WO2004042860A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2004042860A1
WO2004042860A1 PCT/JP2003/014154 JP0314154W WO2004042860A1 WO 2004042860 A1 WO2004042860 A1 WO 2004042860A1 JP 0314154 W JP0314154 W JP 0314154W WO 2004042860 A1 WO2004042860 A1 WO 2004042860A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
composite oxide
aqueous electrolyte
lithium
particles
Prior art date
Application number
PCT/JP2003/014154
Other languages
French (fr)
Japanese (ja)
Inventor
Nao Shimura
Koshin Tanaka
Masahiro Sekino
Asako Satoh
Shusuke Inada
Akira Yajima
Masayuki Oguchi
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Publication of WO2004042860A1 publication Critical patent/WO2004042860A1/en
Priority to US11/121,111 priority Critical patent/US7455933B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • primary batteries such as lithium-manganese batteries
  • secondary batteries such as Eckel-cadmium batteries and lead-acid batteries.
  • non-aqueous electrolyte secondary batteries using a lithium composite oxide for the positive electrode and a carbonaceous material capable of occluding and releasing lithium ion for the negative electrode are smaller, lighter, have higher cell voltages, and have higher cell voltages. Attention has been paid to obtaining energy density.
  • the diffraction peak ratio at the (03) plane and the (104) plane at the Miller index hkl of X-ray diffraction (003) / (104) force is 1.2 or more, and the average particle diameter D Force 5 or more: L 0 im, lithium nickel composite oxide in which 10% of the particle size distribution is 0.5D or more and 90% is 2D or less.
  • An object of the present invention is to provide a nonaqueous electrolyte secondary battery having an improved charge / discharge cycle life.
  • a nonaqueous electrolyte secondary battery comprising: a positive electrode including a positive electrode active material containing a lithium composite oxide powder; a negative electrode; and a nonaqueous electrolyte.
  • the lithium composite oxide powder contains secondary aggregated particles, the molar ratio satisfies the following formula (A), the peak intensity ratio satisfies the following formula (B), and the volume cumulative frequency is 90%.
  • the non-aqueous electrolyte, t the non-aqueous electrolyte secondary battery comprising a sul tons compounds have a single double bond also rather small in the ring is provided
  • I is the Lithium complex oxide (0 0 3) in a powder X-ray diffraction of the powder surface of the peak intensity (cps) in, I ⁇ 04 Ri peak intensity (cps) der of (1 0 4) plane in the powder X-ray diffraction
  • X U is the number of moles of lithium of the Li Chi um composite oxide powder
  • X M Is the number of elements of the element M in the lithium composite oxide powder
  • the element M is at least one selected from the group consisting of Ni and Co.
  • a positive electrode including positive electrode active material particles containing lithium composite oxide particles, a negative electrode, A nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte, wherein the lithium composite oxide particles contain at least one element M selected from the group consisting of Ni and Co. And has a particle morphology including secondary aggregates, and the peak intensity ratio satisfies the following expression (C),
  • the content of the lithium composite oxide particles in the positive electrode active material particles is 50% by weight or more;
  • the molar ratio of the positive electrode active material particles satisfies the following formula (D), and the particle diameter (D90) force of 90% of the volume cumulative frequency of the positive electrode active material particles is S 10 O / ir! Within the range of ⁇ 25 m,
  • the non-aqueous electrolyte, t the non-aqueous electrolyte secondary battery comprising a sul tons compounds have a single double bond also rather small in the ring is provided
  • FIG. 1 is a perspective view showing a thin non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
  • Fig. 2 shows the thin non-aqueous electrolyte secondary battery of Fig. 1 along the ⁇ _ ⁇ line.
  • FIG. 3 is a partially cutaway perspective view showing a rectangular non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 4 is a partial cross-sectional view showing a cylindrical nonaqueous electrolyte secondary battery which is an example of the nonaqueous electrolyte secondary battery according to the present invention.
  • FIG. 5 is a characteristic diagram showing the 1H NMR spectrum of PRS contained in the nonaqueous electrolyte of the nonaqueous electrolyte secondary battery of Example 1, showing the best mode for carrying out the invention.
  • the first and second nonaqueous electrolyte secondary batteries according to the present invention will be described.
  • a first nonaqueous electrolyte secondary battery according to the present invention is a nonaqueous electrolyte secondary battery including a positive electrode including a positive electrode active material containing a lithium composite oxide powder, a negative electrode, and a nonaqueous electrolyte.
  • the lithium composite oxide powder contains secondary aggregated particles and has a molar ratio satisfying the following formula (A), a peak intensity ratio satisfying the following formula (B), and a volume cumulative frequency of 90%.
  • the particle size (D90) is in the range of 10 / im to 25 ⁇ ,
  • the non-aqueous electrolyte contains a sulfonate compound having at least one double bond in a ring.
  • I 003 is the Lithium complex oxide (0 0 3) in a powder X-ray diffraction of the powder surface of the peak intensity ( cps)
  • I 04 is the peak intensity (cps) of the (104) plane in the powder X-ray diffraction
  • X Li is the lithium in the lithium composite oxide powder.
  • Is the number of moles of titanium, and ⁇ is the number of moles of the element M in the lithium composite oxide powder, and the element M is at least one selected from the group consisting of Ni and Co. is there.
  • the above-mentioned sultone compound can form a lithium ion permeable protective film on the positive electrode surface by opening a double bond and causing a polymerization reaction at the time of the first charge.
  • the lithium composite oxide powder has a small expansion and contraction due to the occlusion and release of lithium, and at the same time, a protective coating is formed not only on the surface of the secondary aggregated particles but also on the gaps between the primary particles. Therefore, the protective coating can form a complicated network structure.
  • the protective film can be prevented from peeling off from the positive electrode during the charge / discharge cycle, so that the oxidative decomposition reaction of the nonaqueous electrolyte can be suppressed, and the charge / discharge cycle of the secondary battery can be suppressed.
  • the positive electrode, the negative electrode, and the non-aqueous electrolyte will be described below.
  • the positive electrode includes a current collector, and a positive electrode layer supported on one or both surfaces of the current collector and containing the positive electrode active material, a binder, and a conductive agent.
  • the lithium composite oxide is synthesized, for example, by mixing the compounds of the respective constituent elements (for example, oxides and hydroxides) and then firing the mixture in the air or in an oxygen atmosphere.
  • the compounds of the respective constituent elements for example, oxides and hydroxides
  • L 0 2 of within range.
  • the molar ratio ( XLi / XM) is less than 0.95, the crystallinity is remarkably reduced. Occlusion and release may hardly occur.
  • those having a molar ratio ( XLi / XM ) force exceeding S 1.02 have excellent crystallinity, but the grain growth proceeds during firing, so that the ratio of single particles becomes high.
  • a more preferable range of the molar ratio ( XLi / XM ) is 0.997 to: L.02, and a more preferable range is 0.99 to: L.02. is there.
  • the lithium composite oxide examples include a lithium nickel composite oxide, a lithium cobalt composite oxide, a lithium nickel cobalt composite oxide, and the like.
  • the lithium composite oxide may contain lithium and an element other than the element M. Examples of such elements include Mn, A1, SnFe, Cu, Cr, Zn, Mg, Si, P, F, Cl, B, and the like. You.
  • the type of the added element may be one type or two or more types.
  • the lithium composite oxide has a positive electrode active material of 50 ° / ° C. It is desirable that they account for the above.
  • the reason for limiting the ratio (I 003 ZI 104) of the peak intensity I 003 of the ( 003 ) plane to the peak intensity I 104 of the ( 104 ) plane in powder X-ray diffraction will be described.
  • the peak intensity ratio (I 003 / I 104) of 5 or more is excellent in crystallinity, but shows plate-likeness due to the progress of grain growth, that is, has high crystal orientation. Since the ratio of single particles is increased, the expansion and contraction of lithium due to occlusion and release of lithium are large, and the protective coating covering each primary particle is isolated, making it impossible to obtain a network structure.
  • the charge / discharge cycle life may be shortened because the protective film is easily peeled off by repeating the charge / discharge cycle.
  • the peak intensity ratio (I 003 I 104) By setting the peak intensity ratio (I 003 I 104) to 2 or more and less than 5, the ratio of secondary aggregated particles can be increased, and the expansion accompanying the occlusion and release of lithium can be achieved. ⁇ Shrinkage can be reduced.
  • the peak intensity ratio (I 003 / I 104) is more preferable than the peak intensity ratio (I 003 I 104) of 2 which is calculated.
  • the preferred range is greater than 2 and less than 4.95.
  • the particle diameter (D 90) of the lithium composite oxide powder having a volume cumulative frequency of 90% is defined in the above range. If the particle size is less than 0 9 0 10 ⁇ m, the number of primary particles constituting the secondary aggregated particles tends to be small, and the contact area between the secondary aggregated particles and the protective film is insufficient, and the protective film May be easily separated, and the life of the charge / discharge cycle may be shortened. On the other hand, when the D90 exceeds 25 m, the number of primary particles constituting the secondary aggregated particles is large, so that the protective coating does not spread inside the secondary aggregated particles and the surface of the secondary aggregated particles Only the state close to the state where only the protective coating is covered. For this reason, the protective film is easily peeled off during the charge / discharge cycle, and the life of the charge / discharge cycle may be shortened. A more preferred range for D90 is lOjun! ⁇ .
  • Examples of the conductive agent include acetylene black and carbohydrate. Black, graphite and the like.
  • the binder has a function of holding the active material on the current collector and connecting the active materials.
  • the binder include polytetrafluoroethylene (PTFE), polystyrene vinylidene (PVdF), polyethersulfone, and ethylene-propylene.
  • PTFE polytetrafluoroethylene
  • PVdF polystyrene vinylidene
  • EPDM styrene-butadiene rubber
  • SBR styrene-butadiene rubber
  • the mixing ratio of the positive electrode active material, the conductive agent and the binder is set in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder. Is preferred.
  • a conductive substrate having a porous structure or a non-porous conductive substrate can be used as the current collector.
  • These conductive substrates can be formed, for example, of aluminum, stainless steel, or Eckel force.
  • the positive electrode is manufactured by, for example, suspending a conductive agent and a binder in a suitable solvent in a positive electrode active material, applying the suspension to a current collector, and drying to form a thin plate. You.
  • the negative electrode includes a current collector and a negative electrode layer supported on one or both surfaces of the current collector.
  • the negative electrode layer contains a carbonaceous material that occludes and releases lithium ions and a binder.
  • the carbonaceous material examples include a graphite material, such as graphite, coke, carbon fiber, spherical carbon, pyrolysis gaseous carbonaceous material, and resin fired body, or a carbonaceous material; a thermosetting resin.
  • a graphite material such as graphite, coke, carbon fiber, spherical carbon, pyrolysis gaseous carbonaceous material, and resin fired body
  • a carbonaceous material a thermosetting resin.
  • Isotropic pitch Mesophase pitch-based carbon, mesophase pitch-based carbon fiber, and mesophase spherules especially, mesophase pitch-based carbon fiber has higher capacity / charge / discharge cycle characteristics.
  • a graphite material having graphite crystals in which the ( 002 ) plane spacing d 002 is 0.34 nm or less.
  • a nonaqueous electrolyte secondary battery provided with a negative electrode containing such a graphitic material as a carbonaceous material can greatly improve the battery capacity and large-current discharge characteristics. More preferably, the plane distance d is 0.337 nm or less.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene polyfluoride (PVdF), and ethylene propylene Polymer (EPDM), styrene-butadiene rubber (SBR), canolepoxy methinoresenolose (CMC) and the like can be used.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene polyfluoride
  • EPDM ethylene propylene Polymer
  • SBR styrene-butadiene rubber
  • CMC canolepoxy methinoresenolose
  • the mixing ratio of the carbonaceous material and the binder is preferably in the range of 90 to 98% by weight of the carbonaceous material and 2 to 20% by weight of the binder.
  • a conductive substrate having a porous structure or a non-porous conductive substrate can be used as the current collector.
  • These conductive substrates can be formed, for example, from copper, stainless steel, or nickel.
  • the negative electrode is obtained by, for example, kneading a carbonaceous substance that occludes and releases lithium ion and a binder in the presence of a solvent, and obtains a suspension. Is applied to a current collector, dried, and then pressed once or two to five times at a desired pressure in multiple steps. An electrode group is manufactured using the positive electrode and the negative electrode as described above.
  • This electrode group can be formed, for example, by (i) spirally winding a positive electrode and a negative electrode with a separator interposed therebetween, or (ii) flat-shaped by interposing a separator between the positive electrode and the negative electrode. (Iii) The positive and negative electrodes are spirally wound with a separator between them, and then compressed radially (iv) A separator is interposed between the positive and negative electrodes And then bent one or more times, or (V) a method of laminating a positive electrode and a negative electrode with a separator interposed therebetween.
  • the electrode group need not be pressed, but may be pressed to increase the integrated strength of the positive electrode, the negative electrode, and the separator. It is also possible to apply heating during pressing.
  • the electrode group may contain an adhesive polymer in order to increase the integration strength of the positive electrode, the negative electrode and the separator.
  • the polymer having the adhesive property include polyacrylo-tolyl (PAN), polyatalylate (PMMA), and polyvinylidene fluoride (PVdF). , Polyvinyl chloride (PVC), or polyethylene oxide (PEO).
  • separator used for this electrode group a microporous membrane woven fabric, a nonwoven fabric, a laminate of the same material or a different material thereof, or the like can be used.
  • a material for forming the separator Polyethylene, polypropylene, ethylene-propylene copolymer, ethylene butene copolymer, and the like can be mentioned.
  • a material for forming the separator one or more kinds selected from the above-mentioned types can be used.
  • the thickness of the separator is preferably 30 ⁇ or less, and more preferably 25 tm or less.
  • the lower limit of the thickness is preferably set to 5 ⁇ m, and the more preferable lower limit is 8 ⁇ m.
  • the separator preferably has a heat shrinkage at 120 ° C. for one hour of not more than 20%. It is more preferable that the heat shrinkage is not more than 15%.
  • the separator has a porosity in the range of 30 to 60%.
  • a more preferred range of porosity is between 35 and 50%.
  • the separator preferably has an air permeability of not more than 600 seconds Z 100 cm 3 .
  • Air permeability refers to the time (seconds) required for 100 cm 3 of air to pass through the separator. More preferably, the upper limit of the air permeability is set at 500 seconds Z l 0 0 cm 3 . The lower limit of the air permeability is preferably set to 50 seconds Z 100 cm 3, and the more preferable lower limit is 80 seconds Z 100 cm 3 .
  • the width of the separator be wider than the width of the positive electrode and the negative electrode. With such a configuration, it is possible to prevent the positive electrode and the negative electrode from directly contacting each other without passing through the separator.
  • non-aqueous electrolyte those having a substantially liquid or gel-like form can be used.
  • the non-aqueous solvent includes a slutone compound having at least one double bond in a ring.
  • the sultone compound having at least one double bond in the ring may be sultone compound A represented by the following general formula (1) or sultone compound: Sulfon compound B in which at least one H of compound A is substituted with a hydrocarbon group can be used.
  • the sluton compound A or the sluton compound B may be used alone, or both the sluton compound A and the sluton compound B may be used.
  • PRS propene sultone
  • BTS 1,4-butylene sultone
  • 1,3-propene sultone (PRS) or 1,4-butylene sultone (BTS) may be used alone, or these PRS and BTS may be used in combination.
  • the ratio of the sultone compound be not more than 10% by volume. This is because, when the ratio of the sultone compound exceeds 10% by volume, the above-mentioned protective coating becomes extremely thick, so that the lithium ion permeability is reduced and the discharge capacity at a temperature lower than room temperature is reduced. Because. Furthermore, in order to maintain a high discharge capacity even at a low temperature of, for example, 120 ° C., it is desirable that the proportion of the sulfur compound to be contained is not more than 4% by volume. In addition, in order to sufficiently secure the formation amount of the protective film, it is desirable that the ratio of the sulfur compound be at least 0.01% by volume. Furthermore, if the ratio of the sultone compound is at least 0.1% by volume, the protective function of the protective film can be sufficiently exhibited even at a higher temperature, for example, 65 ° C.
  • non-aqueous solvent further contains ethylene carbonate (EC).
  • EC content in non-aqueous solvent is 25 volumes. /. It is desirable to set it within the range of ⁇ 50 volume ° / 0 . Thereby, a non-aqueous electrolyte having high conductivity and appropriate viscosity can be obtained.
  • a more preferred EC content is 25 volumes. /. In the range of ⁇ 45% by volume.
  • non-aqueous solvent other solvents can be used in combination with the sulfone compound and EC.
  • Other solvents include, for example, linear Carbonates ⁇ eg, methyl carbonate (MEC), jeticarbonate (DEC), dimethycarbonate (DMC), vinylene carbonate (VC), vinylinolechi Lencarbonate (VEC), phenyleneethylene force component (phEC), propylene carbonate (PC) ⁇ -Petit mouth rattan (GBL), y- (VL), methyl propionate (MP), ethyl propionate
  • MEC methyl carbonate
  • DEC jeticarbonate
  • DMC dimethycarbonate
  • VEC vinylene carbonate
  • VEC vinylinolechi Lencarbonate
  • phEC phenyleneethylene force component
  • PC propylene carbonate
  • GBL -Petit mouth rattan
  • MP methyl propionate
  • MP ethyl propionate
  • tetraethylene glycol resin methylate ether (Crown), tetraethylene glycol resin methylate ether (Ether), and the like.
  • the type of other solvent can be one or more.
  • electrolyte to be dissolved in the nonaqueous solvent, for example, perchloric Li Ji U beam (L i C 1 0 4) , six full Tsu reduction-phosphate Li Ji U beam
  • Li Ji Umushio (L i PF 6), four full Kkaho c acid Li Ji U beam (L i BF 4) six full Tsu arsenic Li Ji U beam (L i A s F 6) , Application Benefits off Ruoro meta sulfo Lithium phosphate (Li CF 3 SO 3), bis trifluorene methinoles norre honinolei midium lithium [L i N (CF 3 SO 2) 2], L i N (C 2 F 5 SO 2) Ru can and this include the 2 of which Li Ji Umushio.
  • the type of electrolyte used can be one, two or more.
  • the amount of the electrolyte dissolved in the nonaqueous solvent be 0.5 to 25 mol ZL. A more preferred range is from 1 to 2.5 mol L. It is desirable that the liquid non-aqueous electrolyte contains a surfactant such as trioctyl phosphate (TOP) in order to improve the wettability with the separator.
  • TOP trioctyl phosphate
  • the amount of the surfactant added is preferably 3% or less, and more preferably in the range of 0.1 to 1%.
  • the amount of the liquid non-aqueous electrolyte is 0.2 to 0.6 g per unit battery capacity of 10 OmAh.
  • a more preferred range for the mass of the liquid non-aqueous electrolyte is from 0.25 to 0.55 g ZLOOmAh.
  • a container for storing the above-described electrode group and the non-aqueous electrolyte will be described.
  • the shape of the container can be, for example, a cylindrical shape with a bottom, a rectangular tube with a bottom, a bag-like cup shape, or the like.
  • This container can be formed from, for example, a film including a resin layer, a metal plate, a metal film, or the like.
  • the resin layer contained in the film can be formed of, for example, polyolefin (for example, polyethylene, polypropylene), polyamide, or the like.
  • films including a resin layer it is preferable to use a laminated film in which a metal layer and protective layers disposed on both surfaces of the metal layer are integrated.
  • the metal layer plays a role of blocking moisture and maintaining the shape of the container. Examples of the metal layer include aluminum, stainless steel, iron, and copper eckel. Of these, aluminum is preferred because it is lightweight and has a high moisture-blocking function.
  • the metal layer may be formed of one kind of metal, but two or more kinds of metal layers may be formed. -It may be formed from a body.
  • the protective layer in contact with the outside serves to prevent damage to the metal layer.
  • This external protective layer is formed of one type of resin layer or two or more types of resin layers.
  • the inner protective layer plays a role in preventing the metal layer from being corroded by the non-aqueous electrolyte.
  • This internal protective layer is formed of one type of resin layer or two or more types of resin layers. Further, a thermoplastic resin for sealing the container with a heat seal can be provided on the surface of the internal protective layer.
  • the thickness of the film including the resin layer is preferably set to 0.3 mm or less, more preferably 0.25 mm or less, and still more preferably 0.15 mm. Below, the most preferred range is 0.12 mm or less. In addition, since the thickness force is thinner than SO.05 mm and it is easy to deform or break, the lower limit of the film thickness is preferably set to 0.05 mm. New
  • the metal plate and the metal film can be formed of, for example, iron, stainless steel, or aluminum.
  • the thickness of the metal plate and the metal film is preferably set to 0.4 mm or less, a more preferred range is 0.3 mm or less, and a most preferred range is 0.25 mm or less. is there. If the thickness is less than 0.05 mm, sufficient strength may not be obtained.Therefore, the lower limit of the thickness of the metal plate and the metal film is set to 0.05 mm. I prefer to do it.
  • a second nonaqueous electrolyte secondary battery includes a positive electrode including positive electrode active material particles containing lithium composite oxide particles, and a negative electrode.
  • a non-aqueous electrolyte secondary battery comprising: a lithium composite oxide particle comprising at least one element M selected from the group consisting of Ni and Co. And has a particle morphology including secondary agglomeration, and a peak intensity ratio satisfying the following formula (C),
  • the content of the lithium composite oxide particles in the positive electrode active material particles was 50% by weight. /. That is all
  • the molar ratio of the positive electrode active material particles satisfies the following formula (D), and the particle diameter (D90) of the above-mentioned positive electrode active material particles having a volume cumulative frequency of 90% is 10 111 to 25 / ⁇ 111. Within the range,
  • the non-aqueous electrolyte provides a non-aqueous electrolyte secondary battery including a sulfonate compound having at least one double bond in a ring ( ⁇ (I 003 / I 104) ⁇ 5 (C )
  • I 003 is the peak intensity of the (03) plane in the powder X-ray diffraction of the lithium composite oxide particles. in cps), I i 04 is the powder X-ray diffraction at (1 0 4) Ri peak intensity (cps) der the surface, Y L i is the number of moles of lithium of the positive electrode active material particle, Y M Is the number of moles of the element M in the positive electrode active material particles, and the element M is at least one selected from the group consisting of Ni and Co.
  • the second non-aqueous electrolyte secondary battery according to the present invention can have the same configuration as that described in the first non-aqueous electrolyte secondary battery except for the positive electrode.
  • the peak intensity ratio (I 003 I 104) is calculated as 2.
  • a more preferred range of peak intensity ratios (I003ZI104) is greater than 2 and less than 4.95.
  • the positive electrode active material particles contain 50% by weight or more of lithium composite oxide particles having a peak intensity ratio (I 003 I 104) of 2 or more and less than 5, the molar ratio of the positive electrode active material particles (Y LiZ YM) is almost equal to the molar ratio of the lithium composite oxide particles. Therefore, the molar ratio of (YLiZ Y M) to less than zero. 10 5, absorption and desorption of Lithium is mined in good Ri positive electrode active substance etc. decrease in crystallinity of Lithium double if oxide particles It may not happen. On the other hand, if the molar ratio (Y Li / Y M) 1 .
  • 0 2 yo Ri is rather large, though excellent in crystallinity of the Lithium complex oxide particles, high proportion of single particle of Lithium composite oxide particles Therefore, not only does the expansion and contraction of lithium due to occlusion and release of lithium increase, but also the protective coating covering the primary particles becomes isolated, making it difficult to obtain a network structure. As a result, the protective film is easily peeled off in the charge / discharge cycle, and the life of the charge / discharge cycle may be shortened.
  • a more preferred range of the molar ratio (Y L ; / Y) is 0.97-; L.02, and a more preferred range is 0.99-1.02.
  • the particle size distribution of the lithium composite oxide particles is largely reflected in the particle size distribution of the positive electrode active material particles.
  • the particle diameter (D90) of the volume-accumulated frequency of the positive electrode active material particles of 90% is less than 10 Aim, the number of the primary particles constituting the secondary aggregated particles of the lithium composite oxide particles is small. Because of the tendency to be small, the contact area between the secondary aggregated particles and the protective film is reduced, and the protective film is easily peeled. Therefore, there is a possibility that a long charge / discharge cycle life cannot be obtained.
  • the larger particles of 0.90 to 25111 tend to have a large number of primary particles constituting the secondary aggregated particles of the lithium composite oxide particles, so that the protective coating is formed inside the secondary aggregated particles.
  • the protective coating is formed inside the secondary aggregated particles.
  • a more preferred range for D 90 is 10 jum to 20 ⁇ m.
  • the content of the lithium composite oxide particles in the positive electrode active material particles is set to 60% by weight or more, and more preferably to 70% by weight or more.
  • lithium composite oxide containing the element M for example, 20 Lithium nickel composite oxide, Lithium cobalt composite oxide Lithium Eckert cobalt composite oxide, and the like.
  • Other types of elements can be added to the lithium composite oxide from the viewpoint of improving characteristics and the like. Examples of such elements include Mn, A1, Sn, Fe, Cu, Cr, Zn, Mg, Si, P, F, Cl, B, and the like. it can.
  • the type of the additive element may be one type or two or more types.
  • composition represented by the following formula (E) or (F) is preferable.
  • Ml is one or more elements selected from the group consisting of Ni, Mn, B, Al and Sn
  • the molar ratios ab and c are each 0.9. 5 ⁇ a ⁇ l. 05, 0.95 ⁇ b ⁇ 1.05, 0 ⁇ c ⁇ 0.05, 0.95 ⁇ b + c ⁇ l.
  • Further preferred ranges of the mole ratios a, b, and c are 0.97 a ⁇ l. 03 and 0.97 ⁇ b ⁇ 1.03 003.001. c ⁇ 0.03.
  • M2 is one or more elements selected from the group consisting of Mn, B, Al, and Sn
  • the molar ratios x, y, z, and w are each 0. 9 5 x ⁇ l. 0 5, 0.7 ⁇ y ⁇ 0.95, 0.05 ⁇ z ⁇ 0.3, 0 ⁇ w ⁇ 0.1, 0.95 ⁇ y + z + w ⁇ l.05.
  • Further preferred ranges of the monolith ratios x, y, and 0 are 0.97 x ⁇ 1.03, 0.75 ⁇ y ⁇ 0.9, and 0.1 ⁇ z ⁇ 0.25. .
  • the preferred range is 0 ⁇ w ⁇ 0.07, the more preferred range is 0 ⁇ w ⁇ 0.05, and the most preferred range is 0 ⁇ w ⁇ 0.03.
  • the lower limit of the molar ratio w is preferably set to 0.001.
  • lithium composite oxide particles not all particles need to have the same composition, and if the peak intensity ratio is 2 or more and less than 5, it is composed of two or more types of particles having different compositions. It may be.
  • the positive electrode active material particles may be formed from the above-described lithium composite oxide particles, but may include particles other than the lithium composite oxide particles.
  • the peak intensity ratio (I 0 0 3 / I 1 04) is Ru can and this include the 5 yo Ri greater Lithium-containing composite oxide particles. Since the lithium-containing composite oxide particles have a high activity in a charged state, the positive electrode containing the lithium-containing composite oxide particles may be used in a non-aqueous electrolyte under a high temperature environment. And can react quickly. As a result, when the battery is stored in a charged state in a high-temperature environment, a protective film of a sulfonate compound can be quickly formed on the positive electrode surface, thereby suppressing the oxidative decomposition reaction of the nonaqueous electrolyte. It is possible.
  • a more preferable range of the peak intensity ratio (I 003 I 104) is 7 or less. Above. In addition, the peak intensity ratio is larger than 50,000,
  • the upper limit of the peak intensity ratio is set to 500, because it may have a crystal structure that does not occlude lithium. This is desirable.
  • the positive electrode active material particles of lithium-containing composite oxide particles having a peak intensity ratio (I 003 I 104) greater than 5 are required. It is preferred that the proportion in the child be in the range of 0.1% by weight or more and less than 50% by weight. A more preferred range is from 0.5 to 48% by weight.
  • the lithium-containing composite oxide examples include a lithium-cobalt composite oxide. At least one kind of element different from the constituent elements can be added to the lithium-containing composite oxide. For example, Ni, Mn, A 1 , Sn, Fe, Cu, Cr, Zn, Mg, Si, P, F, CI, B, and so on.
  • the composition of the lithium-containing composite oxide may be represented by the above-described formula (E) or (F).
  • the lithium-containing composite oxide particles not all particles need to have the same composition. If the peak intensity ratio is larger than 5, two or more types of particles having different compositions are used. It may be composed of
  • the conductive agent, the binder, and the current collector may be the same as those described in the first nonaqueous electrolyte secondary battery.
  • the positive electrode is manufactured by, for example, suspending a conductive agent and a binder in a suitable solvent in a positive electrode active material, applying the suspension to a current collector, and drying the resultant to form a thin plate. You.
  • the positive electrode active material particles used in the above-described second nonaqueous electrolyte secondary battery according to the present invention contain 50% by weight or more of the lithium composite oxide particles containing the element M, and The material particles have a peak intensity ratio (I 003Z I 104) of 2 or more and less than 5 and have a particle form including secondary aggregated particles, and the molar ratio of the positive electrode active material particles (YL; Y M) is Since the particle diameter (D90) is within the range of 0.95 to 1.02 and the particle diameter (D90) of 90% of the volume cumulative frequency of the positive electrode active material particles is within the range of 110111 to 25111, It can form a protective film permeable to lithium ions on the surface of the positive electrode by reacting with the lithium compound.
  • this protective coating is formed not only on the surface of the secondary aggregated particles but also on the gaps between the primary particles, it can have a complex network structure. As a result, the protective film can be prevented from peeling off from the positive electrode during the charge / discharge cycle, so that the oxidative decomposition reaction of the nonaqueous electrolyte can be suppressed, and the charge / discharge cycle of the secondary battery can be suppressed. The service life can be improved.
  • a thin, rectangular cylindrical nonaqueous electrolyte secondary battery which is an example of the nonaqueous electrolyte secondary battery according to the present invention, will be described in detail with reference to FIGS.
  • FIG. 1 is a perspective view showing a thin non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 2 is a diagram showing the thin non-aqueous electrolyte secondary battery of FIG.
  • FIG. 3 is a cut-away partial cross-sectional view.
  • FIG. 3 shows a rectangular non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 4 is a partially cutaway perspective view showing a water electrolyte secondary battery, and
  • FIG. 4 is a partial cross-sectional view showing a cylindrical non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
  • an electrode group 2 is accommodated in a container body 1 having a rectangular cup shape.
  • the electrode group 2 has a structure in which a laminate including the positive electrode 3, the negative electrode 4, and the separator 5 disposed between the positive electrode 3 and the negative electrode 4 is wound into a flat shape.
  • the non-aqueous electrolyte is held in electrode group 2.
  • a part of the edge of the container body 1 is wide and functions as the cover plate 6.
  • the container body 1 and the lid plate 6 are each composed of a laminated film force.
  • the laminated film includes an external protective layer 7, an internal protective layer 8 containing a thermoplastic resin, and a metal layer 9 disposed between the external protective layer 7 and the internal protective layer 8.
  • a lid 6 is fixed to the container body 1 by a heat seal using the thermoplastic resin of the inner protective layer 8, whereby the electrode group 2 is sealed in the container.
  • a positive electrode tab 10 is connected to the positive electrode 3, and a negative electrode tab 11 is connected to the negative electrode 4.
  • Each of the negative electrodes 4 is drawn out of the container and serves as a positive electrode terminal and a negative electrode terminal.
  • an electrode group 13 is housed in a bottomed rectangular cylindrical container 12 made of a metal such as aluminum, for example.
  • the radiator 15 and the negative electrode 16 are laminated in this order, and are flatly wound.
  • a spacer 17 having an opening near the center is located above the electrode group 13. Is placed.
  • the non-aqueous electrolyte is held in the electrode group 13.
  • the sealing plate 18b which has an explosion-proof mechanism 18a and has a circular hole near the center, is laser-welded to the opening of the container 12.
  • the negative electrode terminal 19 is arranged in a circular hole of the sealing plate 18b via a hermetic seal.
  • the negative electrode tab 20 pulled out from the negative electrode 16 is welded to the lower end of the negative electrode terminal 19.
  • a positive electrode tab (not shown) is connected to a container 12 also serving as a positive electrode terminal.
  • a cylindrical container 21 made of stainless steel and having a bottom has an insulator 22 disposed at the bottom.
  • the electrode group 23 is housed in the container 21.
  • the electrode group 23 includes a positive electrode 24, a separator 2
  • a strip formed by laminating the negative electrode 26 and the separator 25 is spirally wound so that the separator 25 is located outside.
  • the container 21 contains a non-aqueous electrolyte.
  • the insulating paper 27 having an opening at the center is provided with the electrode group in the container 21.
  • the insulating sealing plate 28 is the container
  • the sealing plate 28 is disposed in the upper opening of the container 2 and the vicinity of the upper opening is caulked inward.
  • the positive electrode terminal 29 is fitted in the center of the insulating sealing plate 28.
  • One end of the positive electrode lead 30 is connected to the positive electrode 24, and the other end is connected to the positive electrode terminal 29.
  • the negative electrode 26 is connected to a negative electrode terminal via a negative electrode lead (not shown). It is connected to the container 21 which is a child.
  • Lithium composite oxide particles having the composition shown in Table 1 below and having a volume cumulative frequency of 90% particle diameter D90 and a peak intensity ratio (I 003 ZI104) of the values shown in Table 1 below were prepared. . As a result of scanning electron microscopy (SEM) observation, it was confirmed that the lithium composite oxide particles contained secondary aggregated particles.
  • SEM scanning electron microscopy
  • the particle size of the lithium composite oxide particles and the volume occupied by the particles in each particle size section are measured by a laser diffraction scattering method.
  • the particle size when the volume of the particle size section was accumulated to reach 90 ° / 0 as a whole was defined as the volume cumulative frequency of 90% particle size.
  • the peak of (104) plane was defined as the peak of (104) plane, and the peak of 26- 18.8 ° ⁇ 0.2 ° was defined as the peak of (003) plane.
  • the peak intensity (cps) was obtained by subtracting the background from the measured value of the diffraction pattern indicated by the two-axis.
  • the plane distance d 002 of the ( 002 ) plane of the carbonaceous material was determined from the powder X-ray diffraction spectrum by the half-width midpoint method. At this time, scattering correction such as Lorentz scattering was not performed. ⁇ Separator>
  • a separator consisting of a microporous polyethylene membrane with a thickness of 25 ⁇ m was prepared.
  • Ethylene carbonate (EC), 1-butyrolataton (GBL) and 1,3-propeneluton (PRS) are converted to volume ratio (EC: GBL: PRS) force S33: 66: 1.
  • EC Ethylene carbonate
  • GBL 1-butyrolataton
  • PRS 1,3-propeneluton
  • the liquid non-aqueous electrolyte was prepared by dissolving so as to obtain L.
  • a positive electrode lead made of strip-shaped aluminum foil (100 m thick) is ultrasonically welded to the positive electrode current collector, and a strip-shaped nickel foil (100 mm thick) is formed on the negative electrode current collector. zm) was subjected to ultrasonic welding, then the positive electrode and the negative electrode were spirally wound therebetween through the separator, and then formed into a flat shape to produce an electrode group.
  • a 100- ⁇ m-thick laminate film with both sides of aluminum foil covered with polyethylene was formed into a rectangular cup shape by a press machine, and the inside of the container was obtained.
  • the above-mentioned electrode group was housed.
  • a liquid non-aqueous electrolyte was charged to the electrode group in the By injecting so that the amount per Ah becomes 4.8 g and sealing with a heat seal, it has the structure shown in Figs.
  • a thin non-aqueous electrolyte secondary battery with a power of 3.6 mm, a width of 3.5 mm, and a height of 62 mm was assembled.
  • a thin non-aqueous electrolyte secondary battery was assembled in the same manner as described in Example 1 except that the composition of the non-aqueous electrolyte was changed as shown in Table 2 below.
  • DEC indicates getyl carbonate
  • MEC indicates methylethyl carbonate
  • PC indicates propylene carbonate
  • BTS indicates 1,4-butylenetone
  • a thin nonaqueous electrolyte secondary battery was assembled in the same manner as described in Example 1 except that the composition of the nonaqueous electrolyte was changed as shown in Table 4 below.
  • EC is ethylene carbonate
  • MEC methynoleethyl carbonate
  • PRS is 1,3-propene snorethone
  • DEC getyl carbonate
  • GBL is ⁇ -butyrolata.
  • Tone and PC indicate propylene carbonate
  • PS indicates propane sultone.
  • the molar ratio of Li to element M (XLi / M), peak intensity ratio (I003 / I104) and volume cumulative frequency 90% particle size D90 should be changed as shown in Table 3 below. Except for the above, the thin batteries of Examples 1 to 17 and Comparative Examples 1 to 10 obtained by assembling a thin nonaqueous electrolyte secondary battery in the same manner as described in Example 1 above were used. The charge-discharge cycle characteristics were evaluated under the conditions described below, and the results are shown in Tables 2 and 4 below.
  • charge and discharge cycle characteristics were as follows: charge and discharge rate 1 C, charge end voltage 4.2 V, discharge end voltage 3.0 OV charge / discharge test The discharge capacity retention rate after the charge and discharge was repeated 500 times in an environment at a temperature of 20 ° C (assuming the capacity of the first discharge was 100%) was determined.
  • Example 1 L i C O O 1.00 3.4
  • Example 2 L ⁇ C O O 1.00 3.4
  • Example 3 L i C O 2 1.00 3.4
  • Example 4 L i C Oo 1.00 3.4
  • Example 5 L i C 0 2 1.00 3.4
  • Example 6 L i C Oo 1.00 3.4
  • Example 7 L i C Oo 1.00 3 .
  • Example 8 LiCoOo 1.00 3.4
  • Example 9 LiCoOo 1.00 2.43
  • Example 10 LiCoo 1.00 2.65
  • Example 11 Li0.996.
  • Comparative Example 5 33 EC, 66% GBL 1 . 5M-LiBF 4 PS- 1 volume 0/0 3 5 Comparative Example 6 33 EC, 66% GBL 1 . 5M-LiBF 4 PRS- 1% 6 6
  • Comparative Example 7 33 EC, 66% GBL 1.5 M-LiBF 4 PRS-1 volume 0 / o 6 2
  • Comparative Example 8 33% EC, 66% GBL 1. 5M-LiBF 4 PRS- 1 fireman's standard 0/0 5 8
  • Comparative Example 9 33 EC, 66% GBL 1.5 M-LiBF 4 PRS-1 1 body 0 / o 3 8
  • Comparative Example 10 33 EC, 66% GBL 1 5M-LiBF 4 PRS - 1 volume 0/0 2 3
  • the secondary batteries of Examples 1 to 17 containing the compound have a higher capacity retention rate during 50,000 cycles than the secondary batteries of Comparative Examples 1 to 10.
  • the secondary batteries of Examples 1 to 12 and 14 to 17 have a value of 50,000 compared with the secondary battery of Example 13 which exceeds D90; ⁇ 20 ⁇ . The capacity retention rate during the cycle has increased.
  • the peak intensity ratio of the secondary batteries of Comparative Examples 1 to 4 in which no sulfonate compound was added and the secondary battery of Comparative Example 5 in which PS having no double bond was used as an additive were 5 or more.
  • the capacity retention rate during the 500 cycles was less than 70% .o
  • the cathode active material particles were obtained by mixing the particles (second active material particles) with 30% by weight. Scanning electron microscope (SEM) observations confirmed that some of the first active material particles were in the form of secondary aggregates.
  • Table 5 shows D90 of the obtained positive electrode active material particles and the molar ratio ( YLI / YM).
  • a thin non-aqueous electrolyte secondary battery having the same configuration as that described in Example 1 was obtained except that the obtained positive electrode active material particles were used.
  • Each rechargeable battery is charged at a charge rate of 1 C and a charge termination voltage of 4.2 V, and stored for 120 hours in an environment at a temperature of 80 ° C
  • the thickness of the battery container after the storage was measured, and the rate of change in the thickness of the battery container during storage was determined by the formula (I).
  • the positive electrode composed of two types of lithium cobalt-containing composite oxides having peak intensity ratios (I 003 / I! 04) of 2 or more and less than 5
  • the batteries of Examples 18 to 19 provided with the positive electrode containing the active material had a higher cycle maintenance ratio and a slightly higher thickness change ratio than those of Example 1.
  • a lithium element M-containing composite oxide having a peak intensity ratio (I 003, I 104) of 2 or more and less than 5 and a lithium-containing composite oxide having a peak intensity ratio (I 003 ZI 104) of more than 5 The secondary batteries of Examples 20 to 24 provided with a positive electrode containing a composite oxide and, while maintaining a high capacity retention rate during 50,000 cycles, and expanding during charge high-temperature storage. This could be made smaller than in Example 1.
  • the circuit was opened for 5 hours or more, and after the potential was sufficiently settled, the Ar concentration was 99.9 ° /.
  • the electrode group was taken out by decomposing it in a glove box having a dew point of 150 ° C or less.
  • the electrode group was packed in a centrifuge tube, dimethylsulfoxide (DMSO) -d6 was added thereto, sealed, taken out of the glove box, and centrifuged. Thereafter, the in Gurobubo Tsu the click scan were taken mixed solution of DMSO-d 6 and the electrolyte from the centrifugation tube.
  • DMSO dimethylsulfoxide
  • an observation frequency was 1 0 0 MH Z, dimethylsulfoxide Shi de (DMSO) - d 6 (. 3 9 5 ppm) This filtration and was subjected to to 13 CNMR measurement an internal standard substance, to the EC Corresponding peaks: 66 p: m, peaks corresponding to PRS: 74 ppm, 124 ppm, and 140 ppm. Observed from these results. It was confirmed that PRS was contained in the non-aqueous solvent in the secondary battery of No. 1.
  • the present invention is not limited to the above-described embodiment, but can be similarly applied to other types of combinations of a positive electrode, a negative electrode, a separator, and a container.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A nonaqueous electrolyte secondary battery comprising a positive electrode containing positive electrode active substance particles in which lithium double oxide particles are contained, a negative electrode and a nonaqueous electrolyte, wherein the lithium double oxide particles have a composition containing element (M) being at least one member selected from the group consisting of Ni and Co, having a particulate form containing secondary agglomerates, and exhibit a peak intensity ratio satisfying the following formula (1), wherein the content of lithium double oxide particles in the positive electrode active substance particles is 50 wt.% or more, wherein the molar ratio of positive electrode active substance particles satisfies the following formula (2) and the particle diameter of volume cumulative frequency 90% (D90) with respect to the positive electrode active substance particles is in the range of 10 to 25 μm, and wherein the nonaqueous electrolyte contains a sultone compound having at least one double bond in its ring: 2 ≤ (I003/I104) < 5 (1) 0.95 ≤ (YLi/YM) ≤ 1.02 (2).

Description

明 細 書  Specification
非水電解質二次電池 Non-aqueous electrolyte secondary battery
技術分野 Technical field
本発明は、 非水電解質二次電池に関する ものである。  The present invention relates to a non-aqueous electrolyte secondary battery.
背景技術 Background art
近年、 移動体通信機、 ノ ー トブック型パソ コ ン、 パーム ト ップ型パソコン、 一体型ビデオカメ ラ、 ポータブル C D ( M D ) プレーヤー、 コー ドレス電話等の電子機器の小形化、 軽 量化を図る上で、 これらの電子機器の電源と して、 特に小型 で大容量の電池が求め られている。  In recent years, electronic equipment such as mobile communication devices, notebook computers, palm-top personal computers, integrated video cameras, portable CD (MD) players, and cordless telephones have been downsized and lightened. Above, particularly small and large capacity batteries are required as power supplies for these electronic devices.
これら電子機器の電源と して普及している電池と しては、 アル力 リ マンガン電池のよ う な一次電池や、 エッケルカ ドミ ゥム電池、 鉛蓄電池等の二次電池が挙げられる。 その中でも, 正極に リ チウム複合酸化物を用い、 負極に リ チウムィ オンを 吸蔵 · 放出でき る炭素質材料を用いた非水電解質二次電池が , 小型かつ軽量で、 単電池電圧が高く 、 高エネルギー密度を得 られる こ と カゝら注目 されている。  Examples of batteries that are widely used as power supplies for these electronic devices include primary batteries such as lithium-manganese batteries, and secondary batteries such as Eckel-cadmium batteries and lead-acid batteries. Among them, non-aqueous electrolyte secondary batteries using a lithium composite oxide for the positive electrode and a carbonaceous material capable of occluding and releasing lithium ion for the negative electrode are smaller, lighter, have higher cell voltages, and have higher cell voltages. Attention has been paid to obtaining energy density.
非水電解質二次電池の正極活物質と して、 特開平 1 0 — 6 9 9 1 0 号公報には、 一般式 ( I ) ; L i v.xlN i ι_χ2Μχ 02 で表され、 X線回折の ミ ラー指数 h k l における ( 0 0 3 ) 面及び ( 1 0 4 ) 面での回折ピーク比 ( 0 0 3 ) / ( 1 0 4 ) 力 1 . 2 以上、 平均粒径 D力 5 〜 : L 0 0 i m、 粒度分 布の 1 0 %が 0 . 5 D以上、 9 0 %が 2 D以下である リ チウ ムニ ッケル複合酸化物が記載されている。 As a positive electrode active material for a nonaqueous electrolyte secondary battery, Japanese Unexamined 1 0 - The 6 9 9 1 0 JP general formula (I); Table in L i v xl N i ι_ χ2 Μ χ 0 2. The diffraction peak ratio at the (03) plane and the (104) plane at the Miller index hkl of X-ray diffraction (003) / (104) force is 1.2 or more, and the average particle diameter D Force 5 or more: L 0 im, lithium nickel composite oxide in which 10% of the particle size distribution is 0.5D or more and 90% is 2D or less.
しかしなが ら、 このよ う な リ チウムニッケル複合酸化物を 含む正極を備えた二次電池は、 非水電解質の酸化分解反応を 生じるため、 充放電サイ クル寿命が短いとい う 問題点がある c 発明の開示 However, such lithium-nickel composite oxides Secondary battery comprising a positive electrode, to produce the oxidative decomposition reaction of the nonaqueous electrolyte, the disclosure of c inventions discharge cycle life is short gutter cormorants problems including
本発明は、 充放電サイ クル寿命が向上された非水電解質二 次電池を提供する こ と を 目的とする。  An object of the present invention is to provide a nonaqueous electrolyte secondary battery having an improved charge / discharge cycle life.
本発明に係る第 1 の態様によれば、. リ チウム複合酸化物粉 末を含有する正極活物質を含む正極と、 負極と、 非水電解質 と を具備した非水電解質二次電池であって、  According to a first aspect of the present invention, there is provided a nonaqueous electrolyte secondary battery comprising: a positive electrode including a positive electrode active material containing a lithium composite oxide powder; a negative electrode; and a nonaqueous electrolyte. ,
前記リ チウム複合酸化物粉末は、 二次凝集粒を含むも ので . モル比が下記 ( A ) 式を満た し、 ピーク強度比が下記 ( B ) 式を満足 し、 かつ体積累積頻度 9 0 % の粒径 ( D 9 0 ) が 1 0 /x m〜 2 5 x raの範囲内であ り 、  Since the lithium composite oxide powder contains secondary aggregated particles, the molar ratio satisfies the following formula (A), the peak intensity ratio satisfies the following formula (B), and the volume cumulative frequency is 90%. Has a particle size (D90) of 10 / xm to 25xra,
前記非水電解質は、 環内に少な く と も一つの二重結合を有 するスル ト ン化合物を含む非水電解質二次電池が提供される t The non-aqueous electrolyte, t the non-aqueous electrolyte secondary battery comprising a sul tons compounds have a single double bond also rather small in the ring is provided
2 ≤ ( I 003/ I 104) < 5 ( A )  2 ≤ (I 003 / I 104) <5 (A)
0 . 9 5 ≤ ( X Li/ X M) ≤ 1 . 0 2 ( B ) 但し、 I は前記リ チウム複合酸化物粉末の粉末 X線回 折における ( 0 0 3 ) 面のピーク 強度 ( c p s ) で、 I 丄 04 は前記粉末 X線回折における ( 1 0 4 ) 面のピーク強度 ( c p s ) であ り 、 X U は前記 リ チ ウム複合酸化物粉末中の リ チウム のモル数で、 X M は前記 リ チウ ム複合酸化物粉末中 の元素 Mのモノレ数で、 前記元素 Mは N i 及び C o よ り なる群 から選択される少な く と も 1 種類である。 0. 9 5 ≤ (X Li / X M) ≤ 1. 0 2 (B) where, I is the Lithium complex oxide (0 0 3) in a powder X-ray diffraction of the powder surface of the peak intensity (cps) in, I丄04 Ri peak intensity (cps) der of (1 0 4) plane in the powder X-ray diffraction, X U is the number of moles of lithium of the Li Chi um composite oxide powder, X M Is the number of elements of the element M in the lithium composite oxide powder, and the element M is at least one selected from the group consisting of Ni and Co.
また、 本発明に係る第 2 の態様によれば、 リ チウム複合酸 化物粒子を含有する正極活物質粒子を含む正極と、 負極と、 非水電解質とを具備した非水電解質二次電池であって、 前記リ チウム複合酸化物粒子は、 N i 及び C o よ り なる群 から選択される少な く と も 1種類からなる元素 Mを含む組成 を有し、 二次凝集粒を含む粒子形態を持ち、 かつピーク強度 比が下記 ( C ) 式を満足 し、 Further, according to the second aspect of the present invention, a positive electrode including positive electrode active material particles containing lithium composite oxide particles, a negative electrode, A nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte, wherein the lithium composite oxide particles contain at least one element M selected from the group consisting of Ni and Co. And has a particle morphology including secondary aggregates, and the peak intensity ratio satisfies the following expression (C),
前記正極活物質粒子中の前記リ チウム複合酸化物粒子の含 有量は 5 0重量%以上であ り 、  The content of the lithium composite oxide particles in the positive electrode active material particles is 50% by weight or more;
前記正極活物質粒子のモル比は下記 ( D ) 式を満た し、 前 記正極活物質粒子における体積累積頻度 9 0 %の粒径 ( D 9 0 ) 力 S l O / ir!〜 2 5 mの範囲内であ り 、  The molar ratio of the positive electrode active material particles satisfies the following formula (D), and the particle diameter (D90) force of 90% of the volume cumulative frequency of the positive electrode active material particles is S 10 O / ir! Within the range of ~ 25 m,
前記非水電解質は、 環内に少な く と も一つの二重結合を有 するスル ト ン化合物を含む非水電解質二次電池が提供される t The non-aqueous electrolyte, t the non-aqueous electrolyte secondary battery comprising a sul tons compounds have a single double bond also rather small in the ring is provided
2 ≤ ( I 003 I 104) < 5 ( C )  2 ≤ (I 003 I 104) <5 (C)
0 . 9 5 ≤ ( Y Li/ Y Μ) ≤ 1 · 0 2 ( D ) 但し、 I 003 は前記リ チウム複合酸化物粒子の粉末 X線回 折における ( 0 0 3 ) 面の ピーク強度 ( c p s ) で、 I 04 は前記粉末 X線回折における ( 1 0 4 ) 面の ピーク強度 ( c p s ) であ り 、 YLi は前記正極活物質粒子中の リ チウムの モル数で、 Y M は前記正極活物質粒子中の元素 Mのモル数 で、 前記元素 Mは N i 及び C o よ り なる群から選択される少 なく と も 1 種類である。 0.95 ≤ (Y Li / Y Μ ) ≤ 1 · 0 2 (D) where I 003 is the peak intensity (cps) of the (03) plane in the powder X-ray diffraction of the lithium composite oxide particles. in), I 04 the Ri (1 0 4) the peak intensity of the face (cps) der in the powder X-ray diffraction, the Y L i in moles of lithium in said positive electrode active material particle, Y M is the In terms of the number of moles of the element M in the positive electrode active material particles, the element M is at least one selected from the group consisting of Ni and Co.
図面の簡単な説 ^ Brief description of drawings ^
図 1 は、 本発明に係わる非水電解質二次電池の一例である 薄型非水電解質二次電池を示す斜視図。  FIG. 1 is a perspective view showing a thin non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
図 2 は、 図 1 の薄型非水電解質二次電池を Π _ Π線に沿つ て切断した部分断面図。 Fig. 2 shows the thin non-aqueous electrolyte secondary battery of Fig. 1 along the Π _ Π line. FIG.
図 3 は、 本発明に係る非水電解質二次電池の一例である角 形非水電解質二次電池を示す部分切欠斜視図。  FIG. 3 is a partially cutaway perspective view showing a rectangular non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
図 4 は、 本発明に係る非水電解質二次電池の一例である円 筒形非水電解質二次電池を示す部分断面図。  FIG. 4 is a partial cross-sectional view showing a cylindrical nonaqueous electrolyte secondary battery which is an example of the nonaqueous electrolyte secondary battery according to the present invention.
図 5 は、 実施例 1 の非水電解質二次電池の非水電解質に含 まれる P R S についての 1H N M Rスぺク トルを示す特性図, 発明を実施するための最良の形態  FIG. 5 is a characteristic diagram showing the 1H NMR spectrum of PRS contained in the nonaqueous electrolyte of the nonaqueous electrolyte secondary battery of Example 1, showing the best mode for carrying out the invention.
本発明に係る第 1 , 第 2 の非水電解質二次電池について説 明する。  The first and second nonaqueous electrolyte secondary batteries according to the present invention will be described.
本発明に係る第 1 の非水電解質二次電池は、 リ チウム複合 酸化物粉末を含有する正極活物質を含む正極と、 負極と、 非 水電解質と を具備した非水電解質二次電池であって、  A first nonaqueous electrolyte secondary battery according to the present invention is a nonaqueous electrolyte secondary battery including a positive electrode including a positive electrode active material containing a lithium composite oxide powder, a negative electrode, and a nonaqueous electrolyte. hand,
前記リ チウム複合酸化物粉末は、 二次凝集粒を含むもので モル比が下記 ( A ) 式を満た し、 ピーク強度比が下記 ( B ) 式を満足 し、 かつ体積累積頻度 9 0 %の粒径 ( D 9 0 ) が 1 0 /i m〜 2 5 μ πιの範囲内であ り 、  The lithium composite oxide powder contains secondary aggregated particles and has a molar ratio satisfying the following formula (A), a peak intensity ratio satisfying the following formula (B), and a volume cumulative frequency of 90%. The particle size (D90) is in the range of 10 / im to 25 μπι,
前記非水電解質は、 環内に少な く と も一つの二重結合を有 するスル ト ン化合物を含む。  The non-aqueous electrolyte contains a sulfonate compound having at least one double bond in a ring.
2 ≤ ( I 003/ I 104) < 5 ( Α )  2 ≤ (I 003 / I 104) <5 (Α)
0 . 9 5 ≤ ( X Li/ X M) ≤ 1 . 0 2 ( B ) 伹し、 I 003 は前記リ チウム複合酸化物粉末の粉末 X線回 折における ( 0 0 3 ) 面のピーク 強度 ( c p s ) で、 I 04 は前記粉末 X線回折における ( 1 0 4 ) 面のピーク強度 ( c p s ) であ り 、 X Li は前記リ チ ウム複合酸化物粉末中の リ チウム のモル数で、 χ Μ は前記 リ チウ ム複合酸化物粉末中 の元素 Mのモル数で、 前記元素 Mは N i 及び C o よ り なる群 から選択される少な く と も 1種類である。 0. 9 5 ≤ (X Li / X M) ≤ 1. 0 2 (B)伹to, I 003 is the Lithium complex oxide (0 0 3) in a powder X-ray diffraction of the powder surface of the peak intensity ( cps), I 04 is the peak intensity (cps) of the (104) plane in the powder X-ray diffraction, and X Li is the lithium in the lithium composite oxide powder. Is the number of moles of titanium, and Μ is the number of moles of the element M in the lithium composite oxide powder, and the element M is at least one selected from the group consisting of Ni and Co. is there.
前述したスル ト ン化合物は、 初充電時、 二重結合が開いて 重合反応を生じる こ と によ り 正極表面に リ チウムイオン透過 性の保護被膜を形成するこ とができ る。 一方、 前記リ チウム 複合酸化物粉末は、 リ チウムの吸蔵 , 放出に伴う膨張 · 収縮 が小さ く 、 同時に、 二次凝集粒の表面だけでなく 一次粒子間 の間隙にも保護被膜が形成されるために保護被膜が複雑なネ ッ ト ワーク構造を形成する こ と ができ る。 その結果、 充放電 サイ クル中に正極から保護被膜が剥離する のを抑制する こ と ができ るため、 非水電解質の酸化分解反応を抑える こ と がで き、 二次電池の充放電サイ クル寿命を向上する こ とができ る 以下、 正極、 負極及び非水電解質について説明する。  The above-mentioned sultone compound can form a lithium ion permeable protective film on the positive electrode surface by opening a double bond and causing a polymerization reaction at the time of the first charge. On the other hand, the lithium composite oxide powder has a small expansion and contraction due to the occlusion and release of lithium, and at the same time, a protective coating is formed not only on the surface of the secondary aggregated particles but also on the gaps between the primary particles. Therefore, the protective coating can form a complicated network structure. As a result, the protective film can be prevented from peeling off from the positive electrode during the charge / discharge cycle, so that the oxidative decomposition reaction of the nonaqueous electrolyte can be suppressed, and the charge / discharge cycle of the secondary battery can be suppressed. The positive electrode, the negative electrode, and the non-aqueous electrolyte will be described below.
1 ) 正極  1) Positive electrode
こ の正極は、 集電体と、 集電体の片面も しく は両面に担持 され、 前記正極活物質と結着剤と導電剤と を含有する正極層 と を含む。  The positive electrode includes a current collector, and a positive electrode layer supported on one or both surfaces of the current collector and containing the positive electrode active material, a binder, and a conductive agent.
リ チウム複合酸化物は、 例えば、 各構成元素の化合物 (例 えば、 酸化物、 水酸化物) を混合した後、 空気中または酸素 雰囲気下において焼成する こ と によ り 合成される。  The lithium composite oxide is synthesized, for example, by mixing the compounds of the respective constituent elements (for example, oxides and hydroxides) and then firing the mixture in the air or in an oxygen atmosphere.
リ チ ウ ム複合酸化物における リ チ ウ ム ( X Li) と 元素 M ( X M) のモル比 ( X u/ X jyr) を 0 . 9 5 〜 : L . 0 2 の範 囲内にする理由 を説明する。 モル比 ( X Li/ X M) を 0 . 9 5未満にする と 、 結晶性が著しく 低下するため、 リ チ ウムの 吸蔵 · 放出がほ と んど起こ ら ない可能性がある。 一方、 モル 比 ( X Li/ X M) 力 S 1 . 0 2 を超える ものは、 結晶性に優れ る ものの、 焼成時に粒成長が進むため、 単粒子の比率が高 く なる。 その結果、 リ チウムの吸蔵 · 放出に伴 う 膨張 · 収縮が 大き く なる だけでな く 、 一次粒子を被覆する保護被膜が孤立 して しまい、 ネ ッ ト ワーク構造を得られないため、 充放電サ イ タルで保護被膜が剥離しやすく な り 、 充放電サイ クル寿命 が短く な る恐れがある。 モル比 ( X Li/ X M) の よ り 好ま し い範囲は、 0 . 9 7 〜 : L . 0 2 であ り 、 さ ら に好ま しい範囲 は 0 . 9 9 〜 : L . 0 2 である。 The molar ratio of Li Ji U beam (X L i) and the element M (X M) of Li Ji U beam composite oxide (X u / X jyr) 0 9 5 ~:. To L 0 2 of within range. Explain the reason. When the molar ratio ( XLi / XM) is less than 0.95, the crystallinity is remarkably reduced. Occlusion and release may hardly occur. On the other hand, those having a molar ratio ( XLi / XM ) force exceeding S 1.02 have excellent crystallinity, but the grain growth proceeds during firing, so that the ratio of single particles becomes high. As a result, not only does the expansion and contraction of lithium due to occlusion and release of lithium increase, but also the protective coating covering the primary particles becomes isolated, and a network structure cannot be obtained, resulting in charge and discharge. The protective coating may be easily peeled off in a short period of time, and the life of the charge / discharge cycle may be shortened. A more preferable range of the molar ratio ( XLi / XM ) is 0.997 to: L.02, and a more preferable range is 0.99 to: L.02. is there.
リ チウム複合酸化物 と しては、 例えば、 リ チウムニ ッケル 複合酸化物、 リ チウム コバル ト複合酸化物、 リ チウムニ ッケ ルコ バル ト複合酸化物な どを挙げる こ と ができ る。 前記 リ チ ゥム複合酸化物は、 リ チウ ム と 元素 M以外の元素を含んでい ても 良い。 かかる元素 と しては、 例えば、 M n、 A 1 、 S n F e 、 C u、 C r 、 Z n、 M g 、 S i 、 P、 F、 C l 、 B等 を挙げる こ と ができ る。 添加元素の種類は、 1 種類でも、 2 種類以上でも 良い。  Examples of the lithium composite oxide include a lithium nickel composite oxide, a lithium cobalt composite oxide, a lithium nickel cobalt composite oxide, and the like. The lithium composite oxide may contain lithium and an element other than the element M. Examples of such elements include Mn, A1, SnFe, Cu, Cr, Zn, Mg, Si, P, F, Cl, B, and the like. You. The type of the added element may be one type or two or more types.
前記 リ チウム複合酸化物は正極活物質の 5 0 ° /。以上を 占め ている こ と が望ま しい。  The lithium composite oxide has a positive electrode active material of 50 ° / ° C. It is desirable that they account for the above.
粉末 X線回折における ( 0 0 3 ) 面の ピーク強度 I 003 と ( 1 0 4 ) 面の ピーク 強度 I 104 と の比 ( I 003 Z I 104) を 前記範囲に限定する理由 を説明する。 ピーク 強度比 ( I 003 / I 104) が 5 以上であ る も のは、 結晶性に優れる も の の 、 粒成長が進むために板状性を示す、 つま り 結晶配向性の高い 単粒子の比率が高く なるため、 リ チウムの吸蔵 ' 放出に伴う 膨張 ' 収縮が大き く 、 また、 各一次粒子を被覆する保護被膜 が孤立し、 ネ ッ ト ワーク構造を得られなく なる。 その結果、 充放電サイ クルの繰り 返しによ り 保護被膜が容易に剥離する ため、 充放電サイクル寿命が短く なる恐れがある。 ピーク強 度比 ( I 003 I 104) を 2 以上、 かつ 5未満にする こ と によ つて、 二次凝集粒の比率を高く する こ とができ る と共に、 リ チウムの吸蔵 · 放出に伴う膨張 ■ 収縮率を小さ く する こ とが でき る。 なお、 結晶が配向性を持たず、 完全に等方的である 場合には、 ピーク強度比 ( I 003/ I 104) は計算上 2 と なる ピーク強度比 ( I 003 I 104) の よ り 好ま しい範囲は、 2 よ り 大き く 、 4 . 9 5 以下である。 The reason for limiting the ratio (I 003 ZI 104) of the peak intensity I 003 of the ( 003 ) plane to the peak intensity I 104 of the ( 104 ) plane in powder X-ray diffraction will be described. The peak intensity ratio (I 003 / I 104) of 5 or more is excellent in crystallinity, but shows plate-likeness due to the progress of grain growth, that is, has high crystal orientation. Since the ratio of single particles is increased, the expansion and contraction of lithium due to occlusion and release of lithium are large, and the protective coating covering each primary particle is isolated, making it impossible to obtain a network structure. As a result, the charge / discharge cycle life may be shortened because the protective film is easily peeled off by repeating the charge / discharge cycle. By setting the peak intensity ratio (I 003 I 104) to 2 or more and less than 5, the ratio of secondary aggregated particles can be increased, and the expansion accompanying the occlusion and release of lithium can be achieved. ■ Shrinkage can be reduced. When the crystal has no orientation and is completely isotropic, the peak intensity ratio (I 003 / I 104) is more preferable than the peak intensity ratio (I 003 I 104) of 2 which is calculated. The preferred range is greater than 2 and less than 4.95.
リ チウム複合酸化物粉末の体積累積頻度 9 0 %の粒径 (D 9 0 ) を前記範囲に規定する理由を説明する。 0 9 0 カ 1 0 β m未満である ものは、 二次凝集粒を構成する一次粒子の数 が少ない傾向にあるため、 二次凝集粒と保護被膜との接触面 積が不足 し、 保護被膜が剥離しやすく な り 、 充放電サイ クル 寿命が短く なる恐れがある。 一方、 D 9 0 が 2 5 mを超え る ものは、 二次凝集粒を構成する一次粒子の数が多いため、 二次凝集粒の内部に保護被膜が行き渡らず、 二次凝集粒の表 面のみが保護被膜で覆われている状態に近く なる。 こ のため 充放電サイ クル中に保護被膜の剥離が起き易 く 、 充放電サイ ク ル寿命が短く なる恐れがある。 D 9 0 のよ り 好ま しい範囲 は、 l O ju n!〜 である。  The reason why the particle diameter (D 90) of the lithium composite oxide powder having a volume cumulative frequency of 90% is defined in the above range will be described. If the particle size is less than 0 9 0 10 β m, the number of primary particles constituting the secondary aggregated particles tends to be small, and the contact area between the secondary aggregated particles and the protective film is insufficient, and the protective film May be easily separated, and the life of the charge / discharge cycle may be shortened. On the other hand, when the D90 exceeds 25 m, the number of primary particles constituting the secondary aggregated particles is large, so that the protective coating does not spread inside the secondary aggregated particles and the surface of the secondary aggregated particles Only the state close to the state where only the protective coating is covered. For this reason, the protective film is easily peeled off during the charge / discharge cycle, and the life of the charge / discharge cycle may be shortened. A more preferred range for D90 is lOjun! ~.
前記導電剤と しては、 例えばアセチレンブラ ック、 カーボ ンブラ ック、 黒鉛等を挙げる こ とができる。 Examples of the conductive agent include acetylene black and carbohydrate. Black, graphite and the like.
前記結着剤は、 活物質を集電体に保持させ、 かつ活物質同 士をつな ぐ機能を有する。 前記結着剤と しては、 例えばポリ テ ト ラ フルォロ エチ レ ン ( P T F E ) 、 ポ リ フ ツ イヒ ビニ リ デ ン ( P V d F ) 、 ポ リ エーテルサルフ ォ ン、 エチ レン一プロ ピレ ン一ジェン共重合体 ( E P D M ) 、 ス チ レ ンーブタ ジェ ンゴム ( S B R ) 等を用いる こ と ができ る。  The binder has a function of holding the active material on the current collector and connecting the active materials. Examples of the binder include polytetrafluoroethylene (PTFE), polystyrene vinylidene (PVdF), polyethersulfone, and ethylene-propylene. One-gen copolymer (EPDM), styrene-butadiene rubber (SBR) and the like can be used.
前記正極活物質、 導電剤および結着剤の配合割合は、 正極 活物質 8 0 〜 9 5重量%、 導電剤 3 〜 2 0重量%、 結着剤 2 〜 7重量%の範囲にする こ とが好ま しい。  The mixing ratio of the positive electrode active material, the conductive agent and the binder is set in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder. Is preferred.
前記集電体と しては、 多孔質構造の導電性基板か、 あるい は無孔の導電性基板を用いる こ とができ る。 これら導電性基 板は、 例えば、 アルミ エゥム、 ス テ ン レス 、 またはエッケル 力、ら形成する こ とができ る。  As the current collector, a conductive substrate having a porous structure or a non-porous conductive substrate can be used. These conductive substrates can be formed, for example, of aluminum, stainless steel, or Eckel force.
前記正極は、 例えば、 正極活物質に導電剤および結着剤を 適当な溶媒に懸濁し、 こ の懸濁物を集電体に塗布、 乾燥して 薄板状にする こ と によ り 作製される。  The positive electrode is manufactured by, for example, suspending a conductive agent and a binder in a suitable solvent in a positive electrode active material, applying the suspension to a current collector, and drying to form a thin plate. You.
2 ) 負極  2) Negative electrode
前記負極は、 集電体と、 集電体の片面も しく は両面に担持 される負極層と を含む。  The negative electrode includes a current collector and a negative electrode layer supported on one or both surfaces of the current collector.
前記負極層は、 リ チウムイオンを吸蔵 · 放出する炭素質物 及び結着剤を含む。  The negative electrode layer contains a carbonaceous material that occludes and releases lithium ions and a binder.
前記炭素質物と しては、 例えば、 黒鉛、 コ ー ク ス 、 炭素繊 維、 球状炭素、 熱分解気相炭素質物、 樹脂焼成体などの黒鉛 質材料も しく は炭素質材料 ; 熱硬化性樹脂、 等方性ピッチ メ ソ フ ェ ーズピ ッ チ系炭素、 メ ソ フ ェ ーズ ピ ッ チ系炭素繊維 メ ソフ ェーズ小球体な ど (特に、 メ ソフ ェーズピッチ系炭素 繊維が容量ゃ充放電サイ クル特性が高く な り 好ま しい) に 5 0 0 〜 3 0 0 0 °Cで熱処理を施すこ と によ り 得られる黒鉛質 材料または炭素質材料 ; 等を挙げる こ とができ る。 中でも、 ( 0 0 2 ) 面の面間隔 d 002 が 0 . 3 4 n m以下である黒鉛 結晶を有する黒鉛質材料を用いるのが好ま しい。 こ の よ う な 黒鉛質材料を炭素質物と して含む負極を備えた非水電解質二 次電池は、 電池容量および大電流放電特性を大幅に向上する こ と ができ る。 前記面間隔 d は、 0 . 3 3 7 n m以下 である こ とが更に好ま しい。 Examples of the carbonaceous material include a graphite material, such as graphite, coke, carbon fiber, spherical carbon, pyrolysis gaseous carbonaceous material, and resin fired body, or a carbonaceous material; a thermosetting resin. , Isotropic pitch Mesophase pitch-based carbon, mesophase pitch-based carbon fiber, and mesophase spherules (especially, mesophase pitch-based carbon fiber has higher capacity / charge / discharge cycle characteristics. (Preferably), a graphite-based material or a carbonaceous material obtained by performing a heat treatment at 500 to 300 ° C. Above all, it is preferable to use a graphite material having graphite crystals in which the ( 002 ) plane spacing d 002 is 0.34 nm or less. A nonaqueous electrolyte secondary battery provided with a negative electrode containing such a graphitic material as a carbonaceous material can greatly improve the battery capacity and large-current discharge characteristics. More preferably, the plane distance d is 0.337 nm or less.
前記結着剤と して は、 例えばポ リ テ ト ラ フルォ ロ エチ レ ン ( P T F E ) 、 ポ リ フ ッ化 ビエ リ デン ( P V d F ) 、 ェチ レ ンー プロ ピ レ ン一ジェ ン共重合体 ( E P D M) 、 ス チ レ ン一 ブ タ ジエ ン ゴム ( S B R ) 、 カ ノレポ キ シ メ チノレセノレ ロ ー ス ( C M C ) 等を用いる こ と ができ る。  Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene polyfluoride (PVdF), and ethylene propylene Polymer (EPDM), styrene-butadiene rubber (SBR), canolepoxy methinoresenolose (CMC) and the like can be used.
前記炭素質物及び前記結着剤の配合割合は、 炭素質物 9 0 〜 9 8重量%、 結着剤 2 〜 2 0重量%の範囲である こ と が好 ま しい。  The mixing ratio of the carbonaceous material and the binder is preferably in the range of 90 to 98% by weight of the carbonaceous material and 2 to 20% by weight of the binder.
前記集電体と しては、 多孔質構造の導電性基板か、 あるい は無孔の導電性基板を用いる こ と ができ る。 これら導電性基 板は、 例えば、 銅、 ス テ ン レス 、 またはニ ッケルから形成す る こ と が でき る 。  As the current collector, a conductive substrate having a porous structure or a non-porous conductive substrate can be used. These conductive substrates can be formed, for example, from copper, stainless steel, or nickel.
前記負極は、 例えば、 リ チウムイ オ ンを吸蔵 ■ 放出する炭 素質物と結着剤と を溶媒の存在下で混練し、 得られた懸濁物 を集電体に塗布 し、 乾燥した後、 所望の圧力で 1 回プ レス も しく は 2 〜 5 回多段階プレスする こ と によ り 作製される。 以上説明 したよ う な正極と負極を用いて電極群が作製され る。 The negative electrode is obtained by, for example, kneading a carbonaceous substance that occludes and releases lithium ion and a binder in the presence of a solvent, and obtains a suspension. Is applied to a current collector, dried, and then pressed once or two to five times at a desired pressure in multiple steps. An electrode group is manufactured using the positive electrode and the negative electrode as described above.
こ の電極群は、 例えば、 ( i ) 正極及び負極をその間にセ パ レータ を介在させて渦巻き状に捲回するか、 (ii) 正極及 び負極をその間にセパ レータを介在させて偏平形状に捲回す るか、 ( iii) 正極及び負極をその間にセパ レータ を介在させ て渦卷き状に捲回 した後、 径方向に圧縮する力 ( iv) 正極 及ぴ負極をその間にセパレータを介在させて 1 回以上折り 曲 げるか、 あるいは (V) 正極と負極と をその間にセパレータ を介在させなが ら積層する方法によ り 作製される。  This electrode group can be formed, for example, by (i) spirally winding a positive electrode and a negative electrode with a separator interposed therebetween, or (ii) flat-shaped by interposing a separator between the positive electrode and the negative electrode. (Iii) The positive and negative electrodes are spirally wound with a separator between them, and then compressed radially (iv) A separator is interposed between the positive and negative electrodes And then bent one or more times, or (V) a method of laminating a positive electrode and a negative electrode with a separator interposed therebetween.
電極群には、 プ レスを施さなく ても良いが、 正極、 負極及 びセパ レータの一体化強度を高めるためにプ レスを施しても 良い。 また、 プ レス時に加熱を施すこ と も可能である。  The electrode group need not be pressed, but may be pressed to increase the integrated strength of the positive electrode, the negative electrode, and the separator. It is also possible to apply heating during pressing.
電極群には、 正極、 負極及ぴセパ レータの一体化強度を高 めるために、 接着性高分子を含有させる こ とができ る。 前記 接着性を有する高分子と しては、 例えば、 ポ リ アク リ ロ - ト リ ル ( P A N ) 、 ポ リ アタ リ レー ト ( P MM A) 、 ポリ フ ッ 化ビニリ デン ( P V d F ) 、 ポリ 塩化ビニル ( P V C ) 、 ま たはポリ エチレンォキサイ ド ( P E O ) 等を挙げる こ とがで きる。  The electrode group may contain an adhesive polymer in order to increase the integration strength of the positive electrode, the negative electrode and the separator. Examples of the polymer having the adhesive property include polyacrylo-tolyl (PAN), polyatalylate (PMMA), and polyvinylidene fluoride (PVdF). , Polyvinyl chloride (PVC), or polyethylene oxide (PEO).
こ の電極群に使用する セパ レータ と して は、 微多孔性の膜 織布、 不織布、 これらの う ち同一材または異種材の積層物等 を用いる こ と ができ る。 セパレータを形成する材料と しては ポ リ エチ レン、 ポ リ プロ ピ レン、 エチ レ ン一プロ ピ レ ン共重 合ポ リ マー、 エチレンーブテン共重合ポ リ マー等を挙げる こ と ができ る。 セパレータの形成材料と しては、 前述 した種類 の中から選ばれる 1 種類または 2 種類以上を用いる こ と がで き る。 As a separator used for this electrode group, a microporous membrane woven fabric, a nonwoven fabric, a laminate of the same material or a different material thereof, or the like can be used. As a material for forming the separator, Polyethylene, polypropylene, ethylene-propylene copolymer, ethylene butene copolymer, and the like can be mentioned. As a material for forming the separator, one or more kinds selected from the above-mentioned types can be used.
前記セパ レータの厚さ は、 3 0 μ πι以下にする こ と が好ま しく 、 さ ら に好ま しい範囲は 2 5 t m以下である。 また、 厚 さの下限値は 5 μ mにする こ と が好ま し く 、 さ ら に好ま しい 下限値は 8 μ mである。  The thickness of the separator is preferably 30 μπι or less, and more preferably 25 tm or less. The lower limit of the thickness is preferably set to 5 μm, and the more preferable lower limit is 8 μm.
前記セパ レ ータ は、 1 2 0 °C、 1 時間での熱収縮率を 2 0 %以下である こ と が好ま しい。 前記熱収縮率は、 1 5 %以 下にする こ と が よ り 好ま しい。  The separator preferably has a heat shrinkage at 120 ° C. for one hour of not more than 20%. It is more preferable that the heat shrinkage is not more than 15%.
前記セパ レータ は、 多孔度が 3 0 〜 6 0 %の範囲である こ と が好ま しい。 多孔度のよ り 好ま しい範囲は、 3 5 〜 5 0 % であ る。  Preferably, the separator has a porosity in the range of 30 to 60%. A more preferred range of porosity is between 35 and 50%.
前記セ パ レータ は、 空気透過率が 6 0 0 秒 Z l 0 0 c m 3 以下であ る こ と が好ま しい。 空気透過率は、 1 0 0 c m3 の 空気がセパ レータ を透過する のに要 した時間 (秒) を意味す る。 空気透過率の上限値は 5 0 0 秒 Z l 0 0 c m 3 にする こ と がよ り 好ま しい。 また、 空気透過率の下限値は 5 0 秒 Z 1 0 0 c m 3 にする こ と が好ま し く 、 さ ら に好ま しい下限 値は 8 0 秒 Z 1 0 0 c m 3 である。 The separator preferably has an air permeability of not more than 600 seconds Z 100 cm 3 . Air permeability refers to the time (seconds) required for 100 cm 3 of air to pass through the separator. More preferably, the upper limit of the air permeability is set at 500 seconds Z l 0 0 cm 3 . The lower limit of the air permeability is preferably set to 50 seconds Z 100 cm 3, and the more preferable lower limit is 80 seconds Z 100 cm 3 .
セパレータ の幅は、 正極と負極の幅に比べて広 く する こ と が望ま しい。 こ のよ う な構成にする こ と に よ り 、 正極と負極 がセパレータ を介さずに直接接触する のを防ぐこ と ができ る 3 ) 非水電解質 It is desirable that the width of the separator be wider than the width of the positive electrode and the negative electrode. With such a configuration, it is possible to prevent the positive electrode and the negative electrode from directly contacting each other without passing through the separator. 3) Non-aqueous electrolyte
非水電解質には、 実質的に液状またはゲル状の形態を有す る ものを使用する こ とができ る。  As the non-aqueous electrolyte, those having a substantially liquid or gel-like form can be used.
液状非水電解質およびゲル状非水電解質に含まれる非水溶 媒および電解質について説明する。  The non-aqueous medium and the electrolyte contained in the liquid non-aqueous electrolyte and the gel non-aqueous electrolyte will be described.
非水溶媒は、 環内に少なく と も一つの二重結合を有するス ル ト ン化合物を含む。  The non-aqueous solvent includes a slutone compound having at least one double bond in a ring.
こ こ で、 環内に少な く と も 1 つの二重結合を有するスル ト ン化合物と しては、 下記化 1 に示す一般式で表わされるスル ト ン化合物 Aか、 も しく はスル ト ン化合物 Aの少なく と も 1 つの Hが炭化水素基で置換されたスル ト ン化合物 B を用いる こ とができ る。 なお、 本願では、 スル ト ン化合物 Aまたはス ル ト ン化合物 B を単独で用いても、 スル ト ン化合物 A と スル ト ン化合物 B の双方を使用 して も良い。  Here, the sultone compound having at least one double bond in the ring may be sultone compound A represented by the following general formula (1) or sultone compound: Sulfon compound B in which at least one H of compound A is substituted with a hydrocarbon group can be used. In the present application, the sluton compound A or the sluton compound B may be used alone, or both the sluton compound A and the sluton compound B may be used.
(化 1 )  (Formula 1)
0一 so 2  0 one so 2
mhn 化 1 において、 C m H n は直鎖状の炭化水素基で、 m と n は、 2 m > n を満たす 2以上の整数である。 In mh n of 1, the C m H n straight chain hydrocarbon group, m and n is an integer of 2 or more that satisfies 2 m> n.
環内に少な く と も一つの二重結合を有するスル ト ン化合物 は、 正極と の反応によ り 二重結合が開いて重合反応が起こる ため、 正極表面に リ チウムイオン透過性の保護被膜を形成す る こ とができ る。 ス ル ト ン化合物の中でも好ま しいの は、 ス ル ト ン化合物 Aの う ち m = 3 、 n = 4 である化合物、 即ち 1 3 —プロペンスル ト ン ( P R S ) 、 または、 m = 4、 n = 6 である化合物、 即ち 1, 4 —プチレンスル ト ン ( B T S ) で ある。 スル ト ン化合物と しては、 1, 3 —プロペンスル ト ン ( P R S ) あるいは 1, 4 —プチレンスル ト ン ( B T S ) を 単独で用いても、 これら P R S と B T S を併用 しても良い。 Sulfon compounds having at least one double bond in the ring open a double bond by the reaction with the positive electrode, and a polymerization reaction occurs.Therefore, a lithium ion-permeable protective coating is formed on the positive electrode surface. Can be formed. Among the preferred sluton compounds, the compound having m = 3 and n = 4 among the sluton compounds A, that is, 1 3 — propene sultone (PRS) or a compound where m = 4, n = 6, ie, 1,4-butylene sultone (BTS). As the sultone compound, 1,3-propene sultone (PRS) or 1,4-butylene sultone (BTS) may be used alone, or these PRS and BTS may be used in combination.
スル ト ン化合物の比率は、 1 0体積%以下にする こ と が望 ま しい。 これは、 スル ト ン化合物の比率が 1 0 %体積を超え る と 、 上記の保護被膜が極めて厚く なつて リ チウムイ オン透 過性が低下し、 常温よ り も低い温度における放電容量が低下 するからである。 更に、 例えば一 2 0 °C等の低い温度でも放 電容量を高 く 保っためには、 スル ト ン化合物が含まれる割合 は 4 %体積以下である こ と が望ま しい。 また、 保護被膜の形 成量を十分に確保するためには、 スル ト ン化合物の比率を最 低でも 0 . 0 1 体積%確保する こ とが望ま しい。 更に、 スル ト ン化合物の比率が 0 . 1 体積%以上あれば、 例えば 6 5 °C 等の更に高い温度でも保護被膜による保護機能を充分に示す こ と ができ る。  It is desirable that the ratio of the sultone compound be not more than 10% by volume. This is because, when the ratio of the sultone compound exceeds 10% by volume, the above-mentioned protective coating becomes extremely thick, so that the lithium ion permeability is reduced and the discharge capacity at a temperature lower than room temperature is reduced. Because. Furthermore, in order to maintain a high discharge capacity even at a low temperature of, for example, 120 ° C., it is desirable that the proportion of the sulfur compound to be contained is not more than 4% by volume. In addition, in order to sufficiently secure the formation amount of the protective film, it is desirable that the ratio of the sulfur compound be at least 0.01% by volume. Furthermore, if the ratio of the sultone compound is at least 0.1% by volume, the protective function of the protective film can be sufficiently exhibited even at a higher temperature, for example, 65 ° C.
非水溶媒には、 さ らにエチ レ ンカーボネー ト ( E C ) が含 まれている こ と が望ま しい。 非水溶媒中の E Cの含有量は、 2 5 体積。/。〜 5 0体積 °/0の範囲内にする こ と が望ま しい。 こ れによ り 、 導電率が高く 、 かつ適度な粘性を有する非水電解 質が得られる。 さ らに好ま しい E C含有量は、 2 5体積。/。〜 4 5 体積%の範囲内である。 It is desirable that the non-aqueous solvent further contains ethylene carbonate (EC). EC content in non-aqueous solvent is 25 volumes. /. It is desirable to set it within the range of ~ 50 volume ° / 0 . Thereby, a non-aqueous electrolyte having high conductivity and appropriate viscosity can be obtained. A more preferred EC content is 25 volumes. /. In the range of ~ 45% by volume.
非水溶媒には、 スル ト ン化合物と E C と併せて、 他の溶媒 を使用する こ とができ る。 他の溶媒と しては、 例えば、 鎖状 カ ーボネ ー ト {例 え ば、 メ チルェ チルカ ーボネ ー ト ( M E C ) 、 ジェチルカーポネー ト ( D E C ) 、 ジメ チルカ ーポネ ー ト ( D M C ) な ど } 、 ビニ レ ンカーボネー ト ( V C ) 、 ビ ニノレエチ レ ンカーボネー ト ( V E C ) 、 フ エ ニノレエチ レ ン力 ーポネー ト ( p h E C ) 、 プ ロ ピ レ ンカ ーボネー ト ( P C ) γ — プチ 口 ラ タ ト ン ( G B L ) 、 y — ノ レ 口 ラ タ ト ン ( V L ) 、 プ ロ ピオ ン酸メ チル (M P ) 、 プ ロ ピオ ン酸ェ チルAs the non-aqueous solvent, other solvents can be used in combination with the sulfone compound and EC. Other solvents include, for example, linear Carbonates {eg, methyl carbonate (MEC), jeticarbonate (DEC), dimethycarbonate (DMC), vinylene carbonate (VC), vinylinolechi Lencarbonate (VEC), phenyleneethylene force component (phEC), propylene carbonate (PC) γ -Petit mouth rattan (GBL), y- (VL), methyl propionate (MP), ethyl propionate
( E P ) 、 2 — メ チルフ ラ ン ( 2 M e - F ) 、 フ ラ ン ( F ) チォフ ェ ン ( T I O P ) 、 カ テ コ ールカ ーボネー ト ( C A T C ) 、 エチ レ ンサルフ ア イ ト ( E S ) 、 1 2 — ク ラ ウ ン一 4(EP), 2 — methylfuran (2Me-F), fran (F) thiophene (TIOP), catechol carbonate (CATC), ethylenullite (ES) , 1 2 — 1 Crown 4
( C r o w n ) 、 テ ト ラ エチ レ ン グ リ コ ースレジメ チノレエーテ ル ( E t h e r ) 等を挙げる こ と ができ る。 他の溶媒の種類 は、 1 種類も し く は 2 種類以上にする こ と ができ る。 (Crown), tetraethylene glycol resin methylate ether (Ether), and the like. The type of other solvent can be one or more.
前記非水溶媒に溶解される電解質と しては、 例えば、 過塩 素酸 リ チ ウ ム ( L i C 1 04 ) 、 六フ ッ化 リ ン酸 リ チ ウ ムIt is the electrolyte to be dissolved in the nonaqueous solvent, for example, perchloric Li Ji U beam (L i C 1 0 4) , six full Tsu reduction-phosphate Li Ji U beam
( L i P F 6 ) 、 四 フ ッ化ホ ウ酸 リ チ ウ ム ( L i B F 4 ) 六フ ッ化砒素 リ チ ウ ム ( L i A s F 6 ) 、 ト リ フ ルォロ メ タ ス ルホ ン酸 リ チ ウ ム ( L i C F 3 S O 3 ) 、 ビス ト リ フ ノレオ ロ メ チノレ ス ノレ ホ ニ ノレイ ミ ド リ チ ウ ム [ L i N ( C F 3 S O 2 ) 2 ] 、 L i N ( C 2 F 5 S O 2) 2 な どの リ チ ウム塩 を挙げる こ と ができ る。 使用する電解質の種類は、 1 種類ま たは 2種類以上にする こ と ができ る。 (L i PF 6), four full Kkaho c acid Li Ji U beam (L i BF 4) six full Tsu arsenic Li Ji U beam (L i A s F 6) , Application Benefits off Ruoro meta sulfo Lithium phosphate (Li CF 3 SO 3), bis trifluorene methinoles norre honinolei midium lithium [L i N (CF 3 SO 2) 2], L i N (C 2 F 5 SO 2) Ru can and this include the 2 of which Li Ji Umushio. The type of electrolyte used can be one, two or more.
前記電解質の前記非水溶媒に対する溶解量は、 0 . 5 〜 2 5 モル Z L とする こ と が望ま しい。 さ らに好ま しい範囲は、 1 〜 2 . 5 モル L である。 前記液状非水電解質には、 セパ レータ と の濡れ性を良く す るために、 ト リ オクチルフ ォスフェー ト ( T O P ) のよ う な 界面活性剤を含有させる こ とが望ま しい。 界面活性剤の添加 量は、 3 %以下が好ま しく 、 さ らには 0 . 1 〜 1 %の範囲内 にする こ と が好ま しい。 It is desirable that the amount of the electrolyte dissolved in the nonaqueous solvent be 0.5 to 25 mol ZL. A more preferred range is from 1 to 2.5 mol L. It is desirable that the liquid non-aqueous electrolyte contains a surfactant such as trioctyl phosphate (TOP) in order to improve the wettability with the separator. The amount of the surfactant added is preferably 3% or less, and more preferably in the range of 0.1 to 1%.
前記液状非水電解質の量は、 電池単位容量 1 0 O m A h 当 た り 0 . 2 〜 0 . 6 g にする こ とが好ま しい。 液状非水電解 質量のよ り 好ま しい範囲は、 0 . 2 5 〜 0 . 5 5 g Z l O O m A hである。  It is preferable that the amount of the liquid non-aqueous electrolyte is 0.2 to 0.6 g per unit battery capacity of 10 OmAh. A more preferred range for the mass of the liquid non-aqueous electrolyte is from 0.25 to 0.55 g ZLOOmAh.
以上説明 した電極群及び非水電解質が収納される容器につ いて説明する。  A container for storing the above-described electrode group and the non-aqueous electrolyte will be described.
容器の形状は、 例えば、 有底円筒形、 有底矩形筒型、 袋状 カ ップ状等にする こ と ができ る。  The shape of the container can be, for example, a cylindrical shape with a bottom, a rectangular tube with a bottom, a bag-like cup shape, or the like.
こ の容器は、 例えば、 樹脂層を含むフ ィ ルム、 金属板、 金 属フ ィ ルム等から形成する こ とができ る。  This container can be formed from, for example, a film including a resin layer, a metal plate, a metal film, or the like.
前記フ ィ ルム に含まれる樹脂層は、 例えば、 ポ リ オレ フィ ン (例えば、 ポ リ エチ レン、 ポ リ プロ ピ レ ン) 、 ポリ ア ミ ド 等から形成する こ と ができ る。 樹脂層を含むフ ィ ルム の中で も、 金属層 と、 前記金属層の両面に配置された保護層 と がー 体化されたラ ミネー ト フ イ ルムを用いる こ と が望ま しい。 前 記金属層は、 水分を遮断する役割と容器の形状保持を担 う。 前記金属層は、 例えば、 アル ミ ニ ウ ム、 ス テ ン レス 、 鉄、 銅 エッケル等を挙げる こ とができ る。 中でも、 軽量で、 水分を 遮断する機能が高いアル ミ ニ ウ ム が好ま しい。 前記金属層は 1 種類の金属から形成 しても良いが、 2種類以上の金属層を —体化させたものから形成しても良い。 前記 2つの保護層の う ち、 外部と接する保護層は前記金属層の損傷を防止する役 割をなす。 こ の外部保護層は、 1 種類の樹脂層、 も しく は 2 種類以上の樹脂層から形成される。 一方、 内部保護層は、 前 記金属層が非水電解質によ り腐食される のを防止する役割を 担う。 こ の内部保護層は、 1種類の樹脂層、 も しく は 2種類 以上の樹脂層から形成される。 また、 かかる内部保護層の表 面に、 容器をヒ ー ト シールによ り 封止するための熱可塑性樹 脂を配する こ と ができ る。 The resin layer contained in the film can be formed of, for example, polyolefin (for example, polyethylene, polypropylene), polyamide, or the like. Among films including a resin layer, it is preferable to use a laminated film in which a metal layer and protective layers disposed on both surfaces of the metal layer are integrated. The metal layer plays a role of blocking moisture and maintaining the shape of the container. Examples of the metal layer include aluminum, stainless steel, iron, and copper eckel. Of these, aluminum is preferred because it is lightweight and has a high moisture-blocking function. The metal layer may be formed of one kind of metal, but two or more kinds of metal layers may be formed. -It may be formed from a body. Of the two protective layers, the protective layer in contact with the outside serves to prevent damage to the metal layer. This external protective layer is formed of one type of resin layer or two or more types of resin layers. On the other hand, the inner protective layer plays a role in preventing the metal layer from being corroded by the non-aqueous electrolyte. This internal protective layer is formed of one type of resin layer or two or more types of resin layers. Further, a thermoplastic resin for sealing the container with a heat seal can be provided on the surface of the internal protective layer.
樹脂層を含むフ ィ ルムの厚さは、 0 . 3 m m以下にする こ とが望ま しく 、 よ り 好ま しい範囲は 0 . 2 5 m m以下で、 更 に好ま しい範囲は 0 . 1 5 m m以下で、 最も好ま しい範囲は 0 . 1 2 m m以下である。 また、 厚さ力 S O . 0 5 mmよ り 薄 レ、と 、 変形や破損し易 く なる こ と から、 フ ィ ルム の厚さの下 限値は 0 . 0 5 m mにする こ と が好ま しい。  The thickness of the film including the resin layer is preferably set to 0.3 mm or less, more preferably 0.25 mm or less, and still more preferably 0.15 mm. Below, the most preferred range is 0.12 mm or less. In addition, since the thickness force is thinner than SO.05 mm and it is easy to deform or break, the lower limit of the film thickness is preferably set to 0.05 mm. New
前記金属板及び前記金属フ ィ ルムは、 例えば、 鉄、 ス テ ン レス 、 アル ミ ニ ウ ム 力 ら形成する こ と がで き る。  The metal plate and the metal film can be formed of, for example, iron, stainless steel, or aluminum.
前記金属板及び金属フ ィ ルム の厚さ は、 0 . 4 mm以下に する こ と が望ま しく 、 よ り 好ま しい範囲は 0 . 3 mm以下で 最も好ま しい範囲は 0 . 2 5 m m以下である。 また、 厚さが 0 . 0 5 m mよ り 薄い と、 十分な強度を得られない恐れがあ る こ とから、 金属板及び金属フ ィ ルム の厚さの下限値は 0 . 0 5 m mにする こ と が好ま しい。  The thickness of the metal plate and the metal film is preferably set to 0.4 mm or less, a more preferred range is 0.3 mm or less, and a most preferred range is 0.25 mm or less. is there. If the thickness is less than 0.05 mm, sufficient strength may not be obtained.Therefore, the lower limit of the thickness of the metal plate and the metal film is set to 0.05 mm. I prefer to do it.
本発明に係る第 2 の非水電解質二次電池は、 リ チウム複合 酸化物粒子を含有する正極活物質粒子を含む正極と、 負極と 非水電解質と を具備した非水電解質二次電池であって、 前記リ チウム複合酸化物粒子は、 N i 及び C o よ り なる群 から選択される少な く と も 1種類からなる元素 Mを含む組成 を有し、 二次凝.集粒を含む粒子形態を持ち、 かつピーク強度 比が下記 ( C ) 式を満足し、 A second nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode including positive electrode active material particles containing lithium composite oxide particles, and a negative electrode. A non-aqueous electrolyte secondary battery comprising: a lithium composite oxide particle comprising at least one element M selected from the group consisting of Ni and Co. And has a particle morphology including secondary agglomeration, and a peak intensity ratio satisfying the following formula (C),
前記正極活物質粒子中の前記リ チウム複合酸化物粒子の含 有量は 5 0重量。/。以上であ り 、  The content of the lithium composite oxide particles in the positive electrode active material particles was 50% by weight. /. That is all
前記正極活物質粒子のモル比は下記 ( D ) 式を満た し、 前 記正極活物質粒子における体積累積頻度 9 0 %の粒径 ( D 9 0 ) が 1 0 111〜 2 5 /^ 111の範囲内でぁ り 、  The molar ratio of the positive electrode active material particles satisfies the following formula (D), and the particle diameter (D90) of the above-mentioned positive electrode active material particles having a volume cumulative frequency of 90% is 10 111 to 25 / ^ 111. Within the range,
前記非水電解質は、 環内に少な く と も一つの二重結合を有 するスル ト ン化合物を含む非水電解質二次電池が提供される ( ≤ ( I 003/ I 104) < 5 ( C ) The non-aqueous electrolyte provides a non-aqueous electrolyte secondary battery including a sulfonate compound having at least one double bond in a ring ( ≤ (I 003 / I 104) <5 (C )
0 . 9 5 ≤ ( YLi/ YM) ≤ 1 . 0 2 ( D ) 伹し、 I 003 は前記リ チウム複合酸化物粒子の粉末 X線回 折における ( 0 0 3 ) 面のピーク 強度 ( c p s ) で、 I i 04 は前記粉末 X線回折における ( 1 0 4 ) 面の ピーク強度 ( c p s ) であ り 、 Y Li は前記正極活物質粒子中の リ チウムの モル数で、 Y M は前記正極活物質粒子中の元素 Mのモル数 で、 前記元素 Mは N i 及び C o よ り なる群から選択される少 なく と も 1 種類である。 0.95 ≤ (Y Li / Y M ) ≤ 1.02 (D) where I 003 is the peak intensity of the (03) plane in the powder X-ray diffraction of the lithium composite oxide particles. in cps), I i 04 is the powder X-ray diffraction at (1 0 4) Ri peak intensity (cps) der the surface, Y L i is the number of moles of lithium of the positive electrode active material particle, Y M Is the number of moles of the element M in the positive electrode active material particles, and the element M is at least one selected from the group consisting of Ni and Co.
本発明に係る第 2 の非水電解質二次電池においては、 正極 以外は前述 した第 1 の非水電解質二次電池で説明 したの と 同 様な構成にする こ と ができ る。 以下、 正極について説明する < こ の正極は、 集電体と、 集電体の片面も し く は両面に担持 され、 前記正極活物質粒子と結着剤と導電剤と を含有する正 極層と を含む。 The second non-aqueous electrolyte secondary battery according to the present invention can have the same configuration as that described in the first non-aqueous electrolyte secondary battery except for the positive electrode. The following describes the positive electrode. <The positive electrode is supported on the current collector and on one or both sides of the current collector. And a positive electrode layer containing the positive electrode active material particles, a binder, and a conductive agent.
元素 Mを含有する リ チウム複合酸化物粒子のピーク強度比 ( 1 003/ I 104) を 2以上、 5未満にする こ と によって、 二 次凝集粒の比率を高く する こ とができ る と共に、 リ チウムの 吸蔵 · 放出に伴 う膨張 ■ 収縮率を小さ く する こ と ができ る。 なお、 結晶が配向性を持たず、 完全に等方的である場合には ピーク強度比 ( I 003 I 104) は計算上 2 と なる。 ピーク強 度比 ( I 003Z I 104) のよ り 好ま しい範囲は、 2 よ り 大き く 4 . 9 5 以下である。 Peak intensity ratio of Lithium composite oxide particles containing an element M (1 003 / I 104) of two or more, by a child of less than 5, with Ru can and this to increase the proportion of secondary agglomerated particles, Expansion due to occlusion / release of lithium ■ Shrinkage rate can be reduced. When the crystal has no orientation and is perfectly isotropic, the peak intensity ratio (I 003 I 104) is calculated as 2. A more preferred range of peak intensity ratios (I003ZI104) is greater than 2 and less than 4.95.
正極活物質粒子中にピーク強度比 ( I 003 I 104) が 2以 上、 5未満の リ チウム複合酸化物粒子が 5 0重量%以上含ま れているため、 正極活物質粒子のモル比 ( Y LiZ Y M) は リ チウム複合酸化物粒子のモル比と ほぼ等しく なる。 よって、 モル比 ( YLiZ YM) を 0 . 9 5未満にする と、 リ チウム複 合酸化物粒子の結晶性の低下な どによ り 正極活物質において リ チウムの吸蔵 · 放出がほと んど起こ らない可能性がある。 一方、 モル比 ( Y Li/ YM) を 1 . 0 2 よ り 大き く する と 、 リ チウム複合酸化物粒子の結晶性は優れる ものの、 リ チウム 複合酸化物粒子中の単粒子の比率が高く なるため、 リ チウム の吸蔵 · 放出に伴う 膨張 · 収縮が大き く なるだけでな く 、 一 次粒子を被覆する保護被膜が孤立 して しまい、 ネ ッ ト ワーク 構造を得られ難く なる。 その結果、 充放電サイ クルで保護被 膜が剥離しやすく なるため、 充放電サイ クル寿命が短く なる 恐れがある。 モル比 ( Y L;/ Y ) の よ り 好ま しい範囲は、 0 . 9 7〜 ; L . 0 2 であ り 、 さ らに好ま しい範囲は 0 . 9 9 〜 1 . 0 2 である。 Since the positive electrode active material particles contain 50% by weight or more of lithium composite oxide particles having a peak intensity ratio (I 003 I 104) of 2 or more and less than 5, the molar ratio of the positive electrode active material particles (Y LiZ YM) is almost equal to the molar ratio of the lithium composite oxide particles. Therefore, the molar ratio of (YLiZ Y M) to less than zero. 10 5, absorption and desorption of Lithium is mined in good Ri positive electrode active substance etc. decrease in crystallinity of Lithium double if oxide particles It may not happen. On the other hand, if the molar ratio (Y Li / Y M) 1 . 0 2 yo Ri is rather large, though excellent in crystallinity of the Lithium complex oxide particles, high proportion of single particle of Lithium composite oxide particles Therefore, not only does the expansion and contraction of lithium due to occlusion and release of lithium increase, but also the protective coating covering the primary particles becomes isolated, making it difficult to obtain a network structure. As a result, the protective film is easily peeled off in the charge / discharge cycle, and the life of the charge / discharge cycle may be shortened. A more preferred range of the molar ratio (Y L ; / Y) is 0.97-; L.02, and a more preferred range is 0.99-1.02.
正極活物質粒子中の リ チウム複合酸化物粒子の含有量が 5 0重量%以上であるため、 正極活物質粒子の粒度分布にはリ チウム複合酸化物粒子の粒度分布が大き く 反映されている。 正極活物質粒子の体積累積頻度 9 0 %の粒径 ( D 9 0 ) が 1 0 Ai m未満である ものは、 リ チウム複合酸化物粒子の二次凝 集粒を構成する一次粒子の数が少ない傾向にあるため、 二次 凝集粒と保護被膜と の接触面積が少なく な り 、 保護被膜が剥 離しやすい。 このため、 長い充放電サイ クル寿命を得られな い恐れがある。 一方、 0 9 0 カ 2 5 111ょ り 大きぃものは、 リ チウム複合酸化物粒子の二次凝集粒を構成する一次粒子の 数が多い傾向があるため、 二次凝集粒の内部に保護被膜が行 き渡らずに二次凝集粒の表面のみが保護被膜で覆われている 状態にある ものが多い。 このため、 充放電サイ クル中に保護 被膜の剥離が起き易 く 、 長い充放電サイ クル寿命を得られな い恐れがある。 D 9 0 のよ り 好ま しい範囲は、 1 0 ju m〜 2 0 μ mである。  Since the content of the lithium composite oxide particles in the positive electrode active material particles is 50% by weight or more, the particle size distribution of the lithium composite oxide particles is largely reflected in the particle size distribution of the positive electrode active material particles. . In the case where the particle diameter (D90) of the volume-accumulated frequency of the positive electrode active material particles of 90% is less than 10 Aim, the number of the primary particles constituting the secondary aggregated particles of the lithium composite oxide particles is small. Because of the tendency to be small, the contact area between the secondary aggregated particles and the protective film is reduced, and the protective film is easily peeled. Therefore, there is a possibility that a long charge / discharge cycle life cannot be obtained. On the other hand, the larger particles of 0.90 to 25111 tend to have a large number of primary particles constituting the secondary aggregated particles of the lithium composite oxide particles, so that the protective coating is formed inside the secondary aggregated particles. In many cases, only the surface of the secondary agglomerated particles is covered with a protective coating without passing through. For this reason, the protective film is easily peeled off during the charge / discharge cycle, and a long charge / discharge cycle life may not be obtained. A more preferred range for D 90 is 10 jum to 20 μm.
正極活物質粒子中の リ チウム複合酸化物粒子の含有量が多 い方が、 正極と保護被膜との密着性を向上する こ とができ る 従って、 よ り 長い充放電サイ クル寿命を得るためには、 正極 活物質粒子中の リ チウム複合酸化物粒子の含有量を 6 0 重 量%以上にする こ と がよ り好ま しく 、 7 0 重量%以上にする こ と 力 Sさ ら に好ま しい。  The higher the content of the lithium composite oxide particles in the positive electrode active material particles, the better the adhesion between the positive electrode and the protective coating.Therefore, to obtain a longer charge / discharge cycle life More preferably, the content of the lithium composite oxide particles in the positive electrode active material particles is set to 60% by weight or more, and more preferably to 70% by weight or more. New
元素 Mを含有する リ チウム複合酸化物と しては、 例えば、 20 リ チウムニ ッケル複合酸化物、 リ チウムコバル ト複合酸化物 リ チウムエッケル コ バル ト複合酸化物などを挙げる こ と がで きる。 前記リ チウム複合酸化物には、 特性改善等の観点から 他の種類の元素を添加する.こ とができ る。 かかる元素と して は、 例えば、 M n、 A 1 、 S n、 F e 、 C u、 C r 、 Z n、 M g 、 S i 、 P、 F、 C l 、 B等を挙げる こ とができ る。 添 加元素の種類は、 1種類でも、 2種類以上でも良い。 As a lithium composite oxide containing the element M, for example, 20 Lithium nickel composite oxide, Lithium cobalt composite oxide Lithium Eckert cobalt composite oxide, and the like. Other types of elements can be added to the lithium composite oxide from the viewpoint of improving characteristics and the like. Examples of such elements include Mn, A1, Sn, Fe, Cu, Cr, Zn, Mg, Si, P, F, Cl, B, and the like. it can. The type of the additive element may be one type or two or more types.
中でも、 下記 ( E ) 式または ( F ) 式で表わされる組成が 好ま しい。  Among them, a composition represented by the following formula (E) or (F) is preferable.
L i fl C o b M l c 02 ( E ) L i fl C o b M l c 0 2 (E)
但し、 前記 Ml は、 N i 、 M n、 B、 A l 及び S n よ り な る群から選択される 1種類以上の元素であ り 、 前記モル比 a b 、 c は、 それぞれ、 0 . 9 5 ≤ a ^ l . 0 5 、 0 . 9 5 ≤ b ≤ 1 . 0 5 、 0 ≤ c ≤ 0 . 0 5 、 0 . 9 5 ≤ b + c ≤ l . 0 5 を示す。 モル比 a , b , c の さ らに好ま しレヽ範囲は、 そ れぞれ、 0 . 9 7 a ^ l . 0 3 、 0 . 9 7 ≤ b ≤ 1 . 0 3 0 . 0 0 1 ≤ c ≤ 0 . 0 3 である。  Here, Ml is one or more elements selected from the group consisting of Ni, Mn, B, Al and Sn, and the molar ratios ab and c are each 0.9. 5 ≤ a ^ l. 05, 0.95 ≤ b ≤ 1.05, 0 ≤ c ≤ 0.05, 0.95 ≤ b + c ≤ l. Further preferred ranges of the mole ratios a, b, and c are 0.97 a ^ l. 03 and 0.97 ≤ b ≤ 1.03 003.001. c ≤ 0.03.
L i XN i yC o zM2wO 2 ( F ) L i X N i y C o z M2 w O 2 (F)
但し、 前記 M2 は、 M n、 B、 A l 及び S n よ り なる群か ら選択される 1 種類以上の元素であ り 、 前記モル比 x 、 y、 z 、 wは、 それぞれ、 0 . 9 5 x ≤ l . 0 5 、 0 . 7 ≤ y ≤ 0 . 9 5 、 0 . 0 5 ≤ z ≤ 0 . 3 、 0 ≤ w≤ 0 . 1 、 0 . 9 5 ≤ y + z + w≤ l . 0 5 を示す。 モノレ比 x , y , ζ のさ らに好ま しい範囲は、 0 . 9 7 x ≤ l . 0 3 、 0 . 7 5 ≤ y ≤ 0 . 9 、 0 . 1 ≤ z ≤ 0 . 2 5 である。 モノレ比 のよ り 好ま しい範囲は 0 ≤ w≤ 0 . 0 7 で、 さ らに好ま しい範囲は 0 ≤ w≤ 0 . 0 5 で、 最も好ま しい範囲は 0 ≤ w ≤ 0 . 0 3 である。 元素 M 2 の添加効果を十分に得るために、 モル比 w の下限値は 0 . 0 0 1 にする こ と が好ま しい。 Here, M2 is one or more elements selected from the group consisting of Mn, B, Al, and Sn, and the molar ratios x, y, z, and w are each 0. 9 5 x ≤ l. 0 5, 0.7 ≤ y ≤ 0.95, 0.05 ≤ z ≤ 0.3, 0 ≤ w ≤ 0.1, 0.95 ≤ y + z + w ≤ l.05. Further preferred ranges of the monolith ratios x, y, and 0 are 0.97 x ≤ 1.03, 0.75 ≤ y ≤ 0.9, and 0.1 ≤ z ≤ 0.25. . More than monole ratio The preferred range is 0 ≤ w ≤ 0.07, the more preferred range is 0 ≤ w ≤ 0.05, and the most preferred range is 0 ≤ w ≤ 0.03. In order to sufficiently obtain the effect of adding the element M 2, the lower limit of the molar ratio w is preferably set to 0.001.
前述した リ チウム複合酸化物粒子においては、 全ての粒子 が同 じ組成を有していなく ても良 く 、 ピーク強度比が 2以上 5未満であれば、 組成の異なる 2種類以上の粒子から構成さ れていても良い。  In the above-mentioned lithium composite oxide particles, not all particles need to have the same composition, and if the peak intensity ratio is 2 or more and less than 5, it is composed of two or more types of particles having different compositions. It may be.
また、 前記正極活物質粒子は、 前述 した リ チウム複合酸化 物粒子から形成されていても良いが、 こ の リ チウム複合酸化 物粒子以外の他の粒子を含んでいても 良い。  In addition, the positive electrode active material particles may be formed from the above-described lithium composite oxide particles, but may include particles other than the lithium composite oxide particles.
他の粒子 と しては、 例えば、 ピーク 強度比 ( I 0 0 3 / I 1 04 ) が 5 よ り 大きい リ チウム含有複合酸化物粒子を挙げる こ と ができ る。 こ の リ チウム含有複合酸化物粒子は、 充電状 態で高い活性を有するため、 前記リ チウム含有複合酸化物粒 子を含む正極は、 高温環境下にある と非水電解質中のスル ト ン化合物と速やかに反応する こ とができ る。 その結果、 充電 状態で高温環境下に保管された際、 正極表面にスル ト ン化合 物による保護被膜を速やかに形成する こ と ができ るため、 非 水電解質の酸化分解反応を抑える こ と が可能である。 従って 二次電池が充電状態で高温環境下に保管された際のガス発生 量を少な く する こ と ができ るため、 電池の膨れを抑える こ と が可能にな り 、 充放電サイ クル寿命が長く 、 かつ充電高温貯 蔵時の膨れが抑制された二次電池を実現する こ と ができ る。 ピーク強度比 ( I 003 I 1 04 ) のよ り 好ま しい範囲は、 7以 上である。 また、 ピーク 強度比が 5 0 0 よ り 大きいも の と 、Is the other particles, for example, the peak intensity ratio (I 0 0 3 / I 1 04) is Ru can and this include the 5 yo Ri greater Lithium-containing composite oxide particles. Since the lithium-containing composite oxide particles have a high activity in a charged state, the positive electrode containing the lithium-containing composite oxide particles may be used in a non-aqueous electrolyte under a high temperature environment. And can react quickly. As a result, when the battery is stored in a charged state in a high-temperature environment, a protective film of a sulfonate compound can be quickly formed on the positive electrode surface, thereby suppressing the oxidative decomposition reaction of the nonaqueous electrolyte. It is possible. Therefore, the amount of gas generated when the secondary battery is stored in a high temperature environment in a charged state can be reduced, so that the battery can be prevented from swelling, and the life of the charge / discharge cycle can be reduced. It is possible to realize a secondary battery that is long and has suppressed swelling during high-temperature storage during charging. A more preferable range of the peak intensity ratio (I 003 I 104) is 7 or less. Above. In addition, the peak intensity ratio is larger than 50,000,
( 1 0 4 ) 面に由来する ピーク が検出 されないものは、 リ チ ゥムを吸蔵 しない結晶構造を有 している可能性がある こ と か ら、 ピーク 強度比の上限は 5 0 0 にする こ と が望ま しい。 充放電サイ クル寿命 と 充電高温貯蔵特性の双方に優れる二 次電池を実現するためには、 ピーク強度比 ( I 003 I 104) が 5 よ り 大きい リ チウム含有複合酸化物粒子の正極活物質粒 子中の割合を 0 . 1 重量%以上、 5 0 重量%未満の範囲にす る こ と が好ま しい。 さ ら に好ま しい範囲は、 0 . 5〜 4 8 重 量%である。 If the peak derived from the (104) plane is not detected, the upper limit of the peak intensity ratio is set to 500, because it may have a crystal structure that does not occlude lithium. This is desirable. In order to realize a secondary battery that has both excellent charge / discharge cycle life and high-temperature storage characteristics during charging, the positive electrode active material particles of lithium-containing composite oxide particles having a peak intensity ratio (I 003 I 104) greater than 5 are required. It is preferred that the proportion in the child be in the range of 0.1% by weight or more and less than 50% by weight. A more preferred range is from 0.5 to 48% by weight.
リ チウム含有複合酸化物 と しては、 例えば、 リ チウム コバ ル ト複合酸化物な どを挙げる こ と ができ る。 前記 リ チウ ム含 有複合酸化物には、 構成元素と異なる種類の元素を少な く と も 1 種類添加する こ と ができ、 添加元素と しては、 例えば、 N i , M n , A 1 , S n , F e , C u , C r , Z n, M g, S i , P, F , C I , B な どを挙げる こ と ができ る。 また、 前記 リ チウム含有複合酸化物の組成は、 前述 した ( E ) 式ま たは ( F ) 式で表わされる ものに して も良い。  Examples of the lithium-containing composite oxide include a lithium-cobalt composite oxide. At least one kind of element different from the constituent elements can be added to the lithium-containing composite oxide. For example, Ni, Mn, A 1 , Sn, Fe, Cu, Cr, Zn, Mg, Si, P, F, CI, B, and so on. The composition of the lithium-containing composite oxide may be represented by the above-described formula (E) or (F).
こ の リ チ ウム含有複合酸化物粒子においては、 全ての粒子 が同 じ組成を有 していな く ても 良 く 、 ピーク 強度比が 5 よ り 大き ければ、 組成の異なる 2種類以上の粒子から構成されて いて も 良い。  In the lithium-containing composite oxide particles, not all particles need to have the same composition.If the peak intensity ratio is larger than 5, two or more types of particles having different compositions are used. It may be composed of
前記導電剤、 前記結着剤、 前記集電体には、 それぞれ、 前 述 した第 1 の非水電解質二次電池において説明 したの と 同様 なも のを挙げる こ と ができ る。 前記正極は、 例えば、 正極活物質に導電剤および結着剤を 適当な溶媒に懸濁し、 こ の懸濁物を集電体に塗布、 乾燥して 薄板状にするこ と によ り 作製される。 Examples of the conductive agent, the binder, and the current collector may be the same as those described in the first nonaqueous electrolyte secondary battery. The positive electrode is manufactured by, for example, suspending a conductive agent and a binder in a suitable solvent in a positive electrode active material, applying the suspension to a current collector, and drying the resultant to form a thin plate. You.
以上説明 した本発明に係る第 2 の非水電解質二次電池に用 いられる正極活物質粒子は、 元素 Mを含有する リ チウム複合 酸化物粒子を 5 0重量%以上含み、 前記リ チウム複合酸化物 粒子はピー ク強度比 ( I 003Z I 104) が 2以上、 5未満であ る と共に二次凝集粒を含む粒子形態を有し、 前記正極活物質 粒子のモル比 ( Y L; Y M) は 0 . 9 5 〜 1 . 0 2 の範囲で かつ前記正極活物質粒子の体積累積頻度 9 0 %の粒径 ( D 9 0 ) カ 1 0 111〜 2 5 111の範囲内でぁるため、 スノレ ト ン化 合物と反応して正極表面に リ チウムイオン透過性の保護被膜 を形成する こ と ができ る。 この保護被膜は、 二次凝集粒の表 面だけでな く一次粒子間の間隙にも形成されるため、 複雑な ネ ッ ト ワーク構造を持つこ とができ る。 その結果、 充放電サ ィ ク ル中に正極から保護被膜が剥離する のを抑制する こ とが でき るため、 非水電解質の酸化分解反応を抑える こ と ができ 二次電池の充放電サイ クル寿命を向上する こ とができ る。 The positive electrode active material particles used in the above-described second nonaqueous electrolyte secondary battery according to the present invention contain 50% by weight or more of the lithium composite oxide particles containing the element M, and The material particles have a peak intensity ratio (I 003Z I 104) of 2 or more and less than 5 and have a particle form including secondary aggregated particles, and the molar ratio of the positive electrode active material particles (YL; Y M) is Since the particle diameter (D90) is within the range of 0.95 to 1.02 and the particle diameter (D90) of 90% of the volume cumulative frequency of the positive electrode active material particles is within the range of 110111 to 25111, It can form a protective film permeable to lithium ions on the surface of the positive electrode by reacting with the lithium compound. Since this protective coating is formed not only on the surface of the secondary aggregated particles but also on the gaps between the primary particles, it can have a complex network structure. As a result, the protective film can be prevented from peeling off from the positive electrode during the charge / discharge cycle, so that the oxidative decomposition reaction of the nonaqueous electrolyte can be suppressed, and the charge / discharge cycle of the secondary battery can be suppressed. The service life can be improved.
本発明に係る非水電解質二次電池の一例である薄型、 角形 円筒形非水電解質二次電池を図 1 〜図 4 を参照して詳細に説 明する。  A thin, rectangular cylindrical nonaqueous electrolyte secondary battery, which is an example of the nonaqueous electrolyte secondary battery according to the present invention, will be described in detail with reference to FIGS.
図 1 は、 本発明に係わる非水電解質二次電池の一例である 薄型非水電解質二次電池を示す斜視図、 図 2 は図 1 の薄型非 水電解質二次電池を短辺方向に沿って切断した部分断面図で 図 3 は本発明に係る非水電解質二次電池の一例である角形非 水電解質二次電池を示す部分切欠斜視図、 図 4 は本発明に係 る非水電解質二次電池の一例である円筒形非水電解質二次電 池を示す部分断面図である。 FIG. 1 is a perspective view showing a thin non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention. FIG. 2 is a diagram showing the thin non-aqueous electrolyte secondary battery of FIG. FIG. 3 is a cut-away partial cross-sectional view. FIG. 3 shows a rectangular non-aqueous electrolyte secondary battery according to the present invention. FIG. 4 is a partially cutaway perspective view showing a water electrolyte secondary battery, and FIG. 4 is a partial cross-sectional view showing a cylindrical non-aqueous electrolyte secondary battery which is an example of the non-aqueous electrolyte secondary battery according to the present invention.
まず、 薄型非水電解質二次電池について説明する。  First, a thin nonaqueous electrolyte secondary battery will be described.
図 1 に示すよ う に、 矩形のカ ップ状をなす容器本体 1 内に は、 電極群 2 が収納されている。 電極群 2 は、 正極 3 と、 負 極 4 と、 正極 3 と負極 4 の間に配置されるセノ レータ 5 を含 む積層物が偏平形状に捲回された構造を有する。 非水電解質 は、 電極群 2 に保持されている。 容器本体 1 の縁の一部は幅 広になってお り 、 蓋板 6 と して機能する。 容器本体 1 と蓋板 6 は、 それぞれ、 ラ ミ ネー ト フ ィ ルム力 ら構成される。 この ラ ミネー ト フ ィ ルムは、 外部保護層 7 と、 熱可塑性樹脂を含 有する内部保護層 8 と、 外部保護層 7 と 内部保護層 8 の間に 配置される金属層 9 と を含む。 容器本体 1 には蓋体 6 が内部 保護層 8 の熱可塑性樹脂を用いてヒ ー トシールに よ って固定 され、 それによ り 容器内に電極群 2 が密封される。 正極 3 に は正極タブ 1 0 が接続され、 負極 4 には負極タブ 1 1 が接続 され、 それぞれ容器の外部に引き出されて、 正極端子及び負 極端子の役割を果たす。  As shown in FIG. 1, an electrode group 2 is accommodated in a container body 1 having a rectangular cup shape. The electrode group 2 has a structure in which a laminate including the positive electrode 3, the negative electrode 4, and the separator 5 disposed between the positive electrode 3 and the negative electrode 4 is wound into a flat shape. The non-aqueous electrolyte is held in electrode group 2. A part of the edge of the container body 1 is wide and functions as the cover plate 6. The container body 1 and the lid plate 6 are each composed of a laminated film force. The laminated film includes an external protective layer 7, an internal protective layer 8 containing a thermoplastic resin, and a metal layer 9 disposed between the external protective layer 7 and the internal protective layer 8. A lid 6 is fixed to the container body 1 by a heat seal using the thermoplastic resin of the inner protective layer 8, whereby the electrode group 2 is sealed in the container. A positive electrode tab 10 is connected to the positive electrode 3, and a negative electrode tab 11 is connected to the negative electrode 4. Each of the negative electrodes 4 is drawn out of the container and serves as a positive electrode terminal and a negative electrode terminal.
次いで、 角形非水電解質二次電池について説明する。  Next, the prismatic nonaqueous electrolyte secondary battery will be described.
図 3 に示すよ う に、 例えばアルミ ニウムのよ う な金属製の 有底矩形筒状容器 1 2 内には、 電極群 1 3 が収納されている 電極群 1 3 は、 正極 1 4 、 セノ レータ 1 5 及び負極 1 6 がこ の順序で積層 され、 扁平状に捲回されたものであ る。 中央付 近に開口部を有するスぺーサ 1 7 は、 電極群 1 3 の上方に配 置されている。 As shown in FIG. 3, an electrode group 13 is housed in a bottomed rectangular cylindrical container 12 made of a metal such as aluminum, for example. The radiator 15 and the negative electrode 16 are laminated in this order, and are flatly wound. A spacer 17 having an opening near the center is located above the electrode group 13. Is placed.
非水電解質は、 電極群 1 3 に保持されている。 防爆機構 1 8 a を備え、 かつ中央付近に円形孔が開口 されている封口板 1 8 b は、 容器 1 2 の開 口部にレーザ溶接されている。 負極 端子 1 9 は、 封口板 1 8 b の円形孔にハーメ チック シールを 介して配置されている。 負極 1 6 から引き出された負極タブ 2 0 は、 負極端子 1 9 の下端に溶接されている。 一方、 正極 タブ (図示しない) は、 正極端子を兼ねる容器 1 2 に接続さ れている。  The non-aqueous electrolyte is held in the electrode group 13. The sealing plate 18b, which has an explosion-proof mechanism 18a and has a circular hole near the center, is laser-welded to the opening of the container 12. The negative electrode terminal 19 is arranged in a circular hole of the sealing plate 18b via a hermetic seal. The negative electrode tab 20 pulled out from the negative electrode 16 is welded to the lower end of the negative electrode terminal 19. On the other hand, a positive electrode tab (not shown) is connected to a container 12 also serving as a positive electrode terminal.
次いで、 円筒形非水電解質二次電池について説明する。 ス テ ン レスからなる有底円筒状の容器 2 1 は、 底部に絶縁 体 2 2が配置されている。 電極群 2 3 は、 前記容器 2 1 に収 納されている。 前記電極群 2 3 は、 正極 2 4、 セパ レータ 2 Next, the cylindrical non-aqueous electrolyte secondary battery will be described. A cylindrical container 21 made of stainless steel and having a bottom has an insulator 22 disposed at the bottom. The electrode group 23 is housed in the container 21. The electrode group 23 includes a positive electrode 24, a separator 2
5 、 負極 2 6及びセパ レータ 2 5 を積層 した帯状物を前記セ パ レータ 2 5 が外側に位置する よ う に渦巻き状に捲回 した構 造になっている。 5, a strip formed by laminating the negative electrode 26 and the separator 25 is spirally wound so that the separator 25 is located outside.
前記容器 2 1 内には、 非水電解質が収容されてい る 。 中央 部が開口 された絶縁紙 2 7 は、 前記容器 2 1 内の前記電極群 The container 21 contains a non-aqueous electrolyte. The insulating paper 27 having an opening at the center is provided with the electrode group in the container 21.
2 3 の上方に配置されている。 絶縁封口板 2 8 は、 前記容器It is located above 2 3. The insulating sealing plate 28 is the container
2 1 の上部開口部に配置され、 かつ前記上部開口部付近を内 側にかしめ加工する こ と によ り 前記封口板 2 8 は前記容器 2The sealing plate 28 is disposed in the upper opening of the container 2 and the vicinity of the upper opening is caulked inward.
1 に固定されている。 正極端子 2 9 は、 前記絶縁封口板 2 8 の中央に嵌合されている。 正極リ ー ド 3 0 の一端は、 前記正 極 2 4 に、 他端は前記正極端子 2 9 にそれぞれ接続されてい る。 前記負極 2 6 は、 図示 しない負極リ ー ドを介 して負極端 子である前記容器 2 1 に接続されている。 Fixed to 1. The positive electrode terminal 29 is fitted in the center of the insulating sealing plate 28. One end of the positive electrode lead 30 is connected to the positive electrode 24, and the other end is connected to the positive electrode terminal 29. The negative electrode 26 is connected to a negative electrode terminal via a negative electrode lead (not shown). It is connected to the container 21 which is a child.
以下、 本発明の実施例を前述した図面を参照して詳細に説 明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings described above.
(実施例 1 )  (Example 1)
<正極の作製 >  <Preparation of positive electrode>
下記表 1 に示す組成を有し、 かつ体積累積頻度 9 0 %粒径 D 9 0 と ピーク強度比 ( I 003 Z I 104) が下記表 1 に示す値 である リ チウム複合酸化物粒子を用意した。 走査型電子顕微 鏡 ( S E M) 観察の結果、 この リ チウム複合酸化物粒子に二 次凝集粒が含まれている こ と を確認する こ とができた。 なお 体積累積頻度 9 0 %粒径 D 9 0 と ピーク 強度比 ( I 003 Z ILithium composite oxide particles having the composition shown in Table 1 below and having a volume cumulative frequency of 90% particle diameter D90 and a peak intensity ratio (I 003 ZI104) of the values shown in Table 1 below were prepared. . As a result of scanning electron microscopy (SEM) observation, it was confirmed that the lithium composite oxide particles contained secondary aggregated particles. The volume cumulative frequency 90% particle size D 90 and the peak intensity ratio (I 003 ZI
104> は、 下記に説明する方法で測定した。 104> was measured by the method described below.
く D 9 0 の測定〉  Measurement of D90>
すなわち、 レーザー回折 ■ 散乱法によ り リ チウム複合酸化 物粒子の粒径と各粒度区間での粒子の占有体積を測定する。 粒度区間の体積を累積して全体の 9 0 °/0と なった時の粒径を 体積累積頻度 9 0 %粒径と した。 That is, the particle size of the lithium composite oxide particles and the volume occupied by the particles in each particle size section are measured by a laser diffraction scattering method. The particle size when the volume of the particle size section was accumulated to reach 90 ° / 0 as a whole was defined as the volume cumulative frequency of 90% particle size.
< ピーク強度比の測定 >  <Measurement of peak intensity ratio>
X線回折測定は、 理学電気 (株) 製の R I N T 2 0 0 0 を 用いた。 X線線源に C u _ Κ α 1 (波長 1 . 5 4 0 5 A ) を 用いて以下の機器条件で行った。 管電圧は 4 0 k V、 電流は 4 0 m A、 発散ス リ ッ ト は 0 . 5 ° 、 散乱ス リ ッ ト は 0 . 5 ° 、 受光ス リ ッ ト幅は 0 . 1 5 m mであった。 さ らに、 モ ノ ク ロ メ ーターを使用 した。 測定は、 走査速度が 2 ° /分、 走査ステ ップが 0 . 0 1 ° で、 走查軸が 2 0 Z 0 の条件で行 つた。 2 Θ = 4 5 . 0。 ± 0 . 5。 のピーク を ( 1 0 4 ) 面 のピーク と し、 2 6 - 1 8 . 8 ° ± 0 . 2 ° の ピーク を ( 0 0 3 ) 面のピーク と した。 また、 ピーク強度 ( c p s ) は、 2 Θ 軸で表記した回折模様の測定値からバック グラ ゥン ドを 引いたもの と. した。 For the X-ray diffraction measurement, RINT 2000 manufactured by Rigaku Corporation was used. The measurement was performed using Cu_Κα1 (wavelength: 1.5405 A) as an X-ray source under the following instrument conditions. The tube voltage is 40 kV, the current is 40 mA, the divergence slit is 0.5 °, the scatter slit is 0.5 °, and the receiving slit width is 0.15 mm. there were. In addition, a monochromator was used. The measurement was performed at a scanning speed of 2 ° / min, a scanning step of 0.01 °, and a scanning axis of 20Z0. I got it. 2 Θ = 45.0. ± 0.5. The peak of (104) plane was defined as the peak of (104) plane, and the peak of 26- 18.8 ° ± 0.2 ° was defined as the peak of (003) plane. The peak intensity (cps) was obtained by subtracting the background from the measured value of the diffraction pattern indicated by the two-axis.
上記リ チウム複合酸化物粉末 9 0重量%に、 アセチ レ ンプ ラ ック 5重量0 /0 と、 ポリ フ ッ化ビニ リ デン ( Ρ V d F ) 5重 量0 /0の N—メ チル _ 2 —ピロ リ ドン ( N M P ) 溶液と を加え て混合し、 ス ラ リ ーを調製した。 前記ス ラ リ ーを厚さが 1 5 mのアルミ ニウム箔からなる集電体の両面に塗布した後、 乾燥し、 プレスする こ と によ り 、 正極層が集電体の両面に担 持された構造の正極を作製した。 なお、 正極層の厚さは、 片 面当 り 6 0 /冥 であ っ た。 Above Lithium composite oxide powder 9 0 wt%, and acetylene Les pump rack 5 weight 0/0, polyunsaturated Kka vinylene Li Den (Ρ V d F) 5 by weight 0/0 N- methylation _ 2 -Pyrrolidone (NMP) solution was added and mixed to prepare a slurry. The slurry is applied to both sides of a current collector made of aluminum foil having a thickness of 15 m, and then dried and pressed, so that the positive electrode layer is supported on both sides of the current collector. A positive electrode having the structure described above was produced. The thickness of the positive electrode layer was 60 / shade per side.
<負極の作製 >  <Preparation of negative electrode>
炭素質材料と して 3 0 0 0 °Cで熱処理したメ ソフェーズピ ツチ系炭素繊維 (粉末 X線回折によ り 求め られる ( 0 0 2 ) 面の面間隔 ( d 002 ) 力 S 0 . 3 3 6 n m ) の粉末を 9 5 重 量0 /0 と、 ポリ フ ッ化ビエリ デン ( P V d F ) 5重量0 /0のジメ チルフ オルムア ミ ド ( D M F ) 溶液と を混合し、 ス ラ リ ーを 調製した。 前記ス ラ リ ーを厚さが 1 2 z mの銅箔からなる集 電体の両面に塗布し、 乾燥し、 プレスする こ と によ り 、 負極 層が集電体に担持された構造の負極を作製 した。 なお、 負極 層の厚さ は、 片面当 り 5 5 μ ιηであった。 Mesophase pitch-based carbon fiber heat-treated at 300 ° C. as a carbonaceous material (plane spacing (d 002 ) force S 0.33 determined by powder X-ray diffraction) powder and 9 5 by weight 0/0 6 nm), and a polyunsaturated Kka Vieri Den (PV d F) 5 wt 0/0 of dimethyl Chirufu Orumua mi de (DMF) solution was mixed, scan la rie Was prepared. The slurry is applied to both sides of a current collector made of a copper foil having a thickness of 12 zm, dried, and pressed to form a negative electrode having a structure in which a negative electrode layer is supported on the current collector. Was prepared. The thickness of the negative electrode layer was 55 μιη per one side.
なお、 炭素質物の ( 0 0 2 ) 面の面間隔 d 002 は、 粉末 X 線回折スぺク トルから半値幅中点法によ り それぞれ求めた。 この際、 ローレンツ散乱等の散乱補正は、 行わなかった。 <セパ レータ > The plane distance d 002 of the ( 002 ) plane of the carbonaceous material was determined from the powder X-ray diffraction spectrum by the half-width midpoint method. At this time, scattering correction such as Lorentz scattering was not performed. <Separator>
厚さが 2 5 μ mの微多孔性ポ リ エチレン膜からなるセパレ ータ を用意した。  A separator consisting of a microporous polyethylene membrane with a thickness of 25 μm was prepared.
ぐ非水電解液の調製 >  Preparation of non-aqueous electrolyte solution>
エチレンカーボネー ト ( E C ) 、 一ブチロ ラ タ ト ン ( G B L ) および 1 , 3 —プロペ ンス ル ト ン ( P R S ) を体積比 率 ( E C : G B L : P R S ) 力 S 3 3 : 6 6 : 1 になる よ う に 混合して非水溶媒を調製した。 得られた非水溶媒に四フ ッ化 ホ ウ酸リ チウム ( L i B F 4 ) をその濃度が 1 . 5 モル ZEthylene carbonate (EC), 1-butyrolataton (GBL) and 1,3-propeneluton (PRS) are converted to volume ratio (EC: GBL: PRS) force S33: 66: 1. To obtain a non-aqueous solvent. The resulting non-aqueous solvent to the four full Tsu of e Usanri lithium (L i BF 4) whose concentration 1.5 mol Z
L になる よ う に溶解させて、 液状非水電解質を調製した。 The liquid non-aqueous electrolyte was prepared by dissolving so as to obtain L.
ぐ電極群の作製 >  Production of electrode group>
前記正極の集電体に帯状アルミ ニ ウム箔 (厚 さ 1 0 0 m ) からなる正極リ ー ドを超音波溶接し、 前記負極の集電体 に帯状ニ ッケル箔 (厚さ 1 0 0 /z m) からなる負極リ ー ドを 超音波溶接した後、 前記正極及び前記負極をその間に前記セ パレータ を介して渦巻き状に捲回 した後、 偏平状に成形 し、 電極群を作製した。  A positive electrode lead made of strip-shaped aluminum foil (100 m thick) is ultrasonically welded to the positive electrode current collector, and a strip-shaped nickel foil (100 mm thick) is formed on the negative electrode current collector. zm) was subjected to ultrasonic welding, then the positive electrode and the negative electrode were spirally wound therebetween through the separator, and then formed into a flat shape to produce an electrode group.
アルミ ニ ウム箔の両面をポリ エチレンで覆った厚さ 1 0 0 μ ΐϋのラ ミネー ト フ ィ ルムを、 プ レ ス機によ り 矩形のカ ップ 状に成形し、 得られた容器内に前記電極群を収納 した。  A 100-μm-thick laminate film with both sides of aluminum foil covered with polyethylene was formed into a rectangular cup shape by a press machine, and the inside of the container was obtained. The above-mentioned electrode group was housed.
次いで、 容器内の電極群に 8 0 °Cで真空乾燥を 1 2 時間施 すこ と によ り 電極群及びラ ミネ一 ト フイルムに含まれる水分 を除去した。  Next, moisture contained in the electrode group and the laminate film was removed by subjecting the electrode group in the container to vacuum drying at 80 ° C. for 12 hours.
引き続き、 容器内の電極群に液状非水電解質を電池容量 1 A h 当た り の量が 4 . 8 g となる よ う に注入し、 ヒー ト シ一 ルによ り封止する こ と によって、 前述した図 1、 2 に示す構 造を有し、 厚さ力 S 3 . 6 m m、 幅力 S 3 5 m m、 高さ力 S 6 2 m mの薄型非水電解質二次電池を組み立てた。 Next, a liquid non-aqueous electrolyte was charged to the electrode group in the By injecting so that the amount per Ah becomes 4.8 g and sealing with a heat seal, it has the structure shown in Figs. A thin non-aqueous electrolyte secondary battery with a power of 3.6 mm, a width of 3.5 mm, and a height of 62 mm was assembled.
(実施例 2〜 8 )  (Examples 2 to 8)
非水電解質の組成を下記表 2 に示すよ う に変更する こ と以 外は、 前述 した実施例 1 で説明 したの と同様に して薄型非水 電解質二次電池を組み立てた。  A thin non-aqueous electrolyte secondary battery was assembled in the same manner as described in Example 1 except that the composition of the non-aqueous electrolyte was changed as shown in Table 2 below.
なお、 表 2 において、 D E Cはジェチルカーボネー ト、 M E Cはメ チルェチルカーボネー ト、 P Cはプロ ピレンカーボ ネー ト 、 B T S は 1 , 4 —プチレ ンス ル ト ンを示す。  In Table 2, DEC indicates getyl carbonate, MEC indicates methylethyl carbonate, PC indicates propylene carbonate, and BTS indicates 1,4-butylenetone.
(実施例 9〜 1 7 )  (Examples 9 to 17)
L i と元素 Mのモル比 ( X Li/ X M) 、 ピーク強度比 ( I 003/ I 104) および体積累積頻度 9 0 %粒径 D 9 0 を下記表 1 に示すよ う に変更する こ と以外は、 前述 した実施例 1 で説 明 したの と 同様に して薄型非水電解質二次電池を組み立てた (比較例 1〜 5 ) The molar ratio of Li to element M ( XLi / XM ), peak intensity ratio (I003 / I104) and volume cumulative frequency 90% particle size D90 should be changed as shown in Table 1 below. A thin non-aqueous electrolyte secondary battery was assembled in the same manner as described in Example 1 except for (Comparative Examples 1 to 5).
非水電解質の組成を下記表 4 に示すよ う に変更する こ と以 外は、 前述 した実施例 1 で説明 したの と 同様に して薄型非水 電解質二次電池を組み立てた。  A thin nonaqueous electrolyte secondary battery was assembled in the same manner as described in Example 1 except that the composition of the nonaqueous electrolyte was changed as shown in Table 4 below.
なお、 表 4 において、 E Cはエチレンカーボネー ト 、 M E Cはメ チノレエチルカーボネー ト、 P R S は 1 , 3 —プロペン スノレ ト ン、 D E Cはジェチルカーボネー ト、 G B Lは γ —ブ チロ ラ タ ト ン、 P Cはプロ ピレンカーボネー ト、 P S はプロ パンス ル ト ンを示す。 (比較例 6 〜 1 0 ) In Table 4, EC is ethylene carbonate, MEC is methynoleethyl carbonate, PRS is 1,3-propene snorethone, DEC is getyl carbonate, and GBL is γ-butyrolata. Tone and PC indicate propylene carbonate, and PS indicates propane sultone. (Comparative Examples 6 to 10)
L i と元素 Mのモル比 ( X Li/ M) 、 ピーク強度比 ( I 003/ I 104) および体積累積頻度 9 0 %粒径 D 9 0 を下記表 3 に示すよ う に変更する こ と以外は、 前述 した実施例 1 で説 明 したのと 同様に して薄型非水電解質二次電池を組み立てた 得られた実施例 1 〜 1 7 および比較例 1 〜 1 0 の二次電池 について、 充放電サイ クル特性を下記に説明する条件で評価 し、 その結果を下記表 2、 表 4 に示す。  The molar ratio of Li to element M (XLi / M), peak intensity ratio (I003 / I104) and volume cumulative frequency 90% particle size D90 should be changed as shown in Table 3 below. Except for the above, the thin batteries of Examples 1 to 17 and Comparative Examples 1 to 10 obtained by assembling a thin nonaqueous electrolyte secondary battery in the same manner as described in Example 1 above were used. The charge-discharge cycle characteristics were evaluated under the conditions described below, and the results are shown in Tables 2 and 4 below.
(充放電サイ クル特性)  (Charge / discharge cycle characteristics)
各二次電池について、 初充放電工程と して、 室温で 0 . 2 C ( 1 3 0 m A) で 4 . 2 Vまで定電流 . 定電圧充電を 1 5 時間行い、 その後、 室温で 0 . 2 Cで 3 . 0 Vまで放電した 次に、 充放電サイ ク ル特性と して、 充放電レー ト 1 C、 充 電終止電圧 4. 2 V、 放電終止電圧 3 . O Vの充放電試験を 行い、 温度 2 0 °Cの環境中において充放電を 5 0 0回繰り 返 した後の放電容量維持率 ( 1 回目 の放電の容量を 1 0 0 %と する) を求めた。 For each rechargeable battery, as a first charge / discharge step, constant current to 4.2 V at 0.2 C (130 mA) at room temperature, constant voltage charge was performed for 15 hours, and then 0 Discharge to 3.0 V at 2.2 C Next, the charge and discharge cycle characteristics were as follows: charge and discharge rate 1 C, charge end voltage 4.2 V, discharge end voltage 3.0 OV charge / discharge test The discharge capacity retention rate after the charge and discharge was repeated 500 times in an environment at a temperature of 20 ° C (assuming the capacity of the first discharge was 100%) was determined.
表 1 table 1
リチウム複合酸化物の糸!^ Liと元素 Mのモル匕 ピ -ク強度比  Lithium composite oxide yarn! ^ Li and element M mole dan peak intensity ratio
( I nn ノ ΠΛ) 実施例 1 L i C o Oつ 1. 00 3. 4 実施例 2 L ί C o O 1. 00 3. 4 実施例 3 L i C o O2 1. 00 3. 4 実施例 4 L i C Oo 1. 00 3. 4 実施例 5 L i C 02 1. 00 3. 4 実施例 6 L i C Oo 1. 00 3. 4 実施例 7 L i C Oo 1. 00 3. 4 実施例 8 L i C Oo 1. 00 3. 4 実施例 9 L i C o Oo 1. 00 2. 43 実施例 10 L i C Oo 1. 00 2. 65 実施例 11 L i 0.996。 02 0. 996 2. 8 実施例 12 L i l.OlC 02 1. 01 2. 4 実施例 13 L i i.oiC o02 1. 01 2. 17 実施例 14 L 10.998N i 0.2C °0.8°2 0. 998 3. 87 実施例 15 L i N i o.2Coo.802 1. 00 2. 55 実施例 16 L i N i o.5C o0.5°2 1. 00 4. 23 実施例 17 L i N i o.8C o0.2°2 1. 00 3. 88 (I nn ΠΛ) Example 1 L i C O O 1.00 3.4 Example 2 L ί C O O 1.00 3.4 Example 3 L i C O 2 1.00 3.4 Example Example 4 L i C Oo 1.00 3.4 Example 5 L i C 0 2 1.00 3.4 Example 6 L i C Oo 1.00 3.4 Example 7 L i C Oo 1.00 3 . 4 Example 8 LiCoOo 1.00 3.4 Example 9 LiCoOo 1.00 2.43 Example 10 LiCoo 1.00 2.65 Example 11 Li0.996. 0 2 0.96 2.8 Example 12 L i l.OlC 0 2 1.01 2.4 Example 13 L i i.oiC o0 2 1.01 2.17 Example 14 L 1 0.998 N i 0.2 C ° 0.8 ° 2 0. 998 3. 87 example 15 L i N i o.2Coo. 8 0 2 1. 00 2. 55 example 16 L i N i o.5 C o 0.5 ° 2 1. 00 4. 23 Example 17 L i N i o.8 C o 0.2 ° 2 1.00 3.88
表 2 Table 2
Figure imgf000034_0001
Figure imgf000034_0001
表 3 Table 3
Figure imgf000035_0001
Figure imgf000035_0001
表 4 Table 4
主溶媒の種類と混合比 電解質の スルトンィ匕合物の 500サイクル時容 4ϋ持率 (%は体積0 /0を示す) 種類と配合比 (%) 比較例 1 33 . 4%EC, 66. 6%GBL 1 . 5M-LiBF4 無添加 4 2 比較例 2 50%EC, 50%PC 1 . 0M-LiPF6 無添加 2 0 The main 500 cycles Tokiyo 4ϋ lifting of the solvent type and the mixing ratio electrolytes Surutoni匕合product (% denotes the volume 0/0) type and mixing ratio (%) Comparative Example 1 33. 4% EC, 66. 6 % GBL 1.5 M-LiBF 4 not added 4 2 Comparative Example 2 50% EC, 50% PC 1.0 M-LiPF 6 not added 20
比較例 3 33 . 4 EC, 66. 6%MEC 1 . 0M-LiPF6 無添加 3 6 Comparative Example 33 33.4 EC, 66.6% MEC 1.0 M-LiPF 6 not added 3 6
比較例 33 . 4%EC, 33 . 3%MEC, 33 . 3%DEC 1 . 0M-LiPF6 無添加 4 2 Comparative Example 33.4% EC, 33.3% MEC, 33.3% DEC 1.0 M-LiPF 6 not added 4 2
比較例 5 33 EC, 66%GBL 1 . 5M-LiBF4 PS- 1体積0 /0 3 5 比較例 6 33 EC, 66%GBL 1 . 5M-LiBF4 PRS- 1 % 6 6 Comparative Example 5 33 EC, 66% GBL 1 . 5M-LiBF 4 PS- 1 volume 0/0 3 5 Comparative Example 6 33 EC, 66% GBL 1 . 5M-LiBF 4 PRS- 1% 6 6
比較例 7 33 EC, 66%GBL 1 . 5M-LiBF4 PRS - 1体積0 /o 6 2 Comparative Example 7 33 EC, 66% GBL 1.5 M-LiBF 4 PRS-1 volume 0 / o 6 2
比較例 8 33%EC, 66%GBL 1 . 5M-LiBF4 PRS- 1纏0 /0 5 8 Comparative Example 8 33% EC, 66% GBL 1. 5M-LiBF 4 PRS- 1 fireman's standard 0/0 5 8
比較例 9 33 EC, 66%GBL 1 . 5M-LiBF4 PRS- 1體0 /o 3 8 Comparative Example 9 33 EC, 66% GBL 1.5 M-LiBF 4 PRS-1 1 body 0 / o 3 8
比較例 10 33 EC, 66%GBL 1 . 5M-LiBF4 PRS - 1体積0 /0 2 3 . Comparative Example 10 33 EC, 66% GBL 1 5M-LiBF 4 PRS - 1 volume 0/0 2 3
表 1 〜表 4 力 ら明 ら かな よ う に、 モル比 ( X Li/ X M) が 0 . 9 5 〜 1 . 0 2 の範囲内で、 ピーク 強度比 ( I 003 Z I 104) が 2 以上、 5 未満で、 力 つ D 9 0 力 S 1 0 μ m〜 2 5 μ mの範囲内である リ チウム複合酸化物 と、 環内に少な く と も 一つの二重結合を有するスル ト ン化合物と を含む実施例 1 〜 1 7 の二次電池は、 比較例 1 〜 1 0 の二次電池に比較 して 5 0 0 サイ クル時の容量維持率が高いこ と が理解でき る。 中で も、 実施例 1 〜 1 2 、 1 4 〜 1 7 の二次電池は、 D 9 0 ;^ 2 0 μ ΐηを超えている実施例 1 3 の二次電池に比較 して 5 0 0 サイ クル時の容量維持率が高 く なった。 Tables 1 to cormorants by kana 4 force RaAkira et tables, the molar ratio (X Li / X M) to zero. 9 5 to 1.0 in the second range, the peak intensity ratio (I 003 ZI 104) is 2 or more , A lithium composite oxide having a power of less than 5 and a power of D90 in the range of 10 μm to 25 μm, and a sultone having at least one double bond in the ring. It can be understood that the secondary batteries of Examples 1 to 17 containing the compound have a higher capacity retention rate during 50,000 cycles than the secondary batteries of Comparative Examples 1 to 10. Among them, the secondary batteries of Examples 1 to 12 and 14 to 17 have a value of 50,000 compared with the secondary battery of Example 13 which exceeds D90; ^ 20 μΐη. The capacity retention rate during the cycle has increased.
なお、 スル ト ン化合物が無添加の比較例 1 〜 4 の二次電池 と 、 二重結合を持たない P S を添加剤 と して用いる比較例 5 の二次電池と 、 ピーク 強度比が 5 よ り 大き く 、 かつ D 9 0 が 1 0 m未満である比較例 6 , 1 0 の二次電池と 、 モル比が 1 . 0 2 よ り 大き く 、 ピーク 強度比が 5 よ り 大きい比較例 7 の二次電池 と 、 モル比が 1 . 0 2 よ り 大き く 、 ピーク 強度比 力 5 よ り 大き く 、 かつ D 9 0 力 1 0 μ πι未満の比較例 8 の二 次電池と 、 D 9 0 が 2 5 i mを超える比較例 9 の二次電池は いずれも 5 0 0 サイ クル時の容量維持率が 7 0 %に満たなか つた o  The peak intensity ratio of the secondary batteries of Comparative Examples 1 to 4 in which no sulfonate compound was added and the secondary battery of Comparative Example 5 in which PS having no double bond was used as an additive were 5 or more. Comparative Examples 6 and 10 in which the molar ratio is greater than 1.02 and the peak intensity ratio is greater than 5 in Comparative Examples 6 and 10 in which D90 is less than 10 m and D90 is less than 10 m. And the secondary battery of Comparative Example 8 in which the molar ratio is greater than 1.02, the peak intensity specific power is greater than 5, and the D90 force is less than 10 μππι. In all of the secondary batteries of Comparative Example 9 where 0 exceeds 25 im, the capacity retention rate during the 500 cycles was less than 70% .o
(実施例 1 8 )  (Example 18)
D 9 0 力 S 1 5 · 2 5 μ mで、 ピー ク 強度比 ( I 003 Z I 104) が 3 . 4 の L i C o 〇 2 粒子 (第 1 の活物質粒子) を 7 0 重量 0 /0 と 、 D 9 0 力 S 1 4 . 9 3 μ mで、 ピーク 強度比 ( I 003Z I 104) 力 S 3 · 8 の L i N i 0.8 c 0 0.2M n 0.06〇 2 粒子 (第 2 の活物質粒子) を 3 0重量%と を混合する こ と に よ り 、 正極活物質粒子を得た。 走査型電子顕微鏡 ( S E M) 観察の結果、 第 1 の活物質粒子の一部が二次凝集粒の形態を 取っている こ と を確認する こ と ができた。 D 90 force S 15 · 25 μm, the peak intensity ratio (I 003 ZI 104) of 3.4 LiCo 2 particles (first active material particles) of 3.4, 70 weight 0 / 0, D 9 0 force S 1 4. 9 3 in mu m, the peak intensity ratio (I 003Z I 104) force L i of S 3 · 8 n i 0 .8 c 0 0.2 M n 0.06_Rei 2 The cathode active material particles were obtained by mixing the particles (second active material particles) with 30% by weight. Scanning electron microscope (SEM) observations confirmed that some of the first active material particles were in the form of secondary aggregates.
得られた正極活物質粒子の D 9 0 と 、 モル比 ( Y LI/ Y M) を下記表 5 に示す。 Table 5 shows D90 of the obtained positive electrode active material particles and the molar ratio ( YLI / YM).
得られた正極活物質粒子を用いる こ と以外は、 前述 した実 施例 1 で説明 したの と 同様な構成の薄型非水電解質二次電池 を得た。  A thin non-aqueous electrolyte secondary battery having the same configuration as that described in Example 1 was obtained except that the obtained positive electrode active material particles were used.
(実施例 1 9 〜 2 4 )  (Examples 19 to 24)
第 1 の活物質並びに第 2 の活物質における組成、 ピーク強 度比 ( I o03Z l l04) 及び D 9 0 と、 正極活物質粒子中の第 1 の活物質の配合比と、 正極活物質粒子の D 9 0並びにモル 比 ( Y UZ Y M) が下記表 5 に示す通 り である正極活物質粒 子を用いる こ と以外は、 前述した実施例 1 で説明 したの と 同 様な構成の薄型非水電解質二次電池を得た。  Composition, peak intensity ratio (Io03Z1104) and D90 in the first active material and the second active material, the compounding ratio of the first active material in the positive electrode active material particles, and the positive electrode active material particles Except for using the positive electrode active material particles whose D90 and molar ratio (YUZYM) are as shown in Table 5 below, a thin structure having the same configuration as that described in Example 1 described above. A non-aqueous electrolyte secondary battery was obtained.
得られた実施例 1 8 〜 2 4 の二次電池について、 前述した 実施例 1 で説明 したの と 同様に して 5 0 0 サイ クル時の容量 維持率を測定し、 その結果を下記表 6 に示す。 また、 実施例 1 8 〜 2 4及び前述 した実施例 1 の二次電池について、 充電 高温保存特性を下記に説明する条件で評価し、 その結果を下 記表 6 に示す。  With respect to the obtained secondary batteries of Examples 18 to 24, the capacity retention rate during 500 cycles was measured in the same manner as described in Example 1 described above, and the results were shown in Table 6 below. Shown in Further, the charging and high-temperature storage characteristics of the secondary batteries of Examples 18 to 24 and Example 1 described above were evaluated under the conditions described below, and the results are shown in Table 6 below.
(充電高温貯蔵特性)  (Charge high temperature storage characteristics)
各二次電池について、 充電レー ト 1 C、 充電終止電圧 4 . 2 Vで充電し、 温度 8 0 °Cの環境中において 1 2 0時間保存 した後の電池容器の厚みを測定し、 ( I ) 式よ り 保存中の電 池容器の厚み変化率を求めた。 Each rechargeable battery is charged at a charge rate of 1 C and a charge termination voltage of 4.2 V, and stored for 120 hours in an environment at a temperature of 80 ° C The thickness of the battery container after the storage was measured, and the rate of change in the thickness of the battery container during storage was determined by the formula (I).
{ ( t i - t 0) / t 0l i o o ( % ) ( I ) 但し、 前記 t o は、 保存直前の電池容器厚さ で、 前記 t i は、 保存 1 2 0時間後の電池容器厚さ を示す。 {(Ti - t 0) / t 0 lioo (%) (I) where the to the battery container the thickness of the immediately preceding storage, wherein ti represents the battery case thickness after storage 1 2 0 hours.
Figure imgf000040_0001
Figure imgf000040_0001
表 6 Table 6
Figure imgf000041_0001
表 5 , 表 6 力 ら 明 ら かな よ う に、 ピーク 強度比が ( I 003 / I !04) が 2 以上、 5 未満の 2 種類の リ チウム コ バル ト含 有複合酸化物からな る正極活物質を含む正極を備えた実施例 1 8 〜 1 9 の電池は実施例 1 に比べてサイ クル維持率が良 く な り 、 厚み変化率も多少良 く なつている。
Figure imgf000041_0001
As is clear from Tables 5 and 6, the positive electrode composed of two types of lithium cobalt-containing composite oxides having peak intensity ratios (I 003 / I! 04) of 2 or more and less than 5 The batteries of Examples 18 to 19 provided with the positive electrode containing the active material had a higher cycle maintenance ratio and a slightly higher thickness change ratio than those of Example 1.
また、 ピーク 強度比が ( I 003, I 104) が 2 以上、 5 未満 の リ チ ウ ム元素 M含有複合酸化物 と 、 ピーク 強度比が ( I 003 Z I 104) が 5 よ り 大きい リ チウム含有複合酸化物 と を含 む正極を備えた実施例 2 0 〜 2 4 の二次電池は、 5 0 0 サイ ク ル時の容量維持率を高い値と しつつ、 充電高温貯蔵時の膨 れを実施例 1 に比較して小さ く する こ とができた。 In addition, a lithium element M-containing composite oxide having a peak intensity ratio (I 003, I 104) of 2 or more and less than 5 and a lithium-containing composite oxide having a peak intensity ratio (I 003 ZI 104) of more than 5 The secondary batteries of Examples 20 to 24 provided with a positive electrode containing a composite oxide and, while maintaining a high capacity retention rate during 50,000 cycles, and expanding during charge high-temperature storage. This could be made smaller than in Example 1.
なお、 前述した実施例において、 正極活物質粒子中の元素 Mのモル数は、 正極活物質粒子中に N i または C o が含有さ れている場合には含有されている方の元素のモル数であ り 、 正極活物質粒子中に N i 及び C o が含有されている場合には N i と C o の合計モル数である。  In the above-described examples, when the number of moles of the element M in the positive electrode active material particles is Ni or Co in the positive electrode active material particles, When Ni and Co are contained in the positive electrode active material particles, it is the total number of moles of Ni and Co.
( P R S の検出方法)  (How to detect PRS)
また、 実施例 1 の二次電池について、 前記初充放電工程後、 5 時間以上回路を開放して十分に電位を落ち着かせた後、 A r 濃度が 9 9 . 9 °/。以上、 かつ露点が一 5 0 °C以下のグロ一 ブボ ッ ク ス内で分解し、 電極群を取り 出 した。 前記電極群を 遠沈管につめ、 ジメ チルスルホキシ ド ( D M S O ) - d 6 を 加えて密封 し、 前記グローブボックス よ り 取 り 出 し、 遠心分 離を行った。 その後、 前記グローブボ ッ ク ス内で、 前記遠沈 管から前記電解液と前記 D M S O— d 6 の混合溶液を採取し た。 前記混合溶媒を 5 ιηιη ψ の N M R用試料管に 0 . 5 m l 程度入れ、 N M R測定を行った。 前記 N M R測定に用いた装 置は 日本電子株式会社製 J NM— L A 4 0 0 W Bであ り 、 観 測核は 1 H、 観測周波数は 4 0 0 M H z 、 ジメ チノレスルホ キ シ ド (D M S O ) - d 6 中に僅かに含まれる残余プロ ト ン信 号を内部基準と して利用 した ( 2 . 5 p p m ) 。 測定温度は 2 5 °C と し た。 1 H N M Rス ぺク ト ルでは E C に対応する ピ 一ク カ 4 . 5 p p m付近、 P R S に対応する ピー ク が、 図 5 に示すス ペク ト ルの よ う に 5 . I p p m付近 ( P ]_) 、 7 . 0 5 p p m付近 ( P 2) 及び 7 . 2 p p m付近 ( P 3) に観測 された。 これらの結果から、 初充放電工程後の実施例 1 の二 次電池に存在する非水溶媒中に P R S が含まれている こ と を 確認できた。 Further, with respect to the secondary battery of Example 1, after the initial charge / discharge step, the circuit was opened for 5 hours or more, and after the potential was sufficiently settled, the Ar concentration was 99.9 ° /. As described above, the electrode group was taken out by decomposing it in a glove box having a dew point of 150 ° C or less. The electrode group was packed in a centrifuge tube, dimethylsulfoxide (DMSO) -d6 was added thereto, sealed, taken out of the glove box, and centrifuged. Thereafter, the in Gurobubo Tsu the click scan were taken mixed solution of DMSO-d 6 and the electrolyte from the centrifugation tube. About 0.5 ml of the mixed solvent was put into a sample tube for NMR of 5ιηιηψ, and NMR measurement was performed. The apparatus used for the NMR measurement was JNM-LA400WB manufactured by JEOL Ltd., the observation nucleus was 1 H, the observation frequency was 400 MHz, and dimethinoresulfoxydide (DMSO). -The residual proton signal slightly contained in d6 was used as an internal standard (2.5 ppm). The measurement temperature was 25 ° C. In the 1 HNMR spectrum, the peak corresponding to EC is around 4.5 ppm, and the peak corresponding to PRS is around 5.1 ppm (P], as in the spectrum shown in Fig. 5). _), Observed near 7.05 ppm (P 2 ) and 7.2 ppm (P 3 ) Was done. From these results, it was confirmed that PRS was contained in the nonaqueous solvent present in the secondary battery of Example 1 after the first charge / discharge step.
また、 観測周波数を 1 0 0 M H Z と し、 ジメチルスルホ キ シ ド ( D M S O ) - d 6 ( 3 9 . 5 p p m ) を内部基準物質 と して 13C N M R測定を行った と こ ろ、 E C に対応する ピ 一タカ 6 6 p : m付近、 P R S に対応する ピークカ 7 4 p p m付近と 1 2 4 p p m付近と 1 4 0 p p m付近に観測され、 この結果から も、 初充放電工程後の実施例 1 の二次電池に存 在する非水溶媒中に P R S が含まれている こ と を確認できた。 Further, an observation frequency was 1 0 0 MH Z, dimethylsulfoxide Shi de (DMSO) - d 6 (. 3 9 5 ppm) This filtration and was subjected to to 13 CNMR measurement an internal standard substance, to the EC Corresponding peaks: 66 p: m, peaks corresponding to PRS: 74 ppm, 124 ppm, and 140 ppm. Observed from these results. It was confirmed that PRS was contained in the non-aqueous solvent in the secondary battery of No. 1.
さ ら に、 iH N M Rスペク ト ルにおいて、 E C の N M R積 分強度に対する P R S の N M R積分強度の比を求めた と ころ、 非水溶媒全体に対する P R Sの割合が二次電池組立て前よ り 減少 している こ と を確認する こ とができた。  Furthermore, when the ratio of the PRS NMR integrated intensity to the EC NMR integrated intensity in the iH NMR spectrum was determined, the ratio of PRS to the total non-aqueous solvent was smaller than before the secondary battery assembly. I was able to confirm that
なお、 本発明は、 上記の実施例に限る も のではなく 、 他の 種類の正極 ■ 負極 · セパレータ ■ 容器の組合わせにおいても 同様に適用可能である。  The present invention is not limited to the above-described embodiment, but can be similarly applied to other types of combinations of a positive electrode, a negative electrode, a separator, and a container.
産業上の利用可能性 Industrial applicability
以上詳述 したよ う に本発明によれば、 充放電サイ クル寿命 が向上された非水電解質二次電池を提供する こ と ができ る。  As described above in detail, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having an improved charge / discharge cycle life.

Claims

請 求 の 範 囲 The scope of the claims
1 . リ チウム複合酸化物粒子を含有する正極活物質粒子を含 む正極と、 負極と、 非水電解質と を具備した非水電解質二次 電池であって、 1. A non-aqueous electrolyte secondary battery comprising: a positive electrode containing positive electrode active material particles containing lithium composite oxide particles; a negative electrode; and a non-aqueous electrolyte,
前記リ チウム複合酸化物粒子は、 N i 及び C o よ り なる群 から選択される少な く と も 1 種類からなる元素 Mを含む組成 を有し、 二次凝集粒を含む粒子形態を持ち、 かつピーク強度 比が下記 ( 1 ) 式を満足 し、  The lithium composite oxide particles have a composition including at least one element M selected from the group consisting of Ni and Co, and have a particle form including secondary aggregated particles. And the peak intensity ratio satisfies the following equation (1),
前記正極活物質粒子中の前記リ チウム複合酸化物粒子の含 有量は 5 0重量。/。以上であ り 、  The content of the lithium composite oxide particles in the positive electrode active material particles was 50% by weight. /. That is all
前記正極活物質粒子のモル比は下記 ( 2 ) 式を満た し、 前 記正極活物質粒子における体積累積頻度 9 0 %の粒径 ( D 9 0 ) が 1 0 !〜 2 5 /x mの範囲内であ り 、  The molar ratio of the positive electrode active material particles satisfies the following formula (2), and the particle diameter (D90) at a volume cumulative frequency of 90% in the positive electrode active material particles is 10! ~ 25 / x m
前記非水電解質は、 環内に少な く と も一つ の二重結合を有 するス ル ト ン化合物を含む。  The non-aqueous electrolyte contains a sluton compound having at least one double bond in a ring.
2 ≤ ( I 003 I 104) < 5 ( 1 )  2 ≤ (I 003 I 104) <5 (1)
0 . 9 5 ≤ ( Y Li/ Y M) ≤ 1 . 0 2 ( 2 ) 但し、 I は前記リ チウム複合酸化物粒子の粉末 X線回 折における ( 0 0 3 ) 面の ピーク 強度 ( c p s ) で、 I 04 は前記粉末 X線回折における ( 1 0 4 ) 面のピーク強度 ( c p s ) であ り 、 Y U は前記正極活物質粒子中の リ チウムの モル数で、 Y M は前記正極活物質粒子中の元素 Mの モ ル数 で、 前記元素 Mは N i 及び C o よ り なる群から選択される少 な く と も 1 種類である。 0. 9 5 ≤ (Y Li / Y M) ≤ 1. 0 2 (2) where, I is the Lithium composite oxide powder X Senkai (0 0 3) in the folding plane of the peak intensity of the particles (cps) Where I 04 is the peak intensity (cps) of the ( 104 ) plane in the powder X-ray diffraction, Y U is the number of moles of lithium in the positive electrode active material particles, and Y M is the positive electrode active material. The number of moles of the element M in the material particles is at least one selected from the group consisting of Ni and Co.
2 . ,前記ピーク強度比 ( I 003 I 104) は、 2 よ り 大き く 、 2. The peak intensity ratio (I 003 I 104) is larger than 2,
4 . 9 5 以下である請求項 1記載の非水電解質二次電池。 2. The non-aqueous electrolyte secondary battery according to claim 1, which is 4.95 or less.
3 . 前記モル数 ( Y Li/ YM) は、 0 . 9 7以上、 1 . 0 2 以下である請求項 1 記載の非水電解質二次電池。 3. The number of moles (Y Li / Y M) is 0. 9 7 above, 1. 0 2 or less non-aqueous electrolyte secondary battery of claim 1, wherein.
4 . 前記体積累積頻度 9 0 %粒径 (D 9 0 ) は、 以 上、 2 Ο μ ΐη以下である請求項 1 記載の非水電解質二次電池 4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the 90% particle size (D90) of the volume cumulative frequency is not more than 2 μμη.
5 . 前記リ チウム複合酸化物粒子は、 M n, A 1 , S n , F e, C u, C r , Z n, M g , S i , P , F , C I 及び B よ り なる群から選択される少なく と も 1種類の元素をさ らに含 有する請求項 1記載の非水電解質二次電池。 5. The lithium composite oxide particles are selected from the group consisting of Mn, A1, Sn, Fe, Cu, Cr, Zn, Mg, Si, P, F, CI, and B. 2. The non-aqueous electrolyte secondary battery according to claim 1, further comprising at least one selected element.
6 . 前記正極活物質粒子は、 前記リ チウム複合酸化物粒子か ら構成される請求項 1 記載の非水電解質二次電池。  6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material particles are composed of the lithium composite oxide particles.
7. 前記正極活物質粒子は、 ピーク強度比が下記 ( 3 ) 式を 満足する リ チウム含有複合酸化物粒子をさ らに含有する請求 項 1 記載の非水電解質二次電池。  7. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material particles further include a lithium-containing composite oxide particle having a peak intensity ratio satisfying the following expression (3).
( I 003, I 104) > 5 ( 3 )  (I 003, I 104)> 5 (3)
但し、 I は前記リ チウム含有複合酸化物粒子の粉末 X 線回折における ( 0 0 3 ) 面のピーク強度 ( c p s ) で、 I i 04 は前記粉末 X線回折における ( 1 0 4 ) 面のピーク強度 Here, I is the peak intensity (cps) of the (03) plane in the powder X-ray diffraction of the lithium-containing composite oxide particles, and I i04 is the peak of the (104) plane in the powder X-ray diffraction. Strength
( c p S ) である。 (cpS).
8 . 前記 ( 3 ) 式を満たすリ チウム含有複合酸化物粒子は、 C o をさ らに含有する請求項 7記載の非水電解質二次電池。 8. The non-aqueous electrolyte secondary battery according to claim 7, wherein the lithium-containing composite oxide particles satisfying the formula (3) further contain Co.
9 . 前記 ( 3 ) 式を満たす リ チウム含有複合酸化物粒子の前 記正極活物質粒子中の含有量は、 0 . 1 重量%以上、 5 0重 量。 /。未満である請求項 7記載の非水電解質二次電池。 9. The content of the lithium-containing composite oxide particles satisfying the formula (3) in the positive electrode active material particles is 0.1% by weight or more and 50% by weight. /. 8. The non-aqueous electrolyte secondary battery according to claim 7, which is less than.
1 0 . リ チウム複合酸化物粉末を含有する正極活物質を含む 正極と、 負極と、 非水電解質と を具備 した非水電解質二次電 池であって、 10. Including positive electrode active material containing lithium composite oxide powder A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte,
前記リ チウム複合酸化物粉末は、 二次凝集粒を含むも ので、 モル比が下記 ( 4 ) 式を満た し、 ピーク強度比が下記 ( 5 ) 式を満足 し、 かつ体積累積頻度 9 0 °/。の粒径 ( D 9 0 ) が 1 0 μ m ~ 2 5 μ ιηの範囲內であ り 、  Since the lithium composite oxide powder contains secondary aggregated particles, the molar ratio satisfies the following expression (4), the peak intensity ratio satisfies the following expression (5), and the volume cumulative frequency is 90 °. /. Has a particle size (D 90) in the range of 10 μm to 25 μιη,
前記非水電解質は、 環内に少なく と も一つの二重結合を有 するスル ト ン化合物を含む。  The non-aqueous electrolyte contains a sulfonate compound having at least one double bond in a ring.
2 ≤ ( I 003/ I 104) く 5 ( )  2 ≤ (I 003 / I 104) 5 ()
0 . 9 5 ≤ ( XLi/ X M) ≤ 1 . 0 2 ( 5 ) 但し、 I は前記リ チウム複合酸化物粉末の粉末 X線回 折における ( 0 0 3 ) 面の ピーク強度 ( c p s ) で、 I 04 は前記粉末 X線回折における ( 1 0 4 ) 面の ピーク強度 ( c p s ) であ り 、 X U は前記リ チウム複合酸化物粉末中の リ チウム のモル数で、 X M は前記 リ チウム複合酸化物粉末中 の元素 Mのモル数で、 前記元素 Mは N i 及び C o よ り なる群 から選択される少な く と も 1種類である。 0. 9 5 ≤ (X Li / X M) ≤ 1. 0 2 (5) where, I is the Lithium composite oxide powder X-ray diffraction in the (0 0 3) powder surface of the peak intensity (cps) Where I 04 is the peak intensity (cps) of the ( 104 ) plane in the powder X-ray diffraction, X U is the number of moles of lithium in the lithium composite oxide powder, and X M is the In terms of the number of moles of the element M in the lithium composite oxide powder, the element M is at least one selected from the group consisting of Ni and Co.
1 1 . 前記正極活物質中の前記リ チウム複合酸化物粉末の含 有量は、 5 0重量%以上である請求項 1 0記載の非水電解質 二次電池。  11. The non-aqueous electrolyte secondary battery according to claim 10, wherein the content of the lithium composite oxide powder in the positive electrode active material is 50% by weight or more.
1 2 , 前記スル ト ン化合物は、 1 , 3 —プロペンスル ト ン及 び 1 , 4 —プチレ ンスノレ ト ンの う ち少なく と も一方から構成 される請求項 1 または 1 0記載の非水電解質二次電池。  12. The non-aqueous electrolyte according to claim 1 or 10, wherein the sultone compound is composed of at least one of 1,3-propene sultone and 1,4 butyl seletone. Next battery.
PCT/JP2003/014154 2002-11-06 2003-11-06 Nonaqueous electrolyte secondary battery WO2004042860A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/121,111 US7455933B2 (en) 2002-11-06 2005-05-04 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-322893 2002-11-06
JP2002322893 2002-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/121,111 Continuation US7455933B2 (en) 2002-11-06 2005-05-04 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2004042860A1 true WO2004042860A1 (en) 2004-05-21

Family

ID=32310404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014154 WO2004042860A1 (en) 2002-11-06 2003-11-06 Nonaqueous electrolyte secondary battery

Country Status (3)

Country Link
KR (1) KR100778961B1 (en)
CN (1) CN1330046C (en)
WO (1) WO2004042860A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570638B1 (en) * 2004-02-17 2006-04-12 삼성에스디아이 주식회사 Positive active material for a lithium secondary battery and method of preparing same
CN100502106C (en) * 2006-05-12 2009-06-17 盐光科技(嘉兴)有限公司 Secondary cell anode material and its preparing method
CN104584279B (en) * 2012-09-11 2018-08-07 株式会社杰士汤浅国际 Non-aqueous electrolyte secondary battery
KR101904896B1 (en) * 2013-11-27 2018-10-05 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN103825020A (en) * 2013-12-17 2014-05-28 中国科学院宁波材料技术与工程研究所 Cobalt-based cathode material for all-solid-state lithium secondary battery and preparation method for cobalt-based cathode material
JP6250853B2 (en) * 2016-03-31 2017-12-20 本田技研工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery
KR102385749B1 (en) 2019-03-15 2022-04-11 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308720A (en) * 1992-08-06 1994-05-03 Sanyo Electric Co., Ltd. Non-aqueous battery having a lithium-nickel-oxygen cathode
JPH11154509A (en) * 1997-11-21 1999-06-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001297761A (en) * 2000-04-12 2001-10-26 Sumitomo Metal Mining Co Ltd Positive electrode activator for nonaqueous electrolyte secondary cell
JP2002329528A (en) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc Nonaqueous electrolyte, secondary battery using it and additive for electrolyte
JP2003142152A (en) * 2001-11-01 2003-05-16 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173966A (en) * 1997-07-01 1999-03-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
KR100711975B1 (en) * 1999-01-28 2007-05-02 니폰제온 가부시키가이샤 Binder composition for electrode for lithium-ion secondary battery and utilization thereof
JP2002083597A (en) * 2000-06-30 2002-03-22 Matsushita Electric Ind Co Ltd Lithium secondary battery
KR100357415B1 (en) * 2000-07-13 2002-10-18 새한에너테크 주식회사 Electrolyte for lithium ion polymer battery
JP5034136B2 (en) * 2000-11-14 2012-09-26 株式会社Gsユアサ Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR100342605B1 (en) * 2001-07-05 2002-06-29 이원재 Electrolyte for Lithium Rechargeable Batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308720A (en) * 1992-08-06 1994-05-03 Sanyo Electric Co., Ltd. Non-aqueous battery having a lithium-nickel-oxygen cathode
JPH11154509A (en) * 1997-11-21 1999-06-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001297761A (en) * 2000-04-12 2001-10-26 Sumitomo Metal Mining Co Ltd Positive electrode activator for nonaqueous electrolyte secondary cell
JP2002329528A (en) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc Nonaqueous electrolyte, secondary battery using it and additive for electrolyte
JP2003142152A (en) * 2001-11-01 2003-05-16 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR100778961B1 (en) 2007-11-28
KR20050084919A (en) 2005-08-29
CN1711660A (en) 2005-12-21
CN1330046C (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP4346565B2 (en) Nonaqueous electrolyte secondary battery
JP4468170B2 (en) Nonaqueous electrolyte secondary battery
US7455933B2 (en) Nonaqueous electrolyte secondary battery
US20140322611A1 (en) Anode active material having high capacity for lithium secondary battery, preparation thereof and lithium secondary battery comprising the same
US20090191458A1 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
JP2012015110A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
WO2017046896A1 (en) Nonaqueous electrolyte secondary battery and battery pack
KR100692733B1 (en) Nonaqueous electrolyte secondary cell
JP2003282148A (en) Thin lithium ion secondary battery
JP2002015771A (en) Nonaqueous electrolyte and nonaqueous electrlyte secondary cell
JPWO2017217407A1 (en) Lithium ion secondary battery
JP4836415B2 (en) Nonaqueous electrolyte secondary battery
JP2002237333A (en) Non-aqueous electrolyte secondary battery
JP4467951B2 (en) Nonaqueous electrolyte secondary battery
JP4690643B2 (en) Nonaqueous electrolyte secondary battery
WO2004042860A1 (en) Nonaqueous electrolyte secondary battery
JP4287123B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2006156021A (en) Nonaqueous electrolyte secondary battery
JP4599050B2 (en) Nonaqueous electrolyte secondary battery
JP4707323B2 (en) Nonaqueous electrolyte secondary battery
JP4686131B2 (en) Nonaqueous electrolyte secondary battery
JP4537851B2 (en) Nonaqueous electrolyte secondary battery
JP2005310662A (en) Nonaqueous electrolyte secondary battery
JP2004063145A (en) Secondary battery using non-aqueous electrolyte
JP4346395B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057007784

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11121111

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A28979

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057007784

Country of ref document: KR

122 Ep: pct application non-entry in european phase