JP2001185142A - Positive electrode active material for lithium ion secondary battery and manufacturing method therefor - Google Patents

Positive electrode active material for lithium ion secondary battery and manufacturing method therefor

Info

Publication number
JP2001185142A
JP2001185142A JP36592799A JP36592799A JP2001185142A JP 2001185142 A JP2001185142 A JP 2001185142A JP 36592799 A JP36592799 A JP 36592799A JP 36592799 A JP36592799 A JP 36592799A JP 2001185142 A JP2001185142 A JP 2001185142A
Authority
JP
Japan
Prior art keywords
lithium
particle size
particle diameter
active material
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36592799A
Other languages
Japanese (ja)
Inventor
Etsushi Yajima
悦士 矢島
Hayami Sogabe
曽我部速美
Iori Kaneko
伊織 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP36592799A priority Critical patent/JP2001185142A/en
Publication of JP2001185142A publication Critical patent/JP2001185142A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium ion secondary battery having superior rate characteristics and cyclic characteristics, and a manufacturing method therefor. SOLUTION: Lithium carbonate having a particle diameter of 1 to 40 μm, a mean particle diameter of 5 to 15 μm, and a single peak on the Rosin- Rammler grain size distribution chart is mixed with cobalt oxide (Co3O4) having a mean particle diameter and the maximum particle diameter smaller than those of the lithium carbonate. The resulting mixture is mixed with a medium for granulation, drying and burning at the given temperature to obtain powdered lithium cobalite of a general formula LiCoO2 having a single peak in its grain size distribution on the Rosin-Rammler grain size distribution chart, and preferably, the particle diameter of most of the powdered lithium cobaltite in the range of 1 to 40 μm, and a mean particle diameter of 5 to 15 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は負極にリチウム金
属、リチウム合金またはカーボンを用いるリチウムイオ
ン二次電池の正極活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium ion secondary battery using lithium metal, lithium alloy or carbon for a negative electrode.

【0002】[0002]

【従来の技術】近年、携帯電話やノート型パソコンなど
の携帯機器の普及に伴い、高いエネルギー密度を有する
小型、軽量で高い容量を持つ二次電池の開発が強く望ま
れている。このようなものとしてリチウム、リチウム合
金あるいはカーボンを負極として用いるリチウムイオン
二次電池があり、研究開発が盛んに行われている。
2. Description of the Related Art In recent years, with the spread of mobile devices such as mobile phones and notebook computers, there is a strong demand for the development of small, lightweight, high capacity secondary batteries having a high energy density. As such a device, there is a lithium ion secondary battery using lithium, a lithium alloy or carbon as a negative electrode, and research and development have been actively conducted.

【0003】コバルト酸リチウム(LiCoO2)を正
極活物質に用いたリチウムイオン二次電池は4V級の高
い電圧が得られるため、高エネルギー密度を持つ電池と
して期待され、実用化が進んでいる。また、最近のハイ
レート化や長寿命化の要求をかなえるべく、正極活物質
と混合するカーボンなどの導電剤量を調整して電極の電
導度をあげたり、充放電による正極活物質の微細化の防
止などの対策も検討されている。
A lithium ion secondary battery using lithium cobaltate (LiCoO 2 ) as a positive electrode active material can obtain a high voltage of 4V class, and is expected to be a battery having a high energy density, and is being put to practical use. In addition, in order to meet the recent demand for higher rates and longer life, the amount of conductive agent such as carbon mixed with the positive electrode active material is adjusted to increase the conductivity of the electrode, and to reduce the size of the positive electrode active material by charging and discharging. Measures such as prevention are also being studied.

【0004】[0004]

【発明が解決しようとする課題】ところで、通常コバル
ト酸リチウムはリチウム塩、例えば炭酸リチウムと、コ
バルト化合物、例えば炭酸コバルトとを所定割合で混合
し、600〜1100℃の温度で焼成(特開平1−30
4664号公報)し、あるいは、炭酸リチウムと平均粒
径が2〜25μmの四三酸化コバルトを所定割合で混合
して800〜900℃で焼成(特開平9−28314
4)して得られる。しかしながら、従来のコバルト酸リ
チウムでは、電池容量を増加させるために導電剤の量を
減らすとレート特性が劣化したり、充放電の繰り返しに
より電池容量が低下するなどの問題があった。
In general, lithium cobaltate is prepared by mixing a lithium salt, for example, lithium carbonate, and a cobalt compound, for example, cobalt carbonate at a predetermined ratio and firing at a temperature of 600 to 1100 ° C. -30
No. 4664), or lithium carbonate and cobalt tetroxide having an average particle size of 2 to 25 μm are mixed at a predetermined ratio and fired at 800 to 900 ° C. (Japanese Patent Laid-Open No. 9-28314).
4). However, the conventional lithium cobalt oxide has problems such as a decrease in the rate characteristics when the amount of the conductive agent is reduced in order to increase the battery capacity, and a decrease in the battery capacity due to repeated charging and discharging.

【0005】本発明の目的は上記した従来の正極に関す
る問題点の解決を図るものであり、レート特性およびサ
イクル特性に優れたリチウムイオン二次電池用正極活物
質とその製造方法の提供である。
[0005] An object of the present invention is to solve the above-mentioned problems associated with the conventional positive electrode, and to provide a positive electrode active material for a lithium ion secondary battery having excellent rate characteristics and cycle characteristics, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明は、一般式LiCoO2で表されるコバルト酸リチウ
ム粉において、該コバルト酸リチウム粉の粒度分布がロ
ジン・ラムラー粒度分布図で示した場合に単一ピークで
あるリチウムイオン二次電池用正極活物質である。そし
て、好ましくは粒子径の大部分が1〜40μmの範囲に
ありかつ平均粒径が5〜15μmのものである。
According to the present invention for solving the above-mentioned problems, in a lithium cobalt oxide powder represented by the general formula LiCoO 2 , the particle size distribution of the lithium cobalt oxide powder is represented by a rosin-Rammler particle size distribution diagram. In this case, the positive electrode active material for a lithium ion secondary battery has a single peak. Preferably, most of the particle diameter is in the range of 1 to 40 μm and the average particle diameter is 5 to 15 μm.

【0007】そして、このようなコバルト酸リチウム粉
の製造方法は、炭酸リチウムと、酸化コバルト(Co3
4)とを混合し、得た混合物に媒体を混合し、造粒
し、乾燥して所定温度で焼成してコバルト酸リチウムを
得る方法において、炭酸リチウムとして粒子径が1〜4
0μmの範囲にありかつ平均粒径が5〜15μmであ
り、加えてロジン・ラムラー粒度分布図において単一ピ
ークであるであるものを用い、酸化コバルトとして平均
粒径と最大粒径がそれぞれ前記炭酸リチウムよりも小さ
いものを用いるものである。
[0007] Such a method for producing lithium cobaltate powder comprises lithium carbonate, cobalt oxide (Co 3
O 4 ), a medium is mixed with the obtained mixture, granulated, dried and calcined at a predetermined temperature to obtain lithium cobalt oxide.
0 μm and an average particle size of 5 to 15 μm, and a single peak in a rosin-Rammler particle size distribution diagram, and the average particle size and the maximum particle size of A material smaller than lithium is used.

【0008】[0008]

【発明の実施の形態】本発明者らは種々の検討を重ねた
結果、コバルト酸リチウムの粒度分布パターンが極めて
重要であり、粒子径と平均粒径との限定が更なる効果を
あげることを見いだした。例えば、微粒子が存在すると
正極活物質全体の比表面積が大きくなり、導電性を付与
するために添加するカーボンなどの導電剤が多く必要と
なることが分かった。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of various studies, the present inventors have found that the particle size distribution pattern of lithium cobalt oxide is extremely important, and that the limitation of the particle size and the average particle size will have a further effect. I found it. For example, it has been found that the presence of fine particles increases the specific surface area of the entire positive electrode active material, and requires a large amount of a conductive agent such as carbon to be added to impart conductivity.

【0009】即ち、電池容量を増やすために電極中のコ
バルト酸リチウムを増やし導電剤を減らした場合、電極
の導電性が低下してレート特性の悪化につながるという
ことが分かった。また、粗大な粒子は、充放電によるC
軸方向の膨張収縮の結果、粒子にひびが入ったり割れが
生じたりすることで導電剤や集電体との接触が保てなく
なり、サイクル特性の低下を引き起こしていることも判
った。そして、これらの微粒子や粗大粒子が混在する
と、ひびや割れで機能しなくなった粗大粒子が本来まか
なうべき負荷が微粒子に集中するため、サイクル特性は
加速度的に劣化することを見いだした。
That is, it has been found that, when lithium cobalt oxide in the electrode is increased and the amount of the conductive agent is decreased in order to increase the battery capacity, the conductivity of the electrode is reduced and the rate characteristics are deteriorated. Coarse particles are formed by charging and discharging.
As a result of the expansion and contraction in the axial direction, it was also found that the particles were cracked or cracked, whereby the contact with the conductive agent or the current collector could not be maintained, and the cycle characteristics were lowered. It has been found that when these fine particles and coarse particles are mixed, the load that the coarse particles that have failed to function due to cracks and cracks originally satisfactorily concentrate on the fine particles, and the cycle characteristics deteriorate at an accelerated rate.

【0010】本発明による正極活物質は、ロジン・ラム
ラー粒度分布図において単一ピークであることから、均
質な電解反応が得られ、充放電による容量の急激な低下
が防止できる。また、粒子径を1〜40μmの範囲と
し、かつ平均粒径を5〜15μmとすれば比表面積を小
さく抑える事が可能となり少量の導電剤でも高レート特
性を実現でき、コバルト酸リチウムのひびや割れによる
サイクル特性の低下も抑制することができる。
Since the positive electrode active material according to the present invention has a single peak in the rosin-Rammler particle size distribution diagram, a homogeneous electrolytic reaction is obtained, and a sharp decrease in capacity due to charging and discharging can be prevented. Further, when the particle diameter is in the range of 1 to 40 μm and the average particle diameter is 5 to 15 μm, the specific surface area can be suppressed to be small, and a high rate characteristic can be realized even with a small amount of the conductive agent. Deterioration of cycle characteristics due to cracking can also be suppressed.

【0011】本発明のコバルト酸リチウムを作製するに
は、例えば以下の方法に従う。すなわち、図1のロジン
ーラムラー図に示すような、粒子径が1〜40μmの範
囲にありかつ平均粒径が5〜15μmであり、加えてロ
ジン・ラムラー粒度分布図において単一ピークである炭
酸リチウム(Li2CO3)と、図2のような平均粒径と
最大粒径がそれぞれ前述した炭酸リチウムよりも小さい
酸化コバルト(Co34)とをLiとCoの比が1:1
の組成になるように精秤し、混合して混合粉を得る。ポ
リビニールアルコール(PVA)を水に溶かした溶液を
該混合粉100重量部に対してPVAが約1.4重量部
になるように添加し、ステンレス製の撹枠羽根とアジテ
ータとを備えた混合造粒機で混合し、直径3〜5mmに
造粒する。そして、得た造粒物を120℃で5時間乾燥
したのち、950℃で20hr焼成する。
In order to produce the lithium cobaltate of the present invention, for example, the following method is used. That is, as shown in the rosin-Rammler diagram of FIG. 1, lithium carbonate (1) having a particle size in the range of 1 to 40 μm and an average particle size of 5 to 15 μm, and a single peak in the rosin-Rammler particle size distribution diagram. Li 2 CO 3 ) and cobalt oxide (Co 3 O 4 ) having an average particle size and a maximum particle size each smaller than the above-mentioned lithium carbonate as shown in FIG.
The mixture is precisely weighed and mixed to obtain a mixed powder. A solution obtained by dissolving polyvinyl alcohol (PVA) in water was added so that PVA was about 1.4 parts by weight with respect to 100 parts by weight of the mixed powder, and a mixture provided with a stainless steel stirring blade and an agitator was used. Mix with a granulator and granulate to a diameter of 3-5 mm. Then, after the obtained granules are dried at 120 ° C. for 5 hours, they are baked at 950 ° C. for 20 hours.

【0012】このようにして得られるコバルト酸リチウ
ムの組成は、いずれも仕込み組成と殆ど変わらない。ま
た、CuのKα線を用いた粉末X線回折による生成相の
同定ではJCPDSのファイル番号16−427番のL
1CoO2と、痕跡程度の未反応Li2CO3、Co34
のみが検出される。
The composition of lithium cobaltate obtained in this way is almost the same as the charged composition. In addition, in the identification of the generated phase by powder X-ray diffraction using Cu Kα ray, L of JCPDS file number 16-427 was used.
1CoO 2 and traces of unreacted Li 2 CO 3 , Co 3 O 4
Only are detected.

【0013】さらに、40μmの目開きの篩で整粒すれ
ば、図3に見られるように、ロジン・ラムラー粒度分布
図において単一ピークのコバルト酸リチウム粉で、かつ
粒子径が1〜40μm、平均粒径が5〜15μmのもの
を得ることができる。
Further, if the particles are sieved with a sieve having an opening of 40 μm, as shown in FIG. 3, the rosin-Rammler particle size distribution diagram is a single peak lithium cobaltate powder having a particle diameter of 1 to 40 μm, Those having an average particle size of 5 to 15 μm can be obtained.

【0014】[0014]

【実施例】次に実施例を用いて本発明をさらに説明す
る。 (実施例1)上記のようにして作製した、ロジン・ラム
ラー粒度分布図において単一ピークを有し、かつ粒子径
の大部分が1〜40μm、平均粒径が5〜15μmの図
3に示すコバルト酸リチウム粉末を用いて以下の試験を
行った。
Next, the present invention will be further described with reference to examples. (Example 1) FIG. 3 shows a rosin-Rammler particle size distribution chart produced as described above, which has a single peak, most of the particle diameter is 1 to 40 μm, and the average particle diameter is 5 to 15 μm. The following tests were performed using lithium cobaltate powder.

【0015】上記コバルト酸リチウムを正極活物質と
し、これとアセチレンブラックとポリテトラフッ化エチ
レン樹脂(PTFE)を80:15:5の重量比で混合
して合剤を作製し、この合剤から50mgを秤り取って
200MPaの圧力で直径10mmのディスクにプレス
成型した。このディスクを真空乾燥機中で120℃、1
晩乾燥して正極とした。
The above-mentioned lithium cobaltate is used as a positive electrode active material, this is mixed with acetylene black and polytetrafluoroethylene resin (PTFE) in a weight ratio of 80: 15: 5 to prepare a mixture, and 50 mg of the mixture is prepared. It was weighed and press-molded at a pressure of 200 MPa into a disk having a diameter of 10 mm. The disc is placed in a vacuum dryer at 120 ° C, 1
After drying overnight, a positive electrode was obtained.

【0016】負極は直径16mm厚さ1mmのLi金属
を用い、電解液には1モルのLiPF6を支持塩とする
エチレンカーボネート(EC)と1,2ジメトキシエタ
ン(DME)の等量混合溶液を用いた。セパレータには
膜厚25μmのポリエチレン多孔膜を用い、2032型
コイン電池をAr雰囲気で露点が−80℃に制御された
グローブボックス中で組み立てた。
The negative electrode is made of Li metal having a diameter of 16 mm and a thickness of 1 mm, and an electrolytic solution is a mixed solution of an equal amount of ethylene carbonate (EC) and 1,2-dimethoxyethane (DME) using 1 mol of LiPF 6 as a supporting salt. Using. A 2032 type coin battery was assembled in a glove box in which the dew point was controlled at −80 ° C. in an Ar atmosphere using a 25 μm-thick polyethylene porous film as a separator.

【0017】なお前記コイン型電池は組立後10時間程
放置し、開回路電圧(OCV)が安定した後、充電電流
密度1.0mA/cm2でカットオフ電圧4.3Vまで
充電したのち2時間放置し、放電電流密度1.0mA/
cm2で3.0Vまで放電試験を行った。放電容量を表
1に示した。
The coin-type battery was left for about 10 hours after assembling. After the open circuit voltage (OCV) was stabilized, the battery was charged to a cut-off voltage of 4.3 V at a charging current density of 1.0 mA / cm 2 and then left for 2 hours. And a discharge current density of 1.0 mA /
A discharge test was performed to 3.0 V at cm 2. Table 1 shows the discharge capacity.

【0018】前記と同じ条件で充放電試験を繰り返し
て、100回目の放電容量の維持率を式1により求め、
結果を表1に示した。
The charge / discharge test was repeated under the same conditions as described above, and the 100th discharge capacity retention rate was determined according to Equation 1.
The results are shown in Table 1.

【0019】式1 容量維持率(サイクル特性 %)=100回目の放電容
量/初回の放電容量×100
Equation 1 Capacity maintenance rate (cycle characteristic%) = 100th discharge capacity / First discharge capacity × 100

【0020】次に、再度上記と同様にして電池を組み立
てた。そして放電容量のレート特性を以下のように測定
した。
Next, a battery was assembled again in the same manner as described above. The rate characteristics of the discharge capacity were measured as follows.

【0021】コイン型電池を組立後10時間程放置し、
OCVが安定した後、充電電流密度1.0mA/cm2
でカットオフ電圧4.3Vまで充電したのち2時間放置
し、放電電流密度1.0mA/cm2でカットオフ電圧
3.0Vまで放電試験を行い放電容量(1)を求めた。
放電試験終了後2時間放置したのち、再度充電電流密度
1.0mA/cm2でカットオフ電圧4.3Vまで充電
したのち2時間放置し、放電電流密度を8.0mA/c
2にしてカットオフ電圧3.OVまで放電試験を行い
放電容量(2)を求めた。レート特性を式2より求め、
結果を表1に示した。
The coin type battery is left for about 10 hours after assembly,
After the OCV is stabilized, the charging current density is 1.0 mA / cm 2
After the battery was charged to a cutoff voltage of 4.3 V and left for 2 hours, a discharge test was performed at a discharge current density of 1.0 mA / cm 2 to a cutoff voltage of 3.0 V to obtain a discharge capacity (1).
After leaving the discharge test for 2 hours, the battery was charged again to a cut-off voltage of 4.3 V at a charge current density of 1.0 mA / cm 2 , and then left for 2 hours to reduce the discharge current density to 8.0 mA / c.
cut-off voltage 3 in the m 2. A discharge test was performed to OV to determine a discharge capacity (2). The rate characteristic is obtained from Equation 2,
The results are shown in Table 1.

【0022】式2 レート特性(%)=放電容量(2)/放電容量(1)×
100
Equation 2 Rate characteristic (%) = discharge capacity (2) / discharge capacity (1) ×
100

【0023】(比較例1)図4に示した、ロジン・ラム
ラー粒度分布図を示す炭酸リチウムと、図5に示した、
平均粒径と最大粒径とが図4に示した炭酸リチウムより
大きなロジン・ラムラー粒度分布図を示す酸化コバルト
を用いた以外は実施例1と同様にしてコバルト酸リチウ
ムを得た。得られたコバルト酸リチウムのロジン・ラム
ラー粒度分布図では最大ピークが20μmに見られ、単
一ピークとなっていなかった。また、粒径40μm以上
の粗大粒子が全体の3%と多く存在していた。
Comparative Example 1 Lithium carbonate showing a rosin-Rammler particle size distribution diagram shown in FIG. 4 and a lithium carbonate shown in FIG.
Lithium cobalt oxide was obtained in the same manner as in Example 1, except that cobalt oxide having an average particle size and a maximum particle size showing a rosin-Rammler particle size distribution diagram larger than the lithium carbonate shown in FIG. 4 was used. In the rosin-Rammler particle size distribution diagram of the obtained lithium cobaltate, the maximum peak was found at 20 μm, and was not a single peak. In addition, coarse particles having a particle size of 40 μm or more existed in a large amount of 3% of the whole.

【0024】このコバルト酸リチウムを正極活物質とし
て実施例1と同様にしてコイン型電池を作製し、同様に
レート特性を求めた。得られた結果を表2に示した。
Using this lithium cobalt oxide as the positive electrode active material, a coin-type battery was manufactured in the same manner as in Example 1, and the rate characteristics were similarly obtained. Table 2 shows the obtained results.

【0025】 表1 放電容量(mAh/g) 容量維持率(%) レート特性(%) 1回目 152 100回目 148 97.4 ―――― 1mA/cm2 150 8mA/cm2 143 ―――― 95.3 表2 放電容量(mAh/g) 容量維持率(%) レート特性(%) 1回目 149 100回目 129 86.6 ―――― 1mA/cm2 150 8mA/cm2 107 ―――― 71.3Table 1 Discharge capacity (mAh / g) Capacity maintenance rate (%) Rate characteristics (%) 1st time 152 100th time 148 97.4 --- 1 mA / cm2 1508 mA / cm2 143 --- 95. 3 Table 2 Discharge capacity (mAh / g) Capacity maintenance rate (%) Rate characteristic (%) 1st 149 100th 129 86.6 --- 1 mA / cm2 150 8 mA / cm2 107 --- 71.3

【0026】表1から、ロジン・ラムラー粒度分布図に
おいて単一ピークとなっている本発明のコバルト酸リチ
ウムを用いれば少量の導電剤でも高レート特性と高サイ
クル特性とを実現できることが分かる。特定粒子への負
荷の集中が緩和されることにより、充放電による容量の
急激な低下が防止できるためと思われる。
From Table 1, it can be seen that the use of the lithium cobaltate of the present invention, which has a single peak in the rosin-Rammler particle size distribution diagram, can realize high rate characteristics and high cycle characteristics even with a small amount of the conductive agent. It is considered that the concentration of the load on the specific particles is alleviated, thereby preventing a rapid decrease in capacity due to charge and discharge.

【0027】高レート特性が得られているのは微粒子
(粒子径1μm以下)が含まれていないため、比表面積
が小さくなったためと考えられる。また、高サイクル特
性が得られているのは、粗大粒子(40μm以上)が少
ないことから、コバルト酸リチウムのひびや割れによる
集電機能の低下が防止されているからと思われる。
It is considered that the reason why the high rate characteristic is obtained is that the specific surface area is reduced because fine particles (particle diameter of 1 μm or less) are not contained. Further, the reason why the high cycle characteristics are obtained is presumably because the number of coarse particles (40 μm or more) is small, so that the deterioration of the current collecting function due to cracks and cracks of lithium cobalt oxide is prevented.

【0028】一方、表2から明らかなように、原料の粒
度を考慮せずに合成したコバルト酸リチウムは、微粒子
が多く存在するために比表面積が大きく、導電剤の量を
実施例1と同じにした場合、放電容量が低かったりレー
ト特性が劣化する。また、ロジン・ラムラー粒度分布図
にて複数のピークが存在し、40μm以上の粗大粒子が
存在する場合、充放電を繰り返すことにより大きな一次
粒子の微細化が生じ電気的な接触がとれなくなったり、
集電体から脱落したりして容量維持率が劣化し、また、
負荷がその他の粒子に集中し、該粒子を破壊する等によ
り劣化が加速度的に進行する。
On the other hand, as is clear from Table 2, the lithium cobalt oxide synthesized without considering the particle size of the raw material has a large specific surface area due to the presence of many fine particles, and the amount of the conductive agent is the same as in Example 1. In this case, the discharge capacity is low or the rate characteristics deteriorate. In addition, when there are a plurality of peaks in the rosin-Rammler particle size distribution diagram and there are coarse particles of 40 μm or more, repetition of charge and discharge causes fine primary particles to be refined and electrical contact cannot be obtained,
The capacity retention rate deteriorates due to dropping from the current collector,
The load is concentrated on other particles, and the particles are destroyed.

【0029】[0029]

【発明の効果】本発明によるコバルト酸リチウムをリチ
ウムイオン二次電池の正極活物質として用いれば、二次
電池のサイクル特性およびレート特性を向上させること
が可能であり、優れた二次電池が作製できる。
The use of the lithium cobalt oxide according to the present invention as a positive electrode active material of a lithium ion secondary battery can improve the cycle characteristics and rate characteristics of the secondary battery, and produce an excellent secondary battery. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に用いた炭酸リチウムの粒度分布FIG. 1 shows the particle size distribution of lithium carbonate used in Examples.

【図2】実施例に用いた酸化コバルトの粒度分布FIG. 2 shows the particle size distribution of cobalt oxide used in the examples.

【図3】実施例で作成したコバルト酸リチウムの粒度分
FIG. 3 shows the particle size distribution of lithium cobaltate prepared in the examples.

【図4】比較例に用いた炭酸リチウムの粒度分布FIG. 4 is a particle size distribution of lithium carbonate used in a comparative example.

【図5】比較例に用いた酸化コバルトの粒度分布FIG. 5 is a particle size distribution of cobalt oxide used in a comparative example.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AC06 AD04 AE05 5H003 AA01 AA04 BA01 BA03 BB05 BC01 BD00 BD02 5H014 AA02 BB01 BB06 EE10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA04 AB01 AC06 AD04 AE05 5H003 AA01 AA04 BA01 BA03 BB05 BC01 BD00 BD02 5H014 AA02 BB01 BB06 EE10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一般式LiCoO2で表されるコバルト酸
リチウム粉において、該コバルト酸リチウム粉の粒度分
布がロジン・ラムラー粒度分布図で示した場合に単一ピ
ークであることを特徴とするリチウムイオン二次電池用
正極活物質。
1. A lithium cobalt oxide powder represented by the general formula LiCoO 2 , wherein the lithium cobalt oxide powder has a single peak when represented by a rosin-Rammler particle size distribution diagram. Cathode active material for ion secondary batteries.
【請求項2】粒子径の大部分が1〜40μmの範囲にあ
りかつ平均粒径が5〜15μmのものである請求項1記
載のリチウムイオン二次電池用正極活物質。
2. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein most of the particle diameter is in the range of 1 to 40 μm and the average particle diameter is 5 to 15 μm.
【請求項3】炭酸リチウムと、酸化コバルト(Co
34)とを混合し、得た混合物に媒体を混合し、造粒
し、乾燥して所定温度で焼成してコバルト酸リチウムを
得る方法において、炭酸リチウムとして粒子径が1〜4
0μmの範囲にありかつ平均粒径が5〜15μmであ
り、加えてロジン・ラムラー粒度分布図において単一ピ
ークであるであるものを用い、酸化コバルトとして平均
粒径と最大粒径がそれぞれ前記炭酸リチウムよりも小さ
いものを用いることを特徴とするリチウムイオン二次電
池用正極活物質の製造方法。
3. A lithium carbonate and a cobalt oxide (Co)
3 O 4 ), a medium is mixed with the obtained mixture, granulated, dried and calcined at a predetermined temperature to obtain lithium cobaltate.
0 μm and an average particle size of 5 to 15 μm, and a single peak in a rosin-Rammler particle size distribution diagram, and the average particle size and the maximum particle size of A method for producing a positive electrode active material for a lithium ion secondary battery, comprising using a material smaller than lithium.
JP36592799A 1999-12-24 1999-12-24 Positive electrode active material for lithium ion secondary battery and manufacturing method therefor Pending JP2001185142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36592799A JP2001185142A (en) 1999-12-24 1999-12-24 Positive electrode active material for lithium ion secondary battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36592799A JP2001185142A (en) 1999-12-24 1999-12-24 Positive electrode active material for lithium ion secondary battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2001185142A true JP2001185142A (en) 2001-07-06

Family

ID=18485480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36592799A Pending JP2001185142A (en) 1999-12-24 1999-12-24 Positive electrode active material for lithium ion secondary battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2001185142A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206422A (en) * 2004-01-22 2005-08-04 Honjo Chemical Corp High density lithium cobaltate and its producing method
JP2007302504A (en) * 2006-05-10 2007-11-22 Honjo Chemical Corp Lithium cobaltate particle and method for producing the same
JP2008108574A (en) * 2006-10-25 2008-05-08 Nippon Chem Ind Co Ltd Positive electrode active material for lithium-ion secondary battery, and its manufacturing method
JP2008214186A (en) * 2000-05-30 2008-09-18 Agc Seimi Chemical Co Ltd Lithium-transition metal compound oxide
JP2015135800A (en) * 2013-12-16 2015-07-27 旭硝子株式会社 Method of manufacturing positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2021513193A (en) * 2018-02-07 2021-05-20 寧徳新能源科技有限公司Ningde Amperex Technology Limited Positive electrode active material and lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214186A (en) * 2000-05-30 2008-09-18 Agc Seimi Chemical Co Ltd Lithium-transition metal compound oxide
JP2005206422A (en) * 2004-01-22 2005-08-04 Honjo Chemical Corp High density lithium cobaltate and its producing method
JP2007302504A (en) * 2006-05-10 2007-11-22 Honjo Chemical Corp Lithium cobaltate particle and method for producing the same
JP2008108574A (en) * 2006-10-25 2008-05-08 Nippon Chem Ind Co Ltd Positive electrode active material for lithium-ion secondary battery, and its manufacturing method
JP2015135800A (en) * 2013-12-16 2015-07-27 旭硝子株式会社 Method of manufacturing positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2021513193A (en) * 2018-02-07 2021-05-20 寧徳新能源科技有限公司Ningde Amperex Technology Limited Positive electrode active material and lithium ion battery
JP7059381B2 (en) 2018-02-07 2022-04-25 寧徳新能源科技有限公司 Positive electrode active material and lithium ion battery

Similar Documents

Publication Publication Date Title
JP3427570B2 (en) Non-aqueous electrolyte secondary battery
US7018741B2 (en) Particulate positive electrode active material for a lithium secondary cell
JPH11273678A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
KR20050057566A (en) Positive electrode material for lithium secondary battery and process for producing the same
JPH0982325A (en) Manufacture of positive active material
JP2010199001A (en) Cathode material for lithium-ion secondary battery, and lithium-ion secondary battery using it
JPH11219706A (en) Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery
JP4344359B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPH0963590A (en) Nonaqueous electrolyte secondary battery
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2001110420A (en) Manufacturing method for substance for activating positive electrode for nonaqueous electrolyte secondary battery and substance for activating positive electrode for the nonaqueous electrolyte secondary battery obtainable by the manufacturing method
JP2005060162A (en) Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same
JP2001080920A (en) Aggregated granular lithium multiple oxide, its production and lithium secondary battery
JP3048352B1 (en) Method for producing lithium manganate
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP2001185142A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method therefor
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell
JP2002042811A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JPH11260368A (en) Positive electrode active material for lithium secondary battery
JPH08185863A (en) Positive electrode active material for lithium secondary battery and secondary battery using it
JP2004127723A (en) Negative electrode material for rithium ion secondary battery and its manufacturing method, and negative electrode and rithium ion secondary battery using the same
JP2000058054A (en) Manufacture of positive-electrode active material for nonaqueous-electrolyte secondary battery, and positive- electrode active material for nonaqueous-electrolyte secondary battery obtained by the method
JP3321541B2 (en) Lithium secondary battery
JP3355644B2 (en) Non-aqueous electrolyte secondary battery
JP3344853B2 (en) Positive active material for non-aqueous lithium secondary battery and lithium secondary battery