JP2005060162A - Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same - Google Patents

Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same Download PDF

Info

Publication number
JP2005060162A
JP2005060162A JP2003291689A JP2003291689A JP2005060162A JP 2005060162 A JP2005060162 A JP 2005060162A JP 2003291689 A JP2003291689 A JP 2003291689A JP 2003291689 A JP2003291689 A JP 2003291689A JP 2005060162 A JP2005060162 A JP 2005060162A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
manganese
nitrate
nickel composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003291689A
Other languages
Japanese (ja)
Inventor
Hideo Sasaoka
英雄 笹岡
Shuhei Oda
周平 小田
Shinichi Yoshikawa
信一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003291689A priority Critical patent/JP2005060162A/en
Publication of JP2005060162A publication Critical patent/JP2005060162A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a lithium-manganese-nickel composite oxide with a spinel crystal structure in which a spinel structure single phase wherein the entering of manganese and nickel into their solid solution is sufficiently progressed is realized, and also, a powder state capable of attaining high packing density is secured. <P>SOLUTION: A mixed aqueous solution of an aqueous lithium salt, manganese nitrate and nickel nitrate is admixed with a nonionic aqueous solution organic compound comprising no metallic ions so as to be 1/10M to 1/5M based on M as the total molar number of Li, Mn and Ni, thereafter, moisture and nitrate groups in the mixed aqueous solution are removed under heating at ≥150°C to synthesize a lithium-manganese-nickel composite oxide precursor, and further, the synthesized composite oxide precursor is heat-treated in an oxygen atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水系電解質二次電池用正極活物質に用いるリチウムマンガンニッケル複合酸化物の製造方法に関する。また、電池として高い充放電容量を具備させることが可能な非水系二次電池の正極活物質に関する。   The present invention relates to a method for producing a lithium manganese nickel composite oxide used for a positive electrode active material for a non-aqueous electrolyte secondary battery. The present invention also relates to a positive electrode active material for a non-aqueous secondary battery that can have a high charge / discharge capacity as a battery.

近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型、軽量な二次電池の要求が高まっている。リチウム二次電池は、ニッケル−カドミウム電池やニッケル−水素電池に比べて放電電位が、4Vと高く、そのために機器の軽量化、電池の長寿命化を図るのに役立つという利点があり、最近、急速に普及している。   In recent years, with the widespread use of portable devices such as mobile phones and laptop computers, there is an increasing demand for small and lightweight secondary batteries with high energy density. Lithium secondary batteries have a discharge potential as high as 4V compared to nickel-cadmium batteries and nickel-hydrogen batteries, which has the advantage of helping to reduce the weight of the equipment and prolong the life of the battery. It is rapidly spreading.

リチウムイオン二次電池は、リチウム含有複合酸化物を活物質とする正極と、リチウム、リチウム合金、金属酸化物あるいはカーボンのような、リチウムを吸蔵・放出することが可能な材料を活物質とする負極と、非水電解液を含むセパレータまたは固体電解質を主要構成要素とする。   A lithium ion secondary battery uses a positive electrode that uses a lithium-containing composite oxide as an active material and a material that can occlude and release lithium, such as lithium, a lithium alloy, a metal oxide, or carbon. A negative electrode and a separator or a solid electrolyte containing a non-aqueous electrolyte are the main components.

リチウム二次電池用正極材としては、コバルト酸リチウム(LiCoO2 )が用いられているが、コバルトは、資源に限りがあることや高価であることから、最近、そのコバルト酸リチウムの代替として、リチウムとマンガンの化合物(LiMn2 4 、LiMnO2 )、リチウムとニッケルの化合物 (LiNiO2 ) 等が開発されている。 As a positive electrode material for a lithium secondary battery, lithium cobaltate (LiCoO 2 ) is used, but since cobalt is limited in resources and expensive, recently, as an alternative to lithium cobaltate, Lithium and manganese compounds (LiMn 2 O 4 , LiMnO 2 ), lithium and nickel compounds (LiNiO 2 ) and the like have been developed.

その中でも、スピネル型結晶構造を有するリチウムマンガン酸化物系材料が安価で、かつ、毒性も低いため注目されている。このスピネル型構造のリチウムマンガン酸化物には、Li2 Mn4 9 、Li4 Mn5 12 、LiMn2 4 などがある。 Among them, lithium manganese oxide materials having a spinel crystal structure are attracting attention because they are inexpensive and have low toxicity. Examples of the spinel type lithium manganese oxide include Li 2 Mn 4 O 9 , Li 4 Mn 5 O 12 , and LiMn 2 O 4 .

ところで、電池の高エネルギー密度化を図るためには、高電位の正極活物質を用いることが1つの方法である。また、電気自動車用電源としては300V以上の高電圧が必要とされる。したがって、LiCoO2 を正極活物質とする場合、その作動電圧が4.2V程度であるため、接続する電池数が多くなるという課題がある。そのため、LiCoO2 より高電圧の正極活物質を用いることが必要とされるが、前記のようなスピネル型リチウムマンガン酸化物は、その作動電圧が4V以下であり、LiCoO2 を用いる場合よりも容量が小さい上に、300Vの高電圧を得るためには接続する電池数がLiCoO2 を用いる場合よりさらに多くなるという問題を有している。そのため、スピネル型リチウムマンガン複合酸化物においても高電圧化が検討されている。最近、マンガンと他金属の原子比が実質的に3:1である、Li[Mn3/2 1/2 ]O4 (ここでMは、Cr、Fe、Co、Ni、Cu等)で表される複合酸化物が、5V付近の電位を有することが知られ(特開平9-147867号公報)、5V級リチウムイオン二次電池用正極活物質として期待されている。 By the way, in order to increase the energy density of the battery, one method is to use a positive electrode active material having a high potential. In addition, a high voltage of 300 V or higher is required as a power source for electric vehicles. Therefore, when LiCoO 2 is used as the positive electrode active material, since the operating voltage is about 4.2 V, there is a problem that the number of connected batteries increases. Therefore, it is necessary to use a positive electrode active material having a voltage higher than that of LiCoO 2. However, the spinel type lithium manganese oxide as described above has an operating voltage of 4 V or less, and has a capacity higher than that in the case of using LiCoO 2. In addition, in order to obtain a high voltage of 300 V, there is a problem that the number of connected batteries is further increased than when LiCoO 2 is used. Therefore, higher voltage is also being studied for spinel type lithium manganese composite oxide. Recently, Li [Mn 3/2 M 1/2 ] O 4 (where M is Cr, Fe, Co, Ni, Cu, etc.) in which the atomic ratio of manganese to other metals is substantially 3: 1. It is known that the represented composite oxide has a potential around 5 V (Japanese Patent Laid-Open No. 9-147867), and is expected as a positive electrode active material for a 5 V class lithium ion secondary battery.

しかしながら、上記材料は比較的合成が難しく、これまでの合成法ではスピネル構造単相の実現と高い充填密度の両立は困難であった。たとえば、マンガンとニッケルの固溶が十分進むような微粉砕混合などの方法を用いると、スピネル構造単相を実現することができるが、粒径が細かくなるため取り扱いが困難となり、合成後の複合酸化物で高い充填密度を達成することができなかった。一方、単純な固相法を用いて、電池として適した、すなわち充填密度が高く、取り扱いの容易な適度な大きさの粒径を持った複合酸化物を合成すると、マンガンとニッケルの固溶が不充分となり、ニッケル酸化物などの異相が生成してしまい、スピネル構造単相を実現することができなかった。その結果、4.8Vの高電位領域での容量が減少し、電位の平坦性が失われ、4V付近の低電位領域に棚が出現してエネルギー密度の高い正極材料とならず、また、高温でのガスの発生が著しいという問題点があった。   However, the above materials are relatively difficult to synthesize, and it has been difficult to achieve both a single phase of the spinel structure and a high packing density by conventional synthesis methods. For example, if a method such as finely pulverized mixing that allows solid solution of manganese and nickel to progress sufficiently, a single phase of spinel structure can be realized, but it becomes difficult to handle due to the small particle size, and the composite after synthesis A high packing density could not be achieved with the oxide. On the other hand, by using a simple solid-phase method to synthesize a complex oxide having a suitable particle size that is suitable as a battery, that is, has a high packing density and is easy to handle, the solid solution of manganese and nickel is reduced. It became insufficient, and a different phase such as nickel oxide was generated, and a spinel structure single phase could not be realized. As a result, the capacity in the high potential region of 4.8 V is reduced, the flatness of the potential is lost, a shelf appears in the low potential region near 4 V, and the positive electrode material with high energy density is not obtained. There was a problem that the generation of gas was remarkable.

特開2001−185148号公報に開示される錯体重合法等を代表とする液体−液体混合系での均一混合では、液相での均一混合を特徴としているため、得られた正極活物質粒子は粒径が非常に微細で、タップ密度の低いものしか得られないという問題点を有していた。また、特開2001−146426号公報には、リチウム、マンガン、ニッケルの化合物を湿式で粉砕混合し、得られたスラリーを噴霧乾燥する方法を開示しているが、この方法では焼成時にリチウムの融解がマンガンとニッケルの分散を阻害するため均一固溶が進まず、その結果、充電曲線において4V付近の低電位領域に棚が出現してしまうという問題が残されていた。   The uniform mixing in the liquid-liquid mixed system represented by the complex polymerization method disclosed in JP-A-2001-185148 is characterized by uniform mixing in the liquid phase. The particle size is very fine and only a low tap density can be obtained. Japanese Patent Laid-Open No. 2001-146426 discloses a method in which lithium, manganese and nickel compounds are pulverized and mixed in a wet manner, and the resulting slurry is spray-dried. However, since the solution of manganese and nickel is inhibited, uniform solid solution does not progress, and as a result, there remains a problem that a shelf appears in a low potential region near 4 V in the charging curve.

特開2002−158007号公報において、リチウムマンガンニッケル複合酸化物の原料として、マンガン塩とニッケル塩の混合水溶液をアルカリ溶液と反応、共沈殿させるマンガンニッケル複合水酸化物または複合酸化物を得る方法が提案されている。この方法では、球状粒子を得るために、水溶液中でマンガンイオンおよびニッケルイオンと錯体を形成することが可能な、アンモニウムイオン供給体(塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸、グリシンなどの錯化剤を必要とし、錯化剤を除去するために高温で乾燥する工程が必要である。また、錯化剤を添加しない場合、pH11〜13の範囲において球状粒子を得るのは困難で、微細な粒子が多く、濾過性が悪い上、付着した濾液の洗浄が困難であり不純物が増加するなどの課題を有していた。また、リチウムマンガンニッケル複合酸化物を焼成する時にペレット状に成型、粉砕することは球状粒子を崩壊させ、微粉の発生により比表面積が増加してしまうという問題があるため、高温焼成による再結晶化が必要であった。   In JP 2002-158007 A, as a raw material of lithium manganese nickel composite oxide, a method of obtaining a manganese nickel composite hydroxide or composite oxide in which a mixed aqueous solution of a manganese salt and a nickel salt is reacted with an alkaline solution and coprecipitated is obtained. Proposed. In this method, ammonium ion donors (ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, ethylenediamine quaternary, which can form complexes with manganese ions and nickel ions in aqueous solution to obtain spherical particles. A complexing agent such as acetic acid, nitritotriacetic acid, uracil diacetic acid or glycine is required, and a step of drying at a high temperature is required to remove the complexing agent. Further, when no complexing agent is added, it is difficult to obtain spherical particles in the range of pH 11 to 13, there are many fine particles, the filterability is poor, and the attached filtrate is difficult to wash and impurities increase. It had problems such as. In addition, molding and pulverizing the lithium manganese nickel composite oxide into pellets causes the spherical particles to collapse and the specific surface area to increase due to the generation of fine powder. Was necessary.

特開平9−147867号公報JP-A-9-147867 特開2001−185148号公報JP 2001-185148 A 特開2001−146426号公報JP 2001-146426 A 特開2002−158007号公報JP 2002-158007 A

本発明は、上記の問題点を解決するものであり、マンガンとニッケルの固溶が十分進んだスピネル構造単相を実現し、かつ、高い充填密度を達成できる粉状態を確保したスピネル型結晶構造を有するリチウムマンガンニッケル複合酸化物を得るための製造方法を提供する。   The present invention solves the above-mentioned problems, realizes a spinel structure single phase in which solid solution of manganese and nickel is sufficiently advanced, and secures a powder state capable of achieving a high packing density. A production method for obtaining a lithium manganese nickel composite oxide having the following is provided.

本発明によるリチウムマンガンニッケル複合酸化物の製造方法は、一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法において、水溶性リチウム塩と硝酸マンガン(Mn(NO3 2 )および硝酸ニッケル(Ni(NO3 2 )を水に溶解して得られた混合水溶液に、金属イオンを含まない非イオン水溶性有機化合物を、リチウム、マンガン、ニッケルのモル数の合計Mに対して、1/10M以上1/5M以下となるように、添加し、その後、前記混合水溶液の水分および硝酸基を150℃以上の温度で加熱除去することによってリチウムマンガンニッケル複合酸化物前駆体を合成し、さらに、合成した該複合酸化物前駆体を酸素雰囲気中にて熱処理することにより、リチウムマンガンニッケル複合酸化物を得ることを特徴とする。 The method for producing a lithium manganese nickel composite oxide according to the present invention has a general formula: Li 1 + X Mn 2 -YX Ni Y O 4 (where −0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0). .55) in the method for producing a lithium manganese nickel composite oxide having a spinel structure, water-soluble lithium salt, manganese nitrate (Mn (NO 3 ) 2 ) and nickel nitrate (Ni (NO 3 ) 2 ) are mixed with water. In a mixed aqueous solution obtained by dissolving in water, a nonionic water-soluble organic compound not containing metal ions is 1/10 M or more and 1/5 M or less with respect to the total M of the number of moles of lithium, manganese, and nickel. Then, the lithium manganese nickel composite oxide precursor is synthesized by heating and removing water and nitrate groups of the mixed aqueous solution at a temperature of 150 ° C. or higher, and further, the synthesized By heat treating the case oxide precursor in an oxygen atmosphere, characterized by obtaining a lithium-manganese-nickel composite oxide.

上記金属イオンを含まない非イオン水溶性有機化合物は、金属イオンを含まないカルボン酸基を有する有機化合物であることが好ましい。また、当該金属イオンを含まないカルボン酸基を有する有機化合物は、酢酸、蓚酸、クエン酸から1種以上が選択される。また、水溶性リチウム塩として、硝酸リチウムを用いることが好ましい。   The nonionic water-soluble organic compound not containing a metal ion is preferably an organic compound having a carboxylic acid group not containing a metal ion. In addition, the organic compound having a carboxylic acid group that does not contain the metal ion is selected from one or more of acetic acid, oxalic acid, and citric acid. Moreover, it is preferable to use lithium nitrate as a water-soluble lithium salt.

なお、前記リチウムマンガンニッケル複合酸化物前駆体を、500℃以上800℃未満の温度で熱処理することが好ましい。   The lithium manganese nickel composite oxide precursor is preferably heat-treated at a temperature of 500 ° C. or higher and lower than 800 ° C.

上記製造方法により得られたリチウムマンガンニッケル複合酸化物を用いた非水系電解質二次電池用正極活物質は、一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表され、スピネル構造単相を実現でき、かつ、タップ密度が0.2〜1.0m2 /gと高い充填密度を得られる。 The positive electrode active material for a non-aqueous electrolyte secondary battery using the lithium manganese nickel composite oxide obtained by the above production method has a general formula: Li 1 + X Mn 2-YX Ni Y O 4 (however, −0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55), a spinel structure single phase can be realized, and a tap density of 0.2 to 1.0 m 2 / g is obtained. It is done.

本発明によれば、リチウムマンガンニッケル複合酸化物の原料となる金属塩の均一な混合状態を保持し複合酸化物に転換する合成法として、金属硝酸塩混合水溶液にクエン酸を添加して、ゲル状物質を得て、低温反応で目的化合物を合成して得るクエン酸ゲル化燃焼法を利用することで、液体−液体均一混合系でリチウムイオンとマンガン、ニッケルイオンの反応が促進でき、マンガンとニッケルの固溶が十分進んだスピネル構造単相を実現し、かつ、高い充填密度を達成可能な粉状態を確保したスピネル型リチウムマンガンニッケル複合酸化物を得ることができ、電池として高い充放電容量を具備させることが可能となる非水系二次電池活物質を提供できる。   According to the present invention, as a synthesis method for maintaining a uniform mixed state of a metal salt as a raw material of a lithium manganese nickel composite oxide and converting it to a composite oxide, citric acid is added to a metal nitrate mixed aqueous solution to form a gel By using the citric acid gelation combustion method, which is obtained by synthesizing the target compound by low-temperature reaction, the reaction of lithium ions, manganese, and nickel ions can be promoted in a liquid-liquid homogeneous mixed system. A spinel-type lithium manganese nickel composite oxide that achieves a spinel structure single phase with sufficiently advanced solid solution and secures a powder state that can achieve a high packing density can be obtained. A non-aqueous secondary battery active material that can be provided can be provided.

本発明者等は、リチウムマンガンニッケル複合酸化物の原料となる金属塩の均一な混合状態を保持して複合酸化物に転換する合成法として、金属硝酸塩混合水溶液にクエン酸を添加して、ゲル状物質を得て、低温反応で目的化合物を合成して得るクエン酸ゲル化燃焼法を利用することで、液体−液体均一混合系でリチウムイオンとマンガン、ニッケルイオンの反応が促進でき、マンガンとニッケルの固溶が十分進んだスピネル構造単相を実現し、かつ、高い充填密度を達成可能な粉状態を確保したスピネル型リチウムマンガンニッケル複合酸化物が得られることを見出し、本発明に至った。   As a synthesis method for maintaining a uniform mixed state of a metal salt as a raw material of a lithium manganese nickel composite oxide and converting it into a composite oxide, the present inventors added citric acid to a metal nitrate mixed aqueous solution, By using the citric acid gelation combustion method obtained by synthesizing the target compound by low temperature reaction, the reaction of lithium ion, manganese, and nickel ion can be promoted in a liquid-liquid homogeneous mixed system. The present inventors have found that a spinel-type lithium manganese nickel composite oxide that achieves a spinel structure single phase in which solid solution of nickel is sufficiently advanced and has a powder state capable of achieving a high packing density can be obtained. .

本発明の特徴は、一般式Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法において、水溶性リチウム塩と硝酸マンガン(Mn(NO3 2 )および硝酸ニッケル(Ni(NO3 2 )の混合水溶液に、金属イオンを含まない非イオン水溶性有機化合物、たとえば、金属イオンを含まないカルボン酸基を有する有機化合物、より具体的には酢酸、蓚酸、クエン酸等を添加し、その後、前記混合水溶液の水分および硝酸基を、150℃以上の温度にて加熱除去し、さらに、合成したリチウムマンガンニッケル合酸化物前駆体を酸素雰囲気中にて熱処理することによって、リチウムマンガンニッケル複合酸化物を合成することにある。 A feature of the present invention is a spinel structure represented by the general formula Li 1 + X Mn 2 -YX Ni Y O 4 (where −0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55). In a method for producing a lithium manganese nickel composite oxide having water, a mixed aqueous solution of a water-soluble lithium salt, manganese nitrate (Mn (NO 3 ) 2 ) and nickel nitrate (Ni (NO 3 ) 2 ) does not contain metal ions. An ionic water-soluble organic compound, for example, an organic compound having a carboxylic acid group not containing metal ions, more specifically acetic acid, succinic acid, citric acid, etc. is added, and then the water and nitrate groups of the mixed aqueous solution are added to 150 The lithium manganese nickel composite oxide is synthesized by heating and removing at a temperature of ℃ or higher and further heat-treating the synthesized lithium manganese nickel compound oxide precursor in an oxygen atmosphere. Lies in the fact.

水溶性リチウム塩と硝酸マンガン(Mn(NO3 2 )および硝酸ニッケル(Ni(NO3 2 )の混合水溶液に、金属イオンを含まない非イオン水溶性有機化合物として、クエン酸を添加し、この状態で、混合水溶液を150℃以上の温度で加熱すると、混合水溶液中のリチウムイオンとマンガンイオンおよびニッケルイオンは共に、水分の蒸発に伴い、以下のような反応が起こり、クエン酸塩となりゲル状となって固定され、反応しやすい均一にイオンが分散した状態となる。 Citric acid is added to a mixed aqueous solution of water-soluble lithium salt, manganese nitrate (Mn (NO 3 ) 2 ) and nickel nitrate (Ni (NO 3 ) 2 ) as a nonionic water-soluble organic compound that does not contain metal ions, In this state, when the mixed aqueous solution is heated at a temperature of 150 ° C. or higher, both lithium ions, manganese ions, and nickel ions in the mixed aqueous solution undergo the following reaction as the water evaporates to form citrate and gel. As a result, the ions are fixed and easily reacted, and the ions are uniformly dispersed.

反応式:
M(NO3X +C6 8 7 → C6 8-x 7 x/2 +xNO2 +x/2H2
(M=Ni、Mn、Li;ただし、Liの場合、x=1、Mn,Niの場合、x=2である。)
本発明の製造方法において、金属イオンを含まない非イオン水溶性有機化合物を用いる理由は、カリウムやナトリウムなどの金属イオンが残留すると、リチウムマンガンニッケル複合酸化物以外の他の化合物を合成してしまうからである。すなわち、金属イオンを含まない非イオン水溶性有機化合物は、金属イオンを担持して固定するカチオン担持体として作用し、加熱による混合水溶液中の水分蒸発に伴って、溶解度の差によりリチウム塩と硝酸マンガンおよび硝酸ニッケルが分離析出してしまうことを防止する。
Reaction formula:
M (NO 3 ) X + C 6 H 8 O 7 → C 6 H 8−x O 7 M x / 2 + xNO 2 + x / 2H 2 O
(M = Ni, Mn, Li; where x = 1 for Li, and x = 2 for Mn, Ni.)
The reason for using a nonionic water-soluble organic compound that does not contain metal ions in the production method of the present invention is that if metal ions such as potassium and sodium remain, other compounds than lithium manganese nickel composite oxide are synthesized. Because. That is, a nonionic water-soluble organic compound that does not contain metal ions acts as a cation carrier that supports and fixes metal ions. Prevents separation of manganese and nickel nitrate.

金属イオンを含まない非イオン水溶性有機化合物としては、クエン酸のほか、金属イオンを含まないカルボン酸基を有する有機化合物、具体的には、酢酸、蓚酸、ギ酸、酒石酸などが挙げられる。その中では、クエン酸が最も好ましい。クエン酸は、硝酸金属イオンと、低温でニトロ化合物の熱分解時、急激に燃焼反応を行い、クエン酸錯体重合反応によって、金属イオンを担持し固定する機能を有しているからである。酢酸、蓚酸などその他のカルボン基を有する有機化合物も、その機能は劣るものの、クエン酸と同様の機能を発揮できる。これらの中では、酢酸、蓚酸がより好ましい。   Examples of nonionic water-soluble organic compounds that do not contain metal ions include citric acid and organic compounds having a carboxylic acid group that do not contain metal ions, specifically, acetic acid, oxalic acid, formic acid, tartaric acid, and the like. Of these, citric acid is most preferred. This is because citric acid has a function of rapidly carrying out a combustion reaction with a nitrate metal ion at the time of thermal decomposition of a nitro compound at a low temperature, and supporting and fixing the metal ion by a citrate complex polymerization reaction. Organic compounds having other carboxylic groups such as acetic acid and succinic acid can exhibit the same functions as citric acid, although their functions are inferior. Among these, acetic acid and succinic acid are more preferable.

上記金属イオンを含まない非イオン水溶性有機化合物の添加量は、Li、Mn、Niのモル数の合計Mに対して、1/10M以上1/5M以下である。1/10M未満では、金属イオンを担持し固定する機能が十分発揮されず、均一にイオンが分散した状態とならず、一方、1/5Mを超えると、ニトロ化がうまく進行せず、いずれもスピネル型LiMn1.5 Ni0.54 の複合酸化物前駆体の粉体を得ることができない。 The addition amount of the nonionic water-soluble organic compound not containing the metal ions is 1/10 M or more and 1/5 M or less with respect to the total M of the number of moles of Li, Mn, and Ni. If it is less than 1 / 10M, the function of supporting and fixing metal ions is not sufficiently exerted, and the ions are not uniformly dispersed. On the other hand, if it exceeds 1 / 5M, nitration does not proceed well. Spinel-type LiMn 1.5 Ni 0.5 O 4 composite oxide precursor powder cannot be obtained.

水溶性リチウム塩として使用可能な化合物として、硝酸リチウム、水酸化リチウム、水酸化リチウム一水和物、炭酸リチウム、酸化リチウムなどが挙げられる。ただし、本発明での製造方法では、上記の金属硝酸塩混合水溶液とクエン酸等の反応を円滑に進行させるために、硝酸リチウムが好ましい。   Examples of compounds that can be used as the water-soluble lithium salt include lithium nitrate, lithium hydroxide, lithium hydroxide monohydrate, lithium carbonate, and lithium oxide. However, in the production method according to the present invention, lithium nitrate is preferable in order to smoothly advance the reaction of the metal nitrate mixed aqueous solution and citric acid.

上記のゲル状となったクエン酸化合物を、150℃以上で加熱することによって分解燃焼して発熱し、その生じた熱により300〜350℃付近になると、リチウムイオン、マンガンイオン、ニッケルイオンの合成複合反応が起こり、各元素が均一分散したリチウムマンガンニッケル複合酸化物前駆体が合成される。   When the above citric acid compound in the form of gel is heated at 150 ° C. or higher, it decomposes and burns to generate heat. When the generated heat reaches 300 to 350 ° C., synthesis of lithium ions, manganese ions and nickel ions A composite reaction occurs, and a lithium manganese nickel composite oxide precursor in which each element is uniformly dispersed is synthesized.

当該リチウムマンガンニッケル複合酸化物前駆体の形状はスポンジ状で、粒度分布がブロードな、粉体の混合体となっている。ここで、上記加熱温度が、150℃未満では、ニトロ化合物の分解や燃焼が起こらず、リチウムマンガンニッケル複合酸化物を合成することができない。なお、上記加熱温度は、水分が蒸発し、かつ、ニトロ化合物が分解する温度であればよく、特に上限はない。ニトロ化合物の分解温度から、高くても200℃程度で十分である。   The lithium manganese nickel composite oxide precursor is in the form of a sponge and a powder mixture having a broad particle size distribution. Here, when the heating temperature is less than 150 ° C., decomposition or combustion of the nitro compound does not occur, and the lithium manganese nickel composite oxide cannot be synthesized. The heating temperature is not particularly limited as long as moisture is evaporated and the nitro compound is decomposed. From the decomposition temperature of the nitro compound, about 200 ° C. is sufficient at the highest.

このようにして得られた複合酸化物前駆体の粉末には、合成直後は、不純物としてCおよびNを含んでいる。そのため、この複合酸化物前駆体の粉末を高電圧・高エネルギー密度型のリチウム二次電池用正極材料として用いるには、これらの不純物を除去する必要がある。   The composite oxide precursor powder thus obtained contains C and N as impurities immediately after synthesis. Therefore, in order to use this composite oxide precursor powder as a positive electrode material for a high voltage / high energy density type lithium secondary battery, it is necessary to remove these impurities.

そこで、不純物を除去したスピネル型リチウムマンガンニッケル複合酸化物を製造する方法として、本発明では、上述したリチウムマンガンニッケルの複合酸化物前駆体を酸素雰囲気中で熱処理する点に特徴がある。熱処理温度は、500℃以上800℃以下の温度にて行うことが望ましい。これにより、放電容量および充放電サイクル特性が向上したスピネル型リチウムマンガンニッケル複合酸化物を製造することができる。熱処理温度が500℃よりも低いと、酸化が十分進行しないので好ましくなく、800℃以上では、NiOなどの異相が発生しやすくなるので好ましくない。   Therefore, as a method for producing a spinel type lithium manganese nickel composite oxide from which impurities are removed, the present invention is characterized in that the above-described lithium manganese nickel composite oxide precursor is heat-treated in an oxygen atmosphere. The heat treatment temperature is desirably 500 ° C. or higher and 800 ° C. or lower. Thereby, a spinel type lithium manganese nickel composite oxide with improved discharge capacity and charge / discharge cycle characteristics can be produced. When the heat treatment temperature is lower than 500 ° C., the oxidation does not proceed sufficiently, which is not preferable. When the heat treatment temperature is 800 ° C. or higher, a heterogeneous phase such as NiO is easily generated.

以上のように、本発明の製造方法によれば、従来技術よりも低温度領域の熱処理条件で、リチウムマンガンニッケル複合酸化物の合成が可能となる。   As described above, according to the production method of the present invention, it is possible to synthesize lithium manganese nickel composite oxide under heat treatment conditions in a lower temperature region than in the prior art.

上記製法で得られるスピネル型リチウムニッケルマンガン複合酸化物は、立方晶単位格子の格子定数が8.17Å以上8.18Å未満であることが望ましい。また、該複合酸化物の比表面積は0.2m2 /g以上1.0m2 /g以下であることが望ましい。さらには、粉体充填密度(タップ密度)が1.52g/cm3 以上であることが好ましい。これらの諸特性を満たすことによって、実質的に異相のないスピネル構造単相を有し、かつ、充填密度の高いリチウムニッケルマンガン複合酸化物が得られ、該複合酸化物を非水系電解質二次電池用正極活物質として用いた非水系電解質二次電池においては、充放電曲線において3.5〜4.5Vに電位領域に棚の出現がない非水系電解質二次電池用正極活物質が得られる。ここで、棚とは、放電曲線の下降部に現れる4V領域の電位段差をいう。 The spinel type lithium nickel manganese composite oxide obtained by the above production method desirably has a cubic unit cell lattice constant of not less than 8.17Å and less than 8.18Å. The specific surface area of the composite oxide is preferably 0.2 m 2 / g or more and 1.0 m 2 / g or less. Furthermore, the powder filling density (tap density) is preferably 1.52 g / cm 3 or more. By satisfying these various characteristics, a lithium nickel manganese composite oxide having a spinel structure single phase substantially free of different phases and having a high packing density can be obtained, and the composite oxide can be used as a non-aqueous electrolyte secondary battery. In the nonaqueous electrolyte secondary battery used as the positive electrode active material for a battery, a positive electrode active material for a nonaqueous electrolyte secondary battery in which no shelf appears in the potential region at 3.5 to 4.5 V in the charge / discharge curve is obtained. Here, the shelf refers to a potential step in the 4V region that appears in the descending portion of the discharge curve.

前記一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル型リチウムニッケルマンガン複合酸化物を正極活物質として用いた正極は、たとえば、上記正極活物質に、必要に応じて導電助剤、バインダーなどを適宜添加して混合し、溶剤でペースト状にし(バインダーはあらかじめ溶剤に溶解させておいてから正極活物質などと混合してもよい)、得られた正極合剤含有ペーストをアルミニウム箔などからなる正極集電体に塗布し、乾燥して正極合剤層を形成し、必要に応じて加圧成形する工程を経ることによって作製される。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法でもよい。 Spinel type lithium nickel manganese composite represented by the general formula: Li 1 + X Mn 2 -YX Ni Y O 4 (where −0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55) A positive electrode using an oxide as a positive electrode active material is, for example, appropriately mixed with the positive electrode active material, if necessary, with a conductive additive, a binder, etc., and made into a paste with a solvent (the binder is dissolved in the solvent in advance). And may be mixed with a positive electrode active material and the like), and the obtained positive electrode mixture-containing paste is applied to a positive electrode current collector made of aluminum foil or the like, and dried to form a positive electrode mixture layer. It is produced by undergoing a step of pressure molding as necessary. However, the method for manufacturing the positive electrode is not limited to the above-described examples, and other methods may be used.

前記正極の作製にあたって、導電助剤としては、たとえば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。また、バインダーとしては、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。   In producing the positive electrode, as the conductive auxiliary agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black-based material such as acetylene black, ketjen black, or the like can be used. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluorine rubber, styrene butadiene, cellulose resin, polyacrylic acid, or the like can be used.

前記正極活物質を含有する正極に対して対極となる負極の活物質としては、たとえば、リチウム、リチウム−アルミニウムで代表されるリチウム合金、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などのリチウムイオンを可逆的に吸蔵・放出できる炭素系材料、Si、Sn、Inなどの合金またはLiに近い低電位で充放電できる酸化物や窒化物などの化合物も負極活物質として用いることができる。   Examples of the negative electrode active material that is a counter electrode with respect to the positive electrode containing the positive electrode active material include lithium, lithium alloys represented by lithium-aluminum, graphite, pyrolytic carbons, cokes, glassy carbons, Charged and discharged at a low potential close to carbon-based materials that can reversibly store and release lithium ions, such as fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, alloys such as Si, Sn, In, or Li Compounds such as oxides and nitrides that can be used can also be used as the negative electrode active material.

負極は、負極活物質がリチウムやリチウム合金の場合は、そのまま用いるか、あるいは集電体に圧着することによって作製され、負極活物質が炭素系材料の場合は、それに、必要に応じて正極の場合と同様のバインダーを添加して混合し、溶剤を用いてペースト状にし(バインダーはあらかじめ溶剤に溶解させておいてから負極活物質と混合してもよい)、得られた負極合剤含有ペーストを銅箔などからなる負極集電体に塗布し、乾燥して負極合剤層を形成し、必要に応じて加圧成形する工程を経ることによって作製される。ただし、負極の作製方法は、前記例示のものに限られることなく、他の方法でもよい。   When the negative electrode active material is lithium or a lithium alloy, the negative electrode is used as it is or by pressure bonding to a current collector. When the negative electrode active material is a carbon-based material, the negative electrode Add and mix the same binder as in the case, paste it into a paste using a solvent (the binder may be dissolved in the solvent in advance and then mixed with the negative electrode active material), and the obtained negative electrode mixture-containing paste Is applied to a negative electrode current collector made of copper foil or the like, dried to form a negative electrode mixture layer, and subjected to pressure molding as necessary. However, the method for manufacturing the negative electrode is not limited to the above-described examples, and other methods may be used.

電解質としては、非水系の液状電解質、ゲル状ポリマー電解質のいずれも用いることができるが、本発明においては、通常、電解液と呼ばれる液状電解質が多用される。この液状電解質(電解液)は、たとえば、有機溶媒を主材とする非水溶媒にリチウム塩などの電解質塩を溶解させることによって調製されるが、その溶媒としては、たとえば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチルなどの鎖状エステル、リン酸トリメチルなどの鎖状リン酸トリエステル、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどを用いることができる。そのほか、アミンイミド系有機溶媒やスルホランなどのイオウ系有機溶媒なども用いることができる。   As the electrolyte, either a non-aqueous liquid electrolyte or a gel polymer electrolyte can be used. In the present invention, a liquid electrolyte called an electrolytic solution is usually used frequently. This liquid electrolyte (electrolytic solution) is prepared by, for example, dissolving an electrolyte salt such as a lithium salt in a non-aqueous solvent mainly composed of an organic solvent. Examples of the solvent include dimethyl carbonate and diethyl carbonate. , Chain esters such as methyl ethyl carbonate and methyl propionate, chain phosphate triesters such as trimethyl phosphate, 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether, etc. Can be used. In addition, amine organic solvents, sulfur organic solvents such as sulfolane, and the like can also be used.

さらに、その他の溶媒成分として誘電率の高いエステル(導電率30以上)を用いることが、電池特性、特に負荷特性を向上させることから好ましく、その誘電率の高いエステルの具体例としては、たとえば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトンなどが挙げられ、また、エチレングリコールサルファイトなどのイオウ系エステルも用いることができるが、環状構造のエステルが好ましく、特にエチレンカーボネートのような環状カーボネートが好ましい。そして、これらの溶媒はそれぞれ単独でまたは2種以上混合して用いることができる。   Furthermore, it is preferable to use an ester having a high dielectric constant (conductivity of 30 or more) as another solvent component from the viewpoint of improving battery characteristics, particularly load characteristics. Specific examples of the ester having a high dielectric constant include, for example, Ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone and the like, and sulfur-based esters such as ethylene glycol sulfite can also be used, but cyclic esters are preferable, and cyclic carbonates such as ethylene carbonate are particularly preferable. Is preferred. These solvents can be used alone or in combination of two or more.

リチウム塩などの電解質塩としては、たとえば、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiSbF6 、LiCF3 SO3 、LiC4 9 SO3 、LiCF3 CO2 、Li2 2 4 (SO3 2 、LiN(Rf1 SO2 )(Rf2 SO2 )〔ここで、Rf1 、Rf2 はフルオロアルキル基を含む置換基である〕、LiN(Rf3 OSO2 )(Rf4 OSO2)〔ここで、Rf3 、Rf4 はフルオロアルキル基である〕、LiCn 2n+1SO3 (n≧2)、LiC(Rf5 SO2 2 、LiN(Rf6 OSO2 2 〔ここでRf5 、Rf6 はフルオロアルキル基である〕、ポリマータイプイミドリチウム塩などが単独または2種以上混合して用いられる。電解液中における電解質塩の濃度は、特に限定されるものではないが、濃度を0.1mol/l以上、2.0mol/l以下にするのが好ましい。 As an electrolyte salt such as lithium salt, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 ( SO 3 ) 2 , LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) [where Rf 1 and Rf 2 are substituents containing a fluoroalkyl group], LiN (Rf 3 OSO 2 ) (Rf 4 OSO 2 ) [where Rf 3 and Rf 4 are fluoroalkyl groups], LiC n F 2n + 1 SO 3 (n ≧ 2), LiC (Rf 5 SO 2 ) 2 , LiN (Rf 6 OSO 2 ) 2 [Wherein Rf 5 and Rf 6 are fluoroalkyl groups], polymer type imidolithium salts and the like are used alone or in admixture of two or more. The concentration of the electrolyte salt in the electrolytic solution is not particularly limited, but the concentration is preferably 0.1 mol / l or more and 2.0 mol / l or less.

ゲル状ポリマー電解質は、上記電解液をゲル化剤によってゲル化したものに相当するが、そのゲル化にあたっては、たとえば、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリアクリルニトリルなどの直鎖状ポリマーまたはそれらのコポリマー、紫外線や電子線などの活性光線の照射によりポリマー化する多官能モノマー(たとえば、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレートなどの四官能以上のアクリレートおよび上記アクリレートと同様の四官能以上のメタクリレートなど)などが用いられる。ただし、モノマーの場合、モノマーそのものが電解液をゲル化させるのではなく、上記モノマーをポリマー化したポリマーがゲル化剤として作用する。   The gel polymer electrolyte corresponds to the above electrolyte solution gelled by a gelling agent. For the gelation, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or the like thereof is used. Copolymers, polyfunctional monomers that polymerize by irradiation with actinic rays such as ultraviolet rays and electron beams (for example, tetrafunctional or higher functional groups such as pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, etc. Acrylates and tetrafunctional or higher methacrylates similar to the above acrylates). However, in the case of a monomer, the monomer itself does not gel the electrolyte solution, but a polymer obtained by polymerizing the monomer acts as a gelling agent.

上記のように多官能モノマーを用いて電解液をゲル化させる場合、必要であれば、重合開始剤として、たとえば、ベンゾイル類、ベンゾインアルキルエーテル類、ベンゾフェノン類、ベンゾイルフェニルフォスフィンオキサイド類、アセトフェノン類、チオキサントン類、アントラキノン類、アミノエステルなども使用することもできる。   When gelling an electrolyte solution using a polyfunctional monomer as described above, if necessary, as a polymerization initiator, for example, benzoyls, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, acetophenones Thioxanthones, anthraquinones, aminoesters and the like can also be used.

本発明によって得られる正極活物質を用いた非水系電解質二次電池においては、放電容量が大きく、かつ、高電位での平坦性に優れ、しかもタップ密度が高いことから高エネルギー密度を有する非水系電解質二次電池が実現可能となる。   In the nonaqueous electrolyte secondary battery using the positive electrode active material obtained by the present invention, the discharge capacity is large, the flatness at a high potential is excellent, and the tap density is high. An electrolyte secondary battery can be realized.

(実施例1)
市販の硝酸リチウム(LiNO3 :関東化学製)、硝酸マンガン(Mn(NO3 )2 ・6H2 O:和光純薬工業製)および硝酸ニッケル(Ni(NO3 )2 ・6H2 O:和光純薬工業製)をモル比でLi:Mn:Ni=1.0:1.5:0.5になるように秤量し、純水50mlに溶かし混合水溶液とした。それに20質量%クエン酸水溶液を100g添加し均一に混合したものを原料とした。
(Example 1)
Commercially available lithium nitrate (LiNO 3 : manufactured by Kanto Chemical), manganese nitrate (Mn (NO 3 ) 2 .6H 2 O: manufactured by Wako Pure Chemical Industries) and nickel nitrate (Ni (NO 3 ) 2 .6H 2 O: Wako Pure) Yakuhin Kogyo Co., Ltd.) was weighed in a molar ratio of Li: Mn: Ni = 1.0: 1.5: 0.5 and dissolved in 50 ml of pure water to obtain a mixed aqueous solution. 100 g of a 20% by mass citric acid aqueous solution was added and mixed uniformly as a raw material.

このとき上記クエン酸の添加量は金属モル量をMとすると1/9Mとした。なお、20質量%クエン酸は市販のクエン酸一水和物(和光純薬工業製)を所定の質量%になるよう純水で溶解した。   At this time, the amount of citric acid added was 1/9 M, where M is the molar amount of metal. In addition, 20 mass% citric acid melt | dissolved the commercially available citric acid monohydrate (made by Wako Pure Chemical Industries) with a pure water so that it might become a predetermined mass%.

上記原料を、ホットスターラーで加熱、保持して、150℃〜200℃程度の温度で水分を加熱除去することで、硝酸塩の分解、燃焼が発生した。生じた熱により300〜350℃付近で、リチウムイオン、マンガンイオン、ニッケルイオンの合成複合反応が起こり、複合酸化物前駆体の粉末が得られた。   The raw material was heated and held with a hot stirrer, and water was removed by heating at a temperature of about 150 ° C. to 200 ° C., whereby decomposition and combustion of nitrate occurred. Synthetic composite reaction of lithium ions, manganese ions, and nickel ions occurred at around 300 to 350 ° C. by the generated heat, and composite oxide precursor powder was obtained.

得られた複合酸化物前駆体を、CuのKα線を用いた粉末X線回折で分析したところ、立方晶スピネル型LiMn1.5 Ni0.5 4 に帰属するピークの他に、NiOのピークがわずかに確認された。 The obtained composite oxide precursor was analyzed by powder X-ray diffraction using Cu Kα ray. As a result, in addition to the peak attributed to cubic spinel type LiMn 1.5 Ni 0.5 O 4, there was a slight peak of NiO. confirmed.

得られた複合酸化物前駆体をマッフル炉(modelKDF HR7:デンケン製)で500℃で2時間仮焼成したのち、600℃で20時間酸素雰囲気で焼成することで、スピネル型LiMn1.5 Ni0.5 4 を合成した。得られた粉末を、CuのKα線を用いた粉末X線回折で分析したところ、図1に示すように、実質的に異相のない立方晶スピネル型構造のLiMn1.5 Ni0.5 4 に帰属するピークであった。 The obtained composite oxide precursor was calcined at 500 ° C. for 2 hours in a muffle furnace (model KDF HR7: manufactured by Denken), and then calcined in an oxygen atmosphere at 600 ° C. for 20 hours, thereby spinel type LiMn 1.5 Ni 0.5 O 4. Was synthesized. The obtained powder was analyzed by powder X-ray diffraction using Cu Kα ray, and as shown in FIG. 1, it belonged to LiMn 1.5 Ni 0.5 O 4 having a cubic spinel structure substantially free of different phases. It was a peak.

得られた活物質を用いて以下のように電池を作製し、充放電容量を測定した。活物質52.5mg、アセチレンブラック15mgおよびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mmφにプレス成形した。作製した電極を真空乾燥機中120℃で10時間、乾燥した。   Using the obtained active material, a battery was prepared as follows, and the charge / discharge capacity was measured. 52.5 mg of active material, 15 mg of acetylene black and 7.5 mg of polytetrafluoroethylene resin (PTFE) were mixed and press-molded to a diameter of 11 mmφ under a pressure of 100 MPa. The produced electrode was dried in a vacuum dryer at 120 ° C. for 10 hours.

図3に示す2032型ボタン電池に、Ar雰囲気のグローブボックス中で組み立てた。負極には、直径17mmφ、厚さ1mmのLi金属を用い、電解液には1MのLiPF6 を指示塩とするエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の等量混合液を用いた。セパレータは膜厚25μmのポリエチレン多孔膜を用いた。なお、ボタン電池は、10時間程度放置し、OCVが安定した後、電流密度0.5mA/cm2 でカットオフ電圧を4.9Vとして充放電試験を行った。その結果、図2に示すように、充放電電位の平坦性に優れ、充放電曲線において3.5〜4.5V領域の電位の棚が排除された、放電容量が大きなリチウムイオン二次電池であることがわかる。 The 2032 type button battery shown in FIG. 3 was assembled in a glove box in an Ar atmosphere. Lithium metal having a diameter of 17 mmφ and a thickness of 1 mm was used for the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) using 1M LiPF 6 as an indicator salt was used for the electrolyte. As the separator, a polyethylene porous film having a film thickness of 25 μm was used. The button battery was allowed to stand for about 10 hours, and after the OCV was stabilized, a charge / discharge test was conducted with a current density of 0.5 mA / cm 2 and a cut-off voltage of 4.9V. As a result, as shown in FIG. 2, a lithium ion secondary battery having a large discharge capacity, which has excellent flatness of the charge / discharge potential and eliminates a shelf having a potential of 3.5 to 4.5 V in the charge / discharge curve. I know that there is.

(実施例2)
実施例1と同様にスピネル型LiMn1.5 Ni0.5 4 を合成し、得られたリチウムマンガンニッケル複合酸化物前駆体の粉末をマッフル炉(modelKDF HR7:デンケン製)で500℃、2時間仮焼成したのち700℃で20時間酸素雰囲気で焼成することで、スピネル型LiMn1.5 Ni0.5 4 を合成した。その後、実施例1と同様に電池作製、評価を行った。その結果、図2に示すように、充放電電位の平坦性に優れ、充放電曲線において3.5〜4.5V領域の電位の棚が排除された、放電容量が大きなリチウムイオン二次電池であることがわかる。
(Example 2)
Spinel type LiMn 1.5 Ni 0.5 O 4 was synthesized in the same manner as in Example 1, and the obtained lithium manganese nickel composite oxide precursor powder was calcined at 500 ° C. for 2 hours in a muffle furnace (model KDF HR7: manufactured by Denken). Subsequently, spinel-type LiMn 1.5 Ni 0.5 O 4 was synthesized by baking in an oxygen atmosphere at 700 ° C. for 20 hours. Thereafter, the battery was prepared and evaluated in the same manner as in Example 1. As a result, as shown in FIG. 2, a lithium ion secondary battery having a large discharge capacity, which has excellent flatness of the charge / discharge potential and eliminates a shelf having a potential of 3.5 to 4.5 V in the charge / discharge curve. I know that there is.

(実施例3)
金属イオンを含まない非イオン水溶性有機化合物として、市販の酢酸CH3 COOH(和光純薬工業製)から20質量%酢酸水溶液を94g添加し、酢酸の添加量を金属モル量をMとすると1/3Mとなるようにした以外は、実施例1と同様に、スピネル型LiMn1.5 Ni0.5 4 を合成し、その後、電池作製、評価を行った。その結果、実施例1と同様に、充放電電位の平坦性に優れ、充放電曲線において3.5〜4.5V領域の電位の棚が排除された、放電容量が大きなリチウムイオン二次電池であった。
(Example 3)
As a nonionic water-soluble organic compound containing no metal ions, 94 g of a 20% by mass aqueous acetic acid solution from commercially available acetic acid CH 3 COOH (manufactured by Wako Pure Chemical Industries, Ltd.) is added, and the amount of acetic acid added is 1 when the molar amount of metal is M. A spinel type LiMn 1.5 Ni 0.5 O 4 was synthesized in the same manner as in Example 1 except that it was set to / 3M, and then the battery was produced and evaluated. As a result, in the same manner as in Example 1, the lithium-ion secondary battery having a large discharge capacity, which is excellent in flatness of the charge / discharge potential and in which the potential shelf in the region of 3.5 to 4.5 V is eliminated in the charge / discharge curve. there were.

(実施例4)
金属イオンを含まない非イオン水溶性有機化合物として、市販の蓚酸(COOH)2 ・2H2 O(和光純薬工業製)から20質量%蓚酸水溶液を94g添加し、蓚酸の添加量を金属モル量をMとすると1/6Mとなるようにした以外は、実施例1と同様に、スピネル型LiMn1.5 Ni0.5 4 を合成し、その後、電池作製、評価を行った。その結果、実施例1と同様に、充放電電位の平坦性に優れ、充放電曲線において3.5〜4.5V領域の電位の棚が排除された、放電容量が大きなリチウムイオン二次電池であった。
Example 4
As a nonionic water-soluble organic compound containing no metal ions, 94 g of a 20% by mass aqueous oxalic acid solution is added from commercially available oxalic acid (COOH) 2 · 2H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.). Spinel type LiMn 1.5 Ni 0.5 O 4 was synthesized in the same manner as in Example 1 except that M was set to 1 / 6M, and then the battery was fabricated and evaluated. As a result, in the same manner as in Example 1, the lithium-ion secondary battery having a large discharge capacity, which is excellent in flatness of the charge / discharge potential and in which the potential shelf in the region of 3.5 to 4.5 V is eliminated in the charge / discharge curve. there were.

(実施例5)
水溶性リチウム塩として、市販の蓚酸リチウム(COOLi)2 (和光純薬工業製)を使用した以外は、実施例1と同様に、スピネル型LiMn1.5 Ni0.5 4 を合成し、その後、電池作製、評価を行った。その結果、実施例1と同様に、充放電電位の平坦性に優れ、充放電曲線において3.5〜4.5V領域の電位の棚が排除された、放電容量が大きなリチウムイオン二次電池であった。
(Example 5)
Spinel-type LiMn 1.5 Ni 0.5 O 4 was synthesized in the same manner as in Example 1 except that commercially available lithium oxalate (COOLi) 2 (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the water-soluble lithium salt. And evaluated. As a result, in the same manner as in Example 1, the lithium-ion secondary battery having a large discharge capacity, which is excellent in flatness of the charge / discharge potential and in which the potential shelf in the region of 3.5 to 4.5 V is eliminated in the charge / discharge curve. there were.

(実施例6)
実施例1と同様にリチウムマンガンニッケルの複合酸化物前駆体を合成し、得られたリチウムマンガンニッケルの複合酸化物前駆体の粉末をマッフル炉(modelKDF HR7:デンケン製)で500℃で2時間仮焼成したのち800℃で20時間酸素雰囲気で焼成することで、スピネル型LiMn1.5 Ni0.5 4 を合成した。その後、実施例1と同様に電池作製、評価を行った。複数の電池において、その評価が実施例1と同様であったが、図2に示すように、一部の電池で3.5〜4.5V領域に電位の棚が出現するものが存在した。
(Example 6)
The composite oxide precursor of lithium manganese nickel was synthesized in the same manner as in Example 1, and the obtained lithium manganese nickel composite oxide precursor powder was temporarily prepared at 500 ° C. for 2 hours in a muffle furnace (model KDF HR7: manufactured by Denken). After the firing, spinel type LiMn 1.5 Ni 0.5 O 4 was synthesized by firing in an oxygen atmosphere at 800 ° C. for 20 hours. Thereafter, the battery was prepared and evaluated in the same manner as in Example 1. In some batteries, the evaluation was the same as in Example 1. However, as shown in FIG. 2, some batteries had potential shelves in the 3.5 to 4.5 V region.

(実施例7)
実施例1と同様にリチウムマンガンニッケルの複合酸化物前駆体を合成し、得られたリチウムマンガンニッケルの複合酸化物前駆体の粉末をマッフル炉(modelKDF HR7:デンケン製)で500℃で2時間仮焼成したのち900℃で20時間酸素雰囲気で焼成することで、スピネル型LiMn1.5 Ni0.5 4 を合成した。その後、実施例1と同様に電池作製、評価を行った。複数の電池において、その評価が実施例1と同様であったが、図2に示すように、一部の電池で3.5〜4.5V領域に電位の棚が出現するものが存在した。
(Example 7)
The composite oxide precursor of lithium manganese nickel was synthesized in the same manner as in Example 1, and the obtained lithium manganese nickel composite oxide precursor powder was temporarily prepared at 500 ° C. for 2 hours in a muffle furnace (model KDF HR7: manufactured by Denken). After the firing, spinel-type LiMn 1.5 Ni 0.5 O 4 was synthesized by firing in an oxygen atmosphere for 20 hours at 900 ° C. Thereafter, the battery was prepared and evaluated in the same manner as in Example 1. In some batteries, the evaluation was the same as in Example 1. However, as shown in FIG. 2, some batteries had potential shelves in the 3.5 to 4.5 V region.

(比較例1)
リチウム(LiNO3:関東化学製)、硝酸マンガン(Mn(NO3 )2 ・6H2 O:和光純薬工業製)および硝酸ニッケル(Ni(NO3 )2 ・6H2 O:和光純薬工業製)をモル比でLi:Mn:Ni=1.0:1.5:0.5になるように秤量し、金属イオンを含まない非イオン水溶性有機化合物を添加することなく混合水溶液を調製し、150℃〜200℃で加熱したところ、硝酸イオンの分解反応が起こらず、スピネル型LiMn1.5 Ni0.5 4 の複合酸化物前駆体の粉体は得られなかった。
(Comparative Example 1)
Lithium (LiNO 3 : manufactured by Kanto Chemical), manganese nitrate (Mn (NO 3 ) 2 .6H 2 O: manufactured by Wako Pure Chemical Industries) and nickel nitrate (Ni (NO 3 ) 2 .6H 2 O: manufactured by Wako Pure Chemical Industries) ) In a molar ratio of Li: Mn: Ni = 1.0: 1.5: 0.5 to prepare a mixed aqueous solution without adding a nonionic water-soluble organic compound containing no metal ions. When heated at 150 ° C. to 200 ° C., the decomposition reaction of nitrate ions did not occur, and the composite oxide precursor powder of spinel type LiMn 1.5 Ni 0.5 O 4 was not obtained.

(比較例2)
市販の硝酸リチウム(LiNO3:関東化学製)、硝酸マンガン(Mn(NO3 )2 ・6H2 O:和光純薬工業製)および硝酸ニッケル(Ni(NO3 )2 ・6H2 O:和光純薬工業製)をLi:Mn:Ni=1.0:1.5:0.5になるように秤量し、純水50mlに溶かし水溶液とした。
(Comparative Example 2)
Commercially available lithium nitrate (LiNO 3 : manufactured by Kanto Chemical), manganese nitrate (Mn (NO 3 ) 2 .6H 2 O: manufactured by Wako Pure Chemical Industries) and nickel nitrate (Ni (NO 3 ) 2 .6H 2 O: Wako Pure) Yakuhin Kogyo Co., Ltd.) was weighed so that Li: Mn: Ni = 1.0: 1.5: 0.5 and dissolved in 50 ml of pure water to obtain an aqueous solution.

これに5質量%クエン酸水溶液を100g加え原料とした。このとき上記クエン酸の添加量は金属モル量をMとすると1/36Mとした。なお、20質量%クエン酸は市販のクエン酸一水和物(和光純薬工業製)を所定の質量%になるよう純水で溶解した。150℃〜200℃で加熱したところ、硝酸イオンの分解反応が起こらず、スピネル型LiMn1.5 Ni0.5 4 の複合酸化物前駆体の粉体は得られなかった。 100 g of 5% by mass citric acid aqueous solution was added to this as a raw material. At this time, the amount of citric acid added was 1/36 M, where M is the molar amount of metal. In addition, 20 mass% citric acid melt | dissolved the commercially available citric acid monohydrate (made by Wako Pure Chemical Industries) with a pure water so that it might become a predetermined mass%. When heated at 150 ° C. to 200 ° C., decomposition reaction of nitrate ions did not occur, and spinel-type LiMn 1.5 Ni 0.5 O 4 composite oxide precursor powder was not obtained.

(比較例3)
市販の硝酸リチウム(LiNO3 :関東化学製)、硝酸マンガン(Mn(NO3 )2 ・6H2 O:和光純薬工業製)および硝酸ニッケル(Ni(NO3 )2 ・6H2 O:和光純薬工業製)をLi:Mn:Ni=1.0:1.5:0.5になるように秤量し、純水50mlに溶かし水溶液とした。
(Comparative Example 3)
Commercially available lithium nitrate (LiNO 3 : manufactured by Kanto Chemical), manganese nitrate (Mn (NO 3 ) 2 .6H 2 O: manufactured by Wako Pure Chemical Industries) and nickel nitrate (Ni (NO 3 ) 2 .6H 2 O: Wako Pure) Yakuhin Kogyo Co., Ltd.) was weighed so that Li: Mn: Ni = 1.0: 1.5: 0.5 and dissolved in 50 ml of pure water to obtain an aqueous solution.

これに60質量%クエン酸水溶液を100g加え原料とした。このとき上記クエン酸の添加量は金属モル量をMとすると1/3Mとした。なお、20質量%クエン酸は市販のクエン酸一水和物(和光純薬工業製)を所定の質量%になるよう純水で溶解した。150℃〜200℃で加熱したところ、硝酸イオンの分解反応が不充分で、スピネル型LiMn1.5 Ni0.5 4 の複合酸化物前駆体の粉体は得られなかった。 100 g of a 60% by mass aqueous citric acid solution was added to this as a raw material. At this time, the amount of citric acid added was 1/3 M, where M is the metal molar amount. In addition, 20 mass% citric acid melt | dissolved the commercially available citric acid monohydrate (made by Wako Pure Chemical Industries) with a pure water so that it might become a predetermined mass%. When heated at 150 ° C. to 200 ° C., the decomposition reaction of nitrate ions was insufficient, and a spinel-type LiMn 1.5 Ni 0.5 O 4 composite oxide precursor powder was not obtained.

実施例1によって得られたリチウムマンガンニッケル複合酸化物の乾燥粉末のX線回折図である。2 is an X-ray diffraction pattern of a dry powder of lithium manganese nickel composite oxide obtained in Example 1. FIG. 実施例1、実施例2、実施例6、実施例7により作製したリチウム二次電池の充放電試験結果を示す図である。ただし、実施例6および実施例7では、4V領域に電位の棚が出現したものを示した。It is a figure which shows the charging / discharging test result of the lithium secondary battery produced by Example 1, Example 2, Example 6, Example 7. FIG. However, in Example 6 and Example 7, the thing where the shelf of the potential appeared in the 4V region was shown. 電池評価に用いたコイン電池の概略を示す図である。It is a figure which shows the outline of the coin battery used for battery evaluation.

符号の説明Explanation of symbols

1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体
1 Lithium metal anode 2 Separator (electrolyte impregnation)
3 Positive electrode (Evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector

Claims (6)

一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法において、水溶性リチウム塩と硝酸マンガンおよび硝酸ニッケルを水に溶解して得られた混合水溶液に、金属イオンを含まない非イオン水溶性有機化合物を、リチウム、マンガン、ニッケルのモル数の合計Mに対して、1/10M以上1/5M以下となるように、添加し、その後、前記混合水溶液の水分および硝酸基を150℃以上の温度で加熱除去することによってリチウムマンガンニッケル複合酸化物前駆体を合成し、さらに、合成した該複合酸化物前駆体を酸素雰囲気中にて熱処理することを特徴とするリチウムマンガンニッケル複合酸化物の製造方法。 Lithium manganese nickel having a spinel structure represented by the general formula: Li 1 + X Mn 2 -YX Ni Y O 4 (where −0.05 ≦ X ≦ 0.10, 0.45 ≦ Y ≦ 0.55) In the method for producing a composite oxide, a mixed aqueous solution obtained by dissolving water-soluble lithium salt, manganese nitrate, and nickel nitrate in water is mixed with a nonionic water-soluble organic compound that does not contain metal ions. Lithium manganese nickel is added by adding 1 / 10M to 1 / 5M with respect to the total number of moles M, and then removing the moisture and nitrate groups of the mixed aqueous solution by heating at a temperature of 150 ° C. or higher. Production of lithium manganese nickel composite oxide characterized by synthesizing composite oxide precursor and further heat-treating the synthesized composite oxide precursor in an oxygen atmosphere Law. 上記金属イオンを含まない非イオン水溶性有機化合物が、金属イオンを含まないカルボン酸基を有する有機化合物である請求項1に記載のリチウムマンガンニッケル複合酸化物の製造方法。   The method for producing a lithium manganese nickel composite oxide according to claim 1, wherein the nonionic water-soluble organic compound not containing metal ions is an organic compound having a carboxylic acid group not containing metal ions. 上記金属イオンを含まないカルボン酸基を有する有機化合物が、酢酸、蓚酸、クエン酸から選択される請求項2に記載のリチウムマンガンニッケル複合酸化物の製造方法。   The method for producing a lithium manganese nickel composite oxide according to claim 2, wherein the organic compound having a carboxylic acid group not containing metal ions is selected from acetic acid, oxalic acid, and citric acid. 水溶性リチウム塩として、硝酸リチウムを用いる請求項1に記載のリチウムマンガンニッケル複合酸化物の製造方法。   The method for producing a lithium manganese nickel composite oxide according to claim 1, wherein lithium nitrate is used as the water-soluble lithium salt. リチウムマンガンニッケル複合酸化物前駆体を500℃以上800℃未満の温度で熱処理することを特徴とする請求項1記載のリチウムマンガンニッケル複合酸化物の製造方法。   The method for producing a lithium manganese nickel composite oxide according to claim 1, wherein the lithium manganese nickel composite oxide precursor is heat-treated at a temperature of 500 ° C or higher and lower than 800 ° C. 請求項1〜5に記載のリチウムマンガンニッケル複合酸化物の製造方法で得られ、かつ、一般式:Li1+X Mn2-Y-X NiY 4 (ただし、−0.05≦X≦0.10、0.45≦Y≦0.55)で表され、スピネル構造を有し、タップ密度が0.2〜1.0m2 /gであることを特徴とするリチウムマンガンニッケル複合酸化物を用いた非水系電解質二次電池用正極活物質。 It is obtained by the method for producing a lithium manganese nickel composite oxide according to claim 1 and has a general formula: Li 1 + X Mn 2 -YX Ni Y O 4 (where -0.05 ≦ X ≦ 0. 10, 0.45 ≦ Y ≦ 0.55), a spinel structure, and a tap density of 0.2 to 1.0 m 2 / g is used. A positive electrode active material for a non-aqueous electrolyte secondary battery.
JP2003291689A 2003-08-11 2003-08-11 Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same Pending JP2005060162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291689A JP2005060162A (en) 2003-08-11 2003-08-11 Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291689A JP2005060162A (en) 2003-08-11 2003-08-11 Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2005060162A true JP2005060162A (en) 2005-03-10

Family

ID=34369300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291689A Pending JP2005060162A (en) 2003-08-11 2003-08-11 Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2005060162A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505929A (en) * 2005-08-25 2009-02-12 コミツサリア タ レネルジー アトミーク High voltage positive electrode material based on nickel and manganese for lithium cell batteries with spinel structure
WO2012157143A1 (en) * 2011-05-19 2012-11-22 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion batteries and method for producing same
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
CN116322983A (en) * 2020-10-15 2023-06-23 国立大学法人京都大学 Anode for alkaline water electrolysis and method for producing same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505929A (en) * 2005-08-25 2009-02-12 コミツサリア タ レネルジー アトミーク High voltage positive electrode material based on nickel and manganese for lithium cell batteries with spinel structure
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2012157143A1 (en) * 2011-05-19 2012-11-22 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion batteries and method for producing same
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
CN116322983A (en) * 2020-10-15 2023-06-23 国立大学法人京都大学 Anode for alkaline water electrolysis and method for producing same
CN116322983B (en) * 2020-10-15 2024-03-15 国立大学法人京都大学 Anode for alkaline water electrolysis and method for producing same

Similar Documents

Publication Publication Date Title
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4853608B2 (en) Lithium secondary battery
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2007039266A (en) Manufacturing method of lithium-manganese-nickel complex oxide and positive electrode active material for non-aqueous electrolyte secondary cell
JPWO2004030126A1 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JP2010129509A (en) Nonaqueous electrolyte battery
JP2005060162A (en) Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same
JP2001110455A (en) Nonaqueous electrolyte battery
WO2010135960A1 (en) Titanium system composite and the preparing method of the same
JP5013386B2 (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5026629B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
CN112424976A (en) Positive electrode active material and secondary battery
JP4028738B2 (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP3661183B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
JP6233828B2 (en) Negative electrode for lithium ion battery, lithium ion battery comprising the negative electrode
WO2014073701A1 (en) Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JPH09147863A (en) Nonaqueous electrolyte battery
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN114864894B (en) High-pressure-resistant coating modified lithium-rich manganese-based positive electrode material and preparation method and application thereof
JP2005174630A (en) High output type non-aqueous electrolyte secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP5189466B2 (en) Lithium secondary battery