JP2000294242A - Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture therefor and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture therefor and nonaqueous electrolyte secondary battery

Info

Publication number
JP2000294242A
JP2000294242A JP11102999A JP10299999A JP2000294242A JP 2000294242 A JP2000294242 A JP 2000294242A JP 11102999 A JP11102999 A JP 11102999A JP 10299999 A JP10299999 A JP 10299999A JP 2000294242 A JP2000294242 A JP 2000294242A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11102999A
Other languages
Japanese (ja)
Other versions
JP4318002B2 (en
Inventor
Makoto Noshiro
誠 能代
Manabu Kazuhara
学 数原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP10299999A priority Critical patent/JP4318002B2/en
Publication of JP2000294242A publication Critical patent/JP2000294242A/en
Application granted granted Critical
Publication of JP4318002B2 publication Critical patent/JP4318002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To use a positive electrode active material in a wide voltage range, to enhance capacity, and to improve charge/discharge cycle durability by constituting the positive electrode active material of Li, Mn, O having a monoclinic crystal layer-shaped rock salt type structure and having a specific composition and one or more kinds of four kinds of metallic elements besides Al. SOLUTION: This positive electrode active material is expressed by LixMnyM1-yO2. Here, M is one or more kinds of Al, Fe, Co, Ni and Cr, and (0<x<=1.1 and 0.5<=y<1) are realized. When manufacturing this active material, an Mn compound and a compound including an element M are water heat- treated at 130 to 300 deg.C in a strong basic aqueous solution including an Li element. In this case, lithium hydroxide is desirable as an Li compound included in the strong basic aqueous solution. When the Mn compound and the compound including the element M are included in this strong basic aqueous solution after being formed as hydroxide, oxide or oxyhydroxide particularly obtained by coprecipitation, a positive electrode active material by uniformly distributing Mn and the element M can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池用正極活物質及びその製造方法に関する。さらに該活
物質を有する非水電解液二次電池に関する。
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same. Further, the present invention relates to a non-aqueous electrolyte secondary battery having the active material.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が進むにつれ、小型、軽量、かつ高エネルギ密度の非
水電解液二次電池に対する期待が高まっている。非水電
解液二次電池用の正極活物質には、LiCoO2、Li
NiO2、LiMn24、LiMnO2等のリチウムと遷
移金属との複合酸化物が知られている。これらの正極活
物質と、リチウムを吸蔵、放出できる炭素材料等の負極
活物質とを組み合わせた、高電圧、高エネルギ密度の非
水電解液二次電池の開発が進められている。なかでも特
に最近では、安価な材料のマンガンを用いた、リチウム
とマンガンの複合酸化物の研究がさかんに進められてい
る。
2. Description of the Related Art In recent years, as devices have become more portable and cordless, expectations for small, light-weight, high energy density non-aqueous electrolyte secondary batteries have increased. Positive electrode active materials for nonaqueous electrolyte secondary batteries include LiCoO 2 , Li
Composite oxides of lithium and transition metals such as NiO 2 , LiMn 2 O 4 , and LiMnO 2 are known. Development of a high-voltage, high-energy-density non-aqueous electrolyte secondary battery combining these positive electrode active materials and a negative electrode active material such as a carbon material capable of inserting and extracting lithium has been promoted. In particular, research on lithium and manganese composite oxides using inexpensive material manganese has been particularly advanced recently.

【0003】一般に、非水電解液二次電池に用いられる
正極活物質は、コバルト、ニッケル、マンガン等の遷移
金属とリチウムとの複合酸化物からなり、用いられる遷
移金属の種類によって電気容量、可逆性、作動電圧等の
電極特性が異なる。
In general, a positive electrode active material used for a non-aqueous electrolyte secondary battery is composed of a composite oxide of lithium and a transition metal such as cobalt, nickel, and manganese. The electrode characteristics such as performance and operating voltage are different.

【0004】例えば、LiCoO2、及びLiNi0.8
0.22等の層状岩塩型構造の複合酸化物を正極活物質
に用いた非水電解液二次電池では、容量密度はそれぞれ
140〜160mAh/g及び190〜210mAh/
gと比較的高く、2.5〜4.3Vの高い電圧領域では
リチウムの吸蔵、放出に対し良好な可逆性を示す。しか
し、原料となるコバルトやニッケルが高価であり、また
2V以下の電圧領域ではリチウムの吸蔵、放出が可逆的
に起こらなくなる問題がある。
For example, LiCoO 2 and LiNi 0.8 C
In a nonaqueous electrolyte secondary battery using a composite oxide having a layered rock salt type structure such as o 0.2 O 2 as a positive electrode active material, the capacity densities are 140 to 160 mAh / g and 190 to 210 mAh / g, respectively.
g and a high reversibility to occlusion and release of lithium in a high voltage range of 2.5 to 4.3 V. However, there is a problem that cobalt or nickel as a raw material is expensive, and that lithium does not occlude and release reversibly in a voltage range of 2 V or less.

【0005】一方、比較的安価なマンガンを原料とする
LiMn24からなるスピネル型複合酸化物を正極活物
質に用いる非水電解液二次電池は、容量密度が100〜
120mAh/gであり上述のコバルトやニッケルを含
む活物質に比べて低い。また、充放電サイクル耐久性が
低く、さらに3V未満の低い電圧領域で急速に劣化する
問題がある。これに対し、同じくマンガンを原料とする
LiMnO2を活物質に用いる非水電解液二次電池は、
2V前後の低い電圧領域まで作動できるのでLiMn2
4より高い容量が期待できるが、充放電サイクル耐久
性がLiMn24よりさらに低い問題がある。
On the other hand, a non-aqueous electrolyte secondary battery using a spinel-type composite oxide composed of LiMn 2 O 4 made of relatively inexpensive manganese as a positive electrode active material has a capacity density of 100 to 100%.
It is 120 mAh / g, which is lower than that of the active material containing cobalt or nickel. In addition, there is a problem that the charge / discharge cycle durability is low, and that the battery deteriorates rapidly in a low voltage region of less than 3 V. On the other hand, a non-aqueous electrolyte secondary battery using LiMnO 2 , which also uses manganese as a raw material, as an active material,
Since it can operate up to a low voltage range of about 2 V, LiMn 2
Although a capacity higher than O 4 can be expected, there is a problem that the charge / discharge cycle durability is lower than that of LiMn 2 O 4 .

【0006】LiMnO2としては、β−NaMnO2
構造の斜方晶LiMnO2とα−NaMnO2型構造であ
る層状岩塩型構造の単斜晶LiMnO2が知られてい
る。斜方晶LiMnO2は、充放電の繰り返しにより徐
々にスピネル相に転移するため、充放電サイクル耐久性
が著しく低い。
[0006] Examples of the LiMnO 2, monoclinic LiMnO 2 of layered rock salt-type structure has been known to be orthorhombic LiMnO 2 and α-NaMnO 2 type structure of β-NaMnO 2 type structure. Since orthorhombic LiMnO 2 is gradually transformed into a spinel phase by repeated charge and discharge, the charge and discharge cycle durability is extremely low.

【0007】単斜晶LiMnO2は、通常の固相反応法
で合成したα−NaMnO2をLiイオンを含む非水溶
液中で、300℃以下の温度でイオン交換することによ
り合成される(A.R.Armstrong and P.G.Bruce,NATURE,V
ol.381,P499,1996)。また、リチウム以外のアルカリ金
属の水酸化物を含むリチウム塩水溶液中で、マンガン酸
化物を水熱処理することにより合成することも報告され
ている(特開平11−21128)。しかし、これらの
方法で合成された単斜晶LiMnO2を正極活物質とす
ると、充放電サイクル耐久性は改良されるものの、Li
CoO2、LiNi0.8Co0.22等を正極活物質に用い
た非水電解液二次電池に比べれば充放電サイクル耐久性
が劣っており、実用電池への採用が困難であった。
[0007] Monoclinic LiMnO 2 is synthesized by ion-exchanging α-NaMnO 2 synthesized by a normal solid-state reaction method in a non-aqueous solution containing Li ions at a temperature of 300 ° C. or less (ARArmstrong and PGBruce, NATURE, V
ol. 381, P499, 1996). It has also been reported that manganese oxide is synthesized by hydrothermal treatment in a lithium salt aqueous solution containing a hydroxide of an alkali metal other than lithium (JP-A-11-21128). However, when the monoclinic LiMnO 2 synthesized by these methods is used as the positive electrode active material, although the charge / discharge cycle durability is improved, the LiCl
Compared with a non-aqueous electrolyte secondary battery using CoO 2 , LiNi 0.8 Co 0.2 O 2 or the like as a positive electrode active material, the charge-discharge cycle durability was inferior, and it was difficult to adopt it in a practical battery.

【0008】一方、LiMnO2にFe、Ni、Co、
Cr又はAlを添加した複合酸化物が特開平10−13
4812に開示されているが、該複合酸化物はいずれも
X線回折のチャートがJCPDSの35−749と類似
していることから斜方晶LiMnO2構造であると認め
られ、充放電サイクル耐久性は不充分である。
[0008] On the other hand, Fe to LiMnO 2, Ni, Co,
A composite oxide to which Cr or Al has been added is disclosed in JP-A-10-13.
4812, all of the composite oxides are recognized as having an orthorhombic LiMnO 2 structure because their X-ray diffraction charts are similar to 35-749 of JCPDS. Is not enough.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明は、広い
電圧領域で使用でき、電気容量が大きく、充放電サイク
ル耐久性に優れていて、かつ安価な非水電解液二次電池
用正極活物質、及びその製造方法を提供することを目的
とする。さらに、この正極活物質を用いた高エネルギ密
度の非水電解液二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides an inexpensive positive electrode active material for a non-aqueous electrolyte secondary battery which can be used in a wide voltage range, has a large electric capacity, is excellent in charge / discharge cycle durability, and is inexpensive. , And a method for producing the same. It is another object of the present invention to provide a non-aqueous electrolyte secondary battery having a high energy density using the positive electrode active material.

【0010】[0010]

【課題を解決するための手段】本発明は、単斜晶層状岩
塩型構造を有し、LixMny1-y2で表される(ただ
し、Mは、Al、Fe、Co、Ni及びCrからなる群
から選ばれる1種以上の元素であり、0<x≦1.1、
0.5≦y<1である。)ことを特徴とする非水電解液
二次電池用正極活物質、その製造方法及び該正極活物質
を有する非水電解液二次電池を提供する。
The present invention SUMMARY OF] has a monoclinic layered rock-salt structure, Li x Mn y represented by M 1-y O 2 (however, M is Al, Fe, Co, One or more elements selected from the group consisting of Ni and Cr, 0 <x ≦ 1.1,
0.5 ≦ y <1. The present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery having the positive electrode active material.

【0011】LixMny1-y2は、結晶構造として斜
方晶と単斜晶の2種の構造を取りうるが、本発明では単
斜晶の層状岩塩型構造を有している。単斜晶のものを非
水電解液二次電池の正極活物質として用いると、充放電
サイクル耐久性が優れている。ただし、本発明ではLi
xMny1-y2は単斜晶のみからなるものではなく、多
少の斜方晶のものが混在していてもよい。
[0011] Li x Mn y M 1-y O 2 can take two kinds of structure of the orthorhombic and monoclinic as a crystal structure, but in the present invention has a layered rock-salt structure of monoclinic I have. When the monoclinic one is used as the positive electrode active material of the nonaqueous electrolyte secondary battery, the charge / discharge cycle durability is excellent. However, in the present invention, Li
x Mn y M 1-y O 2 is not composed of only monoclinic, it may coexist those slight orthorhombic.

【0012】本発明では、LixMny1-y2において
0.5≦y<1である。yが0.5未満であると単斜晶
層状岩塩構造を維持できなくなる。好ましくは0.65
≦y≦0.99が採用される。また、MはAl、Fe、
Co、Ni及びCrからなる群から選ばれる1種以上の
元素であるが、特にAlであると本発明の正極活物質を
用いた非水電解液二次電池の電気容量が高くなるので好
ましい。
In the present invention, in Li x Mn y M 1-y O 2 is 0.5 ≦ y <1. If y is less than 0.5, the monoclinic layered rock salt structure cannot be maintained. Preferably 0.65
≦ y ≦ 0.99 is adopted. M is Al, Fe,
At least one element selected from the group consisting of Co, Ni, and Cr is preferable. Particularly, Al is preferable because the electric capacity of the nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention increases.

【0013】本発明の製造方法では、上記LixMny
1-y2を得るためにリチウム元素を含有する強塩基性水
溶液中で、マンガン化合物(以下、Mn源原料という)
と元素Mを含む化合物(以下、M源原料という)とを1
30〜300℃にて水熱処理する。上記強塩基性水溶液
へのMn源原料及びM源原料の添加方法としては、以下
の2とおりの方法が好ましく採用される。1)あらかじ
め、Mn源原料とM源原料とを均一に混合してから添加
する。2)リチウム元素を含有する強塩基性水溶液にM
源原料を溶解し、その水溶液中にMn源原料を加える。
[0013] In the production method of the present invention, the Li x Mn y M
Manganese compound (hereinafter referred to as Mn source material) in a strongly basic aqueous solution containing lithium element to obtain 1-y O 2
And a compound containing the element M (hereinafter, referred to as an M source material)
Hydrothermal treatment is performed at 30 to 300 ° C. As a method of adding the Mn source material and the M source material to the strong basic aqueous solution, the following two methods are preferably adopted. 1) The Mn source material and the M source material are uniformly mixed in advance and then added. 2) M is added to a strong basic aqueous solution containing lithium element.
The source material is dissolved, and the Mn source material is added to the aqueous solution.

【0014】1)の方法によれば、得られる正極活物質
においてMnとMが均一に分布しやすいの好ましい。特
に、Mn源原料及びM源原料とを共沈して得られる水酸
化物、酸化物又はオキシ水酸化物としてから上記強塩基
性水溶液中に含有させると、MnとMがより均一に分布
するので好ましい。また、2)の方法も、M源原料が水
溶液中に溶解しているためMn源原料と反応しやすいの
で、得られる正極活物質にはMnとMが均一に分布す
る。
According to the method 1), it is preferable that Mn and M are easily distributed uniformly in the obtained positive electrode active material. In particular, when a hydroxide, oxide or oxyhydroxide obtained by co-precipitating the Mn source material and the M source material is contained in the strong basic aqueous solution, Mn and M are more uniformly distributed. It is preferred. In the method 2), since the M source material is dissolved in the aqueous solution and easily reacts with the Mn source material, Mn and M are uniformly distributed in the obtained positive electrode active material.

【0015】MがAlである場合は2)の方法が好まし
く、NaAlO2、KAlO2、LiAlO2等を原料と
して強塩基性水溶液中に溶解させると均質なLiMnx
Al1- x2を合成できるので好ましい。
When M is Al, the method 2) is preferable. When NaAlO 2 , KAlO 2 , LiAlO 2 or the like is used as a raw material and dissolved in a strongly basic aqueous solution, homogeneous LiMn x
Al 1 -xO 2 is preferable because it can be synthesized.

【0016】また、本発明の製造方法において、強塩基
性水溶液中に含有されるリチウム元素は作業性や得られ
る複合酸化物の結晶の均一性から、水溶性のリチウム化
合物を強塩基性水溶液に溶解することで該水溶液中に含
有させることが好ましく、リチウム化合物としては特に
水酸化リチウムが好ましい。
Further, in the production method of the present invention, the lithium element contained in the strongly basic aqueous solution is converted from a water-soluble lithium compound into a strongly basic aqueous solution in view of workability and uniformity of the crystal of the obtained composite oxide. It is preferable that the compound is dissolved in the aqueous solution to be dissolved, and as the lithium compound, lithium hydroxide is particularly preferable.

【0017】本発明における強塩基性水溶液は、pH1
1以上であることが好ましい。強塩基性水溶液には、リ
チウム以外のアルカリ金属の水酸化物が含まれているこ
とが好ましい。得られる正極活物質中に不純物が残存し
にくいことから、特に水酸化カリウム又は水酸化ナトリ
ウムが好ましい。水酸化カリウムと水酸化ナトリウムは
単独で使用しても、混合して使用してもよい。また、強
塩基性水溶液中にはアニオンとして、水酸イオンの他
に、塩素イオン、臭素イオン、硝酸イオン、酢酸イオ
ン、シュウ酸イオン等が含まれていてもよい。
The strongly basic aqueous solution of the present invention has a pH of 1
It is preferably one or more. The strongly basic aqueous solution preferably contains a hydroxide of an alkali metal other than lithium. Potassium hydroxide or sodium hydroxide is particularly preferable since impurities hardly remain in the obtained positive electrode active material. Potassium hydroxide and sodium hydroxide may be used alone or as a mixture. The strongly basic aqueous solution may contain, as anions, chlorine ions, bromine ions, nitrate ions, acetate ions, oxalate ions, etc., in addition to hydroxyl ions.

【0018】本発明の製造方法において、Mn源原料と
しては、酸化物(Mn23、MnO、MnO2等)、酸
化物の水和物、オキシ水酸化物等が挙げられるが、3価
のマンガンの化合物であることが好ましい。これらのM
n源原料は、単独で使用しても、2種以上を混合して使
用してもよい。
In the production method of the present invention, the Mn source raw materials include oxides (Mn 2 O 3 , MnO, MnO 2 and the like), oxide hydrates, oxyhydroxides and the like. Is preferable. These M
The n-source materials may be used alone or as a mixture of two or more.

【0019】本発明の製造方法において、M源原料とし
ては、金属M、水酸化物、酸化物、オキシ水酸化物、塩
化物、硝酸塩等が使用される。これらのM源原料は、単
独で使用してもよく、2種以上を併用してもよい。
In the production method of the present invention, as the M source material, metal M, hydroxide, oxide, oxyhydroxide, chloride, nitrate and the like are used. These M source materials may be used alone or in combination of two or more.

【0020】本発明の製造方法としては、例えば純水1
kgあたりに水酸化リチウム、塩化リチウム等のリチウ
ム化合物0.05〜5モルとリチウム以外のアルカリ金
属の水酸化物5〜100モルとを溶解して強塩基性水溶
液を調製する。次いでこの水溶液にMn源原料とM源原
料を加え、混合した後、得られた混合物をオートクレー
ブ等の水熱反応装置に設置して、水熱反応させる。水熱
反応条件としては、通常130〜300℃の温度で0.
5時間〜14日間反応させることが好ましく、特に20
0〜250℃の温度で1〜48時間反応させることが好
ましい。
The production method of the present invention includes, for example, pure water 1
A strong basic aqueous solution is prepared by dissolving 0.05 to 5 mol of a lithium compound such as lithium hydroxide and lithium chloride and 5 to 100 mol of a hydroxide of an alkali metal other than lithium per kg. Next, the Mn source material and the M source material are added to and mixed with the aqueous solution, and the resulting mixture is placed in a hydrothermal reactor such as an autoclave and subjected to a hydrothermal reaction. The hydrothermal reaction conditions are usually 0.1 to 130 ° C. to 300 ° C.
Preferably, the reaction is carried out for 5 hours to 14 days, especially 20 hours.
The reaction is preferably performed at a temperature of 0 to 250 ° C for 1 to 48 hours.

【0021】本発明の製造方法では、強塩基性水溶液1
00mLに対し、Mn源原料は通常0.1〜10g程度
加えることが好ましく、特に0.5〜3g加えることが
好ましい。また、M源原料は通常0.02〜5g程度加
えることが好ましく、特に0.1〜1g加えることが好
ましい。
In the production method of the present invention, the strongly basic aqueous solution 1
Usually, about 0.1 to 10 g of the Mn source material is preferably added to 00 mL, particularly preferably 0.5 to 3 g. Further, it is preferable to add about 0.02 to 5 g of the M source material, and it is particularly preferable to add 0.1 to 1 g.

【0022】水熱反応終了後、残存する水酸化リチウ
ム、水酸化ナトリウム、水酸化カリウム等の未反応原料
を除去するため、反応生成物をエタノールで洗浄し濾過
し、乾燥することにより、所望の単斜晶層状岩塩型構造
のLixMny1-y2が得られる。
After the completion of the hydrothermal reaction, the reaction product is washed with ethanol, filtered, and dried to remove the remaining unreacted raw materials such as lithium hydroxide, sodium hydroxide, and potassium hydroxide. Li x Mn y M 1-y O 2 monoclinic layered rock-salt structure.

【0023】本発明の非水電解液二次電池の正極は、上
記正極活物質と導電材と結合材とを含む成形体である。
結合材としては、ポリフッ化ビニリデン、ポリテトラフ
ルオロエチレン(以下、PTFEという)、ポリアミ
ド、カルボキシメチルセルロース、アクリル樹脂等が好
ましい。導電材としては、アセチレンブラック、黒鉛、
ケッチェンブラック等のカーボン系導電材が好ましい。
上記正極活物質と導電材と結合材との混合物と該結合材
を溶解又は分散できる溶媒とからなるスラリ、又は前記
混合物に有機溶媒を加えて混練してなる混練物を、アル
ミニウム箔、ステンレス箔等の正極集電体に塗布又は担
持させて正極を成形することが好ましい。
The positive electrode of the non-aqueous electrolyte secondary battery of the present invention is a molded article containing the above-mentioned positive electrode active material, conductive material and binder.
As the binder, polyvinylidene fluoride, polytetrafluoroethylene (hereinafter, referred to as PTFE), polyamide, carboxymethyl cellulose, acrylic resin and the like are preferable. As conductive materials, acetylene black, graphite,
A carbon-based conductive material such as Ketjen Black is preferred.
A slurry comprising a mixture of the positive electrode active material, the conductive material and the binder, and a solvent capable of dissolving or dispersing the binder, or a kneaded product obtained by adding an organic solvent to the mixture and kneading the mixture, aluminum foil, stainless steel foil It is preferable that the positive electrode is coated or supported on a positive electrode current collector such as the above to form a positive electrode.

【0024】本発明の非水電解液二次電池において、電
解液の溶媒としては炭酸エステルが好ましい。炭酸エス
テルは環状、鎖状いずれも使用できる。環状炭酸エステ
ルとしてはプロピレンカーボネート、エチレンカーボネ
ート等が例示される。鎖状炭酸エステルとしてはジメチ
ルカーボネート、ジエチルカーボネート、エチルメチル
カーボネート、メチルプロピルカーボネート、メチルイ
ソプロピルカーボネート等が例示される。本発明では上
記炭酸エステルを単独で又は2種以上を混合して使用す
ることが好ましく、また上記炭酸エステルを他の溶媒と
混合して使用してもよい。
In the non-aqueous electrolyte secondary battery of the present invention, the solvent of the electrolyte is preferably a carbonate ester. Carbonate can be used either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate and the like. In the present invention, it is preferable to use the above carbonate alone or as a mixture of two or more thereof, and the above carbonate may be used as a mixture with another solvent.

【0025】また、負極活物質の材料によっては、鎖状
炭酸エステルと環状炭酸エステルの混合物を使用する
と、放電特性、サイクル耐久性、充放電効率が改良でき
る場合がある。溶質としては、ClO4 -、CF3
3 -、BF4 -、PF6 -、AsF6 -、SbF6 -、CF3
2 -、(CF3SO22-等をアニオンとするリチウム
塩を使用することが好ましい。
In addition, depending on the material of the negative electrode active material, when a mixture of a chain carbonate and a cyclic carbonate is used, the discharge characteristics, cycle durability, and charge / discharge efficiency can be sometimes improved. Solutes include ClO 4 , CF 3 S
O 3 , BF 4 , PF 6 , AsF 6 , SbF 6 , CF 3 C
It is preferable to use a lithium salt having an anion such as O 2 or (CF 3 SO 2 ) 2 N .

【0026】さらに、上記電解液の溶媒にフッ化ビニリ
デン/ヘキサフルオロプロピレン共重合体(例えばアト
ケム社製カイナー(商品名))、特開平10−2941
31に開示されたフッ化ビニリデン/パーフルオロ(プ
ロピルビニルエーテル)共重合体を添加し、上記の溶質
を加えることによりゲル状のポリマー電解質を作製し、
電解液のかわりにポリマー電解質を使用してもよい。
Further, a vinylidene fluoride / hexafluoropropylene copolymer (for example, Kynar (trade name) manufactured by Atochem Co., Ltd.) may be used as a solvent for the electrolytic solution.
A gelled polymer electrolyte is prepared by adding the vinylidene fluoride / perfluoro (propyl vinyl ether) copolymer disclosed in No. 31 and adding the above solute,
A polymer electrolyte may be used instead of the electrolytic solution.

【0027】上記の電解液又はポリマー電解質には、リ
チウム塩が0.2〜2.0mol/L含まれていること
が好ましい。この範囲を逸脱すると、イオン伝導度が低
下し、電気伝導度が低下する。より好ましくは0.5〜
1.5mol/Lである。
The above-mentioned electrolytic solution or polymer electrolyte preferably contains a lithium salt in an amount of 0.2 to 2.0 mol / L. Outside this range, the ionic conductivity decreases and the electrical conductivity decreases. More preferably 0.5 to
1.5 mol / L.

【0028】本発明における負極活物質は、リチウムイ
オンを吸蔵、放出できる材料である。負極活物質は特に
限定されないが、例えばリチウム金属、リチウム合金、
炭素材料、周期表14、15族の金属を主体とした酸化
物、炭化ケイ素、酸化ケイ素、硫化チタン、炭化ホウ素
等が挙げられる。炭素材料としては、様々な熱分解条件
で有機物を熱分解したものや人造黒鉛、天然黒鉛、土壌
黒鉛、膨張黒鉛、鱗片状黒鉛等を使用でき、上記酸化物
としては、酸化スズを主体とする化合物が使用できる。
また、負極集電体としては銅箔、ニッケル箔等が用いら
れる。
The negative electrode active material in the present invention is a material capable of inserting and extracting lithium ions. The negative electrode active material is not particularly limited, for example, lithium metal, lithium alloy,
Examples thereof include carbon materials, oxides mainly composed of metals belonging to Groups 14 and 15 of the periodic table, silicon carbide, silicon oxide, titanium sulfide, and boron carbide. As the carbon material, those obtained by thermally decomposing organic substances under various pyrolysis conditions and artificial graphite, natural graphite, soil graphite, expanded graphite, flaky graphite, and the like can be used, and the oxide is mainly tin oxide. Compounds can be used.
Further, as the negative electrode current collector, a copper foil, a nickel foil, or the like is used.

【0029】本発明における負極は、負極活物質と結合
材とからなることが好ましく、負極活物質と結合材との
混合物に有機溶媒を加えてスラリとし、該スラリを金属
箔集電体に塗布、乾燥、プレスして得ることが好まし
い。また、正極と負極の間に介在されるセパレータに
は、多孔質ポリエチレン、多孔質ポリプロピレンフィル
ム等が好ましく使用される。また、本発明の非水電解液
二次電池の形状は特に限定されない。シート状(いわゆ
るフィルム状)、折り畳み状、巻回型有底円筒形、ボタ
ン形等が用途に応じて選択される。
The negative electrode in the present invention is preferably composed of a negative electrode active material and a binder. An organic solvent is added to a mixture of the negative electrode active material and the binder to form a slurry, and the slurry is applied to a metal foil current collector. It is preferable to obtain by drying, pressing. As the separator interposed between the positive electrode and the negative electrode, a porous polyethylene, a porous polypropylene film, or the like is preferably used. Further, the shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited. A sheet shape (a so-called film shape), a folded shape, a rolled bottomed cylindrical shape, a button shape, and the like are selected according to the application.

【0030】[0030]

【実施例】以下に実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0031】[例1]PTFE製有底円筒容器に、水酸
化カリウム100gと水酸化リチウム一水和物1.6g
と純水140gとを仕込み、撹拌し溶解させた後、厚さ
100μmのアルミニウム箔0.21gを投入し溶解さ
せた。続いて酸化マンガン(Mn23)粉末1.4gを
添加し、さらに撹拌した。次いで溶液が仕込まれている
上記円筒容器をステンレス製オートクレーブ内に収納
し、オートクレーブ内を窒素ガスで置換した後、密閉系
で225℃で10時間水熱処理した。反応終了後、オー
トクレーブを冷却してスラリ状の内容物を取り出して濾
過し、濾滓をエタノールで洗浄して水酸化リチウム、水
酸化カリウム等を除去し、乾燥して正極活物質粉末を得
た。
Example 1 100 g of potassium hydroxide and 1.6 g of lithium hydroxide monohydrate were placed in a bottomed cylindrical container made of PTFE.
And 140 g of pure water were stirred and dissolved, and then 0.21 g of 100 μm-thick aluminum foil was charged and dissolved. Subsequently, 1.4 g of manganese oxide (Mn 2 O 3 ) powder was added, and the mixture was further stirred. Next, the cylindrical container containing the solution was placed in a stainless steel autoclave, and the inside of the autoclave was replaced with nitrogen gas, and then subjected to hydrothermal treatment at 225 ° C. for 10 hours in a closed system. After completion of the reaction, the autoclave was cooled, the slurry-like content was taken out and filtered, and the filter cake was washed with ethanol to remove lithium hydroxide, potassium hydroxide, and the like, and dried to obtain a positive electrode active material powder. .

【0032】上記粉末のCuKα線によるX線回折分析
の結果、2θ=18度、37度、39度、45度、62
度、65度、67度に回折ピークが認められ、上記粉末
は単斜晶相の層状岩塩型LiMnO2構造を有している
ことがわかった。また、2θ=15度に微量の斜方晶相
のLiMnO2構造に基づく回折ピークが認められた。
また、粉末の元素分析により、LiMn0.75Al0.25
2であることがわかった。
As a result of X-ray diffraction analysis of the powder by CuKα ray, 2θ = 18 °, 37 °, 39 °, 45 °, 62 °
Diffraction peaks were observed at 65, 67 and 67 degrees, indicating that the powder had a monoclinic phase layered rock-salt LiMnO 2 structure. At 2θ = 15 °, a diffraction peak based on the LiMnO 2 structure of a trace amount of orthorhombic phase was observed.
Further, by elemental analysis of the powder, LiMn 0.75 Al 0.25 O
It turned out to be 2 .

【0033】上記のLiMn0.75Al0.252粉末とア
セチレンブラックとPTFE粉末とを80:16:4の
重量比で混合し、トルエンを添加しつつ混練してシート
状に成形した後、乾燥して厚さ150μmの正極を作製
し、正極集電体には厚さ20μmのアルミニウム箔を用
いた。セパレータには厚さ25μmの多孔質ポリエチレ
ンを用いた。また、厚さ500μmの金属リチウム箔を
負極とし、負極集電体にはニッケル箔を用いた。電解液
には、エチレンカーボネートとジエチルカーボネートと
の容積比で1:1の混合溶媒に1mol/LのLiPF
6を溶解した溶液を用いた。
The above-mentioned LiMn 0.75 Al 0.25 O 2 powder, acetylene black and PTFE powder are mixed in a weight ratio of 80: 16: 4, kneaded while adding toluene, formed into a sheet, and dried. A positive electrode having a thickness of 150 μm was prepared, and an aluminum foil having a thickness of 20 μm was used as a positive electrode current collector. A 25 μm thick porous polyethylene was used for the separator. Further, a metal lithium foil having a thickness of 500 μm was used as a negative electrode, and a nickel foil was used as a negative electrode current collector. In the electrolyte, 1 mol / L LiPF was mixed in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
A solution in which 6 was dissolved was used.

【0034】アルゴングローブボックス中で、上記正極
と上記負極とをセパレータを介して対向させ、電解液と
ともにステンレス製簡易セルに収容し密閉して非水電解
液二次電池を得た。0.2mA/cm2の定電流で4.
3Vまで充電した後、2.0Vまで放電して初期放電容
量を求めた。さらに0.2mA/cm2の定電流で充放
電サイクルを50回繰り返した。2.0〜4.3Vにお
ける初期放電容量は160mAh/gであり、50回充
放電サイクル後の容量は152mAh/gであった。
In an argon glove box, the above-mentioned positive electrode and the above-mentioned negative electrode were opposed to each other with a separator interposed therebetween, and contained in a simple cell made of stainless steel together with the electrolytic solution and sealed to obtain a non-aqueous electrolytic solution secondary battery. 3. At a constant current of 0.2 mA / cm 2 .
After charging to 3 V, the battery was discharged to 2.0 V to determine the initial discharge capacity. Further, the charge / discharge cycle was repeated 50 times at a constant current of 0.2 mA / cm 2 . The initial discharge capacity at 2.0 to 4.3 V was 160 mAh / g, and the capacity after 50 charge / discharge cycles was 152 mAh / g.

【0035】[例2]水酸化カリウム100gのかわり
に水酸化ナトリウム71gを使用し、アルミニウム箔
0.21gのかわりに水酸化アルミニウム0.36gを
使用した以外は例1と同様に正極活物質粉末を合成し
た。例1と同様にX線回折分析を行ったところ、単斜晶
の層状岩塩型LiMnO2構造を有し、また2θ=15
度に微量の斜方晶からなるLiMnO2構造に基づく回
折ピークが認められた。また、元素分析によりLiMn
0.85Al0.152であることがわかった。
Example 2 Positive electrode active material powder as in Example 1 except that 71 g of sodium hydroxide was used instead of 100 g of potassium hydroxide and 0.36 g of aluminum hydroxide was used instead of 0.21 g of aluminum foil. Was synthesized. X-ray diffraction analysis was carried out in the same manner as in Example 1. As a result, it was found that the sample had a monoclinic layered rock-salt type LiMnO 2 structure,
A diffraction peak based on the LiMnO 2 structure composed of a very small amount of orthorhombic crystals was observed. In addition, LiMn was analyzed by elemental analysis.
It turned out to be 0.85 Al 0.15 O 2 .

【0036】上記正極活物質を用いた以外は例1と同様
にして非水電解液二次電池を作製し、例1と同様に評価
したところ、初期放電容量は156mAh/gであり、
50回充放電サイクル後の容量は140mAh/gであ
った。
A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the above-mentioned positive electrode active material was used, and evaluated in the same manner as in Example 1. The initial discharge capacity was 156 mAh / g.
The capacity after 50 charge / discharge cycles was 140 mAh / g.

【0037】[例3]容積1LのPTFE製有底円筒容
器を用い、硝酸マンガンと硝酸アルミニウムとを3:1
のモル比で含む水溶液に水酸化アンモニウム水溶液を加
えて共沈させ、150℃で加熱・乾燥して、マンガン−
アルミニウム共沈水酸化物(マンガンとアルミニウムの
原子比は3:1)10gを得た。
Example 3 Using a 1 L PTFE bottomed cylindrical container, manganese nitrate and aluminum nitrate were mixed at a ratio of 3: 1.
An aqueous ammonium hydroxide solution was added to the aqueous solution containing the same molar ratio to cause coprecipitation, and the mixture was heated and dried at 150 ° C.
10 g of aluminum coprecipitated hydroxide (atomic ratio of manganese to aluminum was 3: 1) was obtained.

【0038】酸化マンガン粉末とアルミニウム箔のかわ
りに、上記マンガン−アルミニウム共沈水酸化物粉末
1.4gを仕込んだ以外は例1と同様にして合成し、正
極活物質粉末を得た。例1と同様にX線回折分析を行っ
たところ、単斜晶の層状岩塩型LiMnO2構造を有
し、また2θ=15度に微量の斜方晶からなるLiMn
2構造に基づく回折ピークが認められた。また、元素
分析によりLiMn0.75Al 0.252であることがわか
った。
Manganese oxide powder and aluminum foil glue
In addition, the manganese-aluminum coprecipitated hydroxide powder
Synthesized in the same manner as in Example 1 except that 1.4 g was charged.
A pole active material powder was obtained. X-ray diffraction analysis was performed as in Example 1.
As a result, the monoclinic layered rock salt type LiMnOTwoWith structure
And a small amount of orthorhombic LiMn at 2θ = 15 °
OTwoA diffraction peak based on the structure was observed. Also element
Analysis shows that LiMn0.75Al 0.25OTwoYou know that
Was.

【0039】上記正極活物質を用いた以外は例1と同様
にして非水電解液二次電池を作製し、例1と同様に評価
したところ、初期放電容量は157mAh/gであり、
50回充放電サイクル後の容量は150mAh/gであ
った。
A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the above-mentioned positive electrode active material was used, and evaluated in the same manner as in Example 1. The initial discharge capacity was 157 mAh / g.
The capacity after 50 charge / discharge cycles was 150 mAh / g.

【0040】[例4]硝酸アルミニウムのかわりに硝酸
コバルトを使用した以外は例3と同様にしてマンガン−
コバルト共沈水酸化物(マンガンとコバルトの原子比は
3:1)を得て、例3と同様に正極活物質粉末を合成し
た。例1と同様にX線回折分析を行ったところ、単斜晶
の層状岩塩型LiMnO2構造を有し、また2θ=15
度に微量の斜方晶からなるLiMnO2構造に基づく回
折ピークが認められた。また、元素分析によりLiMn
0.75Co0.252であることがわかった。
Example 4 Manganese was prepared in the same manner as in Example 3 except that cobalt nitrate was used instead of aluminum nitrate.
Cobalt coprecipitated hydroxide (atomic ratio of manganese to cobalt was 3: 1) was obtained, and a positive electrode active material powder was synthesized as in Example 3. X-ray diffraction analysis was carried out in the same manner as in Example 1. As a result, it was found that the sample had a monoclinic layered rock-salt type LiMnO 2 structure,
A diffraction peak based on the LiMnO 2 structure composed of a very small amount of orthorhombic crystals was observed. In addition, LiMn was analyzed by elemental analysis.
It was found to be 0.75 Co 0.25 O 2 .

【0041】上記正極活物質を用いた以外は例1と同様
にして非水電解液二次電池を作製し、例1と同様に評価
したところ、初期放電容量は152mAh/gであり、
50回充放電サイクル後の容量は135mAh/gであ
った。
A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the above-mentioned positive electrode active material was used, and evaluated in the same manner as in Example 1. The initial discharge capacity was 152 mAh / g.
The capacity after 50 charge / discharge cycles was 135 mAh / g.

【0042】[例5]硝酸アルミニウムのかわりに硝酸
ニッケルを使用した以外は例3と同様にしてマンガン−
ニッケル共沈水酸化物(マンガンとニッケルの原子比は
3:1)を得て、例3と同様に正極活物質粉末を合成し
た。例1と同様にX線回折分析を行ったところ、単斜晶
の層状岩塩型LiMnO2構造を有し、また2θ=15
度に微量の斜方晶からなるLiMnO2構造に基づく回
折ピークが認められた。また、元素分析によりLiMn
0.75Ni0.252であることがわかった。
Example 5 Manganese was prepared in the same manner as in Example 3 except that nickel nitrate was used instead of aluminum nitrate.
A nickel coprecipitated hydroxide (atomic ratio of manganese to nickel was 3: 1) was obtained, and a positive electrode active material powder was synthesized as in Example 3. X-ray diffraction analysis was carried out in the same manner as in Example 1. As a result, it was found that the sample had a monoclinic layered rock-salt type LiMnO 2 structure,
A diffraction peak based on the LiMnO 2 structure composed of a very small amount of orthorhombic crystals was observed. In addition, LiMn was analyzed by elemental analysis.
It was found to be 0.75 Ni 0.25 O 2 .

【0043】上記正極活物質を用いた以外は例1と同様
にして非水電解液二次電池を作製し、例1と同様に評価
したところ、初期放電容量は158mAh/gであり、
50回充放電サイクル後の容量は137mAh/gであ
った。
A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the above-mentioned positive electrode active material was used, and evaluated in the same manner as in Example 1. The initial discharge capacity was 158 mAh / g.
The capacity after 50 charge / discharge cycles was 137 mAh / g.

【0044】[例6]硝酸アルミニウムのかわりに硝酸
鉄を使用した以外は例3と同様にしてマンガン−鉄共沈
水酸化物(マンガンと鉄の原子比は3:1)を得て、例
3と同様に正極活物質粉末を合成した。例1と同様にX
線回折分析を行ったところ、単斜晶の層状岩塩型LiM
nO2構造を有し、また2θ=15度に微量の斜方晶か
らなるLiMnO2構造に基づく回折ピークが認められ
た。また、元素分析によりLiMn0.75Fe0.252
あることがわかった。
Example 6 A manganese-iron coprecipitated hydroxide (atomic ratio of manganese to iron was 3: 1) was obtained in the same manner as in Example 3 except that iron nitrate was used instead of aluminum nitrate. A positive electrode active material powder was synthesized in the same manner as described above. X as in Example 1
X-ray diffraction analysis showed that monoclinic layered rock salt LiM
A diffraction peak based on a LiMnO 2 structure having a nO 2 structure and a small amount of orthorhombic crystals was observed at 2θ = 15 °. In addition, elemental analysis revealed that it was LiMn 0.75 Fe 0.25 O 2 .

【0045】上記正極活物質を用いた以外は例1と同様
にして非水電解液二次電池を作製し、例1と同様に評価
したところ、初期放電容量は155mAh/gであり、
50回充放電サイクル後の容量は130mAh/gであ
った。
A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the above-mentioned positive electrode active material was used, and evaluated in the same manner as in Example 1. The initial discharge capacity was 155 mAh / g.
The capacity after 50 charge / discharge cycles was 130 mAh / g.

【0046】[例7]硝酸アルミニウムのかわりに硝酸
クロムを使用した以外は例3と同様にしてマンガン−ク
ロム共沈水酸化物(マンガンとクロムの原子比は3:
1)を得て、例3と同様に正極活物質粉末を合成した。
例1と同様にX線回折分析を行ったところ、単斜晶の層
状岩塩型LiMnO2構造を有し、また2θ=15度に
微量の斜方晶からなるLiMnO2構造に基づく回折ピ
ークが認められた。また、元素分析によりLiMn0.75
Cr0.252であることがわかった。
Example 7 A manganese-chromium coprecipitated hydroxide (atomic ratio of manganese to chromium: 3: 3) except that chromium nitrate was used in place of aluminum nitrate.
1) was obtained, and a positive electrode active material powder was synthesized in the same manner as in Example 3.
X-ray diffraction analysis was carried out in the same manner as in Example 1. As a result, a diffraction peak based on the LiMnO 2 structure having a monoclinic layered rock-salt type LiMnO 2 structure and a small amount of orthorhombic crystals at 2θ = 15 ° was recognized Was done. In addition, LiMn 0.75
It was found to be Cr 0.25 O 2 .

【0047】上記正極活物質を用いた以外は例1と同様
にして非水電解液二次電池を作製し、例1と同様に評価
したところ、初期放電容量は157mAh/gであり、
50回充放電サイクル後の容量は135mAh/gであ
った。
A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the above-mentioned positive electrode active material was used, and evaluated in the same manner as in Example 1. The initial discharge capacity was 157 mAh / g.
The capacity after 50 charge / discharge cycles was 135 mAh / g.

【0048】[例8]硝酸マンガンと硝酸コバルトとの
モル比を17:3として混合した以外は例4と同様にし
てマンガン−コバルト共沈水酸化物(マンガンとコバル
トの原子比は17:3)を得た後、該共沈水酸化物を5
50℃で焼成して混合酸化物とし、この混合酸化物を用
いて例3と同様にして正極活物質粉末を合成した。例1
と同様にX線回折分析を行ったところ、単斜晶の層状岩
塩型LiMnO2構造を有し、また2θ=15度に微量
の斜方晶からなるLiMnO2構造に基づく回折ピーク
が認められた。また、元素分析によりLiMn0.85Co
0.152であることがわかった。
Example 8 Manganese-cobalt coprecipitated hydroxide (atomic ratio of manganese to cobalt was 17: 3) in the same manner as in Example 4, except that the molar ratio of manganese nitrate to cobalt nitrate was 17: 3. After obtaining the coprecipitated hydroxide,
The mixed oxide was fired at 50 ° C., and a positive electrode active material powder was synthesized in the same manner as in Example 3 using this mixed oxide. Example 1
An X-ray diffraction analysis was performed in the same manner as described above. As a result, a diffraction peak based on the LiMnO 2 structure having a monoclinic layered rock salt type LiMnO 2 structure and a small amount of orthorhombic crystals was observed at 2θ = 15 °. . In addition, LiMn 0.85 Co
It was found to be 0.15 O 2.

【0049】上記正極活物質を用いた以外は例1と同様
にして非水電解液二次電池を作製し、例1と同様に評価
したところ、初期放電容量は159mAh/gであり、
50回充放電サイクル後の容量は140mAh/gであ
った。
A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the above-mentioned positive electrode active material was used, and evaluated in the same manner as in Example 1. The initial discharge capacity was 159 mAh / g.
The capacity after 50 charge / discharge cycles was 140 mAh / g.

【0050】[例9(比較例)]硝酸アルミニウムを添
加しなかった以外は例3と同様にして正極活物質粉末を
合成した。例1と同様にX線回折分析を行ったところ、
単斜晶の層状岩塩型LiMnO2構造を有し、また2θ
=15度に微量の斜方晶からなるLiMnO2構造に基
づく回折ピークが認められた。また、元素分析によりL
iMnO2であることがわかった。
Example 9 (Comparative Example) A positive electrode active material powder was synthesized in the same manner as in Example 3 except that aluminum nitrate was not added. When X-ray diffraction analysis was performed in the same manner as in Example 1,
It has a monoclinic layered rock salt type LiMnO 2 structure, and has a 2θ
A diffraction peak based on a LiMnO 2 structure composed of a trace amount of orthorhombic crystals was observed at 15 °. In addition, L
It was found to be iMnO 2 .

【0051】上記正極活物質を用いた以外は例1と同様
にして非水電解液二次電池を作製し、例1と同様に評価
したところ、初期放電容量は150mAh/gであり、
50回充放電サイクル後の容量は90mAh/gであっ
た。
A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the above-mentioned positive electrode active material was used, and evaluated in the same manner as in Example 1. The initial discharge capacity was 150 mAh / g.
The capacity after 50 charge / discharge cycles was 90 mAh / g.

【0052】[0052]

【発明の効果】本発明の正極活物質を有する非水電解液
二次電池は、広い電圧領域で使用でき、容量が大きく、
充放電サイクル耐久性に優れている。また、本発明の正
極活物質は、従来より使用されているコバルトやニッケ
ルのかわりに安価なマンガンを用いているため、低コス
トで得られる。
The non-aqueous electrolyte secondary battery having the positive electrode active material of the present invention can be used in a wide voltage range, has a large capacity,
Excellent charge / discharge cycle durability. Further, since the positive electrode active material of the present invention uses inexpensive manganese instead of conventionally used cobalt and nickel, it can be obtained at low cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/02 H01M 4/02 C 10/40 10/40 Z Fターム(参考) 4G002 AA06 AA10 AB02 AE05 4G048 AA03 AA04 AB02 AC06 AD06 AE05 5H003 AA02 AA04 BA00 BA01 BB05 BB11 BB14 BC01 BD00 BD01 5H014 AA02 BB00 BB01 EE10 HH08 5H029 AJ03 AJ05 AK03 AL06 AL12 AM03 AM04 AM05 AM07 CJ01 CJ02 CJ28 HJ02 HJ14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/02 H01M 4/02 C 10/40 10/40 Z F term (Reference) 4G002 AA06 AA10 AB02 AE05 4G048 AA03 AA04 AB02 AC06 AD06 AE05 5H003 AA02 AA04 BA00 BA01 BB05 BB11 BB14 BC01 BD00 BD01 5H014 AA02 BB00 BB01 EE10 HH08 5H029 AJ03 AJ05 AK03 AL06 AL12 AM03 AM04 AM05 AM07 CJ01 CJ02 CJ28 HJ

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】単斜晶層状岩塩型構造を有し、LixMny
1-y2で表される(ただし、Mは、Al、Fe、C
o、Ni及びCrからなる群から選ばれる1種以上の元
素であり、0<x≦1.1、0.5≦y<1である。)
ことを特徴とする非水電解液二次電池用正極活物質。
1. A has a monoclinic layered rock-salt structure, Li x Mn y
M 1-y O 2 (where M is Al, Fe, C
At least one element selected from the group consisting of o, Ni and Cr, where 0 <x ≦ 1.1 and 0.5 ≦ y <1. )
A positive electrode active material for a non-aqueous electrolyte secondary battery, comprising:
【請求項2】リチウム元素を含有する強塩基性水溶液中
で、マンガン化合物と前記元素Mを含む化合物とを13
0〜300℃にて水熱処理することを特徴とする請求項
1に記載の非水電解液二次電池用正極活物質の製造方
法。
2. In a strongly basic aqueous solution containing a lithium element, a manganese compound and a compound containing the element M are mixed with 13
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein a hydrothermal treatment is performed at 0 to 300 ° C.
【請求項3】前記マンガン化合物と前記元素Mを含む化
合物は、共沈して水酸化物、酸化物又はオキシ水酸化物
とされてから前記強塩基性水溶液に含有される請求項2
に記載の非水電解液二次電池用正極活物質の製造方法。
3. The strongly basic aqueous solution after the manganese compound and the compound containing the element M are coprecipitated to form a hydroxide, oxide or oxyhydroxide.
3. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to item 1.
【請求項4】前記強塩基性水溶液には、前記元素Mを含
む化合物を溶解させた後、前記マンガン化合物を加える
請求項2に記載の非水電解液二次電池用正極活物質の製
造方法。
4. The method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 2, wherein the manganese compound is added to the strongly basic aqueous solution after dissolving the compound containing the element M. .
【請求項5】前記強塩基性水溶液には、水酸化リチウム
が溶解している請求項2、3又は4に記載の非水電解液
二次電池用正極活物質の製造方法。
5. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein lithium hydroxide is dissolved in the strong basic aqueous solution.
【請求項6】前記強塩基性水溶液には、水酸化カリウム
又は水酸化ナトリウムが溶解している請求項2、3、4
又は5に記載の非水電解液二次電池用正極活物質の製造
方法。
6. The strong basic aqueous solution in which potassium hydroxide or sodium hydroxide is dissolved.
Or the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to 5 above.
【請求項7】請求項1に記載の非水電解液二次電池用正
極活物質と、導電材と、結合材と、を含む成形体を正極
として有することを特徴とする非水電解液二次電池。
7. A non-aqueous electrolyte secondary battery comprising a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, a conductive material, and a binder as a positive electrode. Next battery.
JP10299999A 1999-04-09 1999-04-09 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP4318002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10299999A JP4318002B2 (en) 1999-04-09 1999-04-09 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10299999A JP4318002B2 (en) 1999-04-09 1999-04-09 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000294242A true JP2000294242A (en) 2000-10-20
JP4318002B2 JP4318002B2 (en) 2009-08-19

Family

ID=14342392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10299999A Expired - Fee Related JP4318002B2 (en) 1999-04-09 1999-04-09 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4318002B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122628A (en) * 1999-10-27 2001-05-08 Sakai Chem Ind Co Ltd Lithium-manganese multi-component oxide particulate composition, method for manufacturing the same and secondary battery
JP2001223008A (en) * 1999-12-02 2001-08-17 Honjo Chemical Corp Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP2002121026A (en) * 2000-10-11 2002-04-23 National Institute Of Advanced Industrial & Technology Lithium - iron - manganese multiple oxide having stratified rock salt type structure and manufacturing method thereof
JP2002324543A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Lithium ion secondary battery and positive electrode active material for the same
WO2003009407A2 (en) * 2001-07-14 2003-01-30 The University Court Of The University Of St Andrews Managanese oxide material for electrochemical cells
US6720111B2 (en) 2000-08-31 2004-04-13 Secretary, Agency Of Industrial Science And Technology Single-phase lithium ferrite based oxide
WO2004078653A1 (en) * 2003-03-06 2004-09-16 Nara Machinery Co., Ltd. Process for producing powder of orthorhombic lithium manganate
JP2004538610A (en) * 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
JP2005089279A (en) * 2003-09-22 2005-04-07 National Institute Of Advanced Industrial & Technology Method of producing lithium-iron-manganese-based multiple oxide
JP2005154256A (en) * 2003-10-01 2005-06-16 National Institute Of Advanced Industrial & Technology Lithium-iron-manganese compound oxide having laminar rock salt structure
JP2005235628A (en) * 2004-02-20 2005-09-02 Nec Corp Positive electrode for lithium secondary batteries, and lithium secondary battery
US7056622B2 (en) 2001-05-31 2006-06-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
US7341805B2 (en) 2000-11-16 2008-03-11 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
EP2144314A2 (en) 2001-04-20 2010-01-13 GS Yuasa Corporation Positive active materials and process for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4745463B2 (en) * 2008-12-24 2011-08-10 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
US8916293B2 (en) 2008-12-24 2014-12-23 Ngk Insulators, Ltd. Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122628A (en) * 1999-10-27 2001-05-08 Sakai Chem Ind Co Ltd Lithium-manganese multi-component oxide particulate composition, method for manufacturing the same and secondary battery
JP2001223008A (en) * 1999-12-02 2001-08-17 Honjo Chemical Corp Lithium secondary battery, positive electrode active substance for it and their manufacturing method
US6720111B2 (en) 2000-08-31 2004-04-13 Secretary, Agency Of Industrial Science And Technology Single-phase lithium ferrite based oxide
JP2002121026A (en) * 2000-10-11 2002-04-23 National Institute Of Advanced Industrial & Technology Lithium - iron - manganese multiple oxide having stratified rock salt type structure and manufacturing method thereof
JP4555948B2 (en) * 2000-10-11 2010-10-06 独立行政法人産業技術総合研究所 Lithium-iron-manganese composite oxide having a layered rock salt structure and method for producing the same
US7341805B2 (en) 2000-11-16 2008-03-11 Hitachi Maxell, Ltd. Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
EP2144314A2 (en) 2001-04-20 2010-01-13 GS Yuasa Corporation Positive active materials and process for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2002324543A (en) * 2001-04-27 2002-11-08 Sakai Chem Ind Co Ltd Lithium ion secondary battery and positive electrode active material for the same
US8685565B2 (en) 2001-04-27 2014-04-01 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US7056622B2 (en) 2001-05-31 2006-06-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP4898088B2 (en) * 2001-07-14 2012-03-14 ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・セント・アンドリューズ Improvements in or related to electrochemical cells
JP2005520282A (en) * 2001-07-14 2005-07-07 ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・セント・アンドリューズ Improvements in or related to electrochemical cells
WO2003009407A2 (en) * 2001-07-14 2003-01-30 The University Court Of The University Of St Andrews Managanese oxide material for electrochemical cells
US7686984B2 (en) * 2001-07-14 2010-03-30 University Court Of The University Of St. Andrews Manganese oxide material for electrochemical cells
WO2003009407A3 (en) * 2001-07-14 2004-10-28 Univ St Andrews Managanese oxide material for electrochemical cells
JP4955193B2 (en) * 2001-08-07 2012-06-20 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
JP2004538610A (en) * 2001-08-07 2004-12-24 スリーエム イノベイティブ プロパティズ カンパニー Improved cathode composition for lithium ion batteries
WO2004078653A1 (en) * 2003-03-06 2004-09-16 Nara Machinery Co., Ltd. Process for producing powder of orthorhombic lithium manganate
JP2005089279A (en) * 2003-09-22 2005-04-07 National Institute Of Advanced Industrial & Technology Method of producing lithium-iron-manganese-based multiple oxide
JP2005154256A (en) * 2003-10-01 2005-06-16 National Institute Of Advanced Industrial & Technology Lithium-iron-manganese compound oxide having laminar rock salt structure
JP4604237B2 (en) * 2003-10-01 2011-01-05 独立行政法人産業技術総合研究所 Lithium-iron-manganese composite oxide having a layered rock salt structure, positive electrode material for lithium ion secondary battery, lithium ion secondary battery
JP2005235628A (en) * 2004-02-20 2005-09-02 Nec Corp Positive electrode for lithium secondary batteries, and lithium secondary battery
JP4539816B2 (en) * 2004-02-20 2010-09-08 日本電気株式会社 Positive electrode for lithium secondary battery and lithium secondary battery
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2007116971A1 (en) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
EP2466671A2 (en) 2007-09-04 2012-06-20 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
WO2009031619A1 (en) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder
US8962195B2 (en) 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
JP4745463B2 (en) * 2008-12-24 2011-08-10 日本碍子株式会社 Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
US8795898B2 (en) 2008-12-24 2014-08-05 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
US8916293B2 (en) 2008-12-24 2014-12-23 Ngk Insulators, Ltd. Plate-like particle for cathode active material for lithium secondary battery, cathode active material film for lithium secondary battery, methods for manufacturing the particle and film, method for manufacturing cathode active material for lithium secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
JP4318002B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
CN110380024B (en) Sodium transition metal oxide with P3 structure, preparation method thereof and sodium ion battery
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP4217710B2 (en) Method for producing lithium-nickel-cobalt-manganese-containing composite oxide
JP4092064B2 (en) Lithium secondary battery
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4691228B2 (en) Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
WO2005028371A1 (en) Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
CN112768645A (en) Method for producing positive electrode active material and method for producing lithium ion battery
JP4777543B2 (en) Method for producing lithium cobalt composite oxide
JP4318270B2 (en) Method for manufacturing lithium secondary battery
WO2004088776A1 (en) Process for producing positive-electrode active material for lithium secondary cell
JP2003208895A (en) Lithium-nickel compound oxide for lithium secondary battery positive electrode active material, manufacturing method thereof and lithium secondary battery using the same
JP4519220B2 (en) Lithium secondary battery
JP2002100356A (en) Lithium secondary battery
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2003002660A (en) Method for producing lithium cobalt composite oxide
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4082855B2 (en) Lithium secondary battery
KR101529951B1 (en) Spinel-type lithium-manganese composite oxide
JPH0878006A (en) Lithium secondary battery
JP4189457B2 (en) Lithium ion secondary battery
JP4560168B2 (en) Method for producing composite oxide for non-aqueous lithium secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051229

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees