and the second magnetic sensor 17 are close to each other, the magnitudes of the external magnetic fields Bnb and Bnc become substantially the same.

第1の磁気センサ15の第1の合成磁界(Bb+Bnb)の第1の磁界検出結果を(Vb+Vnb)とし、第2の磁気センサ17の第2の合成磁界(Bc+Bnc)の第2の磁界検出結果を(Vc+Vnc)とする。
処理部21は、下記式(5)に示すように、第1の磁界検出結果(Vb+Vnb)と第2の磁界検出結果(Vc+Vnc)との差を算出する。このとき、外来磁界Bnb,Bncの成分である(Vnb―Vnc)は非常に小さく無視できる。
The first magnetic field detection result of the first composite magnetic field (Bb + Bnb) of the first magnetic sensor 15 is (Vb + Vnb), and the second magnetic field detection result of the second composite magnetic field (Bc + Bnc) of the second magnetic sensor 17 is Is (Vc + Vnc).
The processing unit 21 calculates a difference between the first magnetic field detection result (Vb + Vnb) and the second magnetic field detection result (Vc + Vnc) as shown in the following equation (5). At this time, (Vnb-Vnc), which is a component of the external magnetic fields Bnb and Bnc, is very small and can be ignored.

[数5]
V=(Vb+Vnb)−(Vc+Vnc)
=(Vb−Vc)+(Vnb―Vnc) …(5)
[Equation 5]
V = (Vb + Vnb)-(Vc + Vnc)
= (Vb-Vc) + (Vnb-Vnc) (5)

図9に示すように、第1の磁気センサ15と第2の磁気センサ17との距離が短い方が、隣接導体83からの外乱磁場による算出電流値への影響(縦軸)を小さくできる。
また、隣接導体83からの外乱磁場による算出電流値への影響が同じであれば、第1の磁気センサ15と第2の磁気センサ17との距離が短い方が、第1の磁気センサ15と第2の磁気センサ17の中心と隣接導体の中心との距離(横軸)を短くできる。
As shown in FIG. 9, when the distance between the first magnetic sensor 15 and the second magnetic sensor 17 is short, the influence (vertical axis) of the disturbance magnetic field from the adjacent conductor 83 on the calculated current value can be reduced.
If the influence of the disturbance magnetic field from the adjacent conductor 83 on the calculated current value is the same, the shorter the distance between the first magnetic sensor 15 and the second magnetic sensor 17 is, The distance (horizontal axis) between the center of the second magnetic sensor 17 and the center of the adjacent conductor can be shortened.

隣接導体83からの外乱磁場による算出電流値への影響を、1×10−5T(信号磁界1mTとするとその1%)まで許容し、第1の磁気センサ15と第2の磁気センサ17との距離1.0mmの場合は、第1の磁気センサ15と第2の磁気センサ17の中心と隣接導体83の中心との距離は約27mm以上確保する必要がある。
隣接導体83からの外乱磁場による算出電流値への影響を抑えるためには差動処理する第1の磁気センサ15と第2の磁気センサ17との距離を短くする必要がある。
The influence of the disturbance magnetic field from the adjacent conductor 83 on the calculated current value is allowed up to 1 × 10 −5 T (1% of a signal magnetic field of 1 mT), and the first magnetic sensor 15 and the second magnetic sensor 17 Is 1.0 mm, the distance between the center of the first magnetic sensor 15 and the second magnetic sensor 17 and the center of the adjacent conductor 83 needs to be about 27 mm or more.
In order to suppress the influence of the disturbance magnetic field from the adjacent conductor 83 on the calculated current value, it is necessary to shorten the distance between the first magnetic sensor 15 and the second magnetic sensor 17 for performing the differential processing.

以上説明したように、電流センサ1では、第1の磁気センサ15および第2の磁気センサ17に、それぞれ第1の導体部11bおよび第2の導体部11cから逆方向の誘導磁界が与えられる。また、第1の磁気センサ15および第2の磁気センサ17には、略同じ大きさ且つ略同一方向の外来磁界が与えられる。
そのため、第1の磁気センサ15および第2の磁気センサ17の検出結果の差を算出することで、外来磁界の影響を抑制して、導電体11を流れる電流値を高精度に算出できる。
As described above, in the current sensor 1, the first magnetic sensor 15 and the second magnetic sensor 17 are provided with the induced magnetic fields in the opposite directions from the first conductor 11b and the second conductor 11c, respectively. The first magnetic sensor 15 and the second magnetic sensor 17 are provided with an external magnetic field having substantially the same size and substantially the same direction.
Therefore, by calculating the difference between the detection results of the first magnetic sensor 15 and the second magnetic sensor 17, the influence of the external magnetic field can be suppressed, and the value of the current flowing through the conductor 11 can be calculated with high accuracy.

また、電流センサ1によれば、非導電領域幅xと高さtとの比率Rを上述した式(1)〜(3)に示すように規定したことで、非導電領域13内の磁束密度勾配を大きくできる。そのため、第1の磁気センサ15および第2の磁気センサ17に生じる第1の導体部11bおよび第2の導体部11cを流れる電流の誘導磁界の差を大きくすることができ、高い測定精度を得ることができる。   According to the current sensor 1, the ratio R between the width x and the height t of the non-conductive region is defined as shown in the above-described equations (1) to (3), so that the magnetic flux density in the non-conductive region 13 is The gradient can be increased. Therefore, the difference between the induced magnetic fields of the current flowing through the first conductor 11b and the second conductor 11c generated in the first magnetic sensor 15 and the second magnetic sensor 17 can be increased, and high measurement accuracy can be obtained. be able to.

すなわち、導電体11の最大電流に応じて一定に規定されている場合に、非導電領域13の寸法を規定する比率Rを上述したように規定することで、非導電領域13内に磁束密度勾配を最大付近にすることができることを見出した。この非導電領域13の形状は、高さtが大きく、特許文献2〜13に開示された電流路の形状の思想とは大きく異なる。   That is, when the ratio is defined as described above when the constant R is defined according to the maximum current of the conductor 11, the magnetic flux density gradient in the non-conductive region 13 is determined by defining the ratio R as described above. Can be set near the maximum. The shape of the non-conductive region 13 has a large height t, and is significantly different from the idea of the shape of the current path disclosed in Patent Documents 2 to 13.

また、電流センサ1によれば、第1の磁気センサ15および第2の磁気センサ17が位置する非導体領域13内の磁束密度勾配を大きくできるので、第1の磁気センサ15と第2の磁気センサ17とを近づけることができ、両磁気センサに生じる外来磁場の影響を高精度に除去でき、高い測定精度を実現できる。   Further, according to the current sensor 1, the magnetic flux density gradient in the non-conductive region 13 where the first magnetic sensor 15 and the second magnetic sensor 17 are located can be increased, so that the first magnetic sensor 15 and the second magnetic sensor The sensor 17 can be brought close to the sensor 17 and the influence of an external magnetic field generated on both magnetic sensors can be removed with high accuracy, so that high measurement accuracy can be realized.

また、電流センサ1によれば、第1の導体部11b、第2の導体部11c、第3の導電部11aおよび第4の導電部11dの断面を矩形にしたことで、比較的、シンプルな形状にすることができ、簡単な加工により製造工程を簡単できる。   According to the current sensor 1, the first conductor 11b, the second conductor 11c, the third conductor 11a, and the fourth conductor 11d have rectangular cross-sections, which is relatively simple. It can be made into a shape, and the manufacturing process can be simplified by simple processing.

<第2実施形態>
図10は、本発明の第2実施形態に係る本実施形態の電流センサ201を説明するための図である。
電流センサ201は、第1の導体部211b、第2の導体部211c、第3の導体部211a、第4の導体部211dを各々別体として有する。
第1の導体部211bおよび第2の導体部211cは、平板状であり、その通流方向(Y1−Y2方向)と直交する断面は長方形である。ここで、当該長方形の短辺はX1−X2方向に平行であり、長辺はZ1−Z2方向に平行である。
すなわち、第1の導体部211bおよび第2の導体部211cは、長辺を形成し通流方向(Y1−Y2方向)に沿った面同士が向かい合っている。
<Second embodiment>
FIG. 10 is a diagram for explaining a current sensor 201 of the present embodiment according to the second embodiment of the present invention.
The current sensor 201 has a first conductor 211b, a second conductor 211c, a third conductor 211a, and a fourth conductor 211d as separate bodies.
Each of the first conductor portion 211b and the second conductor portion 211c has a flat plate shape, and a cross section orthogonal to the flow direction (Y1-Y2 direction) is rectangular. Here, the short side of the rectangle is parallel to the X1-X2 direction, and the long side is parallel to the Z1-Z2 direction.
That is, the first conductor part 211b and the second conductor part 211c form long sides, and the surfaces along the flow direction (Y1-Y2 direction) face each other.

第1の導体部211bの電流流入部211b1と、第2の導体部211cの電流流入部211c1とが第3の導電部211aで電気的に接続されている。また、第1の導体部211bの電流流出部211b2と、第2の導体部211cの電流流出部211c2とが第4の導電部211dで電気的に接続されている
第1の導体部211bおよび第2の導体部211cの断面の面積は同じであり、第3の導電部211aに流れる電流Iの1/2となる電流Ibおよび電流Icが各々に流れる。
The current inflow portion 211b1 of the first conductor portion 211b and the current inflow portion 211c1 of the second conductor portion 211c are electrically connected by a third conductive portion 211a. Also, the first conductor portion 211b and the first conductor portion 211b2 in which the current outflow portion 211b2 of the first conductor portion 211b and the current outflow portion 211c2 of the second conductor portion 211c are electrically connected by the fourth conductive portion 211d. The cross-sectional area of the second conductor portion 211c is the same, and a current Ib and a current Ic, which are の of the current I flowing through the third conductive portion 211a, flow through each.

電流センサ201は、第1の導体部211b、第2の導体部211c、第3の導体部211aおよび第4の導体部211dで囲まれた非導電領域213を有する。
非導電領域213内には、第1の導体部11bおよび第2の導体部11cとの間のX−X2方向の距離が相互に異なる位置に、第1の磁気センサ15および第2の磁気センサ17が設けられている。
The current sensor 201 has a non-conductive region 213 surrounded by a first conductor 211b, a second conductor 211c, a third conductor 211a, and a fourth conductor 211d.
In the non-conductive region 213, the first magnetic sensor 15 and the second magnetic sensor are located at positions where the distances in the XX direction between the first conductor 11b and the second conductor 11c are different from each other. 17 are provided.

具体的には、第1の磁気センサ15は、第2の導体部211cに比べて第1の導体部211b側に設けられている。第2の磁気センサ17は第1の導体部211bに比べて第2の導体部211c側に設けられている。第1の導体部211bおよび第2の導体部211cは、これらの長方形の断面の長辺の方向(Z1−Z2方向)および通流方向(Y1−Y2方向)の双方に沿った仮想面31に対して面対称であり、断面方向(X−Z面方向)において、第1の導体部211bと第1の磁気センサ15との間の距離と、第2の導体部211cと第2の磁気センサ17との間の距離とが等しい。
第1の磁気センサ15および第2の磁気センサ17は、第1の導体部211bおよび第2の導体部211cを流れる電流によって生じる誘導磁界を検出する。
Specifically, the first magnetic sensor 15 is provided on the first conductor 211b side with respect to the second conductor 211c. The second magnetic sensor 17 is provided on the second conductor 211c side with respect to the first conductor 211b. The first conductor portion 211b and the second conductor portion 211c are formed on the imaginary plane 31 along both the long side direction (Z1-Z2 direction) and the flow direction (Y1-Y2 direction) of these rectangular cross sections. The distance between the first conductor 211b and the first magnetic sensor 15 and the distance between the second conductor 211c and the second magnetic sensor in the cross-sectional direction (XZ plane direction). 17 are equal to each other.
The first magnetic sensor 15 and the second magnetic sensor 17 detect an induced magnetic field generated by a current flowing through the first conductor 211b and the second conductor 211c.

第1実施形態と同様に、非導電領域213の幅となる第1の導体部211bと第2の導体部211cとの間の距離を非導電領域幅xとする。また、Z1−Z2方向の非導電領域213の高さをtとする。
そして、電流センサ201においても、第1実施形態と同様に、非導電領域213の非導電領域幅xと高さtとの比率Rが、非導電領域213内のX1−X2方向における磁束密度勾配の最大値から所定の範囲内になるように規定されている。
好適には、比率Rが、第1実施形態の式(1)〜(3)を満たすように規定される。
As in the first embodiment, the distance between the first conductor portion 211b and the second conductor portion 211c that is the width of the non-conductive region 213 is defined as the non-conductive region width x. Further, the height of the non-conductive region 213 in the Z1-Z2 direction is represented by t.
Also in the current sensor 201, as in the first embodiment, the ratio R of the non-conductive region width x and the height t of the non-conductive region 213 is equal to the magnetic flux density gradient in the X1-X2 direction in the non-conductive region 213. Is defined to be within a predetermined range from the maximum value of.
Preferably, the ratio R is defined so as to satisfy the expressions (1) to (3) of the first embodiment.

以下、電流センサ201の製造工程を説明する。
図11は、図10に示す電流センサ201の製造工程を説明するためのフローチャートである。
ステップST1:
断面が長方形の平形状の第1の導体部211bおよび第2の導体部211cを用意する。
また、断面が長方形の平形状の第3の導体部211aおよび第4の導体部211dを用意する。
Hereinafter, a manufacturing process of the current sensor 201 will be described.
FIG. 11 is a flowchart for explaining a manufacturing process of the current sensor 201 shown in FIG.
Step ST1:
A first conductor portion 211b and a second conductor portion 211c having a rectangular flat cross section are prepared.
Also, a third conductor portion 211a and a fourth conductor portion 211d having a rectangular flat cross section are prepared.

ステップST2:
第1の導体部211bの長方形の断面の短辺および長辺が、第2の導体部211cの長方形の断面の短辺および長辺と、それぞれ平行になる姿勢にする。具体的には、第1の導体部211bと第2の導体部211cとが対向する姿勢にする。
Step ST2:
The short side and the long side of the rectangular cross section of the first conductor section 211b are in parallel with the short side and the long side of the rectangular cross section of the second conductor section 211c, respectively. Specifically, the first conductor portion 211b and the second conductor portion 211c are set to face each other.

ステップST3:
第1の導体部211bの電流流入部211b1と、第2の導体部211cの電流流入部211c1とで第3の導体部211aの端部を挟み込む。
また、第1の導体部211bの電流流出部211b2と、第2の導体部211cの電流流出部211c2とで第4の導体部211dの端部を挟み込む。
これにより、第1の導体部211bの電流流入部211b1と、第2の導体部211cの電流流入部211c1とが電気接続される。また、第1の導体部211bの電流流出部211b2と、第2の導体部211cの電流流出部211c2とが電気接続される。
Step ST3:
The end portion of the third conductor portion 211a is sandwiched between the current inflow portion 211b1 of the first conductor portion 211b and the current inflow portion 211c1 of the second conductor portion 211c.
The end of the fourth conductor 211d is sandwiched between the current outflow 211b2 of the first conductor 211b and the current outflow 211c2 of the second conductor 211c.
As a result, the current inflow portion 211b1 of the first conductor portion 211b and the current inflow portion 211c1 of the second conductor portion 211c are electrically connected. Further, the current outflow portion 211b2 of the first conductor portion 211b is electrically connected to the current outflow portion 211c2 of the second conductor portion 211c.

このとき、第1の導体部211b、第2の導体部211c、第3の導体部211aおよび第4の導体部211dによって囲まれた非導電領域213の非導電領域幅xと高さをtとの比率Rは上記式(1)〜(3)を満たすように規定される。これは、第1の導体部211bおよび第1の導体部211bの高さt(長辺)と、第3の導体部211aおよび第4の導体部211dのX1−X2方向の幅を適切に選定するのみで規定でき、特別な加工は不要である。   At this time, the width x and the height of the non-conductive region 213 of the non-conductive region 213 surrounded by the first conductor portion 211b, the second conductor portion 211c, the third conductor portion 211a, and the fourth conductor portion 211d are represented by t. Is defined so as to satisfy the above equations (1) to (3). This is because the height t (long side) of the first conductor portion 211b and the first conductor portion 211b and the width of the third conductor portion 211a and the fourth conductor portion 211d in the X1-X2 direction are appropriately selected. No special processing is required.

ステップST4:
第1の導体部211b、第2の導体部211c、第3の導体部211aおよび第4の導体部211dによって囲まれた非導電領域213内における、第1の導体部11bおよび第2の導体部11cとの間のX−X2方向の距離が相互に異なる位置に、第1の磁気センサ15および第2の磁気センサ17を配設する。
Step ST4:
The first conductor portion 11b and the second conductor portion in the non-conductive region 213 surrounded by the first conductor portion 211b, the second conductor portion 211c, the third conductor portion 211a, and the fourth conductor portion 211d. The first magnetic sensor 15 and the second magnetic sensor 17 are provided at positions different from each other in the X-X2 direction with respect to the first magnetic sensor 11c.

以上説明したように、電流センサ201およびその製造方法によれば、前記第1の導体部および前記第2の導体部の長方形の断面の長辺を長くするだけで、簡単な加工により、非導電領域の高さを長くできる。すなわち、1本の導体体をくり抜いて非導電領域を形成する場合には、くり抜きが深いと加工が難しくなるが、電流センサ201では、このようなくり抜き加工が不要であり、簡単且つ安価にできる。   As described above, according to the current sensor 201 and the method of manufacturing the same, it is possible to simply increase the long side of the rectangular cross section of the first conductor and the second conductor, and to perform non-conductive by simple processing. The height of the area can be lengthened. That is, in the case of forming a non-conductive region by hollowing out one conductor, processing is difficult if the hollowing is deep, but the current sensor 201 does not require such hollowing, and can be made simple and inexpensive. .

また、電流センサ201によれば、非導電領域213の非導電領域幅xと高さをtとの比率Rは上記式(1)〜(3)を満たすように規定したことで、第1実施形態で説明した電流センサ1の作用および効果を同様に得ることができる。   Further, according to the current sensor 201, the ratio R of the width x and the height t of the non-conductive region of the non-conductive region 213 is defined so as to satisfy the above equations (1) to (3). The functions and effects of the current sensor 1 described in the embodiment can be obtained in the same manner.

<第3実施形態>
図12は、本発明の第3実施形態に係る本実施形態の電流センサ301を説明するための図である。
電流センサ301は、第1の導体部311bおよび第2の導体部311cを各々別体として有する。
第1の導体部311bと第2の導体部311cとの間には、非導電領域313が形成されている。
第1の導体部311bと第2の導体部311cとは、非導電領域313のY1−Y2方向の両端で電気的に直接接合している。
第2の導体部311cは、平板状である。
<Third embodiment>
FIG. 12 is a diagram for explaining a current sensor 301 according to the third embodiment of the present invention.
Current sensor 301 has first conductor portion 311b and second conductor portion 311c as separate bodies.
A non-conductive region 313 is formed between the first conductor 311b and the second conductor 311c.
The first conductor portion 311b and the second conductor portion 311c are electrically directly joined at both ends of the non-conductive region 313 in the Y1-Y2 direction.
The second conductor 311c has a flat plate shape.

第1の導体部311bは、第2の導体部311cと面接する第1の平板部351と、第2の導体部311cと面接する第2の平板部352と、第2の導体部311cと平行に離間して位置する第3の平板部353と、第1の平板部351と第3の平板部353の一端との間に介在する第4の平板部354と、第2の平板部352と第3の平板部353の他端との間に介在する第5の平板部355とを有する。
第1の平板部351と第4の平板部354、第3の平板部353と第4の平板部354、第2の平板部352と第5の平板部355、第3の平板部353と第5の平板部355とが、屈曲部を形成している。
The first conductor portion 311b is parallel to the first conductor portion 351 in contact with the second conductor portion 311c, the second conductor portion 352 in contact with the second conductor portion 311c, and the second conductor portion 311c. , A fourth flat plate portion 354 interposed between one end of the first flat plate portion 351 and one end of the third flat plate portion 353, and a second flat plate portion 352. And a fifth flat plate portion 355 interposed between the third flat plate portion 353 and the other end.
The first flat plate portion 351 and the fourth flat plate portion 354, the third flat plate portion 353 and the fourth flat plate portion 354, the second flat plate portion 352 and the fifth flat plate portion 355, and the third flat plate portion 353 and the The five flat portions 355 form a bent portion.

第1の導体部311bおよび第2の導体部311cの断面の面積は同じであり、全体の電流Iの1/2となる電流Ibおよび電流Icが各々に流れる。   The cross-sectional areas of the first conductor portion 311b and the second conductor portion 311c are the same, and a current Ib and a current Ic that are 1 / of the entire current I flow through each.

電流センサ301は、第2の導体部311c、第1の導体部311bの第3の平板部353、第4の平板部354および第5の平板部355で囲まれた非導電領域313を有する。
非導電領域313内には、第1の導体部311bの第3の平板部353と第2の導体部311cとの間のX−X2方向の距離が相互に異なる位置に、第1の磁気センサ15および第2の磁気センサ17が設けられている。
The current sensor 301 has a non-conductive region 313 surrounded by the second conductor 311c, the third plate 353, the fourth plate 354, and the fifth plate 355 of the first conductor 311b.
In the non-conductive region 313, the first magnetic sensor is located at a position where the distance in the XX direction between the third plate portion 353 and the second conductor portion 311c of the first conductor portion 311b is different from each other. 15 and a second magnetic sensor 17 are provided.

具体的には、第1の磁気センサ15は、第2の導体部311cに比べて第3の平板部353側に設けられている。第2の磁気センサ17は第3の平板部353に比べて第2の導体部311c側に設けられている。断面方向(X−Z面方向)において、第3の平板部353と第1の磁気センサ15との間の距離と、第2の導体部311cと第2の磁気センサ17との間の距離とが等しい。
第1の磁気センサ15および第2の磁気センサ17は、第1の導体部311bおよび第2の導体部311cを流れる電流によって生じる誘導磁界を検出する。
Specifically, the first magnetic sensor 15 is provided on the third flat plate portion 353 side with respect to the second conductor portion 311c. The second magnetic sensor 17 is provided closer to the second conductor 311c than the third flat plate 353. In the cross-sectional direction (XZ plane direction), the distance between the third flat plate portion 353 and the first magnetic sensor 15 and the distance between the second conductor portion 311c and the second magnetic sensor 17 Are equal.
The first magnetic sensor 15 and the second magnetic sensor 17 detect an induced magnetic field generated by a current flowing through the first conductor 311b and the second conductor 311c.

第1実施形態と同様に、非導電領域313の幅となる第1の導体部311bの第3の平板部353と第2の導体部311cとの間の距離を非導電領域幅xとする。また、Z1−Z2方向の非導電領域313の高さをtとする。
そして、電流センサ301においても、第1実施形態と同様に、非導電領域313の非導電領域幅xと高さtとの比率Rが、非導電領域213内のX1−X2方向における磁束密度勾配の最大値から所定の範囲内になるように規定されている。
好適には、比率Rが、第1実施形態の式(1)〜(3)を満たすように規定される。
As in the first embodiment, the distance between the third flat plate portion 353 of the first conductor portion 311b and the second conductor portion 311c, which is the width of the non-conductive region 313, is defined as the non-conductive region width x. Further, the height of the non-conductive region 313 in the Z1-Z2 direction is represented by t.
In the current sensor 301 as well, as in the first embodiment, the ratio R between the non-conductive region width x and the height t of the non-conductive region 313 is equal to the magnetic flux density gradient in the X1-X2 direction in the non-conductive region 213. Is defined to be within a predetermined range from the maximum value of.
Preferably, the ratio R is defined so as to satisfy the expressions (1) to (3) of the first embodiment.

電流センサ301によれば、上述した第2実施形態の電流センサ201と同様の作用および効果を得ることができる。
また、電流センサ301によれば、第1の導体部311bと第2の導体部311cとで、電流流入部および電流流出部をそれぞれ直接接続するため第1の導体部311bと第2の導体部311cとを接続するための導電部を別途設ける必要がなく、構成を簡単且つ安価にできる。
According to the current sensor 301, the same operation and effect as those of the current sensor 201 of the above-described second embodiment can be obtained.
In addition, according to the current sensor 301, the first conductor 311b and the second conductor 311c are used to directly connect the current inflow portion and the current outflow portion, respectively, to the first conductor portion 311b and the second conductor portion. There is no need to separately provide a conductive portion for connecting to 311c, and the configuration can be made simple and inexpensive.

<第4実施形態>
図13は、本発明の第4実施形態に係る本実施形態の電流センサ401を説明するための図である。
電流センサ401は、第1の導体部311cおよび第2の導体部411cを各々別体として有する。
第1の導体部311cと第2の導体部411cとの間には、非導電領域413が形成されている。
<Fourth embodiment>
FIG. 13 is a diagram for explaining a current sensor 401 of the present embodiment according to the fourth embodiment of the present invention.
The current sensor 401 has a first conductor 311c and a second conductor 411c as separate bodies.
A non-conductive region 413 is formed between the first conductor 311c and the second conductor 411c.

第1の導体部311bと第2の導体部411cとは、YZ平面に平行な仮想面431に対して面対称である。
第1の導体部311bは、第3実施形態で説明した第1の導体部311bと同じである。
The first conductor 311b and the second conductor 411c are plane-symmetric with respect to a virtual plane 431 parallel to the YZ plane.
The first conductor 311b is the same as the first conductor 311b described in the third embodiment.

第1の導体部311bおよび第2の導体部411cの断面の面積は同じであり、全体の電流Iの1/2となる電流Ibおよび電流Icが各々に流れる。
電流センサ401は、第1の導体部311bと第2の導体部411cとで囲まれた非導電領域413を有する。
The cross-sectional areas of the first conductor portion 311b and the second conductor portion 411c are the same, and a current Ib and a current Ic that are 1 / of the entire current I flow through each.
The current sensor 401 has a non-conductive region 413 surrounded by a first conductor 311b and a second conductor 411c.

非導電領域413内には、仮想面431に対して対称な位置に第1の磁気センサ15および第2の磁気センサ17が設けられている。
第1の磁気センサ15および第2の磁気センサ17は、第1の導体部311bおよび第2の導体部411cを流れる電流によって生じる誘導磁界を検出する。
In the non-conductive region 413, the first magnetic sensor 15 and the second magnetic sensor 17 are provided at positions symmetrical with respect to the virtual plane 431.
The first magnetic sensor 15 and the second magnetic sensor 17 detect an induced magnetic field generated by a current flowing through the first conductor 311b and the second conductor 411c.

第1実施形態と同様に、非導電領域413の幅となる第1の導体部311bの第3の平板部353と第2の導体部411cとの間の距離を非導電領域幅xとする。また、Z1−Z2方向の非導電領域413の高さをtとする。
そして、電流センサ401においても、第1実施形態と同様に、非導電領域413の非導電領域幅xと高さtとの比率Rが、非導電領域213内のX1−X2方向における磁束密度勾配の最大値から所定の範囲内になるように規定されている。
好適には、比率Rが、第1実施形態の式(1)〜(3)を満たすように規定される。
Similarly to the first embodiment, the distance between the third flat plate portion 353 of the first conductor portion 311b and the second conductor portion 411c, which is the width of the non-conductive region 413, is defined as the non-conductive region width x. Further, the height of the non-conductive region 413 in the Z1-Z2 direction is represented by t.
Also, in the current sensor 401, as in the first embodiment, the ratio R of the non-conductive region width x and the height t of the non-conductive region 413 is equal to the magnetic flux density gradient in the X1-X2 direction in the non-conductive region 213. Is defined to be within a predetermined range from the maximum value of.
Preferably, the ratio R is defined so as to satisfy the expressions (1) to (3) of the first embodiment.

電流センサ401によれば、上述した第2実施形態の電流センサ201と同様の作用および効果を得ることができる。
また、電流センサ401によれば、第1の導体部311bと第2の導体部311cとで、電流流入部および電流流出部をそれぞれ直接接続するため、第1の導体部311bと第2の導体部411cとを接続するための導電部を別途設ける必要がなく、構成を簡単且つ安価にできる。
According to the current sensor 401, the same operation and effect as those of the current sensor 201 of the above-described second embodiment can be obtained.
Further, according to the current sensor 401, the first conductor 311b and the second conductor 311c directly connect the current inflow portion and the current outflow portion, respectively, so that the first conductor 311b and the second conductor 311b are directly connected to each other. There is no need to separately provide a conductive portion for connecting to the portion 411c, and the configuration can be simplified and inexpensive.

また、電流センサ401によれば、仮想面431に対して、第1の導体部311bと第2の導体部411cとが面対称であり、且つ第1の磁気センサ15と第2の磁気センサ17とが面対称であるため、位置決めが容易となる。そして、高い位置決め精度により高精度な測定を行うことができると共に、製造コストを抑えることができる。   Further, according to the current sensor 401, the first conductor 311 b and the second conductor 411 c are plane-symmetric with respect to the virtual plane 431, and the first magnetic sensor 15 and the second magnetic sensor 17 Are plane symmetric, positioning becomes easy. And high-precision measurement can be performed with high positioning accuracy, and manufacturing cost can be suppressed.

本発明は上述した実施形態には限定されない。
すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
The invention is not limited to the embodiments described above.
That is, those skilled in the art may make various changes, combinations, sub-combinations, and alternatives for the components of the above-described embodiments within the technical scope of the present invention or an equivalent scope thereof.

上述した実施形態では、非導電領域13,231,313,413が空洞の場合を例示したが、その一部または全体に合成樹脂等の非導電性物質を充填してもよい。
また、上述した実施形態では、第1の導体部11b,211b.311bと第2の導体部11c,211c,311c,411cとの断面積が同じ場合を例示したが、断面積は異なっていてもよい。
In the above-described embodiment, the case where the non-conductive regions 13, 231, 313, and 413 are hollow is illustrated, but a part or the whole thereof may be filled with a non-conductive material such as a synthetic resin.
In the embodiment described above, the first conductors 11b, 211b. Although the case where the cross-sectional areas of 311b and the second conductor portions 11c, 211c, 311c, and 411c are the same is illustrated, the cross-sectional areas may be different.

また、上述した実施形態では、第1の磁気センサ15の感度軸S1および第2の磁気センサ17の感度軸S2は何れもZ2の向きにしたが、Z1の向きでもよい。また、第1の磁気センサ15の感度軸S1と、第2の磁気センサ17の感度軸S2との向きを逆にしてもよい。この場合には、処理部21は、第1の磁気センサ15の第1の磁気検出結果と第2の磁気センサ17の第2の磁気検出結果とを加算して、導電体11を流れる電流値を算出する。   In the above-described embodiment, both the sensitivity axis S1 of the first magnetic sensor 15 and the sensitivity axis S2 of the second magnetic sensor 17 are oriented in the direction of Z2, but may be oriented in the direction of Z1. Further, the direction of the sensitivity axis S1 of the first magnetic sensor 15 and the direction of the sensitivity axis S2 of the second magnetic sensor 17 may be reversed. In this case, the processing unit 21 adds the first magnetic detection result of the first magnetic sensor 15 and the second magnetic detection result of the second magnetic sensor 17 to calculate a current value flowing through the conductor 11. Is calculated.

また、上述した実施形態では、非導電領域13,231,313,413内に、第1の磁気センサ15および第2の磁気センサ17を設けた場合を例示したが、4つ以上の偶数個の磁気センサを設けてもよい。   Further, in the above-described embodiment, the case where the first magnetic sensor 15 and the second magnetic sensor 17 are provided in the non-conductive regions 13, 231, 313, and 413 has been exemplified. A magnetic sensor may be provided.

また、上述した実施形態では、本発明の磁気センサの一例として磁気抵抗効果素子を例示したが、ホール素子を用いてもよい。   Further, in the above-described embodiment, the magnetoresistive element is illustrated as an example of the magnetic sensor of the present invention, but a Hall element may be used.

本発明は、導電体の電流値を検出する電流センサに適用可能である。   The present invention is applicable to a current sensor that detects a current value of a conductor.

1, 201,301,401…電流センサ
13,231,313,413…非導電領域
11b,211b.311b…第1の導体部
11c,211c,311c,411c…第2の導体部
15…第1の磁気センサ
17…第2の磁気センサ
21…処理部
31,431…仮想面

1, 201, 301, 401 ... current sensors 13, 231, 313, 413 ... non-conductive areas 11b, 211b. 311b first conductor portions 11c, 211c, 311c, 411c second conductor portion 15 first magnetic sensor 17 second magnetic sensor 21 processing units 31, 431 virtual surface

Claims (4)

電流流入部同士および電流流出部同士がそれぞれ電気的に接続され、相互に平行して延在する第1の導体部および第2の導体部と、
前記第1の導体部と第2の導体部との間に形成された非導領域内において前記第1の導体部および前記第2の導体部との間の距離が相互に異なる位置に設けられ、前記第1の導体部および前記第2の導体部を流れる電流によって生じる誘導磁界を検出する第1の磁気センサおよび第2の磁気センサと、
を有し、
前記非導領域の幅となる前記第1の導体部と前記第2の導体部との間の距離である非導電領域幅xと、
前記非導電領域幅xの方向と前記第1の導体部および前記第2の導体部の電流方向との双方に直交する方向の高さtとの下記式(1)
[数1]
R=t/x …(1)
で示される比率Rが、下記式(2)
[数2]
1/4≦R≦1 …(2)
を満たし、
前記第1の磁気センサは前記第2の磁気センサに比べて前記第1の導体部側に設けられ、
前記第2の磁気センサは前記第1の磁気センサに比べて前記第2の導体部側に設けられ、
前記第1の導体部と前記第2の導体部とは、前記高さの方向および電流の通流方向の双方に沿った仮想面に対して面対称であり、
前記第1の導体部と前記第1の磁気センサの距離と、前記第2の導体部と前記第2の磁気センサの距離とが等しく、
前記比率Rは、前記式(2)の範囲において、前記非導電領域内の前記非導電領域幅xの方向における中心の磁束密度勾配が最大となるように規定されている
電流センサ。
A first conductor portion and a second conductor portion which are electrically connected to each other, and which extend in parallel with each other;
Provided at different distances to the mutual position between said first conductor portion and the first conductor section and the second conductor portion in the formed non-conductive region between the second conductive portion A first magnetic sensor and a second magnetic sensor for detecting an induced magnetic field generated by a current flowing through the first conductor and the second conductor;
Has,
A non-conductive region width x which is a distance between said first conductor portion serving as the width of the non-conductive region and the second conductor portion,
The following equation (1) represents a height t in a direction orthogonal to both the direction of the non-conductive region width x and the current direction of the first conductor and the second conductor.
[Equation 1]
R = t / x (1)
The ratio R represented by the following formula (2)
[Equation 2]
1/4 ≦ R ≦ 1 (2)
Meet the,
The first magnetic sensor is provided closer to the first conductor than the second magnetic sensor,
The second magnetic sensor is provided closer to the second conductor than the first magnetic sensor,
The first conductor portion and the second conductor portion are plane-symmetric with respect to an imaginary plane along both the height direction and the current flowing direction,
The distance between the first conductor and the first magnetic sensor is equal to the distance between the second conductor and the second magnetic sensor,
In the current sensor, the ratio R is defined such that the magnetic flux density gradient at the center in the direction of the non-conductive region width x in the non-conductive region is maximized in the range of the expression (2) .
前記第1の導体部および前記第2の導体部の前記電流方向と直交する断面は矩形である
請求項に記載の電流センサ。
The current sensor according to claim 1 , wherein a cross section of the first conductor portion and the second conductor portion orthogonal to the current direction is rectangular.
断面矩形の板状で、前記電流方向に延在する開口部が形成された導電体を有し、
前記開口部は、前記導電体において前記電流方向に直交する開口幅の方向の中央に形成され、
前記開口部に対して前記開口幅の方向の一方が前記第1の導体部であり、
前記開口部に対して前記開口幅の方向の他方が前記第2の導体部であり、
前記開口部が前記非導領域である
請求項1または請求項2に記載の電流センサ。
In cross-section a rectangular plate shape, has a conductor opening that extends to the current direction is formed,
The opening is formed at the center of the conductor in an opening width direction orthogonal to the current direction,
One of the directions of the opening width with respect to the opening is the first conductor,
The other of the direction of the opening width with respect to the opening is the second conductor portion,
Current sensor according to claim 1 or claim 2 wherein the opening is in the non-conductive region.
前記第1の磁気センサと前記第2の磁気センサとの検出結果の差から前記第1の導体部および前記第2の導体部を流れる電流値を算出する処理部
をさらに有する請求項1〜のいずれかに記載の電流センサ。
4. The processing unit further comprising: a processing unit that calculates a current value flowing through the first conductor and the second conductor from a difference between detection results of the first magnetic sensor and the second magnetic sensor. 5. The current sensor according to any one of the above.
JP2016014024A 2016-01-28 2016-01-28 Current sensor Active JP6671985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016014024A JP6671985B2 (en) 2016-01-28 2016-01-28 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014024A JP6671985B2 (en) 2016-01-28 2016-01-28 Current sensor

Publications (2)

Publication Number Publication Date
JP2017133942A JP2017133942A (en) 2017-08-03
JP6671985B2 true JP6671985B2 (en) 2020-03-25

Family

ID=59503750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014024A Active JP6671985B2 (en) 2016-01-28 2016-01-28 Current sensor

Country Status (1)

Country Link
JP (1) JP6671985B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139899A (en) * 2019-03-01 2020-09-03 国立大学法人信州大学 Current sensor
JP7514958B2 (en) 2021-01-14 2024-07-11 アルプスアルパイン株式会社 Current sensor and electrical device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432078U (en) * 1990-07-12 1992-03-16
JPH08136587A (en) * 1994-11-15 1996-05-31 Fuji Electric Co Ltd Current transformer applying magnetic sensor
DE19838536A1 (en) * 1998-08-25 2000-03-02 Lust Antriebstechnik Gmbh Device and method for forming one or more magnetic field gradients through a straight conductor
JP2002107385A (en) * 2000-10-03 2002-04-10 Stanley Electric Co Ltd Current sensor
JP2005283451A (en) * 2004-03-30 2005-10-13 Asahi Kasei Electronics Co Ltd Current measuring device and current measuring method
JP2007212307A (en) * 2006-02-09 2007-08-23 Akebono Brake Ind Co Ltd Current sensor
US7583073B2 (en) * 2007-07-19 2009-09-01 Honeywell International Inc. Core-less current sensor
JP6311790B2 (en) * 2014-07-02 2018-04-18 株式会社村田製作所 Current sensor

Also Published As

Publication number Publication date
JP2017133942A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
KR102528062B1 (en) Offset Current Sensor Structure
US9435829B2 (en) Current sensor
JP5482736B2 (en) Current sensor
JP7003609B2 (en) Current sensor
JP6690433B2 (en) Current sensor
JP6409970B2 (en) Current sensor
JP7367100B2 (en) Current transducer with magnetic field gradient sensor
WO2014192625A1 (en) Current sensor
JP2017173123A (en) Magnetic sensor and manufacturing method thereof
JP6540802B2 (en) Current sensor
JP6311790B2 (en) Current sensor
JP2018165699A (en) Current sensor
WO2013038867A1 (en) Electric-current sensor
JP6671985B2 (en) Current sensor
JP2019060646A (en) Current sensor
JP6671986B2 (en) Current sensor and method of manufacturing the same
JP7003608B2 (en) Current sensor
JP6228663B2 (en) Current detector
JP5487403B2 (en) Current sensor
JP2013142604A (en) Current sensor
JP3191252U (en) Current sensor
JP5504483B2 (en) Current sensor
JP2022189812A (en) Current sensor comprising magnetic field sensor in v-shaped arrangement
JP2014066623A (en) Current sensor
CN110073230B (en) Magnetic sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200304

R150 Certificate of patent or registration of utility model

Ref document number: 6671985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150