JP2003142091A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003142091A
JP2003142091A JP2001336620A JP2001336620A JP2003142091A JP 2003142091 A JP2003142091 A JP 2003142091A JP 2001336620 A JP2001336620 A JP 2001336620A JP 2001336620 A JP2001336620 A JP 2001336620A JP 2003142091 A JP2003142091 A JP 2003142091A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
electrolyte secondary
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001336620A
Other languages
Japanese (ja)
Other versions
JP4049571B2 (en
Inventor
Hideki Kitao
英樹 北尾
Naoya Nakanishi
直哉 中西
Toshiyuki Noma
俊之 能間
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001336620A priority Critical patent/JP4049571B2/en
Publication of JP2003142091A publication Critical patent/JP2003142091A/en
Application granted granted Critical
Publication of JP4049571B2 publication Critical patent/JP4049571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery using a lithium manganese compound oxide and a lithium nickel compound oxide for the positive electrode material, having an excellent charge-discharge cycle characteristic, and capable of suppressing a sudden drop in the potential at the positive electrode in the last stage of discharge and also easily suppressing capacity drops occurring due to over-discharging, even when the depth of discharge is increased, thereby obtaining a sufficient capacity. SOLUTION: In the nonaqueous electrolyte secondary battery provided with a positive electrode 121, a negative electrode 12, and a nonaqueous electrolyte 14, a sintered material is used as the positive electrode material made by mixing and sintering the lithium manganese compound oxide and the lithium nickel compound oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、正極と負極と非
水電解質とを備えた非水電解質二次電池に係り、特に、
正極に用いる材料を改善し、過放電になるのを容易に制
御できるようにした点に特徴を有するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery provided with a positive electrode, a negative electrode and a non-aqueous electrolyte, and more particularly,
The material is characterized in that the material used for the positive electrode is improved so that over-discharge can be easily controlled.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
電池の1つとして、非水電解質を用いて、リチウムの酸
化,還元を利用した高起電力の非水電解質二次電池が利
用されるようになった。
2. Description of the Related Art In recent years, a high electromotive force non-aqueous electrolyte secondary battery utilizing oxidation and reduction of lithium using a non-aqueous electrolyte is used as one of new type batteries with high output and high energy density. It became so.

【0003】ここで、このような非水電解質二次電池に
おいては、その正極の材料として、リチウムイオンの吸
蔵,放出が可能なリチウム・遷移金属複合酸化物が用い
られており、一般には、リチウム・コバルト複合酸化物
のLiCoO2 等が広く利用されている。
In such a non-aqueous electrolyte secondary battery, a lithium-transition metal composite oxide capable of absorbing and desorbing lithium ions is used as a material for its positive electrode, and generally lithium. -Cobalt composite oxides such as LiCoO 2 are widely used.

【0004】しかし、リチウム・コバルト複合酸化物の
原料となるコバルトは資源の埋蔵量が少なく、高価であ
るため、正極の材料として、他のリチウム・遷移金属複
合酸化物を使用することが要望され、このようなリチウ
ム・遷移金属複合酸化物として、安価でかつ資源の埋蔵
量の豊富な材料であるマンガンを用いたリチウム・マン
ガン複合酸化物が検討されるようになった。
However, since cobalt, which is a raw material of the lithium-cobalt composite oxide, has a small reserve of resources and is expensive, it is desired to use another lithium-transition metal composite oxide as a material for the positive electrode. As such a lithium / transition metal composite oxide, a lithium / manganese composite oxide using manganese, which is a material that is inexpensive and has a rich reserve of resources, has been studied.

【0005】しかし、このようなリチウム・マンガン複
合酸化物を非水電解質二次電池における正極の材料に使
用した場合、この非水電解質二次電池において充放電を
繰り返して行うと、リチウム・マンガン複合酸化物から
マンガンが溶出して次第に容量が低下し、充放電サイク
ル特性が悪いという問題があった。
However, when such a lithium-manganese composite oxide is used as a material for a positive electrode in a non-aqueous electrolyte secondary battery, the lithium-manganese composite oxide is obtained by repeatedly charging and discharging the non-aqueous electrolyte secondary battery. There is a problem that manganese is eluted from the oxide and the capacity is gradually reduced, resulting in poor charge / discharge cycle characteristics.

【0006】このため、近年においては、特許第302
4636号公報に示されるように、非水電解質二次電池
における正極の材料に、リチウム・マンガン複合酸化物
とリチウム・ニッケル複合酸化物とを混合させたものを
用い、充放電によってリチウム・マンガン複合酸化物か
らマンガンが溶出するのを抑制して、充放電サイクル特
性を向上させることが提案されている。
Therefore, in recent years, the patent No. 302
As disclosed in Japanese Patent No. 4636, a mixture of a lithium-manganese composite oxide and a lithium-nickel composite oxide is used as a material for a positive electrode in a non-aqueous electrolyte secondary battery, and a lithium-manganese composite is formed by charging and discharging. It has been proposed to suppress the elution of manganese from the oxide and improve the charge / discharge cycle characteristics.

【0007】しかし、上記のように正極の材料に、リチ
ウム・マンガン複合酸化物とリチウム・ニッケル複合酸
化物とを混合させたものを用いた場合、放電末期におい
て正極の電位が急激に低下し、十分な容量を有する非水
電解質二次電池を得るために放電深度を深くすると、過
放電になりやすく、これにより非水電解質二次電池が劣
化して容量が著しく低下し、充放電サイクル特性が著し
く低下するという問題があった。
However, when the material of the positive electrode as described above is a mixture of the lithium-manganese composite oxide and the lithium-nickel composite oxide, the potential of the positive electrode drops sharply at the end of discharge, If the depth of discharge is increased in order to obtain a non-aqueous electrolyte secondary battery having a sufficient capacity, over-discharge tends to occur, which causes the non-aqueous electrolyte secondary battery to deteriorate and its capacity to significantly decrease, resulting in charge / discharge cycle characteristics. There was a problem of a significant decrease.

【0008】[0008]

【発明が解決しようとする課題】この発明は、正極と負
極と非水電解質とを備えた非水電解質二次電池における
上記のような様々な問題を解決することを課題とするも
のであり、特に、正極の材料にリチウム・マンガン複合
酸化物とリチウム・ニッケル複合酸化物とを用いた場合
において、放電末期における正極の電位が急激に低下す
るのを抑制し、十分な容量を有する非水電解質二次電池
を得るために放電深度を深くした場合においても、過放
電による容量低下を容易に制御することができると共
に、充放電サイクル特性にも優れた非水電解質二次電池
が得られるようにすることを課題とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above various problems in a non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode and a non-aqueous electrolyte, In particular, when a lithium-manganese composite oxide and a lithium-nickel composite oxide are used as the material for the positive electrode, a nonaqueous electrolyte having a sufficient capacity is suppressed by suppressing a sharp decrease in the positive electrode potential at the end of discharge. Even when the depth of discharge is increased to obtain a secondary battery, it is possible to easily control the capacity decrease due to over-discharging and to obtain a non-aqueous electrolyte secondary battery with excellent charge-discharge cycle characteristics. The task is to do so.

【0009】[0009]

【課題を解決するための手段】この発明においては、上
記のような課題を解決するため、正極と負極と非水電解
質とを備えた非水電解質二次電池において、上記の正極
の材料に、リチウム・マンガン複合酸化物とリチウム・
ニッケル複合酸化物とを混合焼結させた焼結材料を用い
るようにしたのである。
According to the present invention, in order to solve the above problems, in a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, the material of the positive electrode is: Lithium-manganese composite oxide and lithium
That is, a sintering material obtained by mixing and sintering the nickel composite oxide was used.

【0010】そして、この発明における非水電解質二次
電池のように、正極の材料に、リチウム・マンガン複合
酸化物とリチウム・ニッケル複合酸化物とを混合焼結さ
せた焼結材料を用いると、リチウム・マンガン複合酸化
物とリチウム・ニッケル複合酸化物とを単に混合させた
だけのものを用いる場合に比べて、放電末期における正
極の電位の低下が緩やかになり、放電深度を深くした場
合においても、過放電による容量低下を容易に制御する
ことができ、充放電サイクル特性に優れた非水電解質二
次電池が得られるようになる。
Then, as in the non-aqueous electrolyte secondary battery of the present invention, if a sintered material obtained by mixing and sintering a lithium-manganese composite oxide and a lithium-nickel composite oxide is used as the material of the positive electrode, Compared to the case of using a mixture of lithium-manganese composite oxide and lithium-nickel composite oxide, the decrease in the potential of the positive electrode at the end of discharge becomes slower, and even when the discharge depth is deepened. In addition, it is possible to easily control the capacity decrease due to over-discharge, and to obtain a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.

【0011】ここで、正極の材料に用いる上記のリチウ
ム・ニッケル複合酸化物としては、例えば、組成式Li
a Nix 1-x 2 (但し、Mは、B,Mg,Al,T
i,Mn,V,Fe,Co,Cu,Zn,Ga,Y,Z
r,Nb,Mo,Inから選択される1種以上の遷移元
素であり、1≦a≦1.5,0<x≦1を満たす。)で
表されるものを使用することができ、特に、組成式Li
a Nix Coy Mnz2 (但し、1≦a≦1.5,0
<x≦1,0≦y≦1,0≦z≦1を満たす。)で表さ
れるものを使用することが好ましい。
Here, as the above-mentioned lithium-nickel composite oxide used for the material of the positive electrode, for example, the composition formula Li
a Ni x M 1-x O 2 (where M is B, Mg, Al, T
i, Mn, V, Fe, Co, Cu, Zn, Ga, Y, Z
It is one or more kinds of transition elements selected from r, Nb, Mo and In, and satisfies 1 ≦ a ≦ 1.5 and 0 <x ≦ 1. ), The composition formula Li can be used.
a Ni x Co y Mn z O 2 (however, 1 ≦ a ≦ 1.5,0
<X ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1 is satisfied. It is preferable to use the one represented by

【0012】また、正極の材料に用いる上記のリチウム
・マンガン複合酸化物としては、例えば、組成式Li
1+b Mnc M’d 4 (但し、M’は、Mg,Al,T
i,Fe,Crからなる群から選択される1種以上の元
素であり、0≦b≦1,1≦c≦2,0≦d≦1を満た
す。)で表されるものを使用することができ、特に、組
成式Li1+b Mnc M’d4 (但し、0≦b≦0.
5,1≦c≦2,0≦d≦1を満たす。)で表されるも
のを使用することが好ましい。
As the above-mentioned lithium-manganese composite oxide used for the material of the positive electrode, for example, the composition formula Li
1 + b Mn c M'd O 4 (where M'is Mg, Al, T
It is at least one element selected from the group consisting of i, Fe, and Cr, and satisfies 0 ≦ b ≦ 1,1 ≦ c ≦ 2,0 ≦ d ≦ 1. ) Can be used, and in particular, the composition formula Li 1 + b Mn c M ′ d O 4 (provided that 0 ≦ b ≦ 0.
5, 1 ≦ c ≦ 2, 0 ≦ d ≦ 1 are satisfied. It is preferable to use the one represented by

【0013】また、上記のリチウム・ニッケル複合酸化
物とリチウム・マンガン複合酸化物とを混合させるにあ
たっては、リチウム・ニッケル複合酸化物とリチウム・
マンガン複合酸化物との重量比を1:9〜9:1の範囲
にすることが好ましく、より好ましくは、6:4になる
ようにする。
In mixing the lithium-nickel composite oxide and the lithium-manganese composite oxide, the lithium-nickel composite oxide and the lithium-manganese composite oxide are mixed.
The weight ratio with the manganese composite oxide is preferably in the range of 1: 9 to 9: 1, and more preferably 6: 4.

【0014】また、このようにリチウム・ニッケル複合
酸化物とリチウム・マンガン複合酸化物とを混合させて
焼結させるにあたり、焼成温度が低いと、リチウム・ニ
ッケル複合酸化物とリチウム・マンガン複合酸化物とが
十分に焼結されない一方、焼成温度が高くなり過ぎる
と、リチウム・ニッケル複合酸化物やリチウム・マンガ
ン複合酸化物における酸素が脱離して劣化するため、焼
成温度を200〜900℃、好ましくは400〜600
℃にして焼結させるようにする。
When the lithium-nickel composite oxide and the lithium-manganese composite oxide are mixed and sintered as described above, if the firing temperature is low, the lithium-nickel composite oxide and the lithium-manganese composite oxide are mixed. When and are not sufficiently sintered, if the firing temperature is too high, oxygen in the lithium-nickel composite oxide or the lithium-manganese composite oxide is desorbed and deteriorates. Therefore, the firing temperature is 200 to 900 ° C., preferably 400-600
C. and sinter.

【0015】[0015]

【実施例】以下、この発明に係る非水電解質二次電池に
ついて、実施例を挙げて具体的に説明すると共に、この
実施例における非水電解質二次電池の場合、放電末期に
おいて正極の電位が急激に低下するのが抑制されること
を、比較例を挙げて明らかにする。なお、この発明にお
ける非水電解質二次電池は、下記の実施例に示したもの
に限定されず、その要旨を変更しない範囲において適宜
変更して実施できるものである。
EXAMPLES Hereinafter, the non-aqueous electrolyte secondary battery according to the present invention will be specifically described with reference to Examples, and in the case of the non-aqueous electrolyte secondary battery in this Example, the positive electrode potential at the end of discharge is It will be clarified that the sharp decrease is suppressed by giving a comparative example. The non-aqueous electrolyte secondary battery according to the present invention is not limited to the ones shown in the following examples, and can be implemented by appropriately changing it without departing from the scope of the invention.

【0016】(実施例1)実施例1においては、正極を
作製するにあたって、LiNi0.4 Co0.3 Mn 0.3
2 とLi1.1 Mn1.9 4 とを6:4の重量比でらいか
い混合させ、これをペレット状に成形した後、500℃
の大気雰囲気中で焼成してLiNi0.4 Co0.3 Mn
0.3 2 とLi1.1 Mn1.9 4 とが混合焼結された焼
結材料を得た。
(Example 1) In Example 1, the positive electrode was
In manufacturing, LiNi0.4Co0.3Mn 0.3O
2And Li1.1Mn1.9OFourDo you want to have a 6: 4 weight ratio?
And mix it to form pellets, then 500 ℃
In the air atmosphere of LiNi0.4Co0.3Mn
0.3O2And Li1.1Mn1.9OFourAnd mixed and sintered
I got the binding material.

【0017】そして、この焼結材料と導電剤の人造黒鉛
とを9:1の重量比で混合させて正極合剤を得た。
Then, the sintered material and artificial graphite as a conductive agent were mixed at a weight ratio of 9: 1 to obtain a positive electrode mixture.

【0018】次いで、この正極合剤と結着剤のポリフッ
化ビニリデンとが95:5の重量比になるようにして、
この正極合剤にポリフッ化ビニリデンが5重量%のN−
メチル−2−ピロリドン溶液を加え、これを混練してス
ラリーを調製し、このスラリーを厚み20μmのアルミ
ニウム箔の両面にドクターブレード法により塗布し、こ
れを150℃で2時間真空乾燥させて正極を作製した。
Next, the positive electrode mixture and the polyvinylidene fluoride binder are set in a weight ratio of 95: 5,
Polyvinylidene fluoride containing 5% by weight of N-
Methyl-2-pyrrolidone solution was added, and this was kneaded to prepare a slurry, and this slurry was applied on both sides of an aluminum foil having a thickness of 20 μm by the doctor blade method, and this was vacuum dried at 150 ° C. for 2 hours to give a positive electrode. It was made.

【0019】(比較例1)比較例1においては、正極を
作製するにあたって、上記の実施例1の場合と同様に、
LiNi0.4 Co0.3 Mn0.3 2 とLi1.1 Mn1.9
4 とを6:4の重量比でらいかい混合させる一方、こ
れを焼成させないで使用し、その後は、上記の実施例1
の場合と同様にして正極を作製した。
(Comparative Example 1) In Comparative Example 1, in producing a positive electrode, as in the case of Example 1 described above,
LiNi 0.4 Co 0.3 Mn 0.3 O 2 and Li 1.1 Mn 1.9
O 4 was mixed gently in a weight ratio of 6: 4, while it was used without being calcined and thereafter used in Example 1 above.
A positive electrode was prepared in the same manner as in.

【0020】そして、図1に示すように、上記の実施例
1及び比較例1において作製した各正極を作用極11に
用いる一方、負極となる対極12と参照極13とにそれ
ぞれ金属リチウムを用い、また非水電解液14として
は、エチレンカーボネートとジエチルカーボネートとを
1:1の体積比で混合させた混合溶媒にヘキサフルオロ
リン酸リチウムLiPF6 を1mol/lの割合で溶解
させたものを使用して、実施例1及び比較例1の各試験
用電池を作製した。
As shown in FIG. 1, the positive electrodes prepared in Example 1 and Comparative Example 1 are used for the working electrode 11, while metallic lithium is used for the counter electrode 12 and the reference electrode 13 which are negative electrodes. As the non-aqueous electrolyte solution 14, used is one in which lithium hexafluorophosphate LiPF 6 is dissolved at a ratio of 1 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1. Then, the test batteries of Example 1 and Comparative Example 1 were produced.

【0021】そして、上記の各正極を作用極11に使用
した実施例1及び比較例1の各試験用電池において、充
電電流0.75mA/cm2 で充電終止電圧が4.3V
になるまで充電させた後、充電電流0.25mA/cm
2 で充電終止電圧が4.3Vになるまで充電させた。そ
の後、実施例1及び比較例1の各試験用電池を放電電流
0.75mA/cm2 で放電終止電圧が3.1Vになる
まで放電させ、放電時における参照極13に対する各正
極11の電位と、放電深度(%)との関係を調べ、実施
例1の試験用電池における結果を実線で、比較例1の試
験用電池における結果を破線で図2に示した。
In each of the test batteries of Example 1 and Comparative Example 1 in which each of the above positive electrodes was used as the working electrode 11, the charging end voltage was 4.3 V at a charging current of 0.75 mA / cm 2.
Charging current of 0.25mA / cm
It was charged at 2 until the end-of-charge voltage reached 4.3V. After that, the test batteries of Example 1 and Comparative Example 1 were discharged at a discharge current of 0.75 mA / cm 2 until the discharge end voltage became 3.1 V, and the potential of each positive electrode 11 with respect to the reference electrode 13 at the time of discharge. The results for the test battery of Example 1 are shown by solid lines, and the results for the test battery of Comparative Example 1 are shown by broken lines in FIG.

【0022】この結果、実施例1の試験用電池において
は、放電深度が100%に近づいた時点における正極の
電位の低下が、比較例1の試験用電池に比べて緩やかに
なっており、実施例1の試験用電池の場合、比較例1の
試験用電池に比べて、過放電になるのを容易に抑制する
ことができた。
As a result, in the test battery of Example 1, the decrease in the potential of the positive electrode when the depth of discharge approached 100% was slower than that of the test battery of Comparative Example 1. In the case of the test battery of Example 1, over-discharging could be suppressed more easily than the test battery of Comparative Example 1.

【0023】[0023]

【発明の効果】以上詳述したように、この発明における
非水電解質二次電池においては、その正極の材料に、リ
チウム・マンガン複合酸化物とリチウム・ニッケル複合
酸化物とを混合焼結させた焼結材料を用いるようにした
ため、リチウム・マンガン複合酸化物とリチウム・ニッ
ケル複合酸化物とを単に混合させただけのものを用いた
場合に比べて、放電末期における正極の電位の低下が緩
やかになった。
As described above in detail, in the non-aqueous electrolyte secondary battery according to the present invention, the material of the positive electrode is the mixture of the lithium-manganese composite oxide and the lithium-nickel composite oxide and sintering. Since the sintering material is used, the decrease in the positive electrode potential at the end of discharge is slower than in the case of using a mixture of lithium-manganese composite oxide and lithium-nickel composite oxide. became.

【0024】この結果、この発明における非水電解質二
次電池においては、放電深度を深くした場合において
も、過放電による容量低下を容易に制御することがで
き、充放電サイクル特性に優れた非水電解質二次電池が
得られるようになった。
As a result, in the non-aqueous electrolyte secondary battery of the present invention, even when the depth of discharge is increased, the capacity decrease due to over-discharge can be easily controlled, and the non-aqueous electrolyte excellent in charge / discharge cycle characteristics can be obtained. An electrolyte secondary battery has come to be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1及び比較例1において作製
した試験用電池の概略説明図である。
FIG. 1 is a schematic explanatory view of test batteries produced in Example 1 and Comparative Example 1 of the present invention.

【図2】上記の実施例1及び比較例1の試験用電池の放
電時における正極の電位と放電深度(%)との関係を示
した図である。
FIG. 2 is a graph showing the relationship between the positive electrode potential and the depth of discharge (%) during discharge of the test batteries of Example 1 and Comparative Example 1 described above.

【符号の説明】 11 作用極(正極) 12 対極(負極) 13 参照極 14 非水電解液[Explanation of symbols] 11 Working electrode (positive electrode) 12 counter electrode (negative electrode) 13 reference pole 14 Non-aqueous electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ02 AJ03 AJ05 AK03 AL12 AM03 AM05 AM07 CJ02 CJ08 HJ02 5H050 AA04 AA07 AA08 BA16 BA17 CA08 CA09 CB12 GA02 GA10 HA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiyuki Noma             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Ikuro Ikuro             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 5H029 AJ02 AJ03 AJ05 AK03 AL12                       AM03 AM05 AM07 CJ02 CJ08                       HJ02                 5H050 AA04 AA07 AA08 BA16 BA17                       CA08 CA09 CB12 GA02 GA10                       HA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極と非水電解質とを備えた非水
電解質二次電池において、上記の正極の材料に、リチウ
ム・マンガン複合酸化物とリチウム・ニッケル複合酸化
物とを混合焼結させた焼結材料を用いたことを特徴とす
る非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the material for the positive electrode is mixed and sintered with a lithium-manganese composite oxide and a lithium-nickel composite oxide. A non-aqueous electrolyte secondary battery characterized by using a sintered material.
【請求項2】 請求項1に記載した非水電解質二次電池
において、前記のリチウム・ニッケル複合酸化物とし
て、組成式Lia Nix Coy Mnz 2 (但し、1≦
a≦1.5,0<x≦1,0≦y≦1,0≦z≦1を満
たす。)で表されるものを用いたことを特徴とする非水
電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium-nickel composite oxide has a composition formula of Li a Ni x Co y Mn z O 2 (where 1 ≦
It satisfies a ≦ 1.5, 0 <x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1. ) The non-aqueous electrolyte secondary battery characterized by using what is represented by these.
【請求項3】 請求項1又は2に記載した非水電解質二
次電池において、前記のリチウム・マンガン複合酸化物
として、Li1+b Mnc M’d 4 (但し、M’は、M
g,Al,Ti,Fe,Crからなる群から選択される
1種以上の元素であり、0≦b≦0.5,1≦c≦2,
0≦d≦1を満たす。)を用いたこを特徴とする非水電
解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium-manganese composite oxide is Li 1 + b Mn c M ′ d O 4 (where M ′ is M
One or more elements selected from the group consisting of g, Al, Ti, Fe, Cr, 0 ≦ b ≦ 0.5, 1 ≦ c ≦ 2
0 ≦ d ≦ 1 is satisfied. ) Is used for the non-aqueous electrolyte secondary battery.
JP2001336620A 2001-11-01 2001-11-01 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4049571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336620A JP4049571B2 (en) 2001-11-01 2001-11-01 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336620A JP4049571B2 (en) 2001-11-01 2001-11-01 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003142091A true JP2003142091A (en) 2003-05-16
JP4049571B2 JP4049571B2 (en) 2008-02-20

Family

ID=19151414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336620A Expired - Fee Related JP4049571B2 (en) 2001-11-01 2001-11-01 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4049571B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JP2007220630A (en) * 2006-02-20 2007-08-30 Sony Corp Positive electrode active material and battery
WO2013137510A1 (en) * 2012-03-13 2013-09-19 주식회사 엘앤에프신소재 Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery
WO2013137509A1 (en) * 2012-03-13 2013-09-19 주식회사 엘앤에프신소재 Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery
US20130337302A1 (en) * 2005-05-13 2013-12-19 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery containing a negative electrode of lithium-titanium composite oxide, battery pack and vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081698A1 (en) * 2002-03-27 2003-10-02 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
US7691535B2 (en) 2002-03-27 2010-04-06 Gs Yuasa Corporation Active substance of positive electrode and non-aqueous electrolyte battery containing the same
US20130337302A1 (en) * 2005-05-13 2013-12-19 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery containing a negative electrode of lithium-titanium composite oxide, battery pack and vehicle
JP2007220630A (en) * 2006-02-20 2007-08-30 Sony Corp Positive electrode active material and battery
WO2013137510A1 (en) * 2012-03-13 2013-09-19 주식회사 엘앤에프신소재 Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery
WO2013137509A1 (en) * 2012-03-13 2013-09-19 주식회사 엘앤에프신소재 Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery
US9917297B2 (en) 2012-03-13 2018-03-13 L&F Material Co., Ltd. Method for preparing positive electrode active material for lithium secondary battery

Also Published As

Publication number Publication date
JP4049571B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP3631197B2 (en) Nonaqueous electrolyte secondary battery
JP3142522B2 (en) Lithium secondary battery
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
KR101977995B1 (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP2000277116A (en) Lithium secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JP2008123972A (en) Non-aqueous electrolyte secondary cell
KR20080031470A (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JP2021536098A (en) A method for manufacturing a positive electrode material for a lithium secondary battery, and a positive electrode material for a lithium secondary battery manufactured by this method.
JPWO2012081518A1 (en) Nonaqueous electrolyte secondary battery
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP3301931B2 (en) Lithium secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2002358961A (en) Non-aqueous electrolyte secondary battery
JP2000200607A (en) Lithium secondary battery
JP2002042814A (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP7270941B2 (en) Method for manufacturing positive electrode active material for lithium secondary battery, and positive electrode active material manufactured by said manufacturing method
JP2002175801A (en) Cathode for lithium secondary battery, its manufacturing method and the lithium secondary battery
JP6233101B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4049571B2 (en) Nonaqueous electrolyte secondary battery
JP2004235166A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees