JPH0513082A - Nonaqueous electrolytic liquid secondary battery - Google Patents

Nonaqueous electrolytic liquid secondary battery

Info

Publication number
JPH0513082A
JPH0513082A JP3185129A JP18512991A JPH0513082A JP H0513082 A JPH0513082 A JP H0513082A JP 3185129 A JP3185129 A JP 3185129A JP 18512991 A JP18512991 A JP 18512991A JP H0513082 A JPH0513082 A JP H0513082A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3185129A
Other languages
Japanese (ja)
Inventor
Takuya Endo
琢哉 遠藤
Kouji Sekai
孝二 世界
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3185129A priority Critical patent/JPH0513082A/en
Priority to DE69223174T priority patent/DE69223174T2/en
Priority to EP92107216A priority patent/EP0511632B1/en
Publication of JPH0513082A publication Critical patent/JPH0513082A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a secondary battery having high output and energy density, and a long cycle life, while ensuring freedom from a drop in charge and discharge capacity and efficiency, and battery voltage due to the repetition of charge and discharge cycles. CONSTITUTION:In a nonaqueous electrolytic liquid secondary battery using an inorganic compound as a positive electrode active material, a compound containing titanium added to a lithium cobalt compound oxide in solid solution state is used as the positive electrode active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種電子機器の電源と
して使用される充放電可能な非水電解液二次電池に関
し、特に正極活物質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chargeable / dischargeable non-aqueous electrolyte secondary battery used as a power source for various electronic devices, and more particularly to improvement of a positive electrode active material.

【0002】[0002]

【従来の技術】近年、各種の電子機器の飛躍的進歩とと
もに、長時間便利に且つ経済的に使用できる電源として
再充電可能な二次電池の研究が進められている。代表的
な二次電池としては、鉛蓄電池、アルカリ蓄電池、リチ
ウム二次電池等が知られており、このうち特にリチウム
二次電池は、高出力、高エネルギー密度等の利点を有し
ている。
2. Description of the Related Art In recent years, with the rapid progress of various electronic devices, researches on rechargeable secondary batteries as a power source that can be used conveniently and economically for a long time have been advanced. Lead storage batteries, alkaline storage batteries, lithium secondary batteries and the like are known as typical secondary batteries, and among them, lithium secondary batteries in particular have advantages such as high output and high energy density.

【0003】上記リチウム二次電池は、リチウムイオン
と可逆的に電気化学反応する活物質よりなる正極と、リ
チウム金属あるいはリチウムを含む負極と、非水電解液
とから構成される。
The lithium secondary battery comprises a positive electrode made of an active material that reversibly electrochemically reacts with lithium ions, a negative electrode containing lithium metal or lithium, and a non-aqueous electrolyte.

【0004】一般に、負極を構成する負極活物質として
は、金属リチウム,リチウム合金(例えばLi−Al合
金), リチウムをドープした導電性高分子(例えばポリ
アセチレンやポリピロール等)、あるいはリチウムイオ
ンを結晶中に取り込んだ層間化合物等が用いられてい
る。また、電解液としては、非プロトン性有機溶媒にリ
チウム塩を溶解させた溶液が用いられている。
Generally, as the negative electrode active material constituting the negative electrode, metallic lithium, lithium alloy (for example, Li-Al alloy), conductive polymer doped with lithium (for example, polyacetylene, polypyrrole, etc.), or lithium ion in the crystal is used. The intercalation compound and the like incorporated in is used. Further, as the electrolytic solution, a solution in which a lithium salt is dissolved in an aprotic organic solvent is used.

【0005】一方、正極を構成する正極活物質として
は、金属酸化物、金属硫化物、あるいはポリマーが用い
られ、たとえばTiS2 、MoS2、NbSe2 、V2
5 等が知られている。
On the other hand, as the positive electrode active material forming the positive electrode, a metal oxide, a metal sulfide, or a polymer is used. For example, TiS 2 , MoS 2 , NbSe 2 , V 2
O 5 etc. are known.

【0006】これらの材料を用いたリチウム二次電池の
放電反応は、負極においてリチウムイオンが電解液中に
溶出し、正極では活物質の層間等にリチウムイオンがイ
ンターカレーションすることによって進行する。逆に、
充電する場合には、上記の逆反応が進行し、正極におい
てリチウムがデインターカレーションする。即ち、負極
からのリチウムイオンが正極活物質に出入りする反応を
繰り返すことによって充放電を繰り返すことができる。
The discharge reaction of a lithium secondary battery using these materials proceeds when lithium ions are eluted into the electrolytic solution at the negative electrode and lithium ions are intercalated between the layers of the active material at the positive electrode. vice versa,
When charging, the above reverse reaction proceeds and lithium deintercalates in the positive electrode. That is, charge and discharge can be repeated by repeating the reaction in which lithium ions from the negative electrode enter and leave the positive electrode active material.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来のリチウ
ム二次電池においては、充放電を繰り返すと、次第に充
放電容量や充放電効率等が低下し、十分なサイクル寿命
が得られないという欠点がある。この放電容量や充放電
効率等が低下する要因としては、正極活物質の結晶構造
が変化する等、活物質の非可逆的な変化が起こること、
正極の電位が電位窓より高くなる充電や電位窓よりも低
くなる充電により電解液が分解すること、リチウムと電
解液の反応により保護膜が形成され、これにより析出し
たリチウムの一部が溶解できなくなること、また析出し
たリチウム金属の一部が溶解し難い針状(デンドライト
状)結晶として析出してしまうこと等が考えられる。
However, in the conventional lithium secondary battery, the charge and discharge capacity, charge and discharge efficiency, etc. gradually decrease with repeated charging and discharging, and there is a drawback that a sufficient cycle life cannot be obtained. is there. As a factor that reduces the discharge capacity and charge / discharge efficiency, there is an irreversible change of the active material such as a change in the crystal structure of the positive electrode active material,
The electrolytic solution decomposes when the positive electrode potential is higher than the potential window or when the positive electrode potential is lower than the potential window, and a protective film is formed by the reaction between lithium and the electrolytic solution, which can dissolve some of the deposited lithium. It is possible that some of the deposited lithium metal is deposited as needle-like (dendritic) crystals that are difficult to dissolve.

【0008】そこで、特公昭63−59507号公報に
おいて、Lix y 2 (MはNiまたはCo、x<
0.8、y≒1)を正極活物質として用い、リチウム金
属を負極とした非水電解液二次電池が提案されている。
この非水電解液二次電池は、4V以上の起電力を有し、
高いエネルギー密度を持つなどの利点を持つが、やはり
上述のようなサイクル劣化の問題を持つ。
[0008] Therefore, in JP-B-63-59507, Li x M y O 2 (M is Ni or Co, x <
A non-aqueous electrolyte secondary battery using 0.8, y≈1) as a positive electrode active material and a lithium metal as a negative electrode has been proposed.
This non-aqueous electrolyte secondary battery has an electromotive force of 4 V or more,
Although it has advantages such as high energy density, it also has the problem of cycle deterioration as described above.

【0009】上記のLix y 2 系正極活物質の改良
も種々試みられている。例えば、特開昭62−9086
3号公報では、Ax y z 2 (Aはアルカリ金属で
0.05≦x≦1.10、Mは遷移金属で0.85≦y
≦1.00、NはAl、In、Snで0.001≦z≦
0.10)が、また、特開昭62−90863号公報で
は、Ax y z w 2 (Aはアルカリ金属で0.0
5≦x≦1.10、Bは遷移金属で0.85≦y≦1.
00、CはAl、In、Snで0.001≦z≦0.1
0、DはA以外のアルカリ金属、B以外の遷移金属、I
Ia族元素、Al、In、Sn、炭素、窒素、窒素また
は酸素を除くIIIb族、IVb族、Vb族、VIb族
の第2〜第6周期の元素で0.001≦w≦0.10)
等が正極活物質として使用されている。
Various attempts have been made to improve the Li x M y O 2 type positive electrode active material. For example, JP-A-62-9086
The 3 JP, A x M y N z O 2 (A is 0.05 ≦ x ≦ 1.10 with an alkali metal, M is 0.85 ≦ y with transition metal
≦ 1.00, N is Al, In, or Sn and 0.001 ≦ z ≦
0.10), but also, in JP-A-62-90863, A x B y C z D w O 2 (A is an alkali metal 0.0
5 ≦ x ≦ 1.10, B is a transition metal, and 0.85 ≦ y ≦ 1.
00 and C are Al, In, and Sn, and 0.001 ≦ z ≦ 0.1.
0, D are alkali metals other than A, transition metals other than B, I
0.001 ≦ w ≦ 0.10 for elements of Group Ia, Al, In, Sn, IIIb, IVb, Vb, and VIb, excluding carbon, nitrogen, nitrogen, or oxygen, in the second to sixth periods)
Etc. are used as the positive electrode active material.

【0010】しかしながら、これらの正極活物質を使用
した場合でも、十分満足のいくサイクル寿命は得られ
ず、リチウム二次電池を代表とする非水電解液二次電池
の実用化を図る上で、充放電容量や充放電効率及び活物
質の電極電位を低下させない正極活物質、負極活物質の
改良が必要とされている。そこで、本発明はこのような
実情に鑑みて提案されたものであって、充放電容量,充
放電効率および電池電圧が充放電サイクルの繰り返しに
よって低下せず、長サイクル寿命が得られる非水電解液
二次電池を提供することを目的とする。
However, even when these positive electrode active materials are used, a sufficiently satisfactory cycle life cannot be obtained, and in order to put a non-aqueous electrolyte secondary battery typified by a lithium secondary battery into practical use, There is a need for improvements in positive electrode active materials and negative electrode active materials that do not reduce charge / discharge capacity, charge / discharge efficiency, and electrode potential of active materials. Therefore, the present invention has been proposed in view of the above circumstances, and the charge / discharge capacity, charge / discharge efficiency, and battery voltage do not decrease due to repeated charge / discharge cycles, and non-aqueous electrolysis that provides a long cycle life. It is an object to provide a liquid secondary battery.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上述の目
的を達成せんものと鋭意研究の結果、リチウムコバルト
複合酸化物にTiを固溶させた新規活物質LiX Tiy
Co1-y 2 が合成できることを見い出すとともに、こ
のLiX Tiy Co1-y 2 が従来より正極活物質とし
て使用されているLixCoO2 と同等の放電容量とエ
ネルギー密度を有し、しかも充放電サイクル寿命に優れ
た特性を有することを見い出し、本発明を完成するに至
った。
Means for Solving the Problems As a result of earnest studies that the above-mentioned objects cannot be achieved, the present inventors have found that a new active material Li X Ti y in which Ti is solid-dissolved in a lithium cobalt composite oxide is obtained.
It has been found that Co 1-y O 2 can be synthesized, and this Li x Ti y Co 1-y O 2 has a discharge capacity and energy density equivalent to that of Li x CoO 2 , which has been conventionally used as a positive electrode active material. Furthermore, they have found that they have excellent characteristics in charge / discharge cycle life, and have completed the present invention.

【0012】本発明の非水電解液二次電池は、このよう
な知見に基づいて提案されたものであり、無機化合物を
正極活物質とする非水電解液二次電池において、上記正
極活物質にリチウムコバルト複合酸化物にTiを固溶さ
せた化合物を用いることを特徴とするものである。
The non-aqueous electrolyte secondary battery of the present invention has been proposed on the basis of such findings, and in the non-aqueous electrolyte secondary battery using an inorganic compound as the positive electrode active material, the positive electrode active material described above is used. In addition, a compound in which Ti is solid-dissolved in a lithium cobalt composite oxide is used.

【0013】本発明の非水電解液二次電池は、無機化合
物を用いた正極と、負極と、特定のイオンのみを移動さ
せる電解液とから構成され、(1)式で示されるよう
な、新規正極活物質により上記正極が構成される。 LiX Tiy Co1-y 2 ・・・(1) 上記非水電解液二次電池においては、高放電容量,高エ
ネルギー密度、長サイクル寿命を獲得するために、上記
正極活物質を構成するLi,Tiの原子比x,yは、そ
れぞれ、x≦1.10、y≦0.05、望ましくは0<
y≦0.05とされる。たとえば、Tiの原子比yが
0.05を越えると、焼結体が相分離を起こし、正極活
物質として十分な性能が得られない。また、Tiが全く
含有されていないと、長サイクル寿命化が望めない。
The non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode using an inorganic compound, a negative electrode, and an electrolyte for moving only specific ions, and is represented by the formula (1): The positive electrode is composed of the new positive electrode active material. Li X Ti y Co 1-y O 2 (1) In the non-aqueous electrolyte secondary battery, the positive electrode active material is used to obtain high discharge capacity, high energy density and long cycle life. The atomic ratios x and y of Li and Ti are x ≦ 1.10 and y ≦ 0.05, preferably 0 <
y ≦ 0.05. For example, when the atomic ratio y of Ti exceeds 0.05, the sintered body undergoes phase separation, and sufficient performance as a positive electrode active material cannot be obtained. In addition, if Ti is not contained at all, long cycle life cannot be expected.

【0014】上記の新規正極活物質であるLiとTi及
びCoの複合酸化物の合成方法については、特に限定さ
れるものではないが、Li、Ti、Coを、それぞれの
酸化物、炭酸塩等を金属原子比で所定の比率で混合し、
約900℃程度の温度で加熱することにより、容易に合
成することができる。
The method for synthesizing the composite oxide of Li, Ti, and Co, which is the above-mentioned new positive electrode active material, is not particularly limited, but Li, Ti, and Co may be used as respective oxides, carbonates, or the like. Are mixed in a predetermined ratio by metal atomic ratio,
It can be easily synthesized by heating at a temperature of about 900 ° C.

【0015】一方、負極活物質として使用される材料
は、特に限定されるものではないが、金属リチウム,リ
チウム合金(例えば、Li−Al合金等),リチウムイ
オンをドープした導電性高分子(例えば、ポリアセチレ
ンやポリピロール等)、リチウムイオンを結晶中に取り
込んだ層間化合物(例えば、TiS2 、MoS2 等の層
間にリチウムを含んだもの)、あるいはリチウムイオン
をドープ、脱ドープ可能な炭素質材料等が例示できる。
On the other hand, the material used as the negative electrode active material is not particularly limited, but metallic lithium, a lithium alloy (for example, Li-Al alloy, etc.), and a conductive polymer doped with lithium ions (for example, , Polyacetylene, polypyrrole, etc.), an intercalation compound in which lithium ions are incorporated into the crystal (for example, one containing lithium between layers such as TiS 2 and MoS 2 ), or a carbonaceous material that can be doped with lithium ions and dedoped Can be illustrated.

【0016】また、電解液には、リチウム塩を電解質と
し、この電解質を有機溶剤に溶解させた非プロトン性有
機電解液が使用される。
As the electrolytic solution, an aprotic organic electrolytic solution in which a lithium salt is used as an electrolyte and the electrolyte is dissolved in an organic solvent is used.

【0017】ここで、有機溶剤としては、エステル類、
エーテル類、3置換−2−オキサゾリジノン類及びこれ
らの有機溶剤を2種以上混合した混合溶剤等が使用され
る。上記有機溶剤について具体的に例示すると、エステ
ル類としては、エチレンカーボネート、プロピレンカー
ボネート、γ−ブチロラクトン、2−メチル−γ−ブチ
ロラクトン等のアルキレンカーボネート等である。
Here, as the organic solvent, esters,
Ethers, 3-substituted-2-oxazolidinones and mixed solvents obtained by mixing two or more of these organic solvents are used. Specific examples of the organic solvent include esters such as ethylene carbonate, propylene carbonate, γ-butyrolactone, and alkylene carbonate such as 2-methyl-γ-butyrolactone.

【0018】エーテル類としては、ジエチルエーテル、
ジメトキシエタン、環状エーテル等が挙げられ、例えば
5員環を有するエーテルとしては、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン,2,5−ジメチル
テトラヒドロフラン,2−エチルテトラヒドロフラン,
2−2’−ジメチルテトラヒドロフラン等のアルキル基
で置換されたテトラヒドロフラン、2−メトキシテトラ
ヒドロフラン,2、5−ジメトキシテトラヒドロフラン
等のアルコキシ基で置換されたテトラヒドロフラン等で
あり、6員環を有するエーテルとしては1、4−ジオキ
ソラン、ピラン、ジヒドロピラン、テトラヒドロピラン
等である。
As the ethers, diethyl ether,
Dimethoxyethane, cyclic ether and the like can be mentioned. Examples of the ether having a 5-membered ring include tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2-ethyltetrahydrofuran,
Tetrahydrofuran substituted with an alkyl group such as 2-2′-dimethyltetrahydrofuran, tetrahydrofuran substituted with an alkoxy group such as 2-methoxytetrahydrofuran, 2,5-dimethoxytetrahydrofuran, and the like, and an ether having a 6-membered ring is 1 , 4-dioxolane, pyran, dihydropyran, tetrahydropyran and the like.

【0019】3置換−2−オキサゾリジノン類として
は、3−メチル−2−オキサゾリジノン,3−エチル−
2−オキサゾリジノン等の3−アルキル−2−オキサゾ
リジノン、3−シクロヘキシル−2−オキサゾリジノン
等の3−シクロアルキル−2−オキサゾリジノン、3−
ベンジル−2−オキサゾリジノン等の3−アラルキル−
2−オキサゾリジノン、3−フェニル−2−オキサゾリ
ジノン等の3−アリール−2−オキサゾリジノン等であ
る。
The 3-substituted-2-oxazolidinones include 3-methyl-2-oxazolidinone and 3-ethyl-
3-alkyl-2-oxazolidinone such as 2-oxazolidinone, 3-cycloalkyl-2-oxazolidinone such as 3-cyclohexyl-2-oxazolidinone, 3-
3-Aralkyl such as benzyl-2-oxazolidinone
Examples thereof include 3-aryl-2-oxazolidinone such as 2-oxazolidinone and 3-phenyl-2-oxazolidinone.

【0020】中でも、プロピレンカーボネートやジメト
キシエタン、5員環を有するエーテル、(特にテトラヒ
ドロフラン、2−メチルテトラヒドロフラン、2−エチ
ルテトラヒドロフラン、2−メトキシテトラヒドロフラ
ン、2、5−ジメトキシテトラヒドロフラン)、3−メ
チル−2−オキサゾリジノン等が望ましい。
Among them, propylene carbonate, dimethoxyethane, ether having a 5-membered ring, (particularly tetrahydrofuran, 2-methyltetrahydrofuran, 2-ethyltetrahydrofuran, 2-methoxytetrahydrofuran, 2,5-dimethoxytetrahydrofuran), 3-methyl-2. -Oxazolidinone and the like are desirable.

【0021】電解質としては、過塩素酸リチウム、ホウ
フッ化リチウム、リンフッ化リチウム、塩化アルミン酸
リチウム、ハロゲン化リチウム、トリフルオロメタンス
ルホン酸リチウム、さらにはLiAsF6 、LiB(C
65 4 等が使用可能であり、中でも過塩素酸リチウ
ム、ホウフッ化リチウム、リンフッ化リチウム等が好ま
しい。
As the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphorofluoride, lithium chloroaluminate, lithium halide, lithium trifluoromethanesulfonate, LiAsF 6 and LiB (C) are used.
6 H 5 ) 4 and the like can be used, and among them, lithium perchlorate, lithium borofluoride, lithium phosphorus fluoride and the like are preferable.

【0022】[0022]

【作用】LiX Tiy Co1-y 2 は、Lix CoO2
と比較して、充放電時における結晶構造が安定してお
り、電解液に対して化学的に安定である。したがって、
このようなLiX Tiy Co1-y 2 を正極活物質とし
て正極を構成すると、二次電池のサイクル寿命が向上す
る。
Function: Li x Ti y Co 1-y O 2 is Li x CoO 2
Compared with, the crystal structure during charging and discharging is stable, and it is chemically stable with respect to the electrolytic solution. Therefore,
When the positive electrode is formed by using such Li X Ti y Co 1 -y O 2 as the positive electrode active material, the cycle life of the secondary battery is improved.

【0023】[0023]

【実施例】以下、本発明を具体的な実施例により説明す
るが、本発明がこの実施例に限定されるものでないこと
は言うまでもない。
EXAMPLES The present invention will be described below with reference to specific examples, but it goes without saying that the present invention is not limited to these examples.

【0024】本実施例は、炭酸リチウム(Li2
3 )粉末と酸化チタン(TiO2 )、炭酸コバルト
(CoCO3 )粉末を原料として、空気雰囲気中で90
0℃、5時間焼成することによって合成されたLiX
y Co1-y 2 複合酸化物を正極とした例である。
In this embodiment, lithium carbonate (Li 2 C
O 3 ) powder and titanium oxide (TiO 2 ) and cobalt carbonate (CoCO 3 ) powder are used as raw materials, and they are
Li X T synthesized by firing at 0 ° C for 5 hours
This is an example in which the i y Co 1 -y O 2 composite oxide is used as the positive electrode.

【0025】まず、以下のようにしてLi、Ti、Co
を含む複合酸化物を合成した。市販の炭酸リチウム(L
2 CO3 )粉末と酸化チタン(TiO2 )、炭酸コバ
ルト(CoCO3 )粉末をLi、Ti、Coがそれぞれ
表1に示す組成比となるように混合して混合物を調製し
た。
First, Li, Ti and Co are prepared as follows.
A composite oxide containing was synthesized. Commercially available lithium carbonate (L
A mixture was prepared by mixing i 2 CO 3 ) powder with titanium oxide (TiO 2 ) and cobalt carbonate (CoCO 3 ) powders such that Li, Ti, and Co had the composition ratios shown in Table 1, respectively.

【0026】[0026]

【表1】 [Table 1]

【0027】そして、この混合物を空気雰囲気中、電気
炉で900℃、5時間焼成して複合酸化物焼結体を得
た。なお、このときTiの組成比yが0.075である
混合物3を焼成して得られた焼結体は、相分離を起こし
ていた。
Then, this mixture was fired in an electric furnace at 900 ° C. for 5 hours in an air atmosphere to obtain a composite oxide sintered body. At this time, the sintered body obtained by firing the mixture 3 having a Ti composition ratio y of 0.075 had phase separation.

【0028】そして、このようにして得られた各複合酸
化物について、CoKα放射によるX線回折測定を行っ
た。複合酸化物1,2,3のX線回折(XRD)パター
ンを図1,図2,図3にそれぞれ示す。また、比較とし
て、Lix CoO2 (x=1.0)のXRDを図4に示
す。
Then, X-ray diffraction measurement by CoKα radiation was performed on each of the composite oxides thus obtained. The X-ray diffraction (XRD) patterns of the composite oxides 1, 2 and 3 are shown in FIGS. 1, 2 and 3, respectively. For comparison, FIG. 4 shows the XRD of Li x CoO 2 (x = 1.0).

【0029】図1,図2,図3を図4と比較すると、L
x Tiy Co1-y 2 複合酸化物のXRDパターン
は、Lix CoO2 のXRDパターンとほぼ一致してお
り、同様の結晶構成であることがわかる。しかし、Ti
の組成比yを0.075以上とした場合には、上述の如
く相分離を起こしており、LiX Tiy Co1-y 2
LiTiO2 と考えられる相が混在している。
Comparing FIG. 1, FIG. 2 and FIG. 3 with FIG.
The XRD pattern of the i x Ti y Co 1 -y O 2 composite oxide is almost the same as the XRD pattern of Li x CoO 2 , and it can be seen that the crystal structure is similar. However, Ti
When the composition ratio y is 0.075 or more, phase separation occurs as described above, and a phase considered to be LiTiO 2 is mixed in Li X Ti y Co 1-y O 2 .

【0030】したがって、単層構成のLiX Tiy Co
1-y 2 複合酸化物を得るにはTiの組成比yは0.0
5以下とすることが必要であることがわかった。なお、
Lix CoO2 の結晶構造については、A.Mendi
boureらの報告に詳しい。(A.Mendibou
re,C.Delmasand P.Hangenmu
ller,Mat.Res.Bull.19,1383
(1984))
Therefore, a single layer structure of Li X Ti y Co
To obtain a 1-y O 2 composite oxide, the composition ratio y of Ti is 0.0
It has been found that it is necessary to set it to 5 or less. In addition,
Regarding the crystal structure of Li x CoO 2 , see A. Mendi
Details of the report by Boure et al. (A. Mendibou
re, C.I. Delmasand P.M. Changmumu
ller, Mat. Res. Bull. 19,1383
(1984))

【0031】このようにして得られた正極活物質となる
LiTi0.025Co0.975 2 およびLiTi0.05Co
0.952 をそれぞれ導電剤となる黒鉛粉末、バインダー
となるフッ素樹脂粉末と混合し、加圧成形して正極ペレ
ットを作成した。そして、この正極ペレットを正極と
し、金属リチウムを負極とし、電解液としてプロピレン
カーボネートと1,2−ジメトキシエタンの混合溶媒に
LiPF6を1M溶解させたものを用いて通常の方法に
より、コイン型電池(実施例電池1,実施例電池2)を
作製した。
LiTi 0.025 Co 0.975 O 2 and LiTi 0.05 Co, which are the positive electrode active materials thus obtained,
0.95 O 2 was mixed with graphite powder serving as a conductive agent and fluororesin powder serving as a binder, and pressure-molded to prepare a positive electrode pellet. Then, the positive electrode pellet was used as a positive electrode, metallic lithium was used as a negative electrode, and 1 M of LiPF 6 was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane as an electrolytic solution, and a coin type battery was used by a usual method. (Example battery 1, Example battery 2) was produced.

【0032】そして作製した各電池について、定電流
(電流密度0.54mA/cm2 )で充放電サイクル試
験を行った。なお、充放電サイクル試験は、各サイクル
時の容量保持率を測定することによって行い、また、こ
のとき試験条件は、充電時の上限電圧を4.1V、放電
時の終止電圧を3.0V、電池温度を23℃に設定し
た。
Then, a charge / discharge cycle test was conducted on each of the produced batteries at a constant current (current density of 0.54 mA / cm 2 ). The charge / discharge cycle test is performed by measuring the capacity retention ratio at each cycle, and the test conditions at this time are that the upper limit voltage during charging is 4.1V, the final voltage during discharging is 3.0V, The battery temperature was set to 23 ° C.

【0033】また、比較として、Lix CoO2 (x=
1.0)を正極活物質として使用すること以外は、上述
と同様にしてコイン型電池(比較例電池)を作製し、充
放電サイクル試験を行った。
For comparison, Li x CoO 2 (x =
A coin-type battery (comparative battery) was prepared in the same manner as above except that 1.0) was used as the positive electrode active material, and a charge / discharge cycle test was performed.

【0034】なお、充放電サイクル試験に先立って、実
施例電池1,2および比較例電池について、充放電の様
子を比較するために、充放電曲線について調べたが、実
施例電池1,2の充放電曲線はいずれも比較例電池の充
放電曲線とほぼ類似しており、実施例電池1,2は、従
来の非水電解液二次電池に劣らない放電容量,エネルギ
ー密度を有していることがわかった。また、放電時の電
池電圧の低下や容量の減少も認められず、電池として十
分な信頼性が得られることが確認された。
Prior to the charge / discharge cycle test, the charge / discharge curves of the batteries of Examples 1 and 2 and the battery of Comparative Example were examined in order to compare the states of charge and discharge. The charge / discharge curves are almost similar to those of the comparative example battery, and the example batteries 1 and 2 have discharge capacities and energy densities comparable to those of the conventional non-aqueous electrolyte secondary battery. I understood it. Further, it was confirmed that the battery voltage and capacity were not decreased at the time of discharging, and sufficient reliability as a battery was obtained.

【0035】図2に、測定された実施例電池1,2およ
び比較例電池のサイクル数と容量保持率の関係を示す。
FIG. 2 shows the relationship between the cycle number and the capacity retention rate of the measured batteries of Examples 1 and 2 and the battery of Comparative Example.

【0036】図2からわかるように、比較例電池ではサ
イクル数の増加とともに容量保持率が急激に低下するの
に対して、実施例電池1,2では容量保持率の低下は極
めて少ない。また、放電容量の低下は、正極のみならず
負極の劣化にも起因するが、本実施例の場合いずれの電
池も負極活物質として同じ金属リチウムを使用している
ので、正極の劣化を相対評価することができる。そこ
で、40サイクル目の容量保持率から相対評価を行う
と、比較例電池における放電容量の低下率ΔDcは約2
0%であるのに対し、Tiの組成比yを0.025とし
た実施例電池1における放電容量の低下率ΔDA は約1
2%、Tiの組成比yを0.05とした実施例電池2に
おける放電容量の低下率ΔDB は約8%にとどまり、い
ずれも比較例電池に比べて放電容量の低下率が低いこと
わかる。
As can be seen from FIG. 2, in the comparative batteries, the capacity retention rate drastically decreases with an increase in the number of cycles, whereas in the example batteries 1 and 2, the capacity retention rate is extremely low. Further, the decrease of the discharge capacity is caused not only by the deterioration of the positive electrode but also by the deterioration of the negative electrode, but in the case of all the batteries of the present example, the same metallic lithium was used as the negative electrode active material. can do. Therefore, when a relative evaluation is performed from the capacity retention rate at the 40th cycle, the decrease rate ΔDc of the discharge capacity in the comparative battery is about 2
On the other hand, the reduction rate ΔD A of the discharge capacity in the example battery 1 in which the composition ratio y of Ti was 0.025 was about 1%, while it was about 1%
The reduction rate ΔD B of the discharge capacity in the example battery 2 in which the composition ratio y of Ti was 2% and 0.05 was only about 8%, which indicates that the reduction rate of the discharge capacity is lower than that of the comparative example battery. ..

【0037】従って、これらの結果から、既存のLix
CoO2にTiを固溶させた新規活物質LiX Tiy
1-y 2 (x≦1.10、y≦0.05)を用いるこ
とにより、従来電池の放電容量,エネルギー密度を維持
して、電池のサイクル寿命の低下が抑えられることが明
らかになった。
Therefore, from these results, the existing Li x
Li X Ti y C, a new active material in which Ti is dissolved in CoO 2
By using o 1-y O 2 (x ≦ 1.10, y ≦ 0.05), it is apparent that the discharge capacity and energy density of the conventional battery can be maintained and the reduction of the cycle life of the battery can be suppressed. became.

【0038】[0038]

【発明の効果】上述の説明からも明らかなように、本発
明では、正極にリチウムコバルト複合酸化物にTiを固
溶させた新規正極活物質LiX Tiy Co1-y 2 なる
複合酸化物を用いているため、正極の結晶構造の変化等
に関わる化学的安定性が向上し、正極活物質の充放電容
量や充放電効率および電極電位を低下させることなく、
電池のサイクル寿命の低下を抑えることができる。
As is apparent from the above description, in the present invention, the composite oxide of the new positive electrode active material Li X Ti y Co 1 -y O 2 in which Ti is solid-dissolved in the lithium cobalt composite oxide is used in the positive electrode. Since the material is used, the chemical stability associated with changes in the crystal structure of the positive electrode is improved, without lowering the charge / discharge capacity and charge / discharge efficiency of the positive electrode active material and the electrode potential,
It is possible to prevent the cycle life of the battery from decreasing.

【図面の簡単な説明】[Brief description of drawings]

【図1】Li:Ti:Co=1:0.025:0.97
5である複合酸化物のX線回折スペクトルである。
FIG. 1 Li: Ti: Co = 1: 0.025: 0.97
5 is an X-ray diffraction spectrum of the complex oxide of No. 5.

【図2】Li:Ti:Co=1:0.05:0.95で
ある複合酸化物のX線回折スペクトルである。
FIG. 2 is an X-ray diffraction spectrum of a composite oxide with Li: Ti: Co = 1: 0.05: 0.95.

【図3】Li:Ti:Co=1:0.075:0.92
5である混合物を焼成して得られた焼結体のX線回折ス
ペクトルである。
FIG. 3 Li: Ti: Co = 1: 0.075: 0.92
5 is an X-ray diffraction spectrum of a sintered body obtained by firing the mixture of No. 5.

【図4】LiCoO2 複合酸化物のX線回折スペクトル
である。
FIG. 4 is an X-ray diffraction spectrum of a LiCoO 2 composite oxide.

【図5】非水電解液二次電池のサイクル数に対する容量
保持率の変化を示す特性図である。
FIG. 5 is a characteristic diagram showing a change in capacity retention rate with respect to the number of cycles of a non-aqueous electrolyte secondary battery.

Claims (1)

【特許請求の範囲】 【請求項1】 無機化合物を正極活物質とする非水電解
液二次電池において、 上記正極活物質にリチウムコバルト複合酸化物にTiを
固溶させた化合物を用いることを特徴とする非水電解液
二次電池。
Claim: What is claimed is: 1. In a non-aqueous electrolyte secondary battery using an inorganic compound as a positive electrode active material, a compound obtained by solid-solving lithium cobalt composite oxide with Ti is used as the positive electrode active material. A characteristic non-aqueous electrolyte secondary battery.
JP3185129A 1991-04-30 1991-06-29 Nonaqueous electrolytic liquid secondary battery Pending JPH0513082A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3185129A JPH0513082A (en) 1991-06-29 1991-06-29 Nonaqueous electrolytic liquid secondary battery
DE69223174T DE69223174T2 (en) 1991-04-30 1992-04-28 Secondary battery with non-aqueous electrolytes
EP92107216A EP0511632B1 (en) 1991-04-30 1992-04-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185129A JPH0513082A (en) 1991-06-29 1991-06-29 Nonaqueous electrolytic liquid secondary battery

Publications (1)

Publication Number Publication Date
JPH0513082A true JPH0513082A (en) 1993-01-22

Family

ID=16165384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185129A Pending JPH0513082A (en) 1991-04-30 1991-06-29 Nonaqueous electrolytic liquid secondary battery

Country Status (1)

Country Link
JP (1) JPH0513082A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062721A (en) * 1989-04-28 1991-11-05 Nippon Seiko Kabushiki Kaisha Rolling bearing with sleeve
JP2001223008A (en) * 1999-12-02 2001-08-17 Honjo Chemical Corp Lithium secondary battery, positive electrode active substance for it and their manufacturing method
US6395426B1 (en) 1998-10-30 2002-05-28 Sanyo Electric Co., Ltd. Non-aqueous electrolyte cell having a positive electrode with Ti-attached LiCoO2
JP2003217659A (en) * 2002-01-24 2003-07-31 Sanyo Electric Co Ltd Lithium secondary battery
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
KR20150095128A (en) * 2014-02-12 2015-08-20 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of prepareing the same and rechargeable lithium battery including the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062721A (en) * 1989-04-28 1991-11-05 Nippon Seiko Kabushiki Kaisha Rolling bearing with sleeve
US6395426B1 (en) 1998-10-30 2002-05-28 Sanyo Electric Co., Ltd. Non-aqueous electrolyte cell having a positive electrode with Ti-attached LiCoO2
JP2001223008A (en) * 1999-12-02 2001-08-17 Honjo Chemical Corp Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP2003217659A (en) * 2002-01-24 2003-07-31 Sanyo Electric Co Ltd Lithium secondary battery
WO2011043296A1 (en) * 2009-10-05 2011-04-14 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
CN102576872A (en) * 2009-10-05 2012-07-11 日本化学工业株式会社 Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
JP5749650B2 (en) * 2009-10-05 2015-07-15 日本化学工業株式会社 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
US9227850B2 (en) 2009-10-05 2016-01-05 Nippon Chemical Industrial Co., Ltd. Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR20150095128A (en) * 2014-02-12 2015-08-20 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of prepareing the same and rechargeable lithium battery including the same

Similar Documents

Publication Publication Date Title
CN103718350B (en) Rechargeable nonaqueous electrolytic battery
JP3918311B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
JP3319258B2 (en) Method for producing positive electrode active material for lithium secondary battery and method for producing lithium secondary battery
US6066414A (en) Material of negative electrode and nonaqueous-electrolyte secondary battery using the same
US4770960A (en) Organic electrolyte cell
EP1180809B1 (en) Non-aqueous electrolyte secondary cell
JP4348854B2 (en) Positive electrode material and secondary battery using the same
US7842419B2 (en) Electroactive material and use thereof
JP2974213B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
EP0511632A1 (en) Nonaqueous electrolyte secondary battery
JP4776186B2 (en) Nonaqueous electrolyte secondary battery
JPS63299056A (en) Organic electrolyte secondary battery
JPH0513082A (en) Nonaqueous electrolytic liquid secondary battery
JP2006164695A (en) Nonaqueous electrolyte secondary battery
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3497420B2 (en) Lithium secondary battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP3198545B2 (en) Non-aqueous electrolyte secondary battery
KR20080070492A (en) Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
JPH07183047A (en) Nonaqueous electrolyte secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JP3303320B2 (en) Non-aqueous electrolyte secondary battery
JP2003157843A (en) Positive electrode material, its manufacturing method, and battery using it
JP2569664B2 (en) Non-aqueous electrolyte secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010703