JP4049571B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4049571B2
JP4049571B2 JP2001336620A JP2001336620A JP4049571B2 JP 4049571 B2 JP4049571 B2 JP 4049571B2 JP 2001336620 A JP2001336620 A JP 2001336620A JP 2001336620 A JP2001336620 A JP 2001336620A JP 4049571 B2 JP4049571 B2 JP 4049571B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
secondary battery
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001336620A
Other languages
Japanese (ja)
Other versions
JP2003142091A (en
Inventor
英樹 北尾
直哉 中西
俊之 能間
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001336620A priority Critical patent/JP4049571B2/en
Publication of JP2003142091A publication Critical patent/JP2003142091A/en
Application granted granted Critical
Publication of JP4049571B2 publication Critical patent/JP4049571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、正極と負極と非水電解質とを備えた非水電解質二次電池に係り、特に、正極に用いる材料を改善し、過放電になるのを容易に制御できるようにした点に特徴を有するものである。
【0002】
【従来の技術】
近年、高出力,高エネルギー密度の新型電池の1つとして、非水電解質を用いて、リチウムの酸化,還元を利用した高起電力の非水電解質二次電池が利用されるようになった。
【0003】
ここで、このような非水電解質二次電池においては、その正極の材料として、リチウムイオンの吸蔵,放出が可能なリチウム・遷移金属複合酸化物が用いられており、一般には、リチウム・コバルト複合酸化物のLiCoO2 等が広く利用されている。
【0004】
しかし、リチウム・コバルト複合酸化物の原料となるコバルトは資源の埋蔵量が少なく、高価であるため、正極の材料として、他のリチウム・遷移金属複合酸化物を使用することが要望され、このようなリチウム・遷移金属複合酸化物として、安価でかつ資源の埋蔵量の豊富な材料であるマンガンを用いたリチウム・マンガン複合酸化物が検討されるようになった。
【0005】
しかし、このようなリチウム・マンガン複合酸化物を非水電解質二次電池における正極の材料に使用した場合、この非水電解質二次電池において充放電を繰り返して行うと、リチウム・マンガン複合酸化物からマンガンが溶出して次第に容量が低下し、充放電サイクル特性が悪いという問題があった。
【0006】
このため、近年においては、特許第3024636号公報に示されるように、非水電解質二次電池における正極の材料に、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを混合させたものを用い、充放電によってリチウム・マンガン複合酸化物からマンガンが溶出するのを抑制して、充放電サイクル特性を向上させることが提案されている。
【0007】
しかし、上記のように正極の材料に、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを混合させたものを用いた場合、放電末期において正極の電位が急激に低下し、十分な容量を有する非水電解質二次電池を得るために放電深度を深くすると、過放電になりやすく、これにより非水電解質二次電池が劣化して容量が著しく低下し、充放電サイクル特性が著しく低下するという問題があった。
【0008】
【発明が解決しようとする課題】
この発明は、正極と負極と非水電解質とを備えた非水電解質二次電池における上記のような様々な問題を解決することを課題とするものであり、特に、正極の材料にリチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを用いた場合において、放電末期における正極の電位が急激に低下するのを抑制し、十分な容量を有する非水電解質二次電池を得るために放電深度を深くした場合においても、過放電による容量低下を容易に制御することができると共に、充放電サイクル特性にも優れた非水電解質二次電池が得られるようにすることを課題とするものである。
【0009】
【課題を解決するための手段】
この発明においては、上記のような課題を解決するため、正極と負極と非水電解質とを備えた非水電解質二次電池において、上記の正極の材料に、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを混合焼結させた焼結材料を用いるようにしたのである。
【0010】
そして、この発明における非水電解質二次電池のように、正極の材料に、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを混合焼結させた焼結材料を用いると、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを単に混合させただけのものを用いる場合に比べて、放電末期における正極の電位の低下が緩やかになり、放電深度を深くした場合においても、過放電による容量低下を容易に制御することができ、充放電サイクル特性に優れた非水電解質二次電池が得られるようになる。
【0011】
ここで、正極の材料に用いる上記のリチウム・ニッケル複合酸化物としては、例えば、組成式Lia Nix 1-x 2 (但し、Mは、B,Mg,Al,Ti,Mn,V,Fe,Co,Cu,Zn,Ga,Y,Zr,Nb,Mo,Inから選択される1種以上の遷移元素であり、1≦a≦1.5,0<x≦1を満たす。)で表されるものを使用することができ、特に、組成式Lia Nix Coy Mnz 2 (但し、1≦a≦1.5,0<x≦1,0≦y<1,0≦z<1,x+y+z=1を満たす。)で表されるものを使用することが好ましい。
【0012】
また、正極の材料に用いる上記のリチウム・マンガン複合酸化物としては、例えば、組成式Li1+b Mnc M’d 4 (但し、M’は、Mg,Al,Ti,Fe,Crからなる群から選択される1種以上の元素であり、0≦b≦1,1≦c≦2,0≦d<1を満たす。)で表されるスピネル構造のリチウム・マンガン複合酸化物を使用することができ、特に、組成式Li1+b Mnc M’d4 (但し、0≦b≦0.5,1≦c≦2,0≦d<1を満たす。)で表されるスピネル構造のリチウム・マンガン複合酸化物を使用することが好ましい。
【0013】
また、上記のリチウム・ニッケル複合酸化物とリチウム・マンガン複合酸化物とを混合させるにあたっては、リチウム・ニッケル複合酸化物とリチウム・マンガン複合酸化物との重量比を1:9〜9:1の範囲にすることが好ましく、より好ましくは、6:4になるようにする。
【0014】
また、このようにリチウム・ニッケル複合酸化物とリチウム・マンガン複合酸化物とを混合させて焼結させるにあたり、焼成温度が低いと、リチウム・ニッケル複合酸化物とリチウム・マンガン複合酸化物とが十分に焼結されない一方、焼成温度が高くなり過ぎると、リチウム・ニッケル複合酸化物やリチウム・マンガン複合酸化物における酸素が脱離して劣化するため、焼成温度を200〜900℃、好ましくは400〜600℃にして焼結させるようにする。
【0015】
【実施例】
以下、この発明に係る非水電解質二次電池について、実施例を挙げて具体的に説明すると共に、この実施例における非水電解質二次電池の場合、放電末期において正極の電位が急激に低下するのが抑制されることを、比較例を挙げて明らかにする。なお、この発明における非水電解質二次電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0016】
(実施例1)
実施例1においては、正極を作製するにあたって、LiNi0.4 Co0.3 Mn0.3 2 とLi1.1 Mn1.9 4 とを6:4の重量比でらいかい混合させ、これをペレット状に成形した後、500℃の大気雰囲気中で焼成してLiNi0.4 Co0.3 Mn0.3 2 とLi1.1 Mn1.9 4 とが混合焼結された焼結材料を得た。
【0017】
そして、この焼結材料と導電剤の人造黒鉛とを9:1の重量比で混合させて正極合剤を得た。
【0018】
次いで、この正極合剤と結着剤のポリフッ化ビニリデンとが95:5の重量比になるようにして、この正極合剤にポリフッ化ビニリデンが5重量%のN−メチル−2−ピロリドン溶液を加え、これを混練してスラリーを調製し、このスラリーを厚み20μmのアルミニウム箔の両面にドクターブレード法により塗布し、これを150℃で2時間真空乾燥させて正極を作製した。
【0019】
(比較例1)
比較例1においては、正極を作製するにあたって、上記の実施例1の場合と同様に、LiNi0.4 Co0.3 Mn0.3 2 とLi1.1 Mn1.9 4 とを6:4の重量比でらいかい混合させる一方、これを焼成させないで使用し、その後は、上記の実施例1の場合と同様にして正極を作製した。
【0020】
そして、図1に示すように、上記の実施例1及び比較例1において作製した各正極を作用極11に用いる一方、負極となる対極12と参照極13とにそれぞれ金属リチウムを用い、また非水電解液14としては、エチレンカーボネートとジエチルカーボネートとを1:1の体積比で混合させた混合溶媒にヘキサフルオロリン酸リチウムLiPF6 を1mol/lの割合で溶解させたものを使用して、実施例1及び比較例1の各試験用電池を作製した。
【0021】
そして、上記の各正極を作用極11に使用した実施例1及び比較例1の各試験用電池において、充電電流0.75mA/cm2 で充電終止電圧が4.3Vになるまで充電させた後、充電電流0.25mA/cm2 で充電終止電圧が4.3Vになるまで充電させた。その後、実施例1及び比較例1の各試験用電池を放電電流0.75mA/cm2 で放電終止電圧が3.1Vになるまで放電させ、放電時における参照極13に対する各正極11の電位と、放電深度(%)との関係を調べ、実施例1の試験用電池における結果を実線で、比較例1の試験用電池における結果を破線で図2に示した。
【0022】
この結果、実施例1の試験用電池においては、放電深度が100%に近づいた時点における正極の電位の低下が、比較例1の試験用電池に比べて緩やかになっており、実施例1の試験用電池の場合、比較例1の試験用電池に比べて、過放電になるのを容易に抑制することができた。
【0023】
【発明の効果】
以上詳述したように、この発明における非水電解質二次電池においては、その正極の材料に、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを混合焼結させた焼結材料を用いるようにしたため、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを単に混合させただけのものを用いた場合に比べて、放電末期における正極の電位の低下が緩やかになった。
【0024】
この結果、この発明における非水電解質二次電池においては、放電深度を深くした場合においても、過放電による容量低下を容易に制御することができ、充放電サイクル特性に優れた非水電解質二次電池が得られるようになった。
【図面の簡単な説明】
【図1】この発明の実施例1及び比較例1において作製した試験用電池の概略説明図である。
【図2】上記の実施例1及び比較例1の試験用電池の放電時における正極の電位と放電深度(%)との関係を示した図である。
【符号の説明】
11 作用極(正極)
12 対極(負極)
13 参照極
14 非水電解液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and is particularly characterized in that the material used for the positive electrode is improved and overdischarge can be easily controlled. It is what has.
[0002]
[Prior art]
In recent years, as one of new batteries with high output and high energy density, non-aqueous electrolyte secondary batteries using a non-aqueous electrolyte and utilizing oxidation and reduction of lithium have come to be used.
[0003]
Here, in such a non-aqueous electrolyte secondary battery, a lithium / transition metal composite oxide capable of occluding and releasing lithium ions is used as a material for the positive electrode. An oxide such as LiCoO 2 is widely used.
[0004]
However, since cobalt, which is a raw material for lithium-cobalt composite oxide, has a small reserve of resources and is expensive, it is desired to use another lithium-transition metal composite oxide as the positive electrode material. As lithium-transition metal composite oxides, lithium-manganese composite oxides using manganese, which is an inexpensive and resource-rich material, have been studied.
[0005]
However, when such a lithium-manganese composite oxide is used as a positive electrode material in a non-aqueous electrolyte secondary battery, repeated charging / discharging in this non-aqueous electrolyte secondary battery will result in a lithium-manganese composite oxide. There was a problem that the capacity was gradually reduced due to elution of manganese and the charge / discharge cycle characteristics were poor.
[0006]
For this reason, in recent years, as shown in Japanese Patent No. 3024636, a material obtained by mixing a lithium / manganese composite oxide and a lithium / nickel composite oxide with a positive electrode material in a non-aqueous electrolyte secondary battery. It has been proposed to improve the charge / discharge cycle characteristics by suppressing the dissolution of manganese from the lithium / manganese composite oxide by charge / discharge.
[0007]
However, when the material of the positive electrode mixed with lithium / manganese composite oxide and lithium / nickel composite oxide is used as described above, the potential of the positive electrode rapidly decreases at the end of discharge, and sufficient capacity is obtained. If the depth of discharge is increased in order to obtain a nonaqueous electrolyte secondary battery having a non-aqueous electrolyte, overdischarge tends to occur, which causes the nonaqueous electrolyte secondary battery to deteriorate and significantly reduce its capacity, resulting in a marked decrease in charge / discharge cycle characteristics. There was a problem.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above various problems in a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte. When using a composite oxide and a lithium / nickel composite oxide, the depth of discharge is reduced in order to suppress a rapid decrease in the potential of the positive electrode at the end of discharge and to obtain a nonaqueous electrolyte secondary battery having sufficient capacity. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery that can easily control capacity reduction due to overdischarge and has excellent charge / discharge cycle characteristics even when the depth is increased. .
[0009]
[Means for Solving the Problems]
In the present invention, in order to solve the above-described problems, in a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, the positive electrode material includes lithium-manganese composite oxide and lithium- A sintered material obtained by mixing and sintering a nickel composite oxide was used.
[0010]
When a sintered material obtained by mixing and sintering lithium / manganese composite oxide and lithium / nickel composite oxide is used as the positive electrode material as in the non-aqueous electrolyte secondary battery according to the present invention, lithium / manganese Compared to the case where a composite oxide and a lithium-nickel composite oxide are simply mixed, the potential of the positive electrode gradually decreases at the end of discharge, and overdischarge occurs even when the discharge depth is increased. Therefore, a non-aqueous electrolyte secondary battery with excellent charge / discharge cycle characteristics can be obtained.
[0011]
Here, examples of the lithium-nickel composite oxide used for the positive electrode material include a composition formula Li a Ni x M 1-x O 2 (where M is B, Mg, Al, Ti, Mn, V , Fe, Co, Cu, Zn, Ga, Y, Zr, Nb, Mo, In, and one or more transition elements, satisfying 1 ≦ a ≦ 1.5 and 0 <x ≦ 1. In particular, the composition formula Li a Ni x Co y Mn z O 2 (where 1 ≦ a ≦ 1.5, 0 <x ≦ 1, 0 ≦ y <1,0 ≦ z <1, x + y + z = 1 is preferably satisfied).
[0012]
Furthermore, as the lithium-manganese composite oxide used in the material of the positive electrode, for example, the composition formula Li 1 + b Mn c M ' d O 4 ( where, M' is, Mg, Al, Ti, Fe, Cr, at least one element selected from the group consisting, using 0 ≦ b ≦ 1,1 ≦ c ≦ 2, 0 ≦ d < satisfies 1.) of lithium-manganese composite oxide having a spinel structure represented by In particular, it is represented by the composition formula Li 1 + b Mn c M ′ d O 4 (where 0 ≦ b ≦ 0.5, 1 ≦ c ≦ 2, 0 ≦ d <1 ). It is preferable to use a lithium-manganese composite oxide having a spinel structure .
[0013]
In mixing the lithium / nickel composite oxide and the lithium / manganese composite oxide, the weight ratio of the lithium / nickel composite oxide to the lithium / manganese composite oxide is 1: 9 to 9: 1. The range is preferably set to 6: 4.
[0014]
In addition, when mixing and sintering the lithium-nickel composite oxide and the lithium-manganese composite oxide in this way, if the firing temperature is low, the lithium-nickel composite oxide and the lithium-manganese composite oxide are sufficient. On the other hand, if the firing temperature becomes too high, oxygen in the lithium / nickel composite oxide or lithium / manganese composite oxide is desorbed and deteriorates, so the firing temperature is 200 to 900 ° C., preferably 400 to 600. Sinter at ℃.
[0015]
【Example】
Hereinafter, the nonaqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples, and in the case of the nonaqueous electrolyte secondary battery in this example, the potential of the positive electrode rapidly decreases at the end of discharge. It will be clarified with a comparative example that this is suppressed. In addition, the nonaqueous electrolyte secondary battery in this invention is not limited to what was shown in the following Example, It can implement by changing suitably in the range which does not change the summary.
[0016]
Example 1
In Example 1, in preparing the positive electrode, LiNi 0.4 Co 0.3 Mn 0.3 O 2 and Li 1.1 Mn 1.9 O 4 were mixed in a weight ratio of 6: 4 and formed into a pellet. Firing was performed in an air atmosphere at 500 ° C. to obtain a sintered material in which LiNi 0.4 Co 0.3 Mn 0.3 O 2 and Li 1.1 Mn 1.9 O 4 were mixed and sintered.
[0017]
And this sintered material and the artificial graphite of a electrically conductive agent were mixed by the weight ratio of 9: 1, and the positive mix was obtained.
[0018]
Next, an N-methyl-2-pyrrolidone solution containing 5% by weight of polyvinylidene fluoride was added to the positive electrode mixture so that the positive electrode mixture and the polyvinylidene fluoride binder were in a weight ratio of 95: 5. In addition, this was kneaded to prepare a slurry. This slurry was applied to both surfaces of an aluminum foil having a thickness of 20 μm by a doctor blade method, and this was vacuum-dried at 150 ° C. for 2 hours to produce a positive electrode.
[0019]
(Comparative Example 1)
In Comparative Example 1, when the positive electrode was produced, LiNi 0.4 Co 0.3 Mn 0.3 O 2 and Li 1.1 Mn 1.9 O 4 were mixed in a weight ratio of 6: 4 in the same manner as in Example 1 above. On the other hand, this was used without firing, and thereafter, a positive electrode was produced in the same manner as in Example 1 above.
[0020]
As shown in FIG. 1, each of the positive electrodes prepared in Example 1 and Comparative Example 1 is used as the working electrode 11, while metallic lithium is used for the counter electrode 12 and the reference electrode 13, which are negative electrodes, As the water electrolyte 14, a solution in which lithium hexafluorophosphate LiPF 6 was dissolved at a ratio of 1 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used. The test batteries of Example 1 and Comparative Example 1 were produced.
[0021]
In each of the test batteries of Example 1 and Comparative Example 1 using each of the positive electrodes as the working electrode 11, the battery was charged at a charging current of 0.75 mA / cm 2 until the end-of-charge voltage was 4.3V. The battery was charged at a charging current of 0.25 mA / cm 2 until the end-of-charge voltage was 4.3V. Thereafter, the test batteries of Example 1 and Comparative Example 1 were discharged at a discharge current of 0.75 mA / cm 2 until the discharge end voltage reached 3.1 V, and the potential of each positive electrode 11 with respect to the reference electrode 13 during discharge was The relationship with the depth of discharge (%) was examined, and the result of the test battery of Example 1 is shown by a solid line, and the result of the test battery of Comparative Example 1 is shown by a broken line in FIG.
[0022]
As a result, in the test battery of Example 1, the decrease in the potential of the positive electrode when the discharge depth approached 100% was more gradual than that of the test battery of Comparative Example 1. In the case of the test battery, compared to the test battery of Comparative Example 1, overdischarge could be easily suppressed.
[0023]
【The invention's effect】
As described above in detail, in the nonaqueous electrolyte secondary battery according to the present invention, a sintered material obtained by mixing and sintering a lithium / manganese composite oxide and a lithium / nickel composite oxide is used as the material of the positive electrode. As a result, the decrease in the potential of the positive electrode at the end of the discharge was moderate as compared with the case where a mixture of lithium / manganese composite oxide and lithium / nickel composite oxide was simply used.
[0024]
As a result, in the nonaqueous electrolyte secondary battery according to the present invention, even when the depth of discharge is increased, it is possible to easily control the capacity reduction due to overdischarge, and the nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics. Batteries can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a test battery produced in Example 1 and Comparative Example 1 of the present invention.
FIG. 2 is a graph showing the relationship between the potential of the positive electrode and the depth of discharge (%) when the test batteries of Example 1 and Comparative Example 1 are discharged.
[Explanation of symbols]
11 Working electrode (positive electrode)
12 Counter electrode (negative electrode)
13 Reference electrode 14 Non-aqueous electrolyte

Claims (3)

正極と負極と非水電解質とを備えた非水電解質二次電池において、上記の正極の材料に、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物とを混合焼結させた焼結材料を用いたことを特徴とする非水電解質二次電池。  In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, a sintered material obtained by mixing and sintering a lithium / manganese composite oxide and a lithium / nickel composite oxide as a material for the positive electrode. A non-aqueous electrolyte secondary battery characterized by being used. 請求項1に記載した非水電解質二次電池において、前記のリチウム・ニッケル複合酸化物として、組成式Lia Nix Coy Mnz 2 (但し、1≦a≦1.5,0<x≦1,0≦y<1,0≦z<1,x+y+z=1を満たす。)で表されるものを用いたことを特徴とする非水電解質二次電池。2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium-nickel composite oxide has a composition formula Li a Ni x Co y Mn z O 2 (where 1 ≦ a ≦ 1.5, 0 <x ≦ 1, 0 ≦ y <1, 0 ≦ z <1, x + y + z = 1. ) A nonaqueous electrolyte secondary battery using the battery 請求項1又は2に記載した非水電解質二次電池において、前記のリチウム・マンガン複合酸化物として、Li1+b Mnc M’d 4 (但し、M’は、Mg,Al,Ti,Fe,Crからなる群から選択される1種以上の元素であり、0≦b≦0.5,1≦c≦2,0≦d<1を満たす。)で表わされるスピネル構造のリチウム・マンガン複合酸化物を用いたことを特徴とする非水電解質二次電池。3. The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium-manganese composite oxide is Li 1 + b Mn c M ′ d O 4 (where M ′ is Mg, Al, Ti, Fe, at least one element selected from the group consisting of Cr, 0 ≦ b ≦ 0.5,1 ≦ c ≦ 2, 0 ≦ d < satisfies 1.) lithium manganese spinel structure represented by A non-aqueous electrolyte secondary battery using a composite oxide .
JP2001336620A 2001-11-01 2001-11-01 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4049571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336620A JP4049571B2 (en) 2001-11-01 2001-11-01 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336620A JP4049571B2 (en) 2001-11-01 2001-11-01 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003142091A JP2003142091A (en) 2003-05-16
JP4049571B2 true JP4049571B2 (en) 2008-02-20

Family

ID=19151414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336620A Expired - Fee Related JP4049571B2 (en) 2001-11-01 2001-11-01 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4049571B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003221171A1 (en) 2002-03-27 2003-10-08 Yuasa Corporation Active substance of positive electrode and nonaqueous electrolyte battery containing the same
JP4249727B2 (en) * 2005-05-13 2009-04-08 株式会社東芝 Nonaqueous electrolyte battery and lithium titanium composite oxide
JP5315591B2 (en) * 2006-02-20 2013-10-16 ソニー株式会社 Positive electrode active material and battery
WO2013137510A1 (en) * 2012-03-13 2013-09-19 주식회사 엘앤에프신소재 Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery
WO2013137509A1 (en) 2012-03-13 2013-09-19 주식회사 엘앤에프신소재 Method for manufacturing anode active material for lithium secondary battery, anode active material for lithium secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
JP2003142091A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
JP5153135B2 (en) Nonaqueous electrolyte secondary battery
JP3631197B2 (en) Nonaqueous electrolyte secondary battery
JP3142522B2 (en) Lithium secondary battery
JP3869605B2 (en) Nonaqueous electrolyte secondary battery
JP3625680B2 (en) Lithium secondary battery
JP4307005B2 (en) Non-aqueous electrolyte secondary battery
JP5142452B2 (en) Non-aqueous electrolyte secondary battery charge / discharge control method
JP2000223122A (en) Positive electrode active material for lithium secondary battery and its manufacture, positive electrode for lithium secondary battery using the positive electrode active material and its manufacture, and lithium secondary battery using the positive electrode and its manufacture
JP5280684B2 (en) Positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2000353526A (en) Positive electrode active material composition for lithium secondary battery and manufacture of positive electrode using it
JP2007095354A (en) Charge and discharge method of nonaqueous electrolyte secondary battery
JP2000113889A (en) Lithium secondary battery
JP7336648B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JPWO2012081518A1 (en) Nonaqueous electrolyte secondary battery
JP5644083B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method for producing negative electrode active material for lithium secondary battery
JP3301931B2 (en) Lithium secondary battery
JP2008130287A (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2002358961A (en) Non-aqueous electrolyte secondary battery
JP3723444B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2018055808A (en) Lithium ion secondary battery and positive electrode active material for the lithium ion secondary battery
JP4726423B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6632233B2 (en) Non-aqueous electrolyte secondary battery
JP4049571B2 (en) Nonaqueous electrolyte secondary battery
JP6233101B2 (en) Cathode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees