JPH09232002A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09232002A
JPH09232002A JP8032460A JP3246096A JPH09232002A JP H09232002 A JPH09232002 A JP H09232002A JP 8032460 A JP8032460 A JP 8032460A JP 3246096 A JP3246096 A JP 3246096A JP H09232002 A JPH09232002 A JP H09232002A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
battery
charging
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8032460A
Other languages
Japanese (ja)
Inventor
Tokuo Komaru
篤雄 小丸
Hiroaki Tanizaki
博章 谷崎
Masayuki Nagamine
政幸 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8032460A priority Critical patent/JPH09232002A/en
Publication of JPH09232002A publication Critical patent/JPH09232002A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the destruction of an electrode following a charging/ discharging cycle, to improve high capacity, long time reliability, and battery capacity, by constituting a battery of a positive electrode composed of a metallic oxide containing Li and Ni, a negative electrode composed of iron oxide doping/ dedoping the Li and a nonaqueous electrolyte. SOLUTION: Slurry; wherein a positive electrode mixture, obtained by mixing (a metallic oxide containing the Li and Ni in a formula LiNix M(1-x) O2 (0.5<=x<=0.95, M: transition metals and/or Al), a conductive agent, and a binding agent), is dispersed in a solvent; is dried and powdered, and then compressedly formed together with a carrier to obtain a positive electrode 1. The positive electrode 1 is put into an aluminum clad can 3, and thereon a separator 4 is placed to inject a nonaqueous electrolyte. Then, a negative electrode 2; composed of iron oxide for doping/dedoping the Li, the conductive agent, and the binding agent; is placed onto the separator 4 to be sealed by an insulating gasket 5 and an anode cup 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポータブル用電子
機器の電源等に用いられるリチウムイオン二次電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery used as a power source for portable electronic equipment.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩によ
り、電子機器の小型化、軽量化、高性能化が進み、これ
ら電子機器には、エネルギー密度の高い二次電池が要求
されている。従来、これら電子機器に使用される二次電
池としてニッケル・カドミウム電池や鉛電池などが挙げ
られるが、これら電池では、エネルギー密度が高い電池
を得るという点で不十分であった。
2. Description of the Related Art Due to recent remarkable progress in electronic technology, electronic devices have been reduced in size, weight and performance, and secondary batteries having high energy density are required for these electronic devices. Conventionally, nickel-cadmium batteries and lead batteries have been used as secondary batteries used in these electronic devices. However, these batteries are insufficient in terms of obtaining batteries having a high energy density.

【0003】このような状況下で、負極にリチウムやリ
チウム合金、また正極にリチウムコバルト複合酸化物な
どのリチウム複合酸化物を用いた非水電解液二次電池の
研究・開発が行われている。このリチウム二次電池は、
高エネルギー密度を有し、自己放電も少なく、軽量とい
う優れた特性を有する。しかしながら、リチウム二次電
池は、充放電時に金属リチウムの溶解、析出を伴うた
め、充電時に負極に析出したリチウムがデンドライト状
に結晶成長して正極に達する、即ち内部ショートに至る
可能性がある。また、この確率は、充放電サイクルの進
行に伴って増加する傾向が見られ、安全性や信頼性の点
から好ましくなく、実用化への大きな障害となってい
る。
Under such circumstances, research and development of a non-aqueous electrolyte secondary battery using lithium or a lithium alloy for the negative electrode and a lithium complex oxide such as a lithium cobalt complex oxide for the positive electrode are being conducted. . This lithium secondary battery is
It has high energy density, little self-discharge, and light weight. However, since the lithium secondary battery is accompanied by dissolution and deposition of metallic lithium during charging and discharging, lithium deposited on the negative electrode during charging may grow into dendrite-like crystals and reach the positive electrode, that is, an internal short circuit may occur. Further, this probability tends to increase with the progress of charge / discharge cycles, which is not preferable from the viewpoint of safety and reliability, which is a major obstacle to practical use.

【0004】このような金属系リチウムを負極とするリ
チウム二次電池の持つ問題点を克服した電池系として、
リチウムイオン二次電池がある。この電池は、リチウム
イオンが正極と負極とを行き来するいわゆるロッキング
チェアー型の電池システムであり、負極材料中にリチウ
ムイオンを格納することが出来るので金属リチウムを析
出することがない。したがって、良好な充放電サイクル
特性や安全性を示す。また、このリチウムイオン二次電
池は、リチウム二次電池に比べ、急速充放電特性や低温
特性にも優れている。
As a battery system that overcomes the problems of such a lithium secondary battery having metal lithium as a negative electrode,
There is a lithium-ion secondary battery. This battery is a so-called rocking chair type battery system in which lithium ions move back and forth between the positive electrode and the negative electrode. Since lithium ions can be stored in the negative electrode material, metallic lithium is not deposited. Therefore, good charge / discharge cycle characteristics and safety are exhibited. In addition, this lithium-ion secondary battery is also excellent in rapid charge / discharge characteristics and low-temperature characteristics, as compared with lithium secondary batteries.

【0005】[0005]

【発明が解決しようとする課題】現在、実用化されてい
るリチウムイオン電池には、正極にリチウムコバルト酸
化物を用い、負極に炭素材料を用いたもの等があり、こ
れらは、4V級の作動電圧を示す。しかしながら、ポー
タブル用電源としては、今後の電子技術の進歩により電
子機器の駆動電圧が低下していくことが予想されてお
り、これに伴い3V級、2V級といった現在のリチウム
イオン二次電池よりも低い作動電圧を有した電池システ
ムが要求されている。
Currently available lithium-ion batteries include those using lithium cobalt oxide for the positive electrode and a carbon material for the negative electrode, which are operated at 4V level. Indicates the voltage. However, as a portable power source, it is expected that the driving voltage of electronic devices will decrease due to the progress of electronic technology in the future, and along with this, it is more likely than the current lithium ion secondary batteries such as 3V class and 2V class. There is a demand for a battery system having a low operating voltage.

【0006】前記電池システムの負極材料には、使用可
能な材料が種々報告されているが、特に資源として存在
量が多いことから、鉄酸化物が注目されている。特開平
3−112070号公報においては、負極材料に鉄酸化
物を使用し、正極材料にLiCoO2(リチウム・コバ
ルト酸化物)、またはLiMn24(リチウム・マンガ
ン酸化物)を用いたリチウムイオン二次電池が提案され
ている。
Various usable materials have been reported as the negative electrode material of the battery system, but iron oxides are attracting attention because they are particularly abundant as resources. In Japanese Patent Laid-Open No. 3-11070, a lithium ion using iron oxide as a negative electrode material and LiCoO 2 (lithium / cobalt oxide) or LiMn 2 O 4 (lithium / manganese oxide) as a positive electrode material. Secondary batteries have been proposed.

【0007】しかしながら、負極に鉄酸化物を、正極に
リチウム・コバルト酸化物を用いた電池では、4.2V
定電圧電流での放電容量が135mAh/gと大きく、
比較的大きな電池容量が得られるものの、サイクルの進
行に伴って電極の破壊が起こり、充分なサイクル寿命が
得られなかった。正極にリチウム・コバルト酸化物、負
極に鉄酸化物を用いた二次電池においては、鉄酸化物が
充電時に膨張、放電時に収縮するのに対し、正極のリチ
ウム・コバルト酸化物も同様に充電時に大きく膨張、放
電時に収縮するため、充電時における正極と負極のぶつ
かり合いがあり、サイクルの進行に伴って電極の破壊が
起こる。
However, in a battery using iron oxide for the negative electrode and lithium cobalt oxide for the positive electrode, 4.2 V
The discharge capacity at constant voltage current is as large as 135 mAh / g,
Although a relatively large battery capacity was obtained, the electrodes were destroyed as the cycle progressed, and a sufficient cycle life was not obtained. In secondary batteries that use lithium-cobalt oxide for the positive electrode and iron oxide for the negative electrode, the iron oxide expands during charging and contracts during discharging, while the lithium-cobalt oxide for the positive electrode also expands during charging. Since it greatly expands and contracts during discharge, the positive electrode and the negative electrode collide with each other during charging, and the electrode breaks down as the cycle progresses.

【0008】また、マンガンはコバルトに比べ資源的に
豊富であるが、正極にリチウム・マンガン酸化物を用い
た電池では、4.2V定電圧電流での放電容量が120
mAh/gと小さく、電池容量の点で満足できるもので
はない。
Although manganese is richer in resources than cobalt, a battery using lithium manganese oxide for the positive electrode has a discharge capacity of 120 at a constant voltage of 4.2V.
As small as mAh / g, it is not satisfactory in terms of battery capacity.

【0009】本発明は、上述のような問題点に鑑みてな
されたものであり、充放電サイクルの進行に伴う電極の
破壊を抑制し、長いサイクル寿命を実現させ、電池の高
容量化を図り、長期信頼性と高い電池容量を兼ね備えた
安全性の高い非水電解液二次電池の提供を目的とする。
The present invention has been made in view of the above-mentioned problems, and suppresses the destruction of the electrodes due to the progress of charging / discharging cycles, realizes a long cycle life, and increases the capacity of the battery. An object of the present invention is to provide a highly safe non-aqueous electrolyte secondary battery having long-term reliability and high battery capacity.

【0010】[0010]

【課題を解決するための手段】本発明に係る非水電解液
二次電池は、少なくともリチウムとニッケルを含む金属
酸化物からなる正極と、リチウムをドープ、脱ドープす
る鉄酸化物からなる負極と、非水電解液とからなること
を特徴とする。
A non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode made of a metal oxide containing at least lithium and nickel, and a negative electrode made of an iron oxide doped with lithium and dedoped. , A non-aqueous electrolyte solution.

【0011】本発明に係る非水電解液二次電池において
は、負極に用いた鉄酸化物の結晶格子が充電時に膨張、
放電時に収縮するのに対し、正極に用いたリチウム・ニ
ッケル系酸化物の結晶格子が充電時に収縮、放電時に膨
張するので、互いの結晶格子の膨張・収縮が緩和され
る。また、充放電における正極と負極の総体積がそれほ
ど変わらない。これらのことにより、充放電サイクルの
進行に伴う電極の破壊が抑制されて、長いサイクル寿命
が実現できる。
In the non-aqueous electrolyte secondary battery according to the present invention, the crystal lattice of the iron oxide used for the negative electrode expands during charging,
In contrast to contraction during discharge, the crystal lattice of the lithium-nickel-based oxide used for the positive electrode contracts during charge and expands during discharge, so that expansion and contraction of the crystal lattices of each other is relaxed. Further, the total volume of the positive electrode and the negative electrode during charge / discharge does not change so much. As a result, the destruction of the electrode due to the progress of the charging / discharging cycle is suppressed, and a long cycle life can be realized.

【0012】さらに、リチウム・ニッケル系酸化物は、
リチウム・コバルト酸化物やリチウム・マンガン酸化物
より単位重量当たりの容量が大きいため、電池の高容量
化が可能となる。また、ニッケルは、コバルトに比べ資
源的にも豊富であるのであるため、工業的価値が大き
い。
Further, the lithium-nickel oxide is
Since the capacity per unit weight is larger than that of lithium / cobalt oxide or lithium / manganese oxide, the capacity of the battery can be increased. Further, nickel is rich in resources as compared with cobalt, and thus has a great industrial value.

【0013】[0013]

【発明の実施の形態】本発明に係る非水電解液二次電池
は、リチウムを含有し、少なくともNiを含むリチウム
・ニッケル系金属酸化物からなる正極と、リチウムをド
ープ、脱ドープする鉄酸化物からなる負極と、非水電解
液とからなる。
BEST MODE FOR CARRYING OUT THE INVENTION A non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode made of a lithium-nickel metal oxide containing lithium and at least Ni, and an iron oxide for doping and dedoping lithium. It consists of a negative electrode made of a material and a non-aqueous electrolyte.

【0014】上記リチウム・ニッケル系酸化物からなる
正極は、LiNix(1-x)2(0.5≦x≦0.9
5)と表されるとき、Mは遷移金属及びAlの中から選
択された少なくとも1種であることが好ましい。遷移金
属としては、Co、Mn、Fe、Ti、Vがさらに好ま
しい。
The positive electrode made of the above-mentioned lithium-nickel oxide is LiNi x M (1-x) O 2 (0.5≤x≤0.9 ).
When represented by 5), M is preferably at least one selected from transition metals and Al. As the transition metal, Co, Mn, Fe, Ti and V are more preferable.

【0015】LiNix(1-x)2において、0.95
≦x≦1の場合(LiNiO2を含む)には、充電電圧
をリチウム参照極基準で4.1Vに規制するのが望まし
い。これは、4.1Vから4.2Vの電位領域でLiN
iO2の結晶構造が変化するため、充放電サイクルを繰
り返すとその充電容量が著しく減衰するためである。
In LiNi x M (1-x) O 2 , 0.95
When ≦ x ≦ 1 (including LiNiO 2 ), it is desirable to regulate the charging voltage to 4.1 V on the basis of the lithium reference electrode. This is LiN in the potential range of 4.1V to 4.2V.
This is because the crystal structure of iO 2 changes and the charge capacity thereof is significantly attenuated when the charge / discharge cycle is repeated.

【0016】また、負極材料である鉄酸化物としては、
FeO、Fe23、Fe34が代表的である。さらにそ
の結晶系としては、α−Fe23、γ−Fe23、η−
Fe23があり、調整方法や条件出発物質等により様々
な結晶形態が得られる。その中でも、α−Fe23は、
LixFe23の組成式において0≦x≦6のリチウム
をドープ、脱ドープすることが可能であり、大容量が期
待できる。
Further, as the iron oxide as the negative electrode material,
FeO, Fe 2 O 3 and Fe 3 O 4 are typical. Further, as its crystal system, α-Fe 2 O 3 , γ-Fe 2 O 3 , η-
Fe 2 O 3 exists, and various crystal forms can be obtained depending on the adjusting method, the starting material, and the like. Among them, α-Fe 2 O 3 is
In the composition formula of Li x Fe 2 O 3 , lithium of 0 ≦ x ≦ 6 can be doped and dedoped, and a large capacity can be expected.

【0017】非水電解液としては、リチウム塩を電解質
とし、これを有機溶媒に溶解した電解液が用いられる。
ここで有機溶媒としては、特に限定されるものではない
が、例えば、プロピレンカーボネート、エチレンカーボ
ネート、ジメチルカーボネート、メチルエチルカーボネ
ート、メチルプロピルカーボネート、ジエチルカーボネ
ート、1,2−ジメトキシエタン、1,2−ジエトキシ
エタン、γ−ブチロラクトン、テトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリル等の単独もしく
は二種類以上の混合溶媒が使用できる。電解質として
は、この種の電池に用いられるものであれば一種類以上
混合し使用可能であり、LiPF6が好適であるが、L
iClO4、LiAsF6、LiBF4、LiB(C
654、CH3SO3Li、CF3SO3Li、LiC
l、LiBr等も使用可能である。
As the non-aqueous electrolyte, an electrolyte in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used.
Here, the organic solvent is not particularly limited, but for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-dicarbonate. Ethoxyethane, γ-butyrolactone, tetrahydrofuran,
A single solvent or a mixed solvent of two or more kinds of 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like can be used. As the electrolyte, one or more kinds of electrolytes can be mixed and used as long as they are used in this type of battery, and LiPF 6 is preferable, but L
iClO 4 , LiAsF 6 , LiBF 4 , LiB (C
6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiC
l, LiBr, etc. can also be used.

【0018】ところで、図1に示すように、リチウム・
ニッケル系酸化物(LixNiO2)は、リチウムを脱ド
ープ(充電)すると収縮、ドープ(放電)すると膨張
し、リチウム・コバルト酸化物(LixCoO2)は、そ
の反対にリチウムを脱ドープ(充電)すると膨張、ドー
プ(放電)すると収縮する。一方、図2に示すように、
負極である鉄酸化物(LixFe23)は、脱ドープ
(放電)すると収縮、ドープ(充電)すると膨張する。
By the way, as shown in FIG.
The nickel-based oxide (Li x NiO 2 ) contracts when lithium is undoped (charged) and expands when doped (discharged), and lithium-cobalt oxide (Li x CoO 2 ) dedoped lithium on the contrary. It expands when it is charged and contracts when it is discharged. On the other hand, as shown in FIG.
The iron oxide (Li x Fe 2 O 3 ) that is the negative electrode contracts when dedoped (discharged) and expands when doped (charged).

【0019】そのため、リチウム・コバルト酸化物を正
極とする時には、負極である鉄酸化物用の結晶格子の膨
張・収縮と同様の現象を示すため、充放電サイクルの進
行に伴って電極の破壊が進行しやすい。一方、リチウム
・ニッケル系酸化物を正極とする時には、負極である鉄
酸化物の結晶格子の膨張・収縮と反対の現象を示すた
め、互いの結晶格子の膨張・収縮を緩和して充放電サイ
クルの進行に伴う電極の破壊が起こらず、その結果長い
サイクル寿命が可能となる。
Therefore, when lithium cobalt oxide is used as the positive electrode, the same phenomenon as expansion and contraction of the crystal lattice for the iron oxide, which is the negative electrode, is exhibited, and the electrode is destroyed as the charge / discharge cycle progresses. Easy to proceed. On the other hand, when a lithium-nickel oxide is used as the positive electrode, it exhibits the opposite phenomenon to the expansion and contraction of the crystal lattice of the iron oxide, which is the negative electrode. The electrode does not break with the progress of, and as a result, a long cycle life becomes possible.

【0020】また、リチウム・ニッケル系酸化物は、リ
チウム・コバルト酸化物がLixCoO2の組成において
0.4≦x≦1の範囲でドープ・脱ドープ可能であるの
に対し、LixNiO2の組成において0≦x≦1の範囲
でリチウムをドープ、脱ドープ可能である。そのため、
リチウム・ニッケル系酸化物を正極材料に用いた場合に
は、4.2V定電圧充電での充電容量が150〜220
mAh/gと大きく、リチウム・コバルト酸化物を用い
た場合よりも大きな電池容量を得ることが可能となる。
The lithium-nickel oxide can be doped / undoped in the range of 0.4 ≦ x ≦ 1 in the composition of Li x CoO 2 while the lithium-cobalt oxide can be doped with Li x NiO. In the composition of 2 , lithium can be doped and dedoped in the range of 0 ≦ x ≦ 1. for that reason,
When a lithium-nickel oxide is used as the positive electrode material, the charging capacity at constant voltage charging of 4.2 V is 150 to 220.
It is as large as mAh / g, and it is possible to obtain a larger battery capacity than when using lithium cobalt oxide.

【0021】また、ニッケルは、コバルトに比べ資源的
にも豊富であるのであるため、工業的価値が大きい。
Further, nickel is rich in resources as compared with cobalt, and therefore has a great industrial value.

【0022】[0022]

【実施例】以下、本発明に係る非水電解液二次電池の好
適な実施例を図面を参照しながら説明する。なお、本発
明は、本実施例に限定されるものではないことは云うま
でもない。
The preferred embodiments of the non-aqueous electrolyte secondary battery according to the present invention will be described below with reference to the drawings. Needless to say, the present invention is not limited to this embodiment.

【0023】実施例1 本実施例で作製したコイン型リチウムイオン二次電池を
図3に示す。まず、この電池の正極1は、次のようにし
て作製した。水酸化リチウム1モルと硝酸ニッケル1モ
ルを混合し、空気中、800℃で6時間焼成し、LiN
iO2を合成した。得られたLiNiO2を粒径5μmに
粉砕し、これを正極活物質として91重量部、導電剤と
してグラファイトを6重量部、結着剤としてポリフッ化
ビニリデンを3重量部混合して正極合剤とし、これを溶
剤であるN−メチルピロリドンに分散させてスラリー
(ペースト状)にした。そして、この正極合剤スラリー
を乾燥、粉砕後、アルミメッシュとともに圧縮成形し、
正極1を作製した。
Example 1 A coin type lithium ion secondary battery produced in this example is shown in FIG. First, the positive electrode 1 of this battery was manufactured as follows. 1 mol of lithium hydroxide and 1 mol of nickel nitrate are mixed and baked in air at 800 ° C. for 6 hours to obtain LiN.
iO 2 was synthesized. The obtained LiNiO 2 was pulverized to a particle size of 5 μm, and 91 parts by weight of this was used as a positive electrode active material, 6 parts by weight of graphite was used as a conductive agent, and 3 parts by weight of polyvinylidene fluoride was used as a binder to prepare a positive electrode mixture. This was dispersed in N-methylpyrrolidone as a solvent to form a slurry (paste). Then, after drying and crushing this positive electrode mixture slurry, it is compression molded with an aluminum mesh,
A positive electrode 1 was produced.

【0024】負極2を次のようにして作製した。α−F
eO(OH)(III)を空気中、600℃で3時間焼
成し、α−Fe23を得た。得られたα−Fe23を粒
径1μmに粉砕し、これを負極活物質として88重量
部、導電剤としてニッケル粉末9重量部、結着剤として
ポリフッ化ビニリデンを3重量部混合して負極合剤と
し、これを溶剤であるN−メチルピロリドンに分散させ
てスラリー(ペースト状)にした。そして、この負極合
剤スラリーを乾燥、粉砕後、ステンレスメッシュととも
に圧縮成形し、負極2を作製した。
The negative electrode 2 was produced as follows. α-F
eO (OH) (III) was calcined in air at 600 ° C. for 3 hours to obtain α-Fe 2 O 3 . The obtained α-Fe 2 O 3 was pulverized to a particle size of 1 μm, and mixed with 88 parts by weight of a negative electrode active material, 9 parts by weight of nickel powder as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder. This was used as a negative electrode mixture, and this was dispersed in a solvent, N-methylpyrrolidone, to form a slurry (paste form). Then, this negative electrode mixture slurry was dried, pulverized, and then compression-molded together with a stainless mesh to prepare a negative electrode 2.

【0025】次いで、図3に示すように、正極1をアル
ミクラッドカン3に入れ、その上にポリプロピレン多孔
膜のセパレータ4を置き電解液を注入した。電解液は、
エチレンカーボネートと、ジエチレンカーボネートの等
容量混合溶媒中に、電解質としてLiPF6を1mol
/lの割合で溶解したものを使用した。続いて負極2を
セパレータ4の上に入れ、絶縁ガスケット5とアノード
カップ6で封口した。これをかしめて電池内の気密性を
保持させ、コイン型電池(実施例1)を作製した。
Next, as shown in FIG. 3, the positive electrode 1 was placed in an aluminum clad can 3, and a separator 4 of a polypropylene porous film was placed thereon and an electrolytic solution was injected. The electrolyte is
1 mol of LiPF 6 as an electrolyte in an equal volume mixed solvent of ethylene carbonate and diethylene carbonate.
What was melt | dissolved in the ratio of / l was used. Subsequently, the negative electrode 2 was put on the separator 4 and sealed with the insulating gasket 5 and the anode cup 6. This was caulked to maintain the airtightness in the battery, and a coin-type battery (Example 1) was produced.

【0026】実施例2 正極活物質にLiNi0.7Co0.2Al0.12を用いた以
外は、実施例1と同様にコイン型電池(実施例2)を作
製した。
Example 2 A coin-type battery (Example 2) was prepared in the same manner as in Example 1 except that LiNi 0.7 Co 0.2 Al 0.1 O 2 was used as the positive electrode active material.

【0027】正極活物質のLiNi0.7Co0.2Al0.1
2は、水酸化リチウム1モル、硝酸ニッケル0.7モ
ル、酸化コバルト(III)0.2モル、水酸化アルミ
ニウム0.1モルを混合し、空気中、750℃で5時間
焼成して得た。これを粒径5μmに粉砕した。
Positive electrode active material LiNi 0.7 Co 0.2 Al 0.1
O 2 is obtained by mixing 1 mol of lithium hydroxide, 0.7 mol of nickel nitrate, 0.2 mol of cobalt (III) oxide and 0.1 mol of aluminum hydroxide, and calcining in air at 750 ° C. for 5 hours. It was This was ground to a particle size of 5 μm.

【0028】比較例1 正極活物質にLiCoO2を用いた以外は、実施例1と
同様にコイン型電池(比較例1)を作製した。
Comparative Example 1 A coin type battery (Comparative Example 1) was prepared in the same manner as in Example 1 except that LiCoO 2 was used as the positive electrode active material.

【0029】正極活物質のLiCoO2は、炭酸リチウ
ム0.5モルと酸化コバルト(III)を1モルを混合
し、空気中、900℃で5時間焼成して得た。これを粒
径5μmに粉砕した。
LiCoO 2 as the positive electrode active material was obtained by mixing 0.5 mol of lithium carbonate and 1 mol of cobalt (III) oxide and firing the mixture in air at 900 ° C. for 5 hours. This was ground to a particle size of 5 μm.

【0030】比較例2 正極活物質にLiMn24を用いた以外は、実施例1と
同様にコイン型電池(比較例2)を作製した。
Comparative Example 2 A coin type battery (Comparative Example 2) was prepared in the same manner as in Example 1 except that LiMn 2 O 4 was used as the positive electrode active material.

【0031】正極活物質のLiMn24は、炭酸リチウ
ム0.5モルと二酸化マンガンを1モルを混合し、空気
中、850℃で3時間焼成して得た。これを粒径3μm
に粉砕した。
LiMn 2 O 4 as the positive electrode active material was obtained by mixing 0.5 mol of lithium carbonate and 1 mol of manganese dioxide and firing the mixture in air at 850 ° C. for 3 hours. This has a particle size of 3 μm
Crushed.

【0032】実施例1、実施例2、比較例1、比較例2
の電池についてそれぞれサイクル試験を行った。サイク
ル試験は、最大充電電圧3.7V、充電電流2mAの定
電流定電圧充電を60時間行った。なお、実施例1につ
いては、最大充電電圧3.6Vとしての充電も行った。
この初充電後に電池を解体し、リチウム参照極に対する
電位を測定した。その結果を表1に示す。
Example 1, Example 2, Comparative Example 1, Comparative Example 2
A cycle test was performed for each of the batteries. In the cycle test, constant-current constant-voltage charging with a maximum charging voltage of 3.7 V and a charging current of 2 mA was performed for 60 hours. In addition, in Example 1, charging was performed at a maximum charging voltage of 3.6V.
After this initial charging, the battery was disassembled and the potential with respect to the lithium reference electrode was measured. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】同様に、実施例1、実施例2、比較例1、
比較例2の電池についてそれぞれサイクル試験を行っ
た。サイクル試験は、最大充電電圧3.7V、充電電流
2mAの定電流定電圧充電を60時間行い、1mAの定
電流で終止電圧0.5Vまで放電を行った。なお、実施
例1においては、最大充電電圧3.6Vとしての充電も
行った。その時のサイクル初期の放電曲線を図4に示
す。
Similarly, Example 1, Example 2, Comparative Example 1,
A cycle test was performed on each of the batteries of Comparative Example 2. In the cycle test, constant-current constant-voltage charging with a maximum charging voltage of 3.7 V and a charging current of 2 mA was performed for 60 hours, and discharging was performed with a constant current of 1 mA to a final voltage of 0.5V. In addition, in Example 1, charging was performed at a maximum charging voltage of 3.6V. The discharge curve at the beginning of the cycle at that time is shown in FIG.

【0035】正極活物質にLiNiO2を用いた実施例
1の電池においては、表1に示すように、初充電後の正
極電位が4.2Vであり、この時の正極活物質の単位重
量当たりの充電容量が240mAh/gであった。その
後の放電では、図4に示すように、100mAhの最も
大きな電池容量が得られた。
In the battery of Example 1 using LiNiO 2 as the positive electrode active material, as shown in Table 1, the positive electrode potential after initial charging was 4.2 V, and the positive electrode active material per unit weight at this time was Had a charging capacity of 240 mAh / g. In the subsequent discharge, as shown in FIG. 4, the largest battery capacity of 100 mAh was obtained.

【0036】また、正極活物質にLiNi0.7Co0.2
0.12を用いた実施例2の電池においては、初充電後
の正極電位が4.2Vであり、この時の正極活物質の単
位重量当たりの充電容量が200mAh/gであった。
その後の放電では、90mAhの大きな電池容量が得ら
れた。
The positive electrode active material is LiNi 0.7 Co 0.2 A
In the battery of Example 2 using 1 0.1 O 2 , the positive electrode potential after initial charging was 4.2 V, and the charging capacity per unit weight of the positive electrode active material at this time was 200 mAh / g.
In the subsequent discharge, a large battery capacity of 90 mAh was obtained.

【0037】一方、比較例1の電池は、正極活物質にL
iCoO2を用いているが、初充電後の正極電位が4.
2Vであり、この時の正極活物質の単位重量当たりの充
電容量が145mAh/gと小さいため、得られた初期
電池容量が78mAhと小さかった。
On the other hand, in the battery of Comparative Example 1, the positive electrode active material was L
iCoO 2 is used, but the positive electrode potential after initial charging is 4.
Since it was 2 V, and the charging capacity per unit weight of the positive electrode active material at this time was as small as 145 mAh / g, the initial battery capacity obtained was as small as 78 mAh.

【0038】また、比較例2の電池は、正極活物質にL
iMn24を用いているが、初充電後の正極電位が4.
2Vであり、この時の正極活物質の単位重量当たりの充
電容量が120mAh/gと更に小さいため、得られた
初期電池容量が62mAhと最も小さかった。
In the battery of Comparative Example 2, the positive electrode active material was L
Although iMn 2 O 4 is used, the positive electrode potential after the initial charge is 4.
The voltage was 2 V, and the charging capacity per unit weight of the positive electrode active material was 120 mAh / g, which was even smaller. Therefore, the initial battery capacity obtained was 62 mAh, which was the smallest.

【0039】次に、前記充放電条件により、50サイク
ルまで充放電を行ったときのサイクル数に対する電池容
量の変化を調べた。その結果を図5に示す。
Next, changes in the battery capacity with respect to the number of cycles when charging / discharging was performed up to 50 cycles under the charging / discharging conditions were examined. The result is shown in FIG.

【0040】最も容量が大きかった実施例1の電池で
は、図5に示すように、最大充電電圧3.7Vとして充
放電サイクルを行った時、正極活物質の劣化により、サ
イクルの進行に伴う容量の低下が激しかった。しかしな
がら、最大充電電圧3.6Vとして充放電サイクルを行
った実施例1の電池では、良好なサイクル特性が得られ
た。最大充電電圧3.6Vとして充放電サイクルを行っ
た実施例1の電池では、表1及び図4に示すように、初
充電後の正極電位は4.1Vであり、正極電位4.2V
の時に比べ、正極活物質の単位重量当たりの充電容量は
215mAh/g、電池容量も90mAhとやや小さく
なるが、充電電圧を低くすることにより正極活物質の劣
化が抑制され、長いサイクル寿命が得られた。
In the battery of Example 1 having the largest capacity, as shown in FIG. 5, when the charging / discharging cycle was carried out at the maximum charging voltage of 3.7 V, the capacity of the battery increased as the cycle progressed due to deterioration of the positive electrode active material. The drop was severe. However, good cycle characteristics were obtained with the battery of Example 1 which was subjected to charge / discharge cycles at a maximum charge voltage of 3.6V. As shown in Table 1 and FIG. 4, in the battery of Example 1 which was subjected to the charging / discharging cycle with the maximum charging voltage of 3.6V, the positive electrode potential after the initial charging was 4.1V, and the positive electrode potential of 4.2V.
The charging capacity per unit weight of the positive electrode active material is 215 mAh / g, and the battery capacity is slightly smaller than 90 mAh, but deterioration of the positive electrode active material is suppressed by lowering the charging voltage, and a long cycle life is obtained. Was given.

【0041】また、正極活物質にLiNi0.7Co0.2
0.12を用いた実施例2の電池においても、正極にL
iNiO2を用いた実施例1の電池とほぼ同等の電池容
量と長いサイクル寿命が得られた。
Further, LiNi 0.7 Co 0.2 A was used as the positive electrode active material.
Also in the battery of Example 2 using 0.1 O 2 , L was added to the positive electrode.
A battery capacity and a long cycle life almost equal to those of the battery of Example 1 using iNiO 2 were obtained.

【0042】一方、正極活物質にLiCoO2を用いた
比較例1の電池では、サイクルの進行に伴う電池容量の
低下が大きく、電池性能の長期信頼性に欠けていた。
On the other hand, in the battery of Comparative Example 1 in which LiCoO 2 was used as the positive electrode active material, the battery capacity greatly decreased with the progress of cycles, and the long-term reliability of the battery performance was lacking.

【0043】また、正極活物質にLiMn24を用いた
比較例2の電池では、実施例1、実施例2の正極活物質
にリチウム・ニッケル系酸化物を用いた電池に比べる
と、サイクル寿命は短く、前記の通り、充分な電池容量
が得られなかった。
Further, in the battery of Comparative Example 2 using LiMn 2 O 4 as the positive electrode active material, compared with the batteries using lithium-nickel oxide as the positive electrode active material of Examples 1 and 2, the cycle was longer. The life was short, and sufficient battery capacity was not obtained as described above.

【0044】以上の結果から明らかのように、負極に鉄
酸化物を用いるリチウムイオン二次電池において、正極
にリチウム・コバルト酸化物を用いた電池は、充放電サ
イクルに伴い電極の破壊が進むためサイクル寿命が短か
った。また、正極にリチウム・マンガン酸化物を用いた
電池は、充分な電池容量が得られなかった。このことか
ら、リチウム・コバルト酸化物やリチウム・マンガン酸
化物は、鉄酸化物を負極活物質に用いたリチウムイオン
二次電池の正極活物質として不適当である。
As is clear from the above results, in the lithium ion secondary battery using iron oxide in the negative electrode, the battery using lithium cobalt oxide in the positive electrode is damaged by the charge / discharge cycle. The cycle life was short. Further, the battery using lithium-manganese oxide for the positive electrode could not obtain a sufficient battery capacity. From this, lithium / cobalt oxide and lithium / manganese oxide are not suitable as the positive electrode active material of the lithium ion secondary battery using the iron oxide as the negative electrode active material.

【0045】一方、正極にリチウム・ニッケル系酸化物
(LiNix(1-x)2)を用いた電池は、充放電サイ
クルの進行に伴う電極破壊が抑制できるため、長いサイ
クル寿命を得ることができ、かつ、リチウム・ニッケル
系酸化物の活物質単位重量当たりの放電容量が大きいこ
とから、大きな電池容量を得ることが可能となる。
On the other hand, battery using the lithium nickel based oxide in the positive electrode (LiNi x M (1-x ) O 2) , since the electrode breakage due to the progress of charge-discharge cycles can be suppressed to obtain a long cycle life In addition, since the lithium-nickel oxide has a large discharge capacity per unit weight of the active material, a large battery capacity can be obtained.

【0046】また、正極にリチウム・ニッケル系酸化物
としてLiNiO2を用いる場合には、充電電圧をリチ
ウム参照極基準で4.1Vに規制することによって、長
いサイクル寿命が得られる。
When LiNiO 2 is used as the lithium-nickel oxide in the positive electrode, a long cycle life can be obtained by limiting the charging voltage to 4.1 V based on the lithium reference electrode.

【0047】[0047]

【発明の効果】以上の説明からも明らかのように、本発
明の非水電解液二次電池においては、充放電サイクルの
進行に伴う電極の破壊を抑制して長いサイクル寿命を実
現させ、電池の高容量化を図り、長期信頼性と高い電池
容量を兼ね備え、安全性の高い非水電解液二次電池を得
ることができる。
As is apparent from the above description, in the non-aqueous electrolyte secondary battery of the present invention, it is possible to suppress the destruction of the electrodes associated with the progress of the charging / discharging cycle and realize a long cycle life. It is possible to obtain a highly safe non-aqueous electrolyte secondary battery having high capacity, long-term reliability and high battery capacity.

【0048】また、本発明は、鉄酸化物を負極に用いた
電池システムにおいて、有用、実用的であり、その工業
的価値が大きい。
Further, the present invention is useful and practical in a battery system using iron oxide for the negative electrode, and has great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】リチウムがドープされたリチウム・ニッケル酸
化物とリチウム・コバルト酸化物との結晶格子の体積変
化率を示す特性図である。
FIG. 1 is a characteristic diagram showing a volume change rate of crystal lattices of lithium-nickel oxide and lithium-cobalt oxide doped with lithium.

【図2】リチウムがドープされた鉄酸化物の結晶格子の
体積変化率を示す特性図である。
FIG. 2 is a characteristic diagram showing a volume change rate of a crystal lattice of a lithium-doped iron oxide.

【図3】本発明を適用したコイン型リチウムイオン二次
電池の概略縦断面図である。
FIG. 3 is a schematic vertical sectional view of a coin type lithium ion secondary battery to which the present invention is applied.

【図4】電池容量と電位の関係を示す特性図である。FIG. 4 is a characteristic diagram showing a relationship between battery capacity and potential.

【図5】サイクル数と容量比の関係を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing the relationship between the number of cycles and the capacity ratio.

【符号の説明】[Explanation of symbols]

1 正極、2 負極、3 アルミクラッドカン、4 セ
パレーター、5 絶縁ガスケット、6 アノードカップ
1 positive electrode, 2 negative electrode, 3 aluminum clad can, 4 separator, 5 insulating gasket, 6 anode cup

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永峰 政幸 福島県郡山市日和田町高倉字下杉下1番地 −1 株式会社ソニー・エナジー・テック 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masayuki Nagamine Inventor Masayuki Nagamine 1 Shimosugishita, Takakura, Hiwada Town, Koriyama City, Fukushima Prefecture -1 Sony Energy Tech Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくともリチウムとニッケルを含む金
属酸化物からなる正極と、リチウムをドープ、脱ドープ
する鉄酸化物からなる負極と、非水電解液とからなるこ
とを特徴とする非水電解液二次電池。
1. A nonaqueous electrolytic solution comprising a positive electrode made of a metal oxide containing at least lithium and nickel, a negative electrode made of an iron oxide doped with lithium and dedoped, and a nonaqueous electrolytic solution. Secondary battery.
【請求項2】 金属酸化物がLiNix(1-x)
2(0.5≦x≦0.95、Mは遷移金属及びAlの中
から選択された少なくとも1種)であることを特徴とす
る請求項1に記載の非水電解液二次電池。
2. The metal oxide is LiNi x M (1-x) O
2 (0.5 ≦ x ≦ 0.95, M is at least one selected from transition metals and Al), The non-aqueous electrolyte secondary battery according to claim 1.
JP8032460A 1996-02-20 1996-02-20 Nonaqueous electrolyte secondary battery Withdrawn JPH09232002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8032460A JPH09232002A (en) 1996-02-20 1996-02-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8032460A JPH09232002A (en) 1996-02-20 1996-02-20 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09232002A true JPH09232002A (en) 1997-09-05

Family

ID=12359592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8032460A Withdrawn JPH09232002A (en) 1996-02-20 1996-02-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09232002A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042813A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery using the same
WO2010092689A1 (en) * 2009-02-16 2010-08-19 トヨタ自動車株式会社 Lithium secondary battery
JP2011029139A (en) * 2009-06-24 2011-02-10 Toyota Motor Corp Lithium secondary battery and method of manufacturing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
CN113261142A (en) * 2018-12-28 2021-08-13 三洋电机株式会社 Method for manufacturing nonaqueous electrolyte secondary battery and method for inspecting voltage
US12027677B2 (en) 2018-12-28 2024-07-02 Panasonic Energy Co., Ltd. Method for manufacturing non-aqueous-electrolyte secondary cell, and voltage detection method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012629A (en) * 2000-07-27 2007-01-18 Matsushita Electric Ind Co Ltd Positive active material and nonaqueous electrolyte secondary battery containing this
JP2002042813A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery using the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8663843B2 (en) 2009-02-16 2014-03-04 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
WO2010092689A1 (en) * 2009-02-16 2010-08-19 トヨタ自動車株式会社 Lithium secondary battery
JP2011029139A (en) * 2009-06-24 2011-02-10 Toyota Motor Corp Lithium secondary battery and method of manufacturing the same
CN113261142A (en) * 2018-12-28 2021-08-13 三洋电机株式会社 Method for manufacturing nonaqueous electrolyte secondary battery and method for inspecting voltage
EP3905415A4 (en) * 2018-12-28 2022-03-02 SANYO Electric Co., Ltd. Method for manufacturing non-aqueous-electrolyte secondary cell, and voltage detection method
US12027677B2 (en) 2018-12-28 2024-07-02 Panasonic Energy Co., Ltd. Method for manufacturing non-aqueous-electrolyte secondary cell, and voltage detection method

Similar Documents

Publication Publication Date Title
JP4878683B2 (en) Lithium secondary battery
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
US7309546B2 (en) Positive active material for rechargeable lithium battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
US20080286657A1 (en) Non-aqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP3436600B2 (en) Rechargeable battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JPH1027626A (en) Lithium secondary battery
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2000012090A (en) Lithium secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JPH09232002A (en) Nonaqueous electrolyte secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2002270181A (en) Non-aqueous electrolyte battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2002042890A (en) Nonaqueous electrolyte battery
JPH0935714A (en) Lithium secondary battery
JP2002151065A (en) Negative electrode active material and non-aqueous electrolyte battery
JP2002015775A (en) Nonaqueous solvent secondary cell and positive active material for the same
JP3055621B2 (en) Non-aqueous electrolyte secondary battery
JP2003142091A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506