JP2000058054A - Manufacture of positive-electrode active material for nonaqueous-electrolyte secondary battery, and positive- electrode active material for nonaqueous-electrolyte secondary battery obtained by the method - Google Patents

Manufacture of positive-electrode active material for nonaqueous-electrolyte secondary battery, and positive- electrode active material for nonaqueous-electrolyte secondary battery obtained by the method

Info

Publication number
JP2000058054A
JP2000058054A JP10226848A JP22684898A JP2000058054A JP 2000058054 A JP2000058054 A JP 2000058054A JP 10226848 A JP10226848 A JP 10226848A JP 22684898 A JP22684898 A JP 22684898A JP 2000058054 A JP2000058054 A JP 2000058054A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
electrode active
electrolyte secondary
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10226848A
Other languages
Japanese (ja)
Other versions
JP3560220B2 (en
Inventor
Tomio Tsujimura
富雄 辻村
Atsushi Yamanaka
厚志 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP22684898A priority Critical patent/JP3560220B2/en
Publication of JP2000058054A publication Critical patent/JP2000058054A/en
Application granted granted Critical
Publication of JP3560220B2 publication Critical patent/JP3560220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of a lithium-cobalt double oxide, capable of supplying a nonaqueous electrolyte battery having few initial defects at the time of production and superior in cycle stability. SOLUTION: A binder is added and mixed to a material powder made by precisely weighing and mixing lithium carbonate and cobalt oxide to granulate the granulated matter is baked in an oxygen-containing atmosphere, then the baked matter is pulverized by using a pin mill comprising pins made of hard metal and a surface-hardened disk made of stainless steel. Furthermore, a positive electrode-active material having a specific surface area of 0.3 to 3.8 m2/g and containing 100 ppm or less Fe, is obtained by the above method by using, as material powders, lithium carbonate (Li2Co3) which has an average grain size <=10 μm and a specific surface area of 1.0 m2/g or more, and cobalt oxide (Co3O4) having a specific surface area of 1.0 to 3.5 m2/g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は負極にリチウム、リ
チウム合金またはカーボンを用いる非水系電解質二次電
池用の正極活物質の製造方法に関するものであり、特に
電池の生産時において初期不良の少いサイクル安定性に
優れた非水系電解質二次電池用の正極活物質の製造方法
および該方法によって得られた非水系電解質二次電池用
正極活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery using lithium, a lithium alloy or carbon as a negative electrode. The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent cycle stability, and a positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the method.

【0002】[0002]

【従来の技術】近年、携帯電話やノート型パソコンなど
の携帯機器の普及に伴い、高いエネルギー密度を有する
小型、軽量で高い容量を持つ二次電池の開発が強く望ま
れている。このようなものとしてリチウム、リチウム合
金あるいはカーボンを負極として用いるリチウムイオン
二次電池があり、現在その研究開発が盛んに行われてい
る。
2. Description of the Related Art In recent years, with the spread of mobile devices such as mobile phones and notebook computers, there is a strong demand for the development of small, lightweight, high capacity secondary batteries having a high energy density. As such a device, there is a lithium ion secondary battery using lithium, a lithium alloy or carbon as a negative electrode, and research and development thereof are being actively carried out at present.

【0003】リチウムコバルト複酸化物(LiCo
)を正極活物質に用いたリチウムイオン二次電池は
4V級の高い電圧が得られるため、高エネルギー密度を
持つ電池として期待され、実用化が進んでいる。これま
でリチウムコバルト複酸化物を用いた電池では優れたサ
イクル特性および電子導電率を得るための開発はこれま
で数多く提案されており、すでに多くの成果が報告され
ている。
[0003] Lithium-cobalt double oxide (LiCo
Since a lithium ion secondary battery using O 2 ) as a positive electrode active material can obtain a voltage as high as 4 V, it is expected as a battery having a high energy density, and its practical use is progressing. Many developments to obtain excellent cycle characteristics and electronic conductivity of a battery using a lithium-cobalt double oxide have been proposed so far, and many results have already been reported.

【0004】リチウムコバルト複酸化物(LiCo
)からなる非水系電解質二次電池用の正極活物質の
製造方法の一例を挙げると、炭酸リチウムと酸化コバル
トをLi/Coモル比で0.98〜1.0の範囲になる
ように精秤し混合してなる原料粉100重量部に対して
20〜30重量部のバインダーとしてのビニルアルコー
ル樹脂水溶液を加えて混合しつつ造粒し、ついで酸素含
有雰囲気で850〜1000℃の温度範囲で前記造粒物
を焼成した後、該焼成物を粉砕して得られるものであ
る。
[0004] Lithium-cobalt double oxide (LiCo
An example of a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery composed of O 2 ) includes lithium carbonate and cobalt oxide in a Li / Co molar ratio of 0.98 to 1.0. To 100 parts by weight of the raw material powder obtained by precisely weighing and mixing, 20 to 30 parts by weight of a vinyl alcohol resin aqueous solution as a binder is added and mixed, and granulation is performed. And baking the granulated material, and then pulverizing the calcined product.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこれらの
研究開発の成果を踏まえても工業的に量産を考える場合
には、十分とはいえず解決すべき課題が残った。特に量
産工程中に使用する各種処理装置から不純物としてのF
eが混入し、リチウムコバルト複酸化物の正極活物質と
しての本来の特性が発揮されないことがあった。
However, even considering the results of these researches and developments, there is still a problem to be solved when considering industrial mass production, which is not sufficient. In particular, F as impurities from various processing equipment used during the mass production process
e was mixed in, and the original characteristics of the lithium-cobalt double oxide as a positive electrode active material were sometimes not exhibited.

【0006】本発明の目的は、生産時において初期不良
の少ないサイクル安定性に優れた非水電解質電池の供給
が可能となるリチウムコバルト複酸化物からなる非水系
電解質二次電池用正極活物質の製造方法およびこの方法
により得られた非水系電解質二次電池用正極活物質を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium-cobalt double oxide capable of supplying a non-aqueous electrolyte battery having little initial failure and excellent cycle stability during production. An object of the present invention is to provide a production method and a positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明の第1の実施態様は、炭酸リチウムと酸化コバル
トを精秤し混合してなる原料粉にバインダーを加えて混
合しつつ造粒し、ついで酸素含有雰囲気下で前記造粒物
を焼成した後、該焼成物を粉砕してリチウムコバルト複
酸化物からなる非水系電解質二次電池用正極活物質を製
造するに際して、前記焼成物の粉砕を超硬合金製のピン
および表面硬化されたステンレス鋼製の円盤より構成さ
れるピンミルを用いて行う非水系電解質二次電池用正極
活物質の製造方法を特徴とするものである。
According to a first embodiment of the present invention, a binder is added to raw material powder obtained by precisely weighing and mixing lithium carbonate and cobalt oxide, and granulation is performed while mixing and mixing. Then, after calcining the granulated material under an oxygen-containing atmosphere, when the calcined material is pulverized to produce a positive electrode active material for a non-aqueous electrolyte secondary battery composed of a lithium cobalt double oxide, The method is characterized by a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery in which pulverization is performed using a pin mill composed of a cemented carbide pin and a surface-hardened stainless steel disk.

【0008】また本発明の第2の実施態様は、平均粒径
が10μm以下、かつ比表面積が1.0m/g以上の
炭酸リチウム(LiCo)と、比表面積が1.0〜
3.5m/gの酸化コバルト(Co)とを原料
粉として用いて前記第1の実施態様に係る製造方法によ
り得られ、かつ比表面積が0.3〜3.8m/gで、
Fe含有量が100ppm以下である非水系電解質二次
電池用正極活物質を特徴とするものである。
In a second embodiment of the present invention, lithium carbonate (Li 2 Co 3 ) having an average particle diameter of 10 μm or less and a specific surface area of 1.0 m 2 / g or more is used.
It is obtained by the production method according to the first embodiment using 3.5 m 2 / g of cobalt oxide (Co 3 O 4 ) as a raw material powder, and has a specific surface area of 0.3 to 3.8 m 2 / g. so,
A positive electrode active material for a non-aqueous electrolyte secondary battery having an Fe content of 100 ppm or less is characterized.

【0009】[0009]

【発明の実施の形態】本発明者らはリチウムコバルト複
酸化物の開発を進めるに当たって、初期特性を調べるた
めの電池試験において測定不良の試作電池が活物質の作
製ロットにより異なることがあることを見出した。すな
わち大量に活物質の合成を行う場合、最適と考えられる
同一条件で合成したとしても、容量の確認試験用の試作
電池では不良率が異なる事態が発生することがあった。
この点に関してさらに詳細な検討を加えた結果、これは
工程中に混入するFeの活物質中の含有量に依存してい
ることを見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In developing a lithium-cobalt double oxide, the inventors of the present invention have found that, in a battery test for examining initial characteristics, a prototype battery having measurement failure may differ depending on the lot of active material produced. I found it. That is, when a large amount of active material is synthesized, even if the synthesis is performed under the same conditions that are considered to be optimal, a situation may occur in which the defective rate differs in a prototype battery for a capacity confirmation test.
As a result of further detailed examination on this point, it was found that this depends on the content of Fe mixed in the process in the active material.

【0010】本発明による非水系電解質二次電池用正極
活物質の合成法は、従来とほぼ類似した工程を経るもの
で、まず炭酸リチウム(LiCo)および酸化コバ
ルト(Co)をLi/Coモル比で0.98〜
1.0の範囲になるように精秤し混合し、得られた原料
粉100重量部に対して20〜30重量部のバインダー
としてのビニルアルコール樹脂水溶液を加えて混合しつ
つ造粒し、ついで酸素含有雰囲気で850〜1000℃
の温度範囲で6時間以上で20時間以下の時間に亘って
前記造粒物を焼成し、これを粉砕して非水系電解質二次
電池用正極活物質を得るものであって、本発明では前記
焼成物の粉砕に際して超硬合金製のピンおよび表面硬化
されたステンレス鋼製の円盤より構成されるピンミルを
用いて行うことを特徴とするものである。
The method for synthesizing the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention goes through a process substantially similar to the conventional one. First, lithium carbonate (Li 2 Co 3 ) and cobalt oxide (Co 3 O 4 ) From 0.98 to Li / Co molar ratio
The mixture was precisely weighed and mixed so as to be in the range of 1.0, and 20 to 30 parts by weight of a vinyl alcohol resin aqueous solution as a binder was added to 100 parts by weight of the obtained raw material powder, and the mixture was granulated while mixing. 850-1000 ° C in oxygen-containing atmosphere
The granulated material is fired for 6 hours or more and 20 hours or less in a temperature range of, and crushed to obtain a positive electrode active material for a non-aqueous electrolyte secondary battery. The pulverization of the fired product is performed using a pin mill composed of a cemented carbide pin and a surface-hardened stainless steel disk.

【0011】このような構成を有するピンミルによる粉
砕工程を含む本発明の製造方法を実施するに際して、リ
チウム原料として平均粒径が10μm以下で、かつ比表
面積が1.0m/g以上の炭酸リチウム(LiCo
)を用い、さらにコバルト原料として比表面積が1.
0〜3.5m/gの酸化コバルト(Co)を用
いると、得られた非水系電解質二次電池用正極活物質は
比表面積が0.3〜0.8m/gとなり、Fe含有率
が100ppm以下となるものである。なお非水系電解
質二次電池用正極活物質の比表面積を0.3〜0.8m
/gとした理由は、0.3m/g未満では該活物質
の反応性が悪化するために電池の容量が低下することと
なり、一方0.8m/gを超えると活物質を電池に組
み込む際の粉体のハンドリング性、具体的には活物質を
スラリー化し基体に塗布して電極にする際のハンドリン
グ性が悪化し、また電池の寿命が劣化することになるか
らである。また非水系電解質二次電池用正極活物質にお
けるFe含有率が100ppmを超えると、電池の不良
率が急激に上昇するからである。そして非水系電解質二
次電池用正極活物質の比表面積を0.3〜0.8m
gとするためにはリチウム原料として平均粒径が10μ
m以下で、かつ比表面積が1.0m/g以上の炭酸リ
チウム(LiCo)を用いるとともに、コバルト原
料として比表面積が1.0〜3.5m/gの酸化コバ
ルト(Co)を用いる必要があり、この範囲を外
れると所望の比表面積を得ることができない。
In carrying out the production method of the present invention including a pulverizing step using a pin mill having such a constitution, lithium carbonate having an average particle diameter of 10 μm or less and a specific surface area of 1.0 m 2 / g or more is used as a lithium raw material. (Li 2 Co
3 ), and the specific surface area is 1.
When 0 to 3.5 m 2 / g of cobalt oxide (Co 3 O 4 ) is used, the obtained positive electrode active material for a non-aqueous electrolyte secondary battery has a specific surface area of 0.3 to 0.8 m 2 / g, The Fe content is 100 ppm or less. The specific surface area of the positive electrode active material for a non-aqueous electrolyte secondary battery is 0.3 to 0.8 m.
The reason for using 2 / g is that if it is less than 0.3 m 2 / g, the reactivity of the active material deteriorates and the capacity of the battery decreases, while if it exceeds 0.8 m 2 / g, the active material is This is because the handleability of the powder at the time of assembling into the substrate, specifically, the handleability when the active material is slurried and applied to the substrate to form an electrode is deteriorated, and the life of the battery is deteriorated. Also, when the Fe content in the positive electrode active material for a non-aqueous electrolyte secondary battery exceeds 100 ppm, the battery failure rate sharply increases. The specific surface area of the positive electrode active material for a non-aqueous electrolyte secondary battery is 0.3 to 0.8 m 2 /
In order to obtain g, the average particle diameter of the lithium raw material is 10 μm.
m or less, and specific surface area with use of 1.0 m 2 / g or more lithium carbonate (Li 2 Co 3), cobalt oxide specific surface area as cobalt raw material 1.0~3.5m 2 / g (Co 3 It is necessary to use O 4 ), and outside of this range, a desired specific surface area cannot be obtained.

【0012】つぎに本発明に係る製造方法を詳述する
と、炭酸リチウム(LiCo)および酸化コバルト
(Co)をLi/Coモル比で0.98〜1.0
の範囲になるように精秤し混合し、得られた原料粉10
0重量部に対して20〜30重量部のビニルアルコール
樹脂水溶液を加えて混合した原料粉末を混合造粒機に投
入する際に、炭酸リチウム(LiCo)および酸化
コバルト(Co)をそれぞれ単独で混合槽内に投
入して差し支えないが、より好ましくは予め混合粉とす
る。また造粒工程でのビニルアルコール樹脂からなるバ
インダー添加時は撹拌羽の回転速度を遅くし、さらに少
量づつ滴下して所望の平均粒径(通常5mm以下程度)
以上の大きな造粒物を生成させないことが望ましい。
Next, the production method according to the present invention will be described in detail. Lithium carbonate (Li 2 Co 3 ) and cobalt oxide (Co 3 O 4 ) are mixed at a Li / Co molar ratio of 0.98 to 1.0.
The raw material powder 10 was precisely weighed and mixed so as to be in the range of
When a raw material powder obtained by adding and mixing 20 to 30 parts by weight of a vinyl alcohol resin aqueous solution with respect to 0 part by weight is charged into a mixing granulator, lithium carbonate (Li 2 Co 3 ) and cobalt oxide (Co 3 O 4) ) May be independently charged into the mixing tank, but more preferably, the mixed powder is prepared in advance. In addition, when adding a binder made of a vinyl alcohol resin in the granulation step, the rotation speed of the stirring blade is slowed down, and the mixture is added dropwise little by little to obtain a desired average particle diameter (usually about 5 mm or less).
It is desirable not to generate such large granules.

【0013】引き続いて前記造粒物を酸素含有雰囲気で
850〜1000℃の温度範囲で焼成し得られた焼成物
を粉砕する際に用いる従来のピンミルは、高速で回転す
る2つの円盤に多数のピンを取り付け、その噛み合わせ
により試料を粉砕するものである。しかし従来ノピンミ
ルでは粉砕時にピンは被粉砕物との衝突により摩耗し、
また円盤は高速で回転しているため被粉砕物との摩擦に
より摩耗する。このため通常の材質のピンミルの場合、
ピンおよび円盤の摩耗により該ピンおよび円盤からの金
属Feの粉砕物への混入が避けられない。
[0013] The conventional pin mill used to pulverize the calcined material obtained by calcining the granulated material in an oxygen-containing atmosphere at a temperature in the range of 850 to 1000 ° C. uses a large number of disks rotating at high speed. A sample is ground by attaching pins and engaging the pins. However, in the conventional Nopin mill, the pins are worn by the collision with the material to be ground during grinding,
Further, since the disk is rotating at a high speed, it is worn by friction with an object to be ground. For this reason, in the case of a pin mill of normal material,
It is inevitable that metal Fe from the pin and the disc is mixed into the pulverized material due to the wear of the pin and the disc.

【0014】したがって本発明では粉砕工程において使
用するピンミルを以下のように構成した。すなわちピン
を超硬合金製、例えばWC鋼などで形成し、一方円盤は
被粉砕物と接する部分に耐摩耗性に優れた硬化層を持つ
ステンレス鋼で形成する。このようなステンレス鋼は超
硬合金で作製した場合と同様な効果が得られ、かつ経済
性に優れているため最適である。このような構成を有す
るピンミルを用いることにより、非水系電解質二次電池
用正極活物質に含有するFeの量を100ppm以下に
することができ、これにより電池の不良率の発生を大幅
に減少させることができるのである。
Therefore, in the present invention, the pin mill used in the pulverizing step is constituted as follows. That is, the pin is made of a cemented carbide, for example, WC steel, while the disk is made of stainless steel having a hardened layer having excellent wear resistance at a portion in contact with the object to be ground. Such a stainless steel is optimal because it has the same effect as when it is made of a cemented carbide and is excellent in economy. By using a pin mill having such a configuration, the amount of Fe contained in the positive electrode active material for a non-aqueous electrolyte secondary battery can be reduced to 100 ppm or less, thereby greatly reducing the occurrence of a battery failure rate. You can do it.

【0015】そして上記の耐摩耗性に優れた硬化層は、
例えば特開平8−35075号公報記載のアンモニアガ
スと水素ガスの雰囲気中でグロー放電を行いイオン窒化
を行って、この窒化層上にPVD法で硬質被膜を形成さ
せる方法によりステンレス鋼上に形成することが可能で
ある。
[0015] The cured layer having excellent abrasion resistance is
For example, glow discharge is performed in an atmosphere of ammonia gas and hydrogen gas described in Japanese Patent Application Laid-Open No. 8-35075 to perform ion nitriding, and a hard film is formed on the nitrided layer by PVD to form on a stainless steel. It is possible.

【0016】[0016]

【実施例】以下本発明の実施例を、比較例とともに説明
する。 [実施例] (合成)リチウム/コバルトのモル比を1.0となるよ
うに、一次粒子を平均粒径が10μm以下に粉砕した炭
酸リチウム(LiCo:純度99%、比表面積1.
3m/g)を2.588kg、酸化コバルト(CO
;Co含有量:73.3重量%、比表面積3.4m
/g)を5.554kgを精秤、混合して混合粉とし
た後、混合造粒機「ハイスピードミキサー」(深江工業
株式会社製)を用いて底部回転羽の回転数を180rp
mとし5分間予備混合を行った。さらに前記回転数を1
20rpmとし4重量%のPVA(ポリビニルアルコー
ル)水溶液を2.4kgを加え、滴下後回転数を180
rpmに上げ、1mm程度の種粒子を作った。さらに回
転数を120rpmに下げ造粒し、1〜3mmの造粒物
を作製した。この造粒物を100℃で2時間乾燥し、さ
らにマグネシアセッターを用いて酸素流量3リットル/
分で加熱速度5℃/分により900℃まで昇温し、15
時間程度保持して焼成した。このように焼成したリチウ
ムコバルト複酸化物を30μm以下に超硬合金製ピンお
よび硬化層を有する円盤により構成されるピンミルによ
り解砕し、BET吸着等温法により比表面積を測定し、
かつ含有するFeの量を求めた。
EXAMPLES Examples of the present invention will be described below along with comparative examples. [Examples] (Synthesis) Lithium carbonate (Li 2 Co 3 : purity 99%, specific surface area 1: 1) obtained by pulverizing primary particles to an average particle diameter of 10 μm or less so that the molar ratio of lithium / cobalt becomes 1.0.
3m 2 / g), 2.588 kg of cobalt oxide (CO 3
O 4 ; Co content: 73.3% by weight, specific surface area 3.4 m
2 / g) was precisely weighed and mixed to obtain a mixed powder, and the number of rotations of the bottom rotary blade was set to 180 rpm using a mixing granulator “High Speed Mixer” (manufactured by Fukae Industry Co., Ltd.).
m and premixed for 5 minutes. Further, the rotation speed is set to 1
At 20 rpm, 2.4 kg of a 4% by weight aqueous solution of PVA (polyvinyl alcohol) was added.
rpm and seed particles of about 1 mm were made. The number of revolutions was further reduced to 120 rpm, and granulation was performed to produce a granulated product of 1 to 3 mm. The granulated product is dried at 100 ° C. for 2 hours, and further subjected to an oxygen flow rate of 3 L / m 2 using a magnesia setter.
In 5 minutes at a heating rate of 5 ° C./minute to 900 ° C.
It was baked while being held for about an hour. The thus-calcined lithium-cobalt double oxide is crushed by a pin mill composed of a hard metal pin and a disk having a hardened layer to 30 μm or less, and the specific surface area is measured by a BET adsorption isothermal method.
And the amount of Fe contained was determined.

【0017】(電池評価)得られた活物質を用いて以下
のように電池を作製し、充放電容量を測定した。活物質
粉末120mgにアセチレンブラック22mgおよびポ
リテトラフルオロエチレン樹脂(PTFE)8mgを混
合し、200MPaの圧力で直径11mmにプレス成型
し、これを真空乾燥器中120℃で真空乾燥を行い正極
とした。そして図1にように正極ペレット5と、負極と
してLiメタルのペレット2を用い、さらに電解液には
1MのLiPFを支持塩とするエチレンカーボネイト
(EC)とジエチルカーボネート(DEC)の等量混合
溶液を用いた。なおセパレータ3には膜厚25μmのポ
リエチレン多孔膜を2枚重ねて用いてガスケット4によ
りシールして2032型コイン電池をAr雰囲気のグロ
ーブボックス中で組み立てた。なお図1において1は負
極缶、6は正極缶であり、図示していないが電解液は電
池内部の空隙に存在する。
(Evaluation of Battery) Using the obtained active material, a battery was prepared as follows, and the charge / discharge capacity was measured. The active material powder (120 mg) was mixed with acetylene black (22 mg) and polytetrafluoroethylene resin (PTFE) (8 mg) and press-molded to a diameter of 11 mm at a pressure of 200 MPa, followed by vacuum drying at 120 ° C. in a vacuum dryer to obtain a positive electrode. As shown in FIG. 1, a positive electrode pellet 5 and a Li metal pellet 2 are used as a negative electrode, and an equal amount of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiPF 6 as a supporting salt is used as an electrolytic solution. The solution was used. The separator 3 was sealed with a gasket 4 using two 25 μm-thick polyethylene porous membranes, and a 2032 type coin battery was assembled in a glove box in an Ar atmosphere. In FIG. 1, reference numeral 1 denotes a negative electrode can and 6 denotes a positive electrode can. Although not shown, the electrolytic solution is present in a void inside the battery.

【0018】このように作製した電池を10時間程度放
電し、開回路電圧(OCV)が安定した後、正極に対す
る電流密度を1.0mA/cmとして、カットオフ電
圧4.3〜3.0Vの条件で充放電試験を行った。電池
は全部で100個作製して充放電試験を行って、充放電
サイクル数が20回以下で内部短絡などにより試験でき
なくなった電池を不良電池として数えた。その結果を下
記する表1に示す。
The battery thus manufactured was discharged for about 10 hours, and after the open circuit voltage (OCV) was stabilized, the current density with respect to the positive electrode was set to 1.0 mA / cm 2 , and the cutoff voltage was 4.3 to 3.0 V. A charge / discharge test was performed under the following conditions. A total of 100 batteries were manufactured and subjected to a charge / discharge test. A battery that could not be tested due to an internal short circuit or the like when the number of charge / discharge cycles was 20 or less was counted as a defective battery. The results are shown in Table 1 below.

【0019】[比較例1]実施例と同様に作製し、焼成
後のピンミル粉砕時に超硬合金製ピンと表面硬化層を持
たないステンレス鋼製の円盤により構成されるピンミル
を用いて粉砕した。得られた活物質の比表面積およびF
e含有量を求め、さらに実施例と同様に電池を作製し、
電池試験を行い不良電池の数を求め、その結果を表1に
示す。
[Comparative Example 1] A pin mill made of a cemented carbide and a stainless steel disk having no hardened layer was used for pulverization using a pin mill after pulverization. Specific surface area and F of the obtained active material
e content was determined, and a battery was prepared in the same manner as in the example.
A battery test was performed to determine the number of defective batteries, and the results are shown in Table 1.

【0020】[比較例2]実施例と同様に作製し、焼成
後のピンミル粉砕時にステンレス製ピンと表面硬化層を
持たないステンレス鋼製の円盤により構成されるピンミ
ルを用いて粉砕した。得られた活物質の比表面積および
Fe含有量を求め、さらに実施例と同様に電池を作製
し、電池試験を行い不良電池の数を求め、その結果を表
1に示す。
Comparative Example 2 A pin mill made of a stainless steel pin and a stainless steel disk having no hardened layer was used for pulverization using a pin mill after firing. The specific surface area and Fe content of the obtained active material were determined. Further, batteries were prepared in the same manner as in the examples, and a battery test was performed to determine the number of defective batteries. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】以上の結果から本発明による製造方法によ
り合成されたリチウムコバルト複酸化物はFeの含有量
が低いため、活物質として用いた場合は初期不良の少な
い優れた電池を得られることが分かった。
From the above results, it can be seen that the lithium-cobalt double oxide synthesized by the production method according to the present invention has a low Fe content, so that when used as an active material, an excellent battery with little initial failure can be obtained. Was.

【0023】[0023]

【発明の効果】以上述べた通り本発明の非水系電解質二
次電池用正極活物質の製造方法および該方法により得ら
れた非水系電解質二次電池用正極活物質によれば、好ま
しい比表面積を有し、かつFeの含有量の低い非水系電
解質二次電池の正極活物質を得ることができ、また初期
不良の少ない電池の作製が可能である。
As described above, according to the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention and the positive electrode active material for a non-aqueous electrolyte secondary battery obtained by the method, a preferable specific surface area is obtained. Thus, a positive electrode active material of a nonaqueous electrolyte secondary battery having a low Fe content can be obtained, and a battery with few initial defects can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池試験に用いた2032型コイン電池の一部
破断斜視図である。
FIG. 1 is a partially broken perspective view of a 2032 type coin battery used for a battery test.

【符号の説明】[Explanation of symbols]

1 負極缶 2 リチウム金属ペレット 3 セパレータ 4 ガスケット 5 正極ペレット 6 正極缶 DESCRIPTION OF SYMBOLS 1 Negative electrode can 2 Lithium metal pellet 3 Separator 4 Gasket 5 Positive electrode pellet 6 Positive electrode can

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB05 AC06 AD04 AE05 5H003 BA01 BA03 BA04 BB05 BC01 BD02 BD03 BD04 BD05 5H014 AA02 BB00 BB01 BB06 HH00 HH01 HH06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA04 AB05 AC06 AD04 AE05 5H003 BA01 BA03 BA04 BB05 BC01 BD02 BD03 BD04 BD05 5H014 AA02 BB00 BB01 BB06 HH00 HH01 HH06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭酸リチウムと酸化コバルトを精秤し混
合してなる原料粉にバインダーを加えて混合しつつ造粒
し、ついで酸素含有雰囲気下で前記造粒物を焼成した
後、該焼成物を粉砕してリチウムコバルト複酸化物から
なる非水系電解質二次電池用正極活物質を製造するに際
して、前記焼成物の粉砕を超硬合金製のピンおよび表面
硬化されたステンレス鋼製の円盤より構成されるピンミ
ルを用いて行うことを特徴とする非水系電解質二次電池
用正極活物質の製造方法。
A raw material powder obtained by precisely weighing and mixing lithium carbonate and cobalt oxide is mixed with a binder and granulated, and then the granulated material is calcined in an oxygen-containing atmosphere. Pulverized to produce a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium-cobalt double oxide, the pulverization of the fired material is made up of a cemented carbide pin and a surface-hardened stainless steel disk. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the method is carried out using a pin mill.
【請求項2】 平均粒径が10μm以下、かつ比表面積
が1.0m/g以上の炭酸リチウム(LiCo
と、比表面積が1.0〜3.5m/gの酸化コバルト
(Co)とを原料粉として用いて請求項1記載の
製造方法により得られ、かつ比表面積が0.3〜3.8
/gで、Fe含有量が100ppm以下であること
を特徴とする非水系電解質二次電池用正極活物質。
2. Lithium carbonate (Li 2 Co 3 ) having an average particle size of 10 μm or less and a specific surface area of 1.0 m 2 / g or more.
And cobalt oxide (Co 3 O 4 ) having a specific surface area of 1.0 to 3.5 m 2 / g as a raw material powder, obtained by the production method according to claim 1, and having a specific surface area of 0.3 to 0.3 m 2 / g. 3.8
A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that the Fe content is 100 ppm or less at m 2 / g.
JP22684898A 1998-08-11 1998-08-11 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery obtained by the method Expired - Fee Related JP3560220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22684898A JP3560220B2 (en) 1998-08-11 1998-08-11 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22684898A JP3560220B2 (en) 1998-08-11 1998-08-11 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery obtained by the method

Publications (2)

Publication Number Publication Date
JP2000058054A true JP2000058054A (en) 2000-02-25
JP3560220B2 JP3560220B2 (en) 2004-09-02

Family

ID=16851521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22684898A Expired - Fee Related JP3560220B2 (en) 1998-08-11 1998-08-11 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery obtained by the method

Country Status (1)

Country Link
JP (1) JP3560220B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040154A1 (en) 2000-11-15 2002-05-23 Daicel Chemical Industries, Ltd. Catalysts comprising n-substituted cyclic imides and processes for preparing organic compounds with the catalysts
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP2002298846A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2002084765A1 (en) * 2001-04-10 2002-10-24 Mitsui Mining & Smelting Co., Ltd. Lithium secondary battery-use active matter
WO2003003488A1 (en) * 2001-06-27 2003-01-09 Kabushiki Kaisha Toshiba Positive electrode active material for secondary cell and nonaqueous electrolyte secondary cell using the same, and method for analysis of positive electrode active material for secondary cell
US20170098817A1 (en) * 2014-05-21 2017-04-06 GM Global Technology Operations LLC Distributing conductive carbon black on active material in lithium battery electrodes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040154A1 (en) 2000-11-15 2002-05-23 Daicel Chemical Industries, Ltd. Catalysts comprising n-substituted cyclic imides and processes for preparing organic compounds with the catalysts
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP4604347B2 (en) * 2000-12-27 2011-01-05 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2002298846A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2002084765A1 (en) * 2001-04-10 2002-10-24 Mitsui Mining & Smelting Co., Ltd. Lithium secondary battery-use active matter
WO2003003488A1 (en) * 2001-06-27 2003-01-09 Kabushiki Kaisha Toshiba Positive electrode active material for secondary cell and nonaqueous electrolyte secondary cell using the same, and method for analysis of positive electrode active material for secondary cell
US8409754B2 (en) 2001-06-27 2013-04-02 Kabushiki Kaisha Toshiba Positive electrode active material for secondary cell and nonaqueous electrolyte secondary cell using the same, and method for analysis of positive electrode active material for secondary cell
US20170098817A1 (en) * 2014-05-21 2017-04-06 GM Global Technology Operations LLC Distributing conductive carbon black on active material in lithium battery electrodes

Also Published As

Publication number Publication date
JP3560220B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US6617073B1 (en) Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
KR101021991B1 (en) Positive electrode material for lithium secondary battery and process for producing the same
JP4794833B2 (en) Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US20050019662A1 (en) Particulate positive electrode active material for a lithium secondary cell
KR101487468B1 (en) Spinel type lithium-manganese-nickel-containing composite oxide
JP2012079464A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using positive electrode active material
KR100734595B1 (en) Positive electrode material for lithium secondary cell and process for producing the same
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2001110420A (en) Manufacturing method for substance for activating positive electrode for nonaqueous electrolyte secondary battery and substance for activating positive electrode for the nonaqueous electrolyte secondary battery obtainable by the manufacturing method
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2004311427A (en) Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery
JPWO2020022305A1 (en) Positive electrode active material
JP3560220B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery obtained by the method
JP2016051548A (en) Positive electrode material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use of positive electrode material
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP7274125B2 (en) Positive electrode active material for all-solid-state lithium-ion secondary battery and all-solid-state lithium-ion secondary battery
JP2001185142A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method therefor
JP6633161B1 (en) Positive electrode active material, method for producing the same, positive electrode, and lithium ion battery
JP3620744B2 (en) Method for producing active material for lithium secondary battery
KR102563295B1 (en) Positive electrode active material by solid phase synthesis and method for manufacturing the same
CN116022858B (en) Lithium cobaltate powder and positive electrode material
JP2003331843A (en) Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP3344853B2 (en) Positive active material for non-aqueous lithium secondary battery and lithium secondary battery
WO2020175552A1 (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees