JPH06163046A - Manufacture of positive electrode active material for nonaqueous electrolyte battery - Google Patents

Manufacture of positive electrode active material for nonaqueous electrolyte battery

Info

Publication number
JPH06163046A
JPH06163046A JP4330947A JP33094792A JPH06163046A JP H06163046 A JPH06163046 A JP H06163046A JP 4330947 A JP4330947 A JP 4330947A JP 33094792 A JP33094792 A JP 33094792A JP H06163046 A JPH06163046 A JP H06163046A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4330947A
Other languages
Japanese (ja)
Inventor
Masanao Terasaki
正直 寺崎
Hiroaki Yoshida
吉田  浩明
Minoru Mizutani
実 水谷
Susumu Hiyama
進 檜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Japan Storage Battery Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, Japan Storage Battery Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP4330947A priority Critical patent/JPH06163046A/en
Publication of JPH06163046A publication Critical patent/JPH06163046A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce manufacturing cost by eliminating capacity degradation caused by a charge and discharge cycle of a nonaqueous electrolyte battery formed by using a positive electrode active material mainly composed of LiCoO2, manufacturing the positive electrode active material having large discharge capacity, and manufacturing the positive electrode active material for the nonaqueous electrolyte battery by low temperature and short time baking. CONSTITUTION:Mixture of a coprecipitation body or a single compound composed of carbonate, basic carbonate, hydroxide or oxide of respective elements to constitute a positive electrode active material, is reacted with citric acid in aqueous solution or organic solvent, and created composite citric acid salt composed of lithium, cobalt and boron is baked at a temperature of 400-950 deg.C in an oxidation atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液電池の新規な
正極活物質の製造法に関するもので、利用率が高く、充
放電サイクル寿命の長い正極活物質の製造法を提供する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing a positive electrode active material for a non-aqueous electrolyte battery, and provides a method for producing a positive electrode active material having a high utilization rate and a long charge / discharge cycle life. is there.

【0002】[0002]

【従来の技術】近年、各種電子機器の小型化にともな
い、より高エネルギー密度の二次電池が要望されてい
る。非水電解液を使用した二次電池は、従来の水溶液電
解液を使用した電池の数倍のエネルギー密度を有するこ
とから、その実用化が待たれている。 非水電解液は、
非プロトン性の有機溶媒に電解質となる金属塩を溶解さ
せたものである。例えば、リチウム塩に関しては、 LiC
lO4 、LiPF6 、LiBF4 、 LiAsF6 、LiCF3 SO3 等をプロ
ピレンカーボネート、エチレンカーボネート、1,2-ジメ
トキシエタン、γ- ブチロラクトン、ジオキソラン、2-
メチルテトラヒドロフラン、ジエチルカーボネート、ジ
メチルカーボネート、スルホラン等の単独溶媒、あるい
はこれらの混合溶媒に溶解させたものが使用されてい
る。これらの非水電解液は、電池容器に注入されて使用
されるが、多孔質のセパレータに含浸したり、高分子量
の樹脂を添加して高粘性にしたり、ゲル化させて流動性
をなくした状態で使用されることもある。また、ポリエ
チレンオキサイドに代表されるポリマー電解質も非水電
解液二次電池の電解質として検討が進められている。
2. Description of the Related Art In recent years, with the miniaturization of various electronic devices, there has been a demand for secondary batteries with higher energy density. Secondary batteries using non-aqueous electrolytes have energy densities several times higher than those of conventional batteries using aqueous electrolytes, and therefore practical application is awaited. The non-aqueous electrolyte is
It is a solution of a metal salt serving as an electrolyte in an aprotic organic solvent. For example, for lithium salts, LiC
propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, dioxolane, 2-O 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 etc.
A single solvent such as methyltetrahydrofuran, diethylcarbonate, dimethylcarbonate, sulfolane or the like or a mixture of these dissolved in a solvent is used. These non-aqueous electrolytes are used by injecting into a battery container, but impregnated into a porous separator, added high molecular weight resin to make it highly viscous, or gelated to lose fluidity. It is sometimes used in the state. Further, a polymer electrolyte represented by polyethylene oxide is also being studied as an electrolyte for a non-aqueous electrolyte secondary battery.

【0003】非水電解液二次電池の正極活物質として、
特開昭55-136131 に示されるように、リチウムコバルト
複合酸化物(LiCoO2 )の研究が近年活発に行われてい
る。この活物質を用いた電池は平均作動電圧が3.6V程度
と、ニッケル−カドミウム電池の1.2Vと比較して約3 倍
の高い電圧を持つことから、電池のより一層の高エネル
ギー密度化及び小型化が可能である。しかしながら、こ
の LiCoO2 を正極活物質に用いた非水電解液二次電池は
充放電サイクルにともなう容量劣化が極めて大きいとい
う欠点があり、この欠点の解消を目的として特開昭62-2
56371 や特開昭63-211565 では LiCoO2 の正極活物質に
Ni、V 、Cr、Feを添加することが提案されている。
As a positive electrode active material for a non-aqueous electrolyte secondary battery,
As shown in JP-A-55-136131, research on lithium cobalt composite oxide (LiCoO 2 ) has been actively conducted in recent years. Batteries using this active material have an average operating voltage of about 3.6 V, which is about three times higher than 1.2 V for nickel-cadmium batteries. Is possible. However, the non-aqueous electrolyte secondary battery using this LiCoO 2 as a positive electrode active material has a drawback that the capacity deterioration due to charge / discharge cycles is extremely large, and in order to eliminate this drawback, JP-A-62-2
56371 and Japanese Patent Laid-Open No. 63-211565 use LiCoO 2 as a positive electrode active material.
It has been proposed to add Ni, V, Cr, Fe.

【0004】従来、これらの複合酸化物は、何れもリチ
ウムの炭酸塩と遷移金属の炭酸塩または2 種以上の共沈
炭酸塩との混合物を900 ℃前後の温度で焼成する固相法
で製造している。しかしながら、これらの固相法で製造
した正極活物質は組成が不均一で、結晶の成長が不充分
であり、利用率が低く、充放電サイクルにともなう容量
劣化が大きいという欠点があり、特性の良い非水電解液
二次電池用正極活物質の提供という点では不充分であっ
た。
Conventionally, each of these composite oxides is produced by a solid phase method in which a mixture of a lithium carbonate and a transition metal carbonate or two or more coprecipitated carbonates is fired at a temperature of around 900 ° C. is doing. However, the positive electrode active materials produced by these solid phase methods have the disadvantages that the composition is non-uniform, the growth of crystals is insufficient, the utilization rate is low, and the capacity deterioration with charge / discharge cycles is large. It has been insufficient in terms of providing a good positive electrode active material for a non-aqueous electrolyte secondary battery.

【0005】[0005]

【発明が解決しようとする課題】リチウムコバルト複合
酸化物 LiCoO2 は、本来安定な物質であるが、非水電解
液電池の正極活物質として使用すると、充放電サイクル
にともなう容量劣化が大きいという欠点があった。 LiC
oO2 は、充電によってLiが抜けると結晶構造的に不安定
な状態になり、酸素を分離して徐々にCo2 O3 に変化す
るという性質がある。Co2 O3 は放電しても元の LiCoO
2 には戻らない。充放電を繰り返すと、容量が低下し、
充放電サイクルが短いという欠点があった。また、ガス
発生によって電池内圧の上昇も認められている。
Lithium-cobalt composite oxide LiCoO 2 is originally a stable substance, but when it is used as a positive electrode active material of a non-aqueous electrolyte battery, the capacity is greatly deteriorated with charge / discharge cycles. was there. LiC
oO 2 has the property that when Li is released by charging, it becomes unstable in its crystal structure, separates oxygen, and gradually changes to Co 2 O 3 . Co 2 O 3 remains LiCoO
Do not return to 2 . When charging and discharging are repeated, the capacity decreases,
There is a drawback that the charge / discharge cycle is short. In addition, an increase in battery internal pressure due to gas generation is also recognized.

【0006】従来報告されているリチウムコバルト複合
酸化物、およびコバルトの一部を他の遷移金属で置換し
た複合酸化物は、固相法で製造されており、組成が不均
一で、結晶成長が不充分であるために劣化を促進してい
た。
The conventionally reported lithium cobalt composite oxide and the composite oxide in which a part of cobalt is replaced with another transition metal are produced by the solid phase method, and the composition is not uniform and the crystal growth is The deterioration was promoted because it was insufficient.

【0007】[0007]

【課題を解決するための手段】本発明は、 LiCoO2 を主
成分とする正極活物質を用いた非水電解液電池の充放電
サイクルにともなう容量劣化を解消し、放電容量の大き
な正極活物質の製造法を提供するものである。実質的に
リチウムとコバルトとほう素の酸化物からなる非水電解
液電池の正極活物質を合成するに当たり、正極活物質を
構成する各元素の炭酸塩、塩基性炭酸塩、水酸化物ある
いは酸化物からなる共沈体または単一化合物の混合物を
水溶液または有機溶媒中でクエン酸と反応させ、生成し
たリチウムとコバルトとほう素からなる複合クエン酸塩
を酸化雰囲気において、温度400〜950 ℃で焼成するこ
とを特徴とする非水電解液電池用正極活物質の製造法で
ある。
Means for Solving the Problems The present invention eliminates capacity deterioration due to charge / discharge cycles of a non-aqueous electrolyte battery using a positive electrode active material containing LiCoO 2 as a main component, and has a large discharge capacity. The present invention provides a manufacturing method of. When synthesizing a positive electrode active material for a non-aqueous electrolyte battery that is substantially composed of oxides of lithium, cobalt, and boron, carbonates, basic carbonates, hydroxides, or oxides of each element that constitutes the positive electrode active material are synthesized. A coprecipitate consisting of a compound or a mixture of single compounds is reacted with citric acid in an aqueous solution or an organic solvent, and the formed complex citrate composed of lithium, cobalt and boron is heated in an oxidizing atmosphere at a temperature of 400 to 950 ° C. A method for producing a positive electrode active material for a non-aqueous electrolyte battery, which comprises firing.

【0008】[0008]

【作用】リチウムとコバルトとほう素からなる複合クエ
ン酸塩は、分子レベルで均一に混合しており、焼成する
ことにより、容易に均一で結晶化度の高い複合酸化物を
得ることができた。クエン酸塩は熱処理工程において硝
酸塩や酢酸塩のような有害なガスの発生がなく、安全な
操業が可能である。
[Function] The complex citrate composed of lithium, cobalt, and boron is uniformly mixed at the molecular level, and by firing, a complex oxide with high crystallinity can be easily obtained. . Citrate does not generate harmful gases such as nitrate and acetate in the heat treatment process and can be operated safely.

【0009】本発明製造法によるリチウムほう素コバル
ト複合酸化物の最適組成は、リチウム1 原子に対して、
コバルト0.75〜0.999 原子、ほう素0.001 〜0.25原子で
ある。便宜的にLiBxCo(1-x)O2 で示すが、正確な化学式
は不明である。
The optimum composition of the lithium-boron-cobalt composite oxide produced by the method of the present invention is as follows:
Cobalt has 0.75 to 0.999 atoms and boron has 0.001 to 0.25 atoms. For convenience, it is represented by LiBxCo (1-x) O 2 , but the exact chemical formula is unknown.

【0010】リチウムほう素コバルト複合酸化物は、従
来のリチウムコバルト複合酸化物と同様六方晶系の結晶
構造を有している。しかしながら、X 線回折図による結
晶の回折ピークが従来品より鋭いことから、高度に結晶
化が進んだ、格子欠陥の少ない結晶構造を有しているも
のと思われる。リチウムほう素コバルト複合酸化物は、
充電状態、すなわち結晶構造からリチウムイオンが一部
抜けた状態での安定性が高く、充放電を繰り返しても容
量の低下が少なく、分解による酸素ガスの発生が少な
い。
The lithium-boron-cobalt composite oxide has a hexagonal crystal structure like the conventional lithium-cobalt composite oxide. However, since the diffraction peak of the crystal according to the X-ray diffraction pattern is sharper than that of the conventional product, it is considered to have a crystal structure with a high degree of crystallization and with few lattice defects. Lithium boron cobalt composite oxide
The stability is high in a charged state, that is, a state in which a part of lithium ions is removed from the crystal structure, the capacity does not decrease much even if charging and discharging are repeated, and oxygen gas is less generated by decomposition.

【0011】また従来の LiCoO2 より、比較的低温で、
短時間の熱処理で製造することができるという特徴があ
る。従来、複合酸化物の合成には約900 ℃以上での熱処
理が必要であったが、ほう素を含有した複合酸化物は、
約400 ℃でも合成が可能であった。理由は明かではない
が、加熱過程で低融点の混合物相を生じ、結晶の成長が
容易になるのではないかと思われる。熱処理温度は400
℃〜950 ℃であり、好ましくは500 〜900 ℃である。
At a relatively lower temperature than conventional LiCoO 2 ,
It is characterized in that it can be manufactured by heat treatment for a short time. Conventionally, heat treatment at about 900 ° C or higher was required for the synthesis of complex oxides, but complex oxides containing boron are
The synthesis was possible even at about 400 ° C. Although the reason is not clear, it seems that a mixture phase having a low melting point is generated during the heating process, and crystal growth is facilitated. Heat treatment temperature is 400
C. to 950.degree. C., preferably 500 to 900.degree.

【0012】ほう素の効果は、ほう素原料の種類には影
響されないことが確認された。熱処理により酸化物とな
るものであれば、リチウムとコバルトとほう素の原料に
は制限がない。製造工程や原料コスト上、最も有利な原
料を使用することができる。
It was confirmed that the effect of boron was not affected by the type of boron raw material. There is no limitation on the raw materials of lithium, cobalt, and boron as long as they are oxides by heat treatment. The most advantageous raw material can be used in terms of manufacturing process and raw material cost.

【0013】クエン酸塩との反応で得られた微細粒子状
の複合クエン酸塩の焼成物を非水電解液二次電池の正極
活物質として使うことにより充放電サイクルにともなう
容量劣化を極めて効果的に抑制する。本発明製造法によ
る正極活物質は結晶化度が高いために分解や構造の変化
が少なく、高容量で充放電サイクルにともなう容量劣化
が少ない特徴を有している。
By using a calcined product of fine-particle composite citrate obtained by the reaction with citrate as a positive electrode active material of a non-aqueous electrolyte secondary battery, the capacity deterioration due to charge / discharge cycles is extremely effective. To suppress. The positive electrode active material produced by the production method of the present invention has high crystallinity, so that it is less likely to decompose or change in structure, and has a characteristic of high capacity and less capacity deterioration due to charge / discharge cycles.

【0014】[0014]

【実施例】【Example】

[実施例1]炭酸リチウム(Li2 O として40.44 %)7
3.9部とほう酸( B2 O3 として61.81 %) 1.1 部と
塩基性炭酸コバルト(CoO として61.04 %)243 部を純
水1000部中に分散させ、50〜60℃に加温した後、クエン
酸433 部を加えて攪拌する。得られたクエン酸スラリー
は、120 ℃で乾燥し、500 ℃で仮焼した後、680 ℃で3
時間焼成した。得られた焼成物をボールミルで30分間粉
砕した。得られたリチウム・ホウ素・コバルト複合酸化
物の組成は、 LiBx Coy O2 (x=0.01、y=0.99)に相当
する。粉末X 線回折により結晶構造を調べたところ、 L
iCoO2 と同じ六方晶系の回折ピークを示し、複合酸化物
が生成していることが確認された。
[Example 1] Lithium carbonate (40.44% as Li 2 O) 7
Disperse 3.9 parts of boric acid (61.81% as B 2 O 3 ) 1.1 parts and 243 parts of basic cobalt carbonate (61.04% as CoO) in 1000 parts of pure water, warm to 50-60 ° C, and add citric acid. Add 433 parts and stir. The resulting citric acid slurry was dried at 120 ° C, calcined at 500 ° C, and then hydrated at 680 ° C for 3 hours.
Burned for hours. The obtained fired product was pulverized with a ball mill for 30 minutes. The composition of the obtained lithium-boron-cobalt composite oxide corresponds to LiB x Co y O 2 (x = 0.01, y = 0.99). When the crystal structure was examined by powder X-ray diffraction, L
The same hexagonal diffraction peak as iCoO 2 was shown, and it was confirmed that a composite oxide was formed.

【0015】図2に粉末X 線回折図を示した。結晶構造
の d003 面に相当する回折面の強度が高く、特に結晶構
造が発達していることを示している。電子顕微鏡により
復合酸化物の結晶粒径の大きさは2 〜4 μm であること
が観察された。この正極活物質原料をAとする。 [比較例1]従来の製法により LiCoO2 を作成した。炭
酸リチウム73.9部と塩基性炭酸コバルト245.5 部をボー
ルミルで粉砕混合し、500 ℃で1 時間仮焼したのち、90
0 ℃で24時間熱処理した。得られた焼成物をボールミル
で30分間粉砕した。粉末X 線回折により結晶構造を調べ
たところ、 LiCoO2 の回折ピークを示していた。
FIG. 2 shows a powder X-ray diffraction pattern. The intensity of the diffractive surface corresponding to the d 003 plane of the crystal structure is high, indicating that the crystal structure is particularly well developed. It was observed by an electron microscope that the crystal grain size of the composite oxide was 2 to 4 μm. This positive electrode active material material is designated as A. [Comparative Example 1] LiCoO 2 was prepared by a conventional method. 73.9 parts of lithium carbonate and 245.5 parts of basic cobalt carbonate are pulverized and mixed in a ball mill and calcined at 500 ° C. for 1 hour, then 90
It heat-processed at 0 degreeC for 24 hours. The obtained fired product was pulverized with a ball mill for 30 minutes. When the crystal structure was examined by powder X-ray diffraction, a diffraction peak of LiCoO 2 was shown.

【0016】図3に粉末X 線回折図を示した。高温度で
長時間焼成したにも関わらず、 d003 面の回折ピークは
高くならなかった。電子顕微鏡により観察したところ、
粒径は2 〜4 μm であることが観察され、粒子形状は本
発明の正極活物質源用Aとほとんど同じであることが確
認された。この正極活物質原料をBとする。
FIG. 3 shows a powder X-ray diffraction pattern. Despite firing at high temperature for a long time, the diffraction peak on the d 003 plane did not rise. When observed with an electron microscope,
The particle size was observed to be 2 to 4 μm, and it was confirmed that the particle shape was almost the same as that for the positive electrode active material source A of the present invention. This positive electrode active material raw material is designated as B.

【0017】AとBの各複合酸化物を85部と、導電剤の
アセチレンブラック8 部と結着剤のPTFEディスパージョ
ン水溶液(ポリ四フッ化エチレン樹脂15%含有)34部を
混練し、これを一対のロール間に通してシート状にした
後、アルミニウム製のエキスパンドメタルの芯材の両面
に圧着して、厚さ約0.6mm の正極基板を作製した。この
基板を打ち抜いて、幅14mm、長さ52mmの短冊状正極を作
成し、ビーカー試験セルにより、電極特性を測定した。
85 parts of each of the composite oxides of A and B, 8 parts of acetylene black as a conductive agent, and 34 parts of a PTFE dispersion aqueous solution (containing 15% of polytetrafluoroethylene resin) as a binder were kneaded. Was passed between a pair of rolls to form a sheet, and then pressure-bonded to both surfaces of an expanded metal core material made of aluminum to produce a positive electrode substrate having a thickness of about 0.6 mm. This substrate was punched out to prepare a strip-shaped positive electrode having a width of 14 mm and a length of 52 mm, and the electrode characteristics were measured by a beaker test cell.

【0018】図1にビーカー試験セルの構成を示した。
1はガラス容器のビーカーであり、非水電解液2を内部
に保持し、ポリプロピレン製の蓋3で開口部が覆われて
いる。4は試験極の正極であり、5、5’は対極であ
る。6は参照極であり、リチウムを使用した。対極とし
てリチウムを使用し、1 モル濃度のLiPF6 を溶解したエ
チレンカーボネートとジエチルカーボネートの等量混合
液中で、単極での充放電サイクル試験を行った。試験は
アルゴン雰囲気のドライボックス中でおこない水分や酸
素の悪影響を防止した。電流20mAで、リチウム電位に対
して4.1Vまで充電した後、同じ20mAの電流で、リチウム
電位に対して2.75V まで放電するサイクルを繰り返し、
複合酸化物の単位重量当たりの放電容量の変化を観察し
た。
FIG. 1 shows the structure of a beaker test cell.
Reference numeral 1 denotes a beaker for a glass container, which holds a non-aqueous electrolyte solution 2 therein and whose opening is covered with a polypropylene lid 3. 4 is a positive electrode of the test electrode, and 5 and 5'are counter electrodes. 6 is a reference electrode, and lithium was used. Using lithium as the counter electrode, a single electrode charge / discharge cycle test was performed in an equal volume mixture of ethylene carbonate and diethyl carbonate in which 1 molar LiPF 6 was dissolved. The test was carried out in a dry box in an argon atmosphere to prevent adverse effects of water and oxygen. After charging up to 4.1V against the lithium potential with a current of 20mA, repeat the cycle of discharging up to 2.75V against the lithium potential with the same current of 20mA.
The change in discharge capacity per unit weight of the composite oxide was observed.

【0019】図4にサイクル試験の結果を示した。本発
明の製造法による原料Aを使用した正極は放電容量が大
きく、サイクル特性も優れていた。本発明により製造し
た正極活物質は組成が均一であり、結晶構造が崩れにく
い為に安定性が高く、充放電サイクルにともなう容量の
劣化が極めて少ないものと思われる。 [比較例2]炭酸リチウム73.9部と塩基性炭酸コバルト
245.5 部をボールミルで粉砕混合し、500 ℃で1 時間仮
焼したのち、680 ℃で3 時間熱処理した。得られた焼成
物をボールミルで30分間粉砕した。粉末X 線回折により
結晶構造を調べたところ、 LiCoO2 の回折ピークが微か
に認められた。電子顕微鏡により観察したところ、粒径
は0.1 μm 以下であり、結晶は全く成長していなかっ
た。ビーカー試験セルの結果、ほとんど放電できなかっ
た。クエン酸とほう素を用いないで、従来の固相反応で
活物質に使用できる複合酸化物を作成するためには、90
0 ℃の焼成温度が必要である。 [比較例3]炭酸リチウム73.9部とほう酸1.1 部と塩基
性炭酸コバルト243 部をボールミルで粉砕混合し、500
℃で1 時間仮焼したのち、680 ℃で3 時間熱処理した。
得られた焼成物をボールミルで30分間粉砕した。粉末X
線回折により結晶構造を調べたところ、 LiCoO2 の回折
ピークは検出されたが、ピーク強度は弱く、結晶化が進
んでいないことが示された。電子顕微鏡により観察した
ところ、粒径は0.5 μm 以下であり、結晶の成長が進ん
でいなかった。ビーカー試験セルの結果、80mAh/g の放
電容量を示した。クエン酸を使用しない従来の固相反応
で結晶を成長させるためには、温度を700 ℃以上にする
か、5 時間以上の熱処理時間が必要であった。 [実施例2]水酸化リチウム(Li2 O として35.62 %)
83.9部と酸化ほう素( B2 O3 として99.0%)0.7 部と
酸化コバルト(CoO として98.8%)150.2 部を純水750
部中に分散させ、70〜80℃に加温した後、クエン酸652.
5gを加えて攪拌する。得られたクエン酸スラリーは、12
0 ℃で乾燥し、350 ℃で仮焼した後、650 ℃で1 時間焼
成した。得られた焼成物をボールミルで30分間粉砕し
た。得られたリチウム・ホウ素・コバルト複合酸化物の
組成は LiBx Coy O2 (x=0.01、y=0.99)に相当する。
実施例1と同様に、結晶構造、結晶粒径、放電特性を測
定した。結晶構造は LiCoO2 と同じ回折ピークを示し、
結晶粒径は1 〜3 μm であった。1 サイクル目の放電容
量は151mAh/gであった。 [実施例3]炭酸リチウム73.9部とほう酸11.3部と塩基
性炭酸コバルト221.0 部を純水1000部中に分散させ、50
〜60℃に加温した後、クエン酸435 部を加えて攪拌す
る。得られたクエン酸スラリーは、120 ℃で乾燥し、35
0 ℃で1 時間仮焼した。仮焼後の混合物を、温度と時間
を変えて焼成した。焼成温度は、400 ℃、450 ℃、500
℃、600 ℃、700 ℃、800 ℃、900 ℃、950 ℃とし、そ
れぞれ1 時間、3 時間、9 時間、24時間焼成した。得ら
れた焼成物をボールミルで30分間粉砕した。焼成後のリ
チウム・ホウ素・コバルト複合酸化物の組成は LiBx Co
y O2 (x=0.1 、y=0.9 )に相当する。
FIG. 4 shows the result of the cycle test. The positive electrode using the raw material A produced by the production method of the present invention had a large discharge capacity and excellent cycle characteristics. It is considered that the positive electrode active material produced by the present invention has a uniform composition and is highly stable because the crystal structure is not easily broken, and that the capacity deterioration due to charge / discharge cycles is extremely small. [Comparative Example 2] 73.9 parts of lithium carbonate and basic cobalt carbonate
245.5 parts were pulverized and mixed in a ball mill, calcined at 500 ° C for 1 hour, and then heat-treated at 680 ° C for 3 hours. The obtained fired product was pulverized with a ball mill for 30 minutes. When the crystal structure was examined by powder X-ray diffraction, a slight diffraction peak of LiCoO 2 was observed. Observation with an electron microscope revealed that the grain size was 0.1 μm or less and no crystals were grown at all. As a result of the beaker test cell, almost no discharge was possible. In order to prepare a complex oxide that can be used as an active material in a conventional solid-state reaction without using citric acid and boron, 90
A firing temperature of 0 ° C is required. [Comparative Example 3] 73.9 parts of lithium carbonate, 1.1 parts of boric acid, and 243 parts of basic cobalt carbonate were pulverized and mixed in a ball mill to obtain 500
After calcination at ℃ for 1 hour, heat treatment at 680 ℃ for 3 hours.
The obtained fired product was pulverized with a ball mill for 30 minutes. Powder X
When the crystal structure was examined by line diffraction, a diffraction peak of LiCoO 2 was detected, but the peak intensity was weak, indicating that crystallization did not proceed. When observed by an electron microscope, the grain size was 0.5 μm or less, and the crystal growth did not proceed. The beaker test cell showed a discharge capacity of 80 mAh / g. In order to grow crystals by the conventional solid-state reaction without using citric acid, it was necessary to raise the temperature to 700 ℃ or more, or to heat treatment for 5 hours or more. [Example 2] Lithium hydroxide (35.62% as Li 2 O)
83.9 parts of boron oxide (99.0% as B 2 O 3 ) 0.7 parts and cobalt oxide (98.8% as CoO) 150.2 parts of pure water 750
Dispersed in 1 part, heated to 70-80 ° C, and then citric acid 652.
Add 5 g and stir. The resulting citric acid slurry was 12
It was dried at 0 ° C., calcined at 350 ° C., and then calcined at 650 ° C. for 1 hour. The obtained fired product was pulverized with a ball mill for 30 minutes. The composition of the obtained lithium-boron-cobalt composite oxide corresponds to LiB x Co y O 2 (x = 0.01, y = 0.99).
The crystal structure, the crystal grain size, and the discharge characteristics were measured in the same manner as in Example 1. The crystal structure shows the same diffraction peak as LiCoO 2 ,
The crystal grain size was 1 to 3 μm. The discharge capacity at the first cycle was 151 mAh / g. [Example 3] 73.9 parts of lithium carbonate, 11.3 parts of boric acid and 221.0 parts of basic cobalt carbonate were dispersed in 1000 parts of pure water to obtain 50 parts.
After heating to ~ 60 ° C, add 435 parts of citric acid and stir. The resulting citric acid slurry was dried at 120 ° C and
It was calcined at 0 ° C for 1 hour. The mixture after calcination was fired at different temperatures and times. The firing temperature is 400 ℃, 450 ℃, 500
℃, 600 ℃, 700 ℃, 800 ℃, 900 ℃, and 950 ℃, and fired for 1 hour, 3 hours, 9 hours, and 24 hours, respectively. The obtained fired product was pulverized with a ball mill for 30 minutes. The composition of the lithium-boron-cobalt composite oxide after firing is LiB x Co
It corresponds to y O 2 (x = 0.1, y = 0.9).

【0020】粉末X 線回折により結晶構造を調べたとこ
ろ、何れも LiCoO2 と同じ六方晶系の回折ピークを示
し、複合酸化物が生成していることが確認された。
When the crystal structure was examined by powder X-ray diffraction, it was confirmed that all showed the same hexagonal diffraction peak as LiCoO 2 and that a complex oxide was formed.

【0021】表1に各種焼成条件による複合酸化物の結
晶粒径の大きさと、実施例1と同様にして測定した1 サ
イクル目の放電容量を示した。結晶粒径は電子顕微鏡写
真により測定したものである。
Table 1 shows the crystal grain size of the composite oxide under various firing conditions and the discharge capacity at the first cycle measured in the same manner as in Example 1. The crystal grain size is measured by an electron micrograph.

【0022】[0022]

【表1】 400 〜450 ℃という低温では明確な結晶の成長が認めら
れなかったが、500 ℃以上では大きな結晶の成長が観察
された。低温での焼成品の放電容量は少なかったが、い
ずれも放電可能であり、均一な複合酸化物が生成してい
るものと思われる。
[Table 1] No clear crystal growth was observed at a low temperature of 400 to 450 ° C, but large crystal growth was observed at 500 ° C or higher. Although the discharge capacity of the calcined product at a low temperature was small, it was considered that all were capable of discharging and that a uniform composite oxide was formed.

【0023】[0023]

【発明の効果】本発明は、実質的にリチウムとコバルト
とほう素の酸化物からなる非水電解液電池の正極活物質
を合成するに当たり、正極活物質を構成する各元素の原
料混合物をクエン酸と反応させ、生成したリチウムとコ
バルトとほう素からなる複合クエン酸塩を焼成すること
により、低温で、かつ短時間の焼成により非水電解液電
池用正極活物質の製造を可能にするものであり、製造コ
ストの低下に極めて大きな効果を有するものである。
According to the present invention, in synthesizing a positive electrode active material of a non-aqueous electrolyte battery which is substantially composed of oxides of lithium, cobalt and boron, a raw material mixture of each element constituting the positive electrode active material is quenched. By reacting with an acid and calcining the formed complex citrate composed of lithium, cobalt and boron, it is possible to manufacture a positive electrode active material for a non-aqueous electrolyte battery by calcining at low temperature for a short time. Therefore, it is extremely effective in reducing the manufacturing cost.

【0024】非水電解液二次電池において、正極活物質
にほう素を含有する LiBx Co(1-x)O2 組成の複合酸化物
を用いることにより、低温での焼成にもかかわらず、非
水電解液二次電池の充放電サイクル特性が向上し、長寿
命の二次電池を提供することが可能となった。
In the non-aqueous electrolyte secondary battery, by using a composite oxide of the composition LiB x Co (1-x) O 2 containing boron as the positive electrode active material, despite the fact that the composite oxide is fired at a low temperature, The charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery have been improved, and it has become possible to provide a long-life secondary battery.

【0025】正極活物質を構成する各元素の原料は、炭
酸塩、塩基性炭酸塩、水酸化物、あるいは酸化物等の共
沈体や混合物が使用できる。いずれもクエン酸の添加に
より、少なくとも成分の一部がクエン酸塩となり、分子
状態で均一に混合される。ほう素の成分として、ほう
素、酸化ほう素、ほう酸、ほう酸アンモニウム、ほう酸
リチウム等、ほとんどのほう素を含有した化合物が使用
できる。
As a raw material of each element constituting the positive electrode active material, a carbonate, a basic carbonate, a hydroxide, or a coprecipitate or a mixture of oxides can be used. In both cases, at least a part of the components becomes citric acid salt by addition of citric acid, and they are uniformly mixed in a molecular state. As a component of boron, compounds containing most of boron such as boron, boron oxide, boric acid, ammonium borate, lithium borate and the like can be used.

【0026】本発明はコバルトの一部をさらにNiやMn、
Fe、Ti等の遷移金属や、Mg、Ca、Sr、Ba、Al等の金属で
置換したものについても、低温での焼成効果が認められ
た。実質的にリチウムとコバルトからなる複合酸化物は
六方晶系の結晶であり、ほう素を含んだこれら元素のク
エン酸塩は、低温で容易に分解して、単相化率の高い六
方晶系の結晶を生ずるものとおもわれる。
In the present invention, a part of cobalt is further converted into Ni, Mn,
The effect of firing at low temperature was also confirmed for those substituted with transition metals such as Fe and Ti and metals such as Mg, Ca, Sr, Ba and Al. The composite oxide consisting essentially of lithium and cobalt is a hexagonal crystal, and the citrate salt of these elements containing boron is easily decomposed at low temperatures, resulting in a hexagonal system with a high single-phase conversion rate. It is thought to produce the crystals of.

【図面の簡単な説明】[Brief description of drawings]

【図1】ビーカー試験セルの構成図。FIG. 1 is a configuration diagram of a beaker test cell.

【図2】本発明の実施例により製造した正極活物質のX
線回折図。
FIG. 2 shows X of a positive electrode active material manufactured according to an embodiment of the present invention.
Line diffraction diagram.

【図3】比較例により製造した正極活物質のX 線回折
図。
FIG. 3 is an X-ray diffraction diagram of a positive electrode active material manufactured according to a comparative example.

【図4】本発明の実施例および比較例の製造法による正
極活物質の充放電サイクル特性を示した図。
FIG. 4 is a diagram showing charge / discharge cycle characteristics of positive electrode active materials according to the manufacturing methods of Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 ビーカー 2 非水電解液 3 蓋 4 正極 5、5’ 対極 6 参照極 A 本発明製造法による正極活物質のサイクル特性 B 比較例の製造法による正極活物質のサイクル特性 1 Beaker 2 Non-Aqueous Electrolyte 3 Lid 4 Positive Electrode 5, 5'Counter Electrode 6 Reference Electrode A Cycle characteristics of positive electrode active material according to the production method of the present invention B Cycle characteristics of positive electrode active material according to production method of Comparative Example

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水谷 実 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 (72)発明者 檜山 進 茅ケ崎市茅ケ崎3丁目2番10号 セイミケ ミカル株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Minor Mizutani No. 1 Nishinosho-Inaba Babacho, Kichijoin, Minami-ku, Kyoto City, Japan Battery Co., Ltd. (72) Inventor Susumu Hiyama 3-2-10 Chigasaki, Chigasaki City Within Mical Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】実質的にリチウムとコバルトとほう素の酸
化物からなる非水電解液電池の正極活物質を合成するに
当たり、正極活物質を構成する各元素の炭酸塩、塩基性
炭酸塩、水酸化物あるいは酸化物からなる共沈体または
単一化合物の混合物を水溶液または有機溶媒中でクエン
酸と反応させ、生成したリチウムとコバルトとほう素か
らなる複合クエン酸塩を焼成することを特徴とする非水
電解液電池用正極活物質の製造法。
1. When synthesizing a positive electrode active material of a non-aqueous electrolyte battery which is substantially composed of oxides of lithium, cobalt and boron, a carbonate or a basic carbonate of each element constituting the positive electrode active material, Characterized by reacting a hydroxide or a coprecipitate of oxides or a mixture of single compounds with citric acid in an aqueous solution or an organic solvent to calcine the produced complex citrate composed of lithium, cobalt, and boron And a method for producing a positive electrode active material for a non-aqueous electrolyte battery.
【請求項2】リチウムとコバルトとほう素からなる複合
クエン酸塩を酸化雰囲気において、温度400 〜950 ℃で
焼成することを特徴とする請求項1記載の非水電解液電
池用正極活物質の製造法。
2. A positive electrode active material for a non-aqueous electrolyte battery according to claim 1, wherein the composite citrate composed of lithium, cobalt and boron is fired at a temperature of 400 to 950 ° C. in an oxidizing atmosphere. Manufacturing method.
JP4330947A 1992-11-16 1992-11-16 Manufacture of positive electrode active material for nonaqueous electrolyte battery Pending JPH06163046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4330947A JPH06163046A (en) 1992-11-16 1992-11-16 Manufacture of positive electrode active material for nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4330947A JPH06163046A (en) 1992-11-16 1992-11-16 Manufacture of positive electrode active material for nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH06163046A true JPH06163046A (en) 1994-06-10

Family

ID=18238197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4330947A Pending JPH06163046A (en) 1992-11-16 1992-11-16 Manufacture of positive electrode active material for nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH06163046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964902A (en) * 1996-05-03 1999-10-12 Nec Moli Energy (Canada) Limited Use of B2 O3 additive in non-aqueous rechargeable lithium batteries
JP2006302542A (en) * 2005-04-15 2006-11-02 Seimi Chem Co Ltd Manufacturing method of lithium-containing composite oxide for lithium secondary battery positive electrode
US8163198B2 (en) * 2005-05-17 2012-04-24 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
CN111448690A (en) * 2017-10-09 2020-07-24 科学与工业研究理事会 Cathode material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964902A (en) * 1996-05-03 1999-10-12 Nec Moli Energy (Canada) Limited Use of B2 O3 additive in non-aqueous rechargeable lithium batteries
JP2006302542A (en) * 2005-04-15 2006-11-02 Seimi Chem Co Ltd Manufacturing method of lithium-containing composite oxide for lithium secondary battery positive electrode
US8163198B2 (en) * 2005-05-17 2012-04-24 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
CN111448690A (en) * 2017-10-09 2020-07-24 科学与工业研究理事会 Cathode material
CN111448690B (en) * 2017-10-09 2024-01-05 科学与工业研究理事会 Cathode material

Similar Documents

Publication Publication Date Title
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP4137635B2 (en) Positive electrode active material and non-aqueous secondary battery
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
KR100326455B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP4512590B2 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP5803539B2 (en) Method for producing lithium-containing composite oxide powder
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP2012505520A (en) Cathode materials for lithium ion batteries with high specific discharge capacity and processes for synthesizing these materials
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
JP4813453B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery
JP5103923B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP4028738B2 (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
KR20010091887A (en) A positive active material for a lithium secondary battery and a method of preparing the same
JP5370501B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
KR101632358B1 (en) ZnO-MnO-C COMPOSITE, MANUFACTURING METHOD OF COMPOSITE CONTAINING ZINC OXIDE AND MANGANESE OXIDE AND ANODE ACTIVE MATERIAL CONTAINING THE SAME
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JPH06163046A (en) Manufacture of positive electrode active material for nonaqueous electrolyte battery
JPH06111822A (en) Lithium battery