WO2013002369A1 - Non-aqueous electrolyte secondary cell, and method for producing same - Google Patents

Non-aqueous electrolyte secondary cell, and method for producing same Download PDF

Info

Publication number
WO2013002369A1
WO2013002369A1 PCT/JP2012/066695 JP2012066695W WO2013002369A1 WO 2013002369 A1 WO2013002369 A1 WO 2013002369A1 JP 2012066695 W JP2012066695 W JP 2012066695W WO 2013002369 A1 WO2013002369 A1 WO 2013002369A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2012/066695
Other languages
French (fr)
Japanese (ja)
Inventor
晃宏 河北
毅 小笠原
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013002369A1 publication Critical patent/WO2013002369A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and more specifically to a negative electrode using a material containing silicon, a silicon alloy, or the like as a negative electrode active material, and an improvement in the method for manufacturing the same.
  • Lithium ion batteries that charge and discharge when lithium ions move between the positive and negative electrodes along with charge and discharge have high energy density and high capacity. Widely used.
  • the mobile information terminal has a tendency to further increase the power consumption with enhancement of functions such as a video playback function and a game function.
  • further increase in capacity and performance are strongly desired.
  • the discharge of the nonaqueous electrolyte secondary battery can be achieved by using an aluminum alloy, silicon, silicon alloy, or tin alloy having a higher lithium storage amount per unit volume than the graphite material as the negative electrode active material. Attempts have been made to increase capacity.
  • the negative electrode active material is pulverized or negative electrode active material due to the large volume change of the negative electrode active material during insertion and extraction of lithium. May be detached from the negative electrode current collector. For this reason, as a result of destroying the current collection structure in the negative electrode, there was a problem that the electron conductivity inside the negative electrode was lowered and the charge / discharge cycle characteristics were lowered.
  • a layer containing a binder having a high strength of 5 to 70 Mp, a filler such as silica, and lithium imide is provided on a porous active material layer containing a metal-based active material (see Patent Document 2 below).
  • a layer formed on the outermost surface of the negative electrode can mechanically suppress the expansion of the negative electrode (negative electrode active material) present in the layer and improve the cycle life. Is described.
  • a negative electrode active material layer including negative electrode active material particles containing silicon and / or silicon alloy particles is formed on a surface of a negative electrode current collector, and the negative electrode active material layer includes the negative electrode active material.
  • a binder for fixing the particles and the negative electrode active material particles and the negative electrode current collector; and a coating binder for covering a part of the surface of the negative electrode active material particles. Is present on the negative electrode surface and inside the negative electrode, a positive electrode containing a positive electrode active material containing lithium transition metal composite oxide particles, a separator disposed between the positive electrode and the negative electrode, and non-water And an electrolyte.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • a negative electrode active material layer including negative electrode active material particles containing silicon and / or silicon alloy particles is formed on a surface of a negative electrode current collector, and the negative electrode active material layer includes the negative electrode active material.
  • a binder for fixing the particles and the negative electrode active material particles and the negative electrode current collector; and a coating binder for covering a part of the surface of the negative electrode active material particles. Is present on the negative electrode surface and inside the negative electrode, a positive electrode containing a positive electrode active material containing lithium transition metal composite oxide particles, a separator disposed between the positive electrode and the negative electrode, and non-water And an electrolyte.
  • the negative electrode active material particles or the negative electrode active material particles and the negative electrode current collector are firmly fixed by the fixing binder. Therefore, it can suppress that negative electrode active material particles or the negative electrode active material particles and a negative electrode collector peel.
  • the coating binder for coating the surface of the negative electrode active material particles is present on the negative electrode surface and inside the negative electrode, even if a new surface is generated on the negative electrode surface and inside the negative electrode, It can suppress that electrolyte and a negative electrode active material particle contact.
  • the reductive decomposition reaction of the nonaqueous electrolyte can be suppressed, and even when the potential of the negative electrode becomes high at the end of discharge, silicon reacts with the nonaqueous electrolyte on the new surface, and silicon is oxidized. Inactivation of silicon due to the above can be suppressed.
  • the amount of the binder for fixing and the binder for coating is not limited. However, if the amount of each binder is too small, the above-mentioned effects may not be sufficiently exhibited, while the amount of each binder is large. If too much, the charge / discharge reaction may be hindered. Accordingly, the proportion of the binder for fixing in the negative electrode is preferably 2 to 20% by mass, particularly 4 to 10% by mass, based on the negative electrode active material. Further, the ratio of the coating binder in the negative electrode is preferably 0.01 to 20% by mass, and particularly preferably 0.1 to 10% by mass with respect to the negative electrode active material. This is because by restricting in this way, not only the above-mentioned functions and effects are sufficiently exhibited, but also excellent discharge performance can be obtained.
  • the coating binder is preferably present more on the negative electrode surface than in the negative electrode. Since the surface of the negative electrode is more likely to come into contact with the non-aqueous electrolyte than the inside of the negative electrode, the negative electrode active material is more likely to deteriorate on the negative electrode surface than in the negative electrode. Therefore, if the ratio of the coating binder is controlled to be higher on the negative electrode surface than in the negative electrode, deterioration of the negative electrode active material can be suppressed without increasing the amount of the coating binder in the negative electrode. .
  • a polyimide resin is preferably used as the fixing binder. Since the polyimide resin has a large binding force, the negative electrode active material particles or the negative electrode active material particles and the negative electrode current collector are more firmly fixed.
  • the polyimide resin is preferably a heat-treated polyamic acid, and particularly preferably has a structure shown in Chemical Formula 1 below.
  • a method for producing the polyimide resin there is a catalyst method in addition to a heat treatment method.
  • the catalyst may be mixed into the electrode and adversely affect the battery characteristics. Therefore, it is preferable to use a heat treatment method as in the embodiment.
  • the coating binder is preferably other than a polyimide resin.
  • a fluorine polymer, a diene polymer, a styrene polymer, an ester polymer, an olefin polymer, a cellulose polymer, or the like can be used.
  • One or a mixture of two or more can be used. More specifically, at least one selected from the group consisting of PVdF, acrylate copolymer, styrene butadiene rubber, PTFE, polyacrylonitrile and cellulose is desirable.
  • the coating binder is not heat-treated or has a heat treatment temperature of 150 ° C. or lower even when heat-treated. This is because if the heat treatment is performed at a temperature exceeding 150 ° C., the coating binder may be decomposed, and if heat treatment is performed in an atmosphere containing oxygen in consideration of productivity, the heat treatment is performed at 150 ° C. This is because silicon may be oxidized if heat treatment is performed at a temperature higher than.
  • An inorganic particle layer containing inorganic particles is desirably formed on the surface of the negative electrode active material layer, and the thickness of the inorganic particle layer is desirably 4 ⁇ m or more and 25 ⁇ m or less.
  • the thickness of the inorganic particle layer is desirably 4 ⁇ m or more and 25 ⁇ m or less.
  • the thickness exceeds 25 ⁇ m, the amount of active material for both positive and negative electrodes decreases accordingly, so that the battery capacity decreases. It is because it may invite.
  • the inorganic particles oxides or phosphate compounds using titanium or aluminum, silicon, magnesium or the like conventionally used alone or plurally, and those whose surfaces are treated with hydroxide or the like are used. be able to.
  • the positive electrode preferably contains a compound containing at least one element selected from the group consisting of rare earth, zirconium, aluminum, magnesium, titanium, tungsten, niobium, and tantalum. It is desirable that a compound containing at least one element selected from the group consisting of rare earth, zirconium, aluminum, magnesium, titanium, tungsten, niobium, and tantalum is fixed on the particle surface of the object.
  • the electrolytic solution may be decomposed even on the surface of the lithium transition metal composite oxide, particularly when the positive electrode potential becomes high [4.40 V (vs. Li / Li + ) or more, particularly 4.45 V (vs.
  • Li / Li + )] is remarkably decomposed, and the product due to the decomposition of the electrolyte moves to the negative electrode. Since the decomposition product that has moved to the negative electrode tends to be reduced on the surface of the negative electrode active material, the negative electrode active material is oxidized by the reduced decomposition product, causing cycle deterioration due to the negative electrode. However, if the compound is fixed to the lithium transition metal composite oxide, decomposition of the electrolytic solution on the surface of the lithium transition metal composite oxide can be suppressed.
  • the transition metal contained in the lithium transition metal composite oxide acts as a catalyst, so that when the electrolytic solution decomposition material from the electrolytic solution or the negative electrode diffuses, the lithium transition metal It becomes easy to be decomposed on the surface of the composite oxide.
  • a compound such as rare earth, zirconium, aluminum, or magnesium is fixed on the surface of the lithium transition metal composite oxide, the surface of the lithium transition metal composite oxide is not in contact with the electrolytic solution or the electrolytic solution decomposition material. It is because it can suppress that an electrolyte solution etc. decompose
  • the element of the compound is particularly preferably a rare earth element. The reason for this is that rare earth can exhibit the effect of reducing the catalytic properties of the lithium transition metal composite oxide most.
  • rare earth elements examples include yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • lanthanum, neodymium, samarium, Erbium and ytterbium are preferred.
  • erbium, neodymium, and samarium are particularly preferable, and erbium is most preferable. This is because neodymium, samarium, and erbium (particularly erbium) can reduce the catalytic properties of the lithium transition metal composite oxide and extremely suppress the reaction between the electrolytic solution and the lithium transition metal composite oxide.
  • hydroxides, oxyhydroxides, oxides, carbonate compounds, phosphate compounds, halides, and mixtures thereof can be used. Hydroxides and carbonate compounds are preferred. This is because the finer particles can be selectively fixed to the surface of the lithium transition metal composite oxide.
  • the rare earth hydroxide or oxyhydroxide is, for example, a method of adding a solution in which a rare earth compound is dissolved in a solution in which a lithium transition metal composite oxide is dispersed, or a method of spraying directly on a lithium transition metal composite oxide. It is obtained by heat-treating after having obtained a fixed hydroxide. When the heat treatment is performed, the rare earth hydroxide fixed to a part of the surface changes to a rare earth oxyhydroxide or a rare earth oxide. Further, when the hydroxide is fixed, when the atmosphere is changed to a carbon dioxide atmosphere or the lithium transition metal composite oxide powder is dispersed in a solution in which carbon dioxide is dissolved, a rare earth carbonate compound is mainly obtained.
  • the rare earth hydroxide or oxyhydroxide is, for example, in the case of adding a solution in which a rare earth compound is dissolved to a solution in which a lithium transition metal composite oxide is dispersed. It is preferable to maintain the pH of the solution from 6 to 13, and particularly preferably from 6 to 10. When the pH is less than 6, the transition metal in the lithium transition metal composite oxide is likely to be eluted, and when the pH is more than 10, the rare earth hydroxide or the like is likely to be precipitated due to a part of the electrolyte. There exists a possibility that the effect which suppresses a decomposition reaction may fall.
  • Examples of the rare earth compound dissolved in the solution used when fixing the rare earth hydroxide or carbonate compound include rare earth acetates, rare earth nitrates, rare earth sulfates, rare earth oxides, or rare earth chlorides. Can be used.
  • an oxyhydroxide or oxide is obtained.
  • the temperature at which a rare earth hydroxide or oxyhydroxide becomes a stable oxide is 500 ° C. or more.
  • heat treatment is performed at such a temperature, a part of the rare earth compound fixed on the surface is lithium. It diffuses inside the transition metal complex oxide.
  • the temperature is lower than 500 ° C. when the heat treatment is performed.
  • the amount of the rare earth compound fixed to a part of the surface of the lithium transition metal composite oxide is 0.01% by mass or more and less than 0.5% by mass with respect to the lithium transition metal composite oxide in terms of rare earth elements. It is preferable. When the amount is less than 0.01% by mass, the amount of the rare earth compound adhered to the surface is too small, so that the effect of fixing the rare earth compound may not be sufficiently exhibited. The surface of the oxide is excessively covered with a compound that is difficult to directly participate in the charge / discharge reaction, and the discharge performance may be deteriorated. Further, the amount of the rare earth compound to be fixed is more preferably 0.3% by mass or less. This is because, if regulated in this way, not only the fixing effect of the rare earth compound can be obtained, but also excellent discharge performance can be obtained.
  • a step of preparing a negative electrode mixture slurry by mixing negative electrode active material particles containing silicon and / or silicon alloy particles, amic acid, and a solvent, and applying the negative electrode mixture slurry on the negative electrode core A step of preparing a negative electrode precursor by drying to remove the solvent, a step of heat-treating the negative electrode precursor after the drying in a non-oxidizing atmosphere to polyimidize the amic acid, and the polyimidation Between the step of impregnating the negative electrode precursor having been finished with a solution containing a coating binder to produce a negative electrode, and the positive electrode including the negative electrode and a positive electrode active material containing lithium transition metal composite oxide particles And a step of disposing a separator.
  • a nonaqueous electrolyte secondary battery using a polyimide resin as a binder for fixing in the negative electrode can be produced.
  • a lithium-containing transition metal composite oxide can be used as the positive electrode active material.
  • An olivine-type transition metal oxide containing lithium composite oxide, Ni—Co—Al composite oxide, iron, manganese, etc. (expressed as LiMPO 4 , M is selected from Fe, Mn, Co, Ni) Illustrated. These may be used alone or in combination.
  • the lithium-containing transition metal composite oxide may contain a substance such as Al, Mg, Ti, Zr or the like, or may be contained in the grain boundary.
  • the Ni—Co—Mn lithium composite oxide has a known composition such that the molar ratio of Ni, Co, and Mn is 1: 1: 1 or 5: 3: 2.
  • the positive electrode active material may have the same particle size or different particle sizes. May be.
  • a conventionally used solvent can be used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, propionic acid
  • esters such as ethyl and ⁇ -butyrolactone
  • compounds containing sulfone groups such as propane sultone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxane, 1,4 -Compounds containing ethers such as dioxane and 2-methyltetrahydrofuran, butyronitrile, valeronitrile, n-heptanenitrile, succin
  • a solvent in which a part of these H is substituted with F is preferably used. Further, these can be used alone or in combination, and a solvent in which a cyclic carbonate and a chain carbonate are combined, and a solvent in which a compound containing a small amount of nitrile or a compound containing ether is further combined is preferable. .
  • lithium salt having the oxalato complex as an anion examples include LiBOB [lithium-bisoxalate borate] and a lithium salt having an anion in which C 2 O 4 2 ⁇ is coordinated to the central atom, for example, Li [M (C 2 O 4 ) x R y ] (wherein M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group) Group, x is a positive integer, and y is 0 or a positive integer).
  • M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table
  • R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group
  • x is a positive integer
  • y is 0 or a positive integer
  • LiBOB in order to form a stable film on the surface of the negative electrode even in a high temperature environment.
  • the said solute may be used not only independently but in mixture of 2 or more types.
  • the concentration of the solute is not particularly limited, but is preferably 0.8 to 1.7 mol per liter of the electrolyte.
  • the inorganic particle layer may be formed not only on the surface of the negative electrode active material layer but also on the surface of the separator or the surface of the positive electrode active material layer.
  • the inorganic particle layer is formed by directly applying the inorganic particle-containing slurry to the surface of the positive electrode active material layer or the surface of the separator, or by forming a sheet formed of inorganic particles on the surface of the active material layer or the surface of the separator. It can form by sticking to.
  • the separator conventionally used can be used. Specifically, not only a separator made of polyethylene, but also a material in which a layer made of polypropylene is formed on the surface of a polyethylene layer, or a material in which a resin such as an aramid resin is applied to the surface of a polyethylene separator is used. Also good.
  • Example 1 [Production of positive electrode] (1) Preparation of lithium transition metal composite oxide Li 2 CO 3 and CoCO 3 were mixed in a mortar so that the molar ratio of Li and Co was 1: 1, and then 800 in an air atmosphere. By heat-treating at ° C for 24 hours and further pulverizing, a lithium cobaltate powder (average particle size of 17 ⁇ m) represented by LiCoO 2 was obtained.
  • the positive electrode active material powder which the erbium compound fixed to the surface of lithium cobaltate was obtained.
  • the erbium compound most of the erbium hydroxide was changed to erbium oxyhydroxide during the heat treatment.
  • positive electrode NMP N-methyl-2-pyrrolidone
  • positive electrode active material powder produced as described above
  • Polyvinylidene fluoride as a positive electrode binder was added so that the mass ratio of the positive electrode active material, the positive electrode conductive agent, and the positive electrode binder was 95: 2.5: 2.5, and then kneaded to obtain a positive electrode mixture slurry.
  • this positive electrode mixture slurry was applied to both surfaces of an aluminum foil (thickness 15 ⁇ m, length 402 mm, width 50 mm) as a positive electrode current collector (the length of the coating part was 340 mm on the front side and on the back side) 270 mm and the width of the coated part were both 50 mm), dried, and rolled to produce a positive electrode.
  • the amount of the positive electrode active material layer on the positive electrode current collector was 48 mg / cm 2
  • the thickness of the positive electrode was 148 ⁇ m.
  • an aluminum plate was connected to the uncoated portion of the positive electrode active material layer at the end of the positive electrode as a positive electrode current collecting tab.
  • a polycrystalline silicon lump was produced by a thermal reduction method. Specifically, the silicon core installed in the metal reaction furnace (reduction furnace) is heated by heating to 800 ° C., and purified with the purified high purity monosilane (SiH 4 ) gas vapor. By flowing a gas mixed with hydrogen, polycrystalline silicon was deposited on the surface of the silicon core, thereby producing a polycrystalline silicon lump produced in a thick rod shape.
  • the polycrystalline silicon lump was pulverized and classified to prepare polycrystalline silicon particles (negative electrode active material particles) having a purity of 99%.
  • the crystallite size was 32 nm, and the median diameter was 10 ⁇ m.
  • the crystallite size was calculated by the Scherrer equation using the half width of the silicon (111) peak in powder X-ray diffraction.
  • the median diameter was defined as the diameter at which the cumulative volume reached 50% in the particle size distribution measurement by the laser diffraction method.
  • Preparation of negative electrode mixture slurry NMP as a dispersion medium has the negative electrode active material particles, graphite powder having an average particle size of 3.5 ⁇ m as a negative electrode conductive agent, and a molecular structure represented by the following chemical formula 1.
  • Precursor varnish of thermoplastic polyimide resin having a glass transition temperature of 300 ° C. (resin that becomes a binder for fixing by heat treatment at 400 ° C.
  • the negative electrode mixture slurry was prepared by mixing so that the mass ratio to the binder was 89.5: 3.7: 6.8.
  • the precursor varnish of the polyimide resin is composed of 3,3 ′, 4,4′-benzophenone tetracarboxylic acid diethyl ester represented by the following chemical formula 2, chemical formula 3, and chemical formula 4, and m-phenylenediamine represented by chemical formula 5 below. And can be made from In addition, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid diethyl ester represented by the above Chemical Formula 2, Chemical Formula 3, and Chemical Formula 4 is 3,3 ′, 4,4′-benzophenone tetracarboxylic acid represented by Chemical Formula 6 below. It can be prepared by reacting dianhydride with 2 equivalents of ethanol in the presence of NMP.
  • Negative Electrode As a negative electrode current collector, a copper alloy foil having a thickness of 18 ⁇ m (C7025 alloy foil having a composition of 96.2% by mass of Cu, 3% by mass of Ni, and 0.65% by mass of Si) , Mg 0.15% by mass), electrolytic copper so that the surface roughness Ra (JIS B 0601-1994) is 0.25 ⁇ m and the average peak spacing S (JIS B 0601-1994) is 1.0 ⁇ m. The roughened one was used. The negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector in air at 25 ° C., dried in air at 120 ° C., and then rolled in air at 25 ° C.
  • the obtained product was cut into a rectangle having a length of 380 mm and a width of 52 mm, and then heat-treated in an argon atmosphere at 400 ° C. for 10 hours to obtain a negative electrode precursor having a negative electrode active material layer formed on the surface of the negative electrode current collector.
  • the amount of the negative electrode active material layer on the negative electrode current collector was 5.6 mg / cm 2 and the thickness of the negative electrode was 56 ⁇ m.
  • the nickel plate as a negative electrode current collection tab was connected to the edge part of a negative electrode precursor.
  • the negative electrode precursor is dipped into a solution obtained by diluting a dispersion solution of ethyl acrylate-acrylonitrile copolymer with pure water, and further moisture is removed in air at 90 ° C. Then, a negative electrode in which an ethyl acrylate-acrylonitrile copolymer (binder for coating) covering the negative electrode active material particles was prepared.
  • the ratio of the coating binder to the silicon of the negative electrode active material layer is 1.9% by mass, and since the dipping method is used as described above, the surface of the negative electrode is more coated than the inside of the negative electrode. The percentage of binder was increased.
  • the dip method When the dip method is used, if the viscosity of the dip solution is too high, the amount of the coating binder in the negative electrode is reduced. On the other hand, if the viscosity of the dip solution is too low, the amount of the coating binder in the negative electrode is excessive with respect to the negative electrode surface. It will not change. In consideration of this, it is necessary to define the viscosity of the dip solution.
  • LiPF 6 lithium hexafluorophosphate
  • FEC fluoroethylene carbonate
  • PC propylene carbonate
  • MEC methyl ethyl carbonate
  • Electrode body One positive electrode, one negative electrode, and two polyethylene microporous membranes (thickness 20 ⁇ m, length 450 mm, width 54.5 mm, piercing strength 340 g, porosity 39%) The positive electrode and the negative electrode were opposed to each other with a separator. Next, it was wound in a spiral shape with a winding core having a diameter of 18 mm. At this time, both the positive electrode tab and the negative electrode tab were arranged so as to be located on the outermost peripheral portion in each electrode. Thereafter, the winding core was pulled out to produce a spiral electrode body, and this spiral electrode body was further crushed to produce a flat electrode body.
  • the flat electrode body and the non-aqueous electrolyte were inserted into an aluminum laminate outer package in a CO 2 atmosphere at 25 ° C. and 1 atm to produce a flat non-aqueous electrolyte secondary battery.
  • capacitance at the time of charging the said secondary battery to 4.35V is 1000 mAh.
  • the battery thus produced is hereinafter referred to as battery A1.
  • the nonaqueous electrolyte secondary battery 11 has a specific structure in which a positive electrode 1 and a negative electrode 2 are arranged to face each other with a separator 3 therebetween.
  • a flat electrode body 9 composed of the separator 3 is impregnated with a non-aqueous electrolyte.
  • the positive electrode 1 and the negative electrode 2 are connected to a positive electrode current collector tab 4 and a negative electrode current collector tab 5, respectively, and have a structure capable of charging and discharging as a secondary battery.
  • the electrode body 9 is arrange
  • reference numeral 8 denotes a spare chamber for minimizing the influence of the gas generated by the decomposition of the electrolyte etc. on the charge / discharge.
  • Example 2 In preparing the negative electrode, CMC was used as a coating binder instead of ethyl acrylate-acrylonitrile copolymer (specifically, a solution in which CMC was dissolved in water was used instead of a dispersion solution of ethyl acrylate-acrylonitrile copolymer).
  • a battery was prepared in the same manner as in Example 1 except that the negative electrode precursor was dipped in this solution) and the ratio of CMC to silicon in the negative electrode active material layer was 2.0 mass%. .
  • the battery thus produced is hereinafter referred to as battery A2.
  • Example 3 A battery was fabricated in the same manner as in Example 2 except that the ratio of CMC to silicon in the negative electrode active material layer was 1.0% by mass. The battery thus produced is hereinafter referred to as battery A3.
  • Example 4 When preparing the negative electrode, PVdF (polyvinylidene fluoride) was used as a coating binder instead of ethyl acrylate-acrylonitrile copolymer (specifically, PVdF was replaced with NMP instead of a dispersion solution of ethyl acrylate-acrylonitrile copolymer).
  • PVdF polyvinylidene fluoride
  • NMP a dispersion solution of ethyl acrylate-acrylonitrile copolymer
  • Example 5 When preparing the negative electrode, PTFE (polytetrafluoroethylene) was used as a coating binder instead of ethyl acrylate-acrylonitrile copolymer (specifically, PTFE instead of a dispersion solution of ethyl acrylate-acrylonitrile copolymer).
  • a battery was prepared in the same manner as in Example 1 except that a dispersion solution was prepared and the negative electrode precursor was dipped in this solution. The battery thus produced is hereinafter referred to as battery A5.
  • Example 6 When preparing the negative electrode, SBR (styrene butadiene rubber) was used instead of the ethyl acrylate-acrylonitrile copolymer as the coating binder (specifically, instead of the ethyl acrylate-acrylonitrile copolymer dispersion solution, SBR dispersion) A battery was prepared in the same manner as in Example 1, except that a John solution was prepared and the negative electrode precursor was dipped in this solution) and the ratio of SBR to silicon in the negative electrode active material layer was 2.1% by mass. Was made. The battery thus produced is hereinafter referred to as battery A6.
  • SBR styrene butadiene rubber
  • Example 7 When preparing the negative electrode, polyacrylonitrile was used as a coating binder instead of ethyl acrylate-acrylonitrile copolymer (specifically, polyacrylonitrile was dissolved in NMP instead of a dispersion solution of ethyl acrylate-acrylonitrile copolymer).
  • a battery was prepared in the same manner as in Example 1 except that a solution was prepared and the negative electrode precursor was dipped in this solution) and the ratio of polyacrylonitrile to silicon in the negative electrode active material layer was 1.8% by mass. Was made.
  • the battery thus produced is hereinafter referred to as battery A7.
  • Example 2 A battery was produced in the same manner as in Example 1 except that no coating binder was used in the production of the negative electrode.
  • the battery thus produced is hereinafter referred to as battery Z.
  • Capacity retention ratio (discharge capacity at the 40th cycle / discharge capacity at the first cycle) ⁇ 100 (1)
  • the batteries A1 to A7 containing the coating binder on the negative electrode surface or inside the negative electrode were charged at a higher temperature than the battery Z containing no coating binder on the negative electrode surface or inside the negative electrode. It can be seen that the capacity retention rate after repeating the discharge cycle is dramatically increased.
  • the coating binder is contained on the negative electrode surface or inside the negative electrode, so that even if a new surface is formed during charging and discharging at high temperature, contact with the electrolyte on the new surface is suppressed. Therefore, it is considered that even if the potential becomes high at the end of discharge, the new surface can be prevented from being excessively oxidized.
  • Example 2 A battery was fabricated in the same manner as in Example 1 of the first example except that an inorganic particle layer containing alumina (AKP3000) particles was formed on the surface of the negative electrode active material layer.
  • the inorganic particle layer was formed by coating the surface of the negative electrode active material layer with a solution in which alumina (AKP3000) and ethyl acrylate-acrylonitrile copolymer were dispersed, and drying at 90 ° C.
  • the battery thus produced is hereinafter referred to as battery B.
  • Capacity maintenance ratio (discharge capacity at 55th cycle / discharge capacity at 1st cycle) ⁇ 100 (2)
  • the surface of the negative electrode active material layer is made to contain a coating binder on the negative electrode surface or inside the negative electrode, as compared with the battery A1 in which the coating binder is contained only on the negative electrode surface or inside the negative electrode. It is recognized that the battery B having the inorganic particle layer formed thereon has a higher capacity retention rate after repeated charge / discharge cycles at a high temperature. In particular, it is recognized that the capacity retention ratio is further increased when charging and discharging are repeated many times (after 55 cycles in the above experiment).
  • Example 1 The first embodiment described above except that the erbium compound was not fixed to the surface of lithium cobalt oxide (average particle size 17 ⁇ m) and the non-aqueous electrolyte prepared as described below was used when producing the positive electrode.
  • a battery was fabricated in the same manner as in Example 4.
  • the preparation of the non-aqueous electrolyte is 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) with respect to a solvent in which fluoroethylene carbonate (FEC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 20:80. After dissolving, 0.4 mass% carbon dioxide gas was dissolved in this solution.
  • the battery thus produced is hereinafter referred to as battery C1.
  • Example 2 A battery was produced in the same manner as in Example 1 of the third example except that a positive electrode active material having an erbium compound fixed to the surface of lithium cobaltate was used when producing the positive electrode.
  • the fixing method of the erbium compound was performed in the same manner as in Example 1 of the first example. Therefore, most of the erbium compound was erbium oxyhydroxide. Moreover, when the fixed amount of the erbium compound was measured by ICP, it was 0.07 mass% with respect to lithium cobaltate in terms of erbium element.
  • the battery thus produced is hereinafter referred to as battery C2.
  • Example 3 When the positive electrode was produced, the heat treatment temperature was changed to 300 ° C. to 120 ° C., and the third embodiment was carried out except that the erbium compound (mostly erbium hydroxide) was fixed to the surface of the lithium cobalt oxide particles.
  • a battery was fabricated in the same manner as in Example 2.
  • the fixed amount of the erbium compound was measured by ICP, it was 0.07% by mass in terms of erbium element with respect to lithium cobaltate (mol% in terms of erbium element is erbium in Example 2 of the third example). The same amount).
  • the battery thus produced is hereinafter referred to as battery C3.
  • Example 4 When making the positive electrode, except that the erbium compound (mostly erbium carbonate) was fixed to the surface of the lithium cobaltate particles by continuously bubbling carbon dioxide in the suspension in which lithium cobaltate was dispersed, A battery was fabricated in the same manner as in Example 2 of the third example. In addition, when the fixed amount of the erbium compound was measured by ICP, it was 0.07% by mass in terms of erbium element with respect to lithium cobaltate (mol% in terms of erbium element is erbium in Example 2 of the third example). The same amount). The battery thus produced is hereinafter referred to as battery C4.
  • Example 5 When preparing the positive electrode, except that samarium nitrate hexahydrate was used instead of erbium nitrate pentahydrate, and the samarium compound (mostly samarium oxyhydroxide) was fixed to the surface of the lithium cobalt oxide particles.
  • a battery was fabricated in the same manner as in Example 2 of the third example. When the amount of samarium compound fixed was measured by ICP, it was 0.06% by mass in terms of samarium element with respect to lithium cobaltate (mol% in terms of samarium element is erbium in Example 2 of the third example). The same amount).
  • the battery thus produced is hereinafter referred to as battery C5.
  • Example 6 When producing the positive electrode, neodymium nitrate hexahydrate was used instead of erbium nitrate pentahydrate, and a neodymium compound (mostly neodymium oxyhydroxide) was fixed on the surface of the lithium cobalt oxide particles.
  • a battery was fabricated in the same manner as in Example 2 of the third example. When the amount of adhering neodymium compound was measured by ICP, it was 0.06% by mass in terms of neodymium element with respect to lithium cobaltate (mol% in terms of neodymium element was erbium in Example 2 of the third example). The same amount).
  • the battery thus produced is hereinafter referred to as battery C6.
  • Example 7 When producing the positive electrode, except that ytterbium nitrate trihydrate was used instead of erbium nitrate pentahydrate, and the ytterbium compound (mostly ytterbium oxyhydroxide) was fixed on the surface of the lithium cobalt oxide particles.
  • a battery was fabricated in the same manner as in Example 2 of the third example.
  • the adhesion amount of the ytterbium compound was measured by ICP, it was 0.07% by mass in terms of ytterbium element with respect to lithium cobaltate (mol% in terms of ytterbium element is erbium in Example 2 of the third example). The same amount).
  • the battery thus produced is hereinafter referred to as battery C7.
  • Example 8 When producing the positive electrode, lanthanum nitrate hexahydrate was used instead of erbium nitrate pentahydrate, and the lanthanum compound (mostly lanthanum oxyhydroxide) was fixed to the surface of the lithium cobalt oxide particles.
  • a battery was fabricated in the same manner as in Example 2 of the third example. When the amount of the lanthanum compound fixed was measured by ICP, it was 0.06% by mass in terms of lanthanum element with respect to lithium cobaltate (mol% in terms of lanthanum element is erbium in Example 2 of the third example). The same amount).
  • the battery thus produced is hereinafter referred to as battery C8.
  • Example 9 Example of the above third example, except that when the positive electrode was produced, the heat treatment temperature was changed to 300 ° C. to 500 ° C., and the lanthanum compound (mostly lanthanum oxide) was fixed to the surface of the lithium cobalt oxide particles.
  • a battery was produced in the same manner as in Example 8.
  • the amount of the lanthanum compound fixed was measured by ICP, it was 0.06% by mass in terms of lanthanum element with respect to lithium cobaltate (mol% in terms of lanthanum element is erbium in Example 2 of the third example). The same amount).
  • the battery thus produced is hereinafter referred to as battery C9.
  • Example 10 When producing a positive electrode, lithium cobaltate is used by using zirconium oxynitrate dihydrate (zirconyl nitrate) instead of erbium nitrate pentahydrate and changing the heat treatment temperature to 400 ° C. instead of 300 ° C.
  • a battery was fabricated in the same manner as in Example 2 of the third example except that a zirconium compound (mostly zirconium oxide) was fixed to the surface of the particles.
  • the adhesion amount of the zirconium compound was measured by ICP, it was 0.04% by mass in terms of zirconium element with respect to lithium cobaltate (mol% in terms of zirconium element was erbium of Example 2 of the third example). The same amount).
  • the battery thus produced is hereinafter referred to as battery C10.
  • Example 11 When producing the positive electrode, by using aluminum nitrate nonahydrate instead of erbium nitrate pentahydrate and changing the heat treatment temperature to 300 ° C. to 120 ° C., on the surface of the lithium cobalt oxide particles, A battery was fabricated in the same manner as in Example 2 of the third example except that an aluminum compound (mostly aluminum hydroxide) was fixed. In addition, when the adhesion amount of the aluminum compound was measured by ICP, it was 0.01% by mass in terms of aluminum element with respect to lithium cobaltate (mol% in terms of aluminum element is erbium in Example 2 of the third example). The same amount).
  • the battery thus produced is hereinafter referred to as battery C11.
  • Example 2 A battery was produced in the same manner as in Example 1 of the third example except that the coating binder was not used when producing the negative electrode.
  • the battery thus produced is hereinafter referred to as battery Y.
  • the battery C1 containing PVdF as a binder for covering the negative electrode contains PVdF. It is recognized that the capacity maintenance rate is higher than that of the battery Y that is not used.
  • the batteries C2 to C11 in which the compounds containing Er, Sm, Nd, La, Yb, etc. are fixed on the surface of the lithium cobalt oxide have an extremely high capacity retention rate compared to the battery C1 in which the compounds are not fixed. It is recognized that In particular, the effect is large in the batteries C2 to C6 in which the compound containing Er, Sm, and Nd is fixed to the surface of the lithium cobalt oxide. Furthermore, when the batteries C2, C5, and C6 in which the compounds fixed on the surface of the lithium cobalt oxide are all oxyhydroxides are compared, the capacity maintenance rate of the battery C2 is high. Therefore, it can be seen that the compound fixed on the surface of lithium cobaltate is most preferably a compound containing Er.
  • the compound fixed on the surface of the lithium cobaltate is a hydroxide, an oxyhydroxide, a carbonate compound, or an oxide
  • the compound is in any state.
  • the batteries C2 to C4 in which the metal element contained in the compound is Er are compared
  • the batteries C3 and C4 in which the compound is a hydroxide or a carbonate compound are the batteries C2 in which the compound is an oxyhydroxide.
  • the capacity retention rate is reduced by 0.8 to 1.0%.
  • the state of the compound is preferably a hydroxide or a carbonate compound rather than an oxide, and more preferably an oxyhydroxide rather than a hydroxide or carbonate compound.
  • Example 1 A battery was fabricated in the same manner as in Example 8 of Example 3 except that the pH of the solution in which lithium cobaltate was dispersed was set to 11.4 when the lanthanum compound was fixed. The battery thus produced is hereinafter referred to as battery D1.
  • Example 2 A battery was fabricated in the same manner as in Example 8 of Example 3 except that the pH of the solution in which lithium cobaltate was dispersed was set to 10.0 when the lanthanum compound was fixed. The battery thus produced is hereinafter referred to as battery D2.
  • Example 3 A battery was fabricated in the same manner as in Example 8 of Example 3 except that the pH of the solution in which lithium cobaltate was dispersed was adjusted to 8.0 when the lanthanum compound was fixed. The battery thus produced is hereinafter referred to as battery D3.
  • Example 4 A battery was fabricated in the same manner as in Example 8 of Example 3 except that when the lanthanum compound was fixed, the pH of the solution in which lithium cobaltate was dispersed was 7.0. The battery thus produced is hereinafter referred to as battery D4.
  • Example 5 A battery was fabricated in the same manner as in Example 8 of Example 3 except that the pH of the solution in which lithium cobaltate was dispersed was 6.0 when the lanthanum compound was fixed. The battery thus produced is hereinafter referred to as battery D5.
  • the pH when the lanthanum compound is fixed on the surface of lithium cobaltate is preferably 7 to 10. This is because if the pH exceeds 10, the lanthanum compound may be uniformly dispersed on the surface of the lithium cobalt oxide and may not be fixed, whereas if the pH is less than 7, a part of the cobalt in the lithium cobalt oxide will be eluted. It is.
  • the present invention can be applied to, for example, a drive power source of a mobile information terminal such as a mobile phone, a notebook computer, and a tablet, and particularly to a use requiring a high capacity.
  • a mobile information terminal such as a mobile phone, a notebook computer, and a tablet
  • it can be expected to be used in high output applications that require continuous driving at high temperatures and applications where the battery operating environment is severe, such as HEVs and electric tools.

Abstract

The main purpose of the present invention is to provide a non-aqueous electrolyte secondary cell and a method for producing same, wherein it is possible to inhibit the deterioration of the charge-discharge cycle properties at high temperatures even when a newly-formed surface is created on the surface or in the interior of the negative electrode. A negative electrode active material layer containing negative electrode active material particles having silicon particles therein is formed on the surface of a negative electrode collector, the negative electrode active material layer being characterized by being provided therein with: a bonding binder for bonding the negative electrode active material particles with one another, and the negative electrode active material particles with the negative electrode collector; a negative electrode which contains a covering binder for covering a portion of the surfaces of the negative electrode active material particles such that the covering binder is present on the surface and in the interior of the negative electrode; a positive electrode containing a positive electrode active material having the particles of a lithium transition metal complex oxide therein; a separator disposed between the positive electrode and the negative electrode; and a non-aqueous electrolyte.

Description

非水電解質二次電池及びその製造方法Non-aqueous electrolyte secondary battery and manufacturing method thereof
 本発明は非水電解質二次電池及びその製造方法に係わり、詳しくは負極活物質としてケイ素やケイ素合金等を含む材料を用いた負極及びその製造方法の改良に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and more specifically to a negative electrode using a material containing silicon, a silicon alloy, or the like as a negative electrode active material, and an improvement in the method for manufacturing the same.
 近年、携帯電話、ノートパソコン、タブレット等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行うリチウムイオン電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。 In recent years, mobile information terminals such as mobile phones, notebook computers, tablets, etc. are rapidly becoming smaller and lighter, and batteries for driving power sources are required to have higher capacities. Lithium ion batteries that charge and discharge when lithium ions move between the positive and negative electrodes along with charge and discharge have high energy density and high capacity. Widely used.
 ここで、上記移動情報端末は、動画再生機能、ゲーム機能といった機能の充実に伴って、更に消費電力が高まる傾向にあり、その駆動電源であるリチウムイオン電池には長時間再生や出力改善等を目的として、更なる高容量化や高性能化が強く望まれるところである。このようなことを考慮して、単位体積あたりのリチウム吸蔵量が黒鉛材料よりも多いアルミニウム合金、ケイ素、ケイ素合金、或いはスズ合金を負極活物質として用いることで、非水電解質二次電池の放電容量を増大させる試みがなされている。 Here, the mobile information terminal has a tendency to further increase the power consumption with enhancement of functions such as a video playback function and a game function. As a purpose, further increase in capacity and performance are strongly desired. In consideration of the above, the discharge of the nonaqueous electrolyte secondary battery can be achieved by using an aluminum alloy, silicon, silicon alloy, or tin alloy having a higher lithium storage amount per unit volume than the graphite material as the negative electrode active material. Attempts have been made to increase capacity.
 しかし、上記負極活物質を用いた非水電解質二次電池においては、リチウムの吸蔵、放出時に負極活物質の体積変化が大きいということに起因して、負極活物質が微粉化したり、負極活物質が負極集電体から離脱したりする。このため、負極内での集電構造が破壊される結果、負極内部の電子伝導性が低下して、充放電サイクル特性が低下するという課題を有していた。 However, in the non-aqueous electrolyte secondary battery using the negative electrode active material, the negative electrode active material is pulverized or negative electrode active material due to the large volume change of the negative electrode active material during insertion and extraction of lithium. May be detached from the negative electrode current collector. For this reason, as a result of destroying the current collection structure in the negative electrode, there was a problem that the electron conductivity inside the negative electrode was lowered and the charge / discharge cycle characteristics were lowered.
 そこで、電極内で高い集電性を発揮するため、ケイ素を含む材料から成る負極活物質とポリイミドバインダーとを含む負極活物質層を非酸化性雰囲気下で焼結して配置する提案がされている(下記特許文献1参照)。このような構成であれば、負極活物質粒子間や負極活物質と負極集電体との結着力が向上するので、充放電サイクル特性を向上させることができる旨が記載されている。 Therefore, in order to exhibit high current collection in the electrode, a proposal has been made to sinter and dispose a negative electrode active material layer including a negative electrode active material composed of a material containing silicon and a polyimide binder in a non-oxidizing atmosphere. (See Patent Document 1 below). With such a configuration, the binding force between the negative electrode active material particles and between the negative electrode active material and the negative electrode current collector is improved, and it is described that the charge / discharge cycle characteristics can be improved.
 また、金属系活物質を含む多孔性活物質層の上に5~70Mpの高い強度を有するバインダーとシリカのようなフィラーとリチウムイミドを含む層を設ける提案がされている(下記特許文献2参照)。このような構成であれば、負極の最表面に形成された層によって、その層の内部に存在する負極(負極活物質)の膨張を機械的に抑制し、サイクル寿命を向上させることができる旨が記載されている。 In addition, a proposal has been made that a layer containing a binder having a high strength of 5 to 70 Mp, a filler such as silica, and lithium imide is provided on a porous active material layer containing a metal-based active material (see Patent Document 2 below). ). With such a configuration, the layer formed on the outermost surface of the negative electrode can mechanically suppress the expansion of the negative electrode (negative electrode active material) present in the layer and improve the cycle life. Is described.
特開2002-260637号公報Japanese Patent Laid-Open No. 2002-260637 特開2009-135104号公報JP 2009-135104 A
 しかしながら、上記技術によって負極内の集電性(電子伝導性)や、負極表面から機械的に膨張収縮を抑制しようとしても、充放電時にはケイ素に大きな体積変化が生じるため、その際に発生するケイ素粒子表面の割れ及び酸化に起因した充放電特性の低下が特に高温では依然大きいという問題があった。具体的には、ケイ素粒子表面に割れが生じると、非常に活性の高い新生面が現れるため、非水電解質の還元分解反応がこの新生面において生じる。また、放電末期に負極の電位が高くなると、上記新生面でケイ素と非水電解質とが反応し、ケイ素が酸化して不活性化するという課題を有していた。したがって、ケイ素やケイ素合金を含む材料を負極活物質として用いる場合には、新生面が生じるという前提で、負極を改良する必要がある。 However, the current collection (electron conductivity) in the negative electrode and the expansion and contraction from the negative electrode surface mechanically are suppressed by the above technique, because a large volume change occurs in the silicon during charge and discharge. There has been a problem that the deterioration of charge / discharge characteristics due to cracking and oxidation of the particle surface is still large particularly at high temperatures. Specifically, when a crack occurs on the surface of the silicon particle, a very active new surface appears, and a reductive decomposition reaction of the nonaqueous electrolyte occurs on this new surface. Further, when the potential of the negative electrode is increased at the end of discharge, silicon and the non-aqueous electrolyte react with each other on the new surface, and the silicon is oxidized and inactivated. Therefore, when a material containing silicon or a silicon alloy is used as the negative electrode active material, it is necessary to improve the negative electrode on the premise that a new surface is generated.
 本発明は、ケイ素及び/又はケイ素合金の粒子が含有された負極活物質粒子を含む負極活物質層が負極集電体の表面に形成され、上記負極活物質層内には、上記負極活物質粒子同士及び上記負極活物質粒子と上記負極集電体とを固着する固着用バインダーと、上記負極活物質粒子の表面の一部を被覆する被覆用バインダーとが含有されており、この被覆用バインダーが負極表面及び負極内部に存在している負極と、リチウム遷移金属複合酸化物の粒子が含有された正極活物質を含む正極と、上記正極と上記負極の間に配置されたセパレータと、非水電解質と、を備えたことを特徴とする。 In the present invention, a negative electrode active material layer including negative electrode active material particles containing silicon and / or silicon alloy particles is formed on a surface of a negative electrode current collector, and the negative electrode active material layer includes the negative electrode active material. A binder for fixing the particles and the negative electrode active material particles and the negative electrode current collector; and a coating binder for covering a part of the surface of the negative electrode active material particles. Is present on the negative electrode surface and inside the negative electrode, a positive electrode containing a positive electrode active material containing lithium transition metal composite oxide particles, a separator disposed between the positive electrode and the negative electrode, and non-water And an electrolyte.
 本発明によれば、サイクル特性を飛躍的に向上させることができるという優れた効果を奏する。 According to the present invention, there is an excellent effect that the cycle characteristics can be dramatically improved.
本発明の実施形態に係る試験電池の正面図である。It is a front view of the test battery which concerns on embodiment of this invention. 図1のA-A線矢視断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
 本発明は、ケイ素及び/又はケイ素合金の粒子が含有された負極活物質粒子を含む負極活物質層が負極集電体の表面に形成され、上記負極活物質層内には、上記負極活物質粒子同士及び上記負極活物質粒子と上記負極集電体とを固着する固着用バインダーと、上記負極活物質粒子の表面の一部を被覆する被覆用バインダーとが含有されており、この被覆用バインダーが負極表面及び負極内部に存在している負極と、リチウム遷移金属複合酸化物の粒子が含有された正極活物質を含む正極と、上記正極と上記負極の間に配置されたセパレータと、非水電解質と、を備えたことを特徴とする。 In the present invention, a negative electrode active material layer including negative electrode active material particles containing silicon and / or silicon alloy particles is formed on a surface of a negative electrode current collector, and the negative electrode active material layer includes the negative electrode active material. A binder for fixing the particles and the negative electrode active material particles and the negative electrode current collector; and a coating binder for covering a part of the surface of the negative electrode active material particles. Is present on the negative electrode surface and inside the negative electrode, a positive electrode containing a positive electrode active material containing lithium transition metal composite oxide particles, a separator disposed between the positive electrode and the negative electrode, and non-water And an electrolyte.
 上記構成であれば、固着用バインダーにより、負極活物質粒子同士、或いは、負極活物質粒子と負極集電体とが強固に固着される。したがって、負極活物質粒子同士、或いは、負極活物質粒子と負極集電体とが剥離するのを抑制できる。加えて、負極活物質粒子の表面を被覆する被覆用バインダーが負極表面及び負極内部に存在しているので、負極表面及び負極内部に新生面が生じた場合であっても、この新生面において、非水電解質と負極活物質粒子とが接触するのを抑制できる。したがって、非水電解質の還元分解反応が生じるのを抑制できると共に、放電末期に負極の電位が高くなった場合であっても、新生面でケイ素と非水電解質とが反応し、ケイ素が酸化することに起因するケイ素の不活性化を抑制することができる。 With the above configuration, the negative electrode active material particles or the negative electrode active material particles and the negative electrode current collector are firmly fixed by the fixing binder. Therefore, it can suppress that negative electrode active material particles or the negative electrode active material particles and a negative electrode collector peel. In addition, since the coating binder for coating the surface of the negative electrode active material particles is present on the negative electrode surface and inside the negative electrode, even if a new surface is generated on the negative electrode surface and inside the negative electrode, It can suppress that electrolyte and a negative electrode active material particle contact. Therefore, the reductive decomposition reaction of the nonaqueous electrolyte can be suppressed, and even when the potential of the negative electrode becomes high at the end of discharge, silicon reacts with the nonaqueous electrolyte on the new surface, and silicon is oxidized. Inactivation of silicon due to the above can be suppressed.
 尚、固着用バインダーと被覆用バインダーとの量は限定するものではないが、各バインダーの量が少な過ぎると、上述の各作用効果が十分に発揮されないことがある一方、各バインダーの量が多過ぎると、充放電反応を阻害することがある。したがって、負極中における固着用バインダーの割合は負極活物質に対して2~20質量%であることが好ましく、特に、4~10質量%が好ましい。また、負極中における被覆用バインダーの割合は負極活物質に対して0.01~20質量%であることが好ましく、特に、0.1~10質量%が好ましい。このように規制することにより上述の各作用効果が十分に発揮されるだけでなく、優れた放電性能も得られるからである。 The amount of the binder for fixing and the binder for coating is not limited. However, if the amount of each binder is too small, the above-mentioned effects may not be sufficiently exhibited, while the amount of each binder is large. If too much, the charge / discharge reaction may be hindered. Accordingly, the proportion of the binder for fixing in the negative electrode is preferably 2 to 20% by mass, particularly 4 to 10% by mass, based on the negative electrode active material. Further, the ratio of the coating binder in the negative electrode is preferably 0.01 to 20% by mass, and particularly preferably 0.1 to 10% by mass with respect to the negative electrode active material. This is because by restricting in this way, not only the above-mentioned functions and effects are sufficiently exhibited, but also excellent discharge performance can be obtained.
 上記被覆用バインダーは、負極内部よりも負極表面の方に多く存在することが望ましい。
 負極内部よりも負極表面の方が非水電解質と接触し易いので、負極内部よりも負極表面の方が、負極活物質が劣化し易い。そこで、負極内部よりも負極表面の方が被覆用バインダーの割合を高くなるように規制すれば、負極中における被覆用バインダーの量を増加させることなく、負極活物質の劣化を抑制することができる。
The coating binder is preferably present more on the negative electrode surface than in the negative electrode.
Since the surface of the negative electrode is more likely to come into contact with the non-aqueous electrolyte than the inside of the negative electrode, the negative electrode active material is more likely to deteriorate on the negative electrode surface than in the negative electrode. Therefore, if the ratio of the coating binder is controlled to be higher on the negative electrode surface than in the negative electrode, deterioration of the negative electrode active material can be suppressed without increasing the amount of the coating binder in the negative electrode. .
 上記固着用バインダーとしてポリイミド樹脂が用いられることが望ましい。
 ポリイミド樹脂は結着力が大きいので、負極活物質粒子同士、或いは、負極活物質粒子と負極集電体とが一層強固に固着される。
A polyimide resin is preferably used as the fixing binder.
Since the polyimide resin has a large binding force, the negative electrode active material particles or the negative electrode active material particles and the negative electrode current collector are more firmly fixed.
 上記ポリイミド樹脂は、ポリアミド酸を熱処理したものであることが望ましく、特に、下記化1に示す構造を有することが望ましい。
 ポリイミド樹脂の作製方法としては、熱処理法による他、触媒法もある。しかし、触媒法を用いた場合には、触媒が電極中に混入して、電池特性に悪影響を与えるといったことが懸念される。したがって、実施例の如く、熱処理法を用いるのが好ましい。
The polyimide resin is preferably a heat-treated polyamic acid, and particularly preferably has a structure shown in Chemical Formula 1 below.
As a method for producing the polyimide resin, there is a catalyst method in addition to a heat treatment method. However, when the catalytic method is used, there is a concern that the catalyst may be mixed into the electrode and adversely affect the battery characteristics. Therefore, it is preferable to use a heat treatment method as in the embodiment.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記被覆用バインダーがポリイミド樹脂以外のものであることが望ましく、例えば、フッ素系ポリマー、ジエン系ポリマー、スチレン系ポリマー、エステル系ポリマー、オレフィン系ポリマー、セルロース系ポリマーなどを用いることができ、これらを単独もしくは2種以上混合したものを用いることができる。さらに具体的には、PVdF、アクリル酸エステル共重合体、スチレンブタジエンゴム、PTFE、ポリアクリロニトリル及びセルロースから成る群から選ばれる少なくとも1種であることが望ましい。 The coating binder is preferably other than a polyimide resin. For example, a fluorine polymer, a diene polymer, a styrene polymer, an ester polymer, an olefin polymer, a cellulose polymer, or the like can be used. One or a mixture of two or more can be used. More specifically, at least one selected from the group consisting of PVdF, acrylate copolymer, styrene butadiene rubber, PTFE, polyacrylonitrile and cellulose is desirable.
 上記被覆用バインダーは熱処理されていないか、熱処理されている場合であっても熱処理温度が150℃以下であることが望ましい。この理由としては、150℃を超えるような温度で熱処理すると、被覆用バインダーが分解してしまう恐れがあるだけでなく、生産性を考慮して酸素を含むような雰囲気で熱処理する場合、150℃を超える温度で熱処理すると、ケイ素が酸化される恐れがあるからである。 It is desirable that the coating binder is not heat-treated or has a heat treatment temperature of 150 ° C. or lower even when heat-treated. This is because if the heat treatment is performed at a temperature exceeding 150 ° C., the coating binder may be decomposed, and if heat treatment is performed in an atmosphere containing oxygen in consideration of productivity, the heat treatment is performed at 150 ° C. This is because silicon may be oxidized if heat treatment is performed at a temperature higher than.
 上記負極活物質層の表面には、無機粒子を含む無機粒子層が形成されていることが望ましく、当該無機粒子層の厚みは4μm以上25μm以下であることが望ましい。
 このように、負極活物質層の表面に無機粒子層が形成されていれば、新生面において、非水電解質と負極活物質粒子とが接触するのを一層抑制できる。また、無機粒子層の厚みを4μm以上25μm以下に規制するのが好ましいのは、以下の理由による。当該厚みが4μm未満では負極活物質の膨張収縮により無機粒子層が変形することがある一方、当該厚みが25μmを超えると、その分だけ正負両極の活物質量が減少するので、電池容量の低下を招くことがあるからである。
 尚、無機粒子としては、従来から用いられてきたチタン、アルミニウム、ケイ素、マグネシウム等を単独もしくは複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているものを用いることができる。
An inorganic particle layer containing inorganic particles is desirably formed on the surface of the negative electrode active material layer, and the thickness of the inorganic particle layer is desirably 4 μm or more and 25 μm or less.
Thus, if the inorganic particle layer is formed on the surface of the negative electrode active material layer, the contact between the nonaqueous electrolyte and the negative electrode active material particles can be further suppressed on the new surface. Moreover, it is preferable to regulate the thickness of the inorganic particle layer to 4 μm or more and 25 μm or less for the following reason. If the thickness is less than 4 μm, the inorganic particle layer may be deformed due to the expansion and contraction of the negative electrode active material. On the other hand, if the thickness exceeds 25 μm, the amount of active material for both positive and negative electrodes decreases accordingly, so that the battery capacity decreases. It is because it may invite.
In addition, as the inorganic particles, oxides or phosphate compounds using titanium or aluminum, silicon, magnesium or the like conventionally used alone or plurally, and those whose surfaces are treated with hydroxide or the like are used. be able to.
 正極には、希土類、ジルコニウム、アルミニウム、マグネシウム、チタン、タングステン、ニオブ、及びタンタルから成る群から選ばれる少なくとも1種の元素を含む化合物が含まれていることが望ましく、特に、リチウム遷移金属複合酸化物の粒子表面に、希土類、ジルコニウム、アルミニウム、マグネシウム、チタン、タングステン、ニオブ、及びタンタルから成る群から選ばれた少なくとも1種の元素を含む化合物が固着していることが望ましい。 The positive electrode preferably contains a compound containing at least one element selected from the group consisting of rare earth, zirconium, aluminum, magnesium, titanium, tungsten, niobium, and tantalum. It is desirable that a compound containing at least one element selected from the group consisting of rare earth, zirconium, aluminum, magnesium, titanium, tungsten, niobium, and tantalum is fixed on the particle surface of the object.
 このような構成とした場合には、高温での充放電時にケイ素或いはケイ素合金から成る負極活物質粒子の新生面で生じる非水電解質の還元分解生成物が正極に拡散,泳動した場合であっても、リチウム遷移金属複合酸化物粒子の表面で、上記還元分解生成物が酸化分解されるのを抑制できる。したがって、正極が原因でサイクル劣化するのを抑制できる。
 また、リチウム遷移金属複合酸化物の表面でも電解液が分解することがあり、特に、正極電位が高くなった場合〔4.40V(vs.Li/Li)以上、特に4.45V(vs.Li/Li)〕には分解が顕著に生じ、そして、電解液の分解による生成物が負極に移動する。負極に移動した分解生成物は負極活物質の表面で還元されようとするため、還元された分解生成物により負極活物質が酸化され、負極が原因でのサイクル劣化が生じる。しかしながら、リチウム遷移金属複合酸化物に上記化合物が固着されていれば、リチウム遷移金属複合酸化物の表面における電解液の分解を抑制できる。
In such a configuration, even when the reductive decomposition product of the nonaqueous electrolyte generated on the new surface of the negative electrode active material particles made of silicon or a silicon alloy diffuses and migrates to the positive electrode during charge and discharge at high temperature, The reductive decomposition product can be prevented from being oxidatively decomposed on the surface of the lithium transition metal composite oxide particles. Therefore, cycle deterioration due to the positive electrode can be suppressed.
In addition, the electrolytic solution may be decomposed even on the surface of the lithium transition metal composite oxide, particularly when the positive electrode potential becomes high [4.40 V (vs. Li / Li + ) or more, particularly 4.45 V (vs. Li / Li + )] is remarkably decomposed, and the product due to the decomposition of the electrolyte moves to the negative electrode. Since the decomposition product that has moved to the negative electrode tends to be reduced on the surface of the negative electrode active material, the negative electrode active material is oxidized by the reduced decomposition product, causing cycle deterioration due to the negative electrode. However, if the compound is fixed to the lithium transition metal composite oxide, decomposition of the electrolytic solution on the surface of the lithium transition metal composite oxide can be suppressed.
 このような作用が発揮される理由としては、リチウム遷移金属複合酸化物に含まれる遷移金属が触媒として作用するため、電解液や負極からの電解液分解物質が拡散等した場合に、リチウム遷移金属複合酸化物の表面で分解され易くなる。しかし、リチウム遷移金属複合酸化物の表面に、希土類、ジルコニウム、アルミニウム、マグネシウム等の化合物が固着されていると、リチウム遷移金属複合酸化物の表面において、電解液や電解液分解物質との接触が抑制されるので、電解液等が分解されるのを抑制できるからである。
 ここで、上記化合物の元素としては、希土類であることが特に好ましい。その理由としては、希土類は、上記リチウム遷移金属複合酸化物による触媒性を低減させるという効果を最も発揮できるからである。
The reason why such an effect is exhibited is that the transition metal contained in the lithium transition metal composite oxide acts as a catalyst, so that when the electrolytic solution decomposition material from the electrolytic solution or the negative electrode diffuses, the lithium transition metal It becomes easy to be decomposed on the surface of the composite oxide. However, if a compound such as rare earth, zirconium, aluminum, or magnesium is fixed on the surface of the lithium transition metal composite oxide, the surface of the lithium transition metal composite oxide is not in contact with the electrolytic solution or the electrolytic solution decomposition material. It is because it can suppress that an electrolyte solution etc. decompose | disassemble.
Here, the element of the compound is particularly preferably a rare earth element. The reason for this is that rare earth can exhibit the effect of reducing the catalytic properties of the lithium transition metal composite oxide most.
 上記希土類の元素としては、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ディスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが例示され、中でも、ランタン、ネオジム、サマリウム、エルビウム、イッテルビウムが好ましい。その中でも、エルビウム、ネオジム、サマリウムが特に好ましく、エルビウムが最も好ましい。ネオジム、サマリウム、エルビウム(特にエルビウム)は、リチウム遷移金属複合酸化物による触媒性を低減し、電解液等とリチウム遷移金属複合酸化物との反応を極めて抑制することができるからである。 Examples of the rare earth elements include yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Among them, lanthanum, neodymium, samarium, Erbium and ytterbium are preferred. Among these, erbium, neodymium, and samarium are particularly preferable, and erbium is most preferable. This is because neodymium, samarium, and erbium (particularly erbium) can reduce the catalytic properties of the lithium transition metal composite oxide and extremely suppress the reaction between the electrolytic solution and the lithium transition metal composite oxide.
 上記化合物の形態としては、水酸化物や、オキシ水酸化物、酸化物、炭酸化合物、リン酸化合物、ハロゲン化物や、これらの混合状態のものを用いることができ、特に、水酸化物やオキシ水酸化物、炭酸化合物であることが好ましい。その要因としては、より微小な粒子として、リチウム遷移金属複合酸化物の表面に選択的に固着させることができるからである。 As the form of the above compound, hydroxides, oxyhydroxides, oxides, carbonate compounds, phosphate compounds, halides, and mixtures thereof can be used. Hydroxides and carbonate compounds are preferred. This is because the finer particles can be selectively fixed to the surface of the lithium transition metal composite oxide.
 上記希土類の水酸化物やオキシ水酸化物は、例えば、リチウム遷移金属複合酸化物を分散した溶液に、希土類化合物を溶解した溶液を加える方法や、リチウム遷移金属複合酸化物に直接噴霧するといった方法で水酸化物が固着したものを得た後、熱処理をすることによって得られる。
 上記熱処理を実施すると、表面の一部に固着した希土類の水酸化物は、希土類のオキシ水酸化物や希土類の酸化物に変化する。また、水酸化物を固着する際、雰囲気を二酸化炭素雰囲気にしたり、二酸化炭素を溶解した溶液にリチウム遷移金属複合酸化物粉末を分散させると、主として、希土類の炭酸化合物が得られる。
The rare earth hydroxide or oxyhydroxide is, for example, a method of adding a solution in which a rare earth compound is dissolved in a solution in which a lithium transition metal composite oxide is dispersed, or a method of spraying directly on a lithium transition metal composite oxide. It is obtained by heat-treating after having obtained a fixed hydroxide.
When the heat treatment is performed, the rare earth hydroxide fixed to a part of the surface changes to a rare earth oxyhydroxide or a rare earth oxide. Further, when the hydroxide is fixed, when the atmosphere is changed to a carbon dioxide atmosphere or the lithium transition metal composite oxide powder is dispersed in a solution in which carbon dioxide is dissolved, a rare earth carbonate compound is mainly obtained.
 上記希土類の水酸化物やオキシ水酸化物は、例えば、リチウム遷移金属複合酸化物を分散した溶液に、希土類化合物を溶解した溶液を加える方法の場合には、リチウム遷移金属複合酸化物を分散した溶液のpHを6から13に保つことが好ましく、特に、pH6から10に保つことが好ましい。pHが6未満になるとリチウム遷移金属複合酸化物中の遷移金属が溶出し易くなり、pH10を超えると、希土類の水酸化物などが一部にかたよって析出しやすくなり、正極での電解液の分解反応を抑制する効果が低下してしまう恐れがある。 The rare earth hydroxide or oxyhydroxide is, for example, in the case of adding a solution in which a rare earth compound is dissolved to a solution in which a lithium transition metal composite oxide is dispersed. It is preferable to maintain the pH of the solution from 6 to 13, and particularly preferably from 6 to 10. When the pH is less than 6, the transition metal in the lithium transition metal composite oxide is likely to be eluted, and when the pH is more than 10, the rare earth hydroxide or the like is likely to be precipitated due to a part of the electrolyte. There exists a possibility that the effect which suppresses a decomposition reaction may fall.
 上記希土類の水酸化物や炭酸化合物を固着させる際に用いる溶液に溶解させる希土類化合物としては、希土類の酢酸塩、希土類の硝酸塩、希土類の硫酸塩、希土類の酸化物、又は、希土類の塩化物等を用いることができる。
 尚、表面に希土類の水酸化物や炭酸化合物が固着したものを熱処理すると、オキシ水酸化物や酸化物となる。しかし、一般に、希土類水酸化物やオキシ水酸化物が安定的に酸化物となる温度は500℃以上であるが、このような温度で熱処理すると、表面に固着した希土類化合物の一部は、リチウム遷移金属複合酸化物の内部に拡散してしまう。この結果、リチウム遷移金属複合酸化物の表面における電解液の分解反応抑制効果が低下する恐れがある。したがって、熱処理を行う際には、500℃未満であることが好ましい。
Examples of the rare earth compound dissolved in the solution used when fixing the rare earth hydroxide or carbonate compound include rare earth acetates, rare earth nitrates, rare earth sulfates, rare earth oxides, or rare earth chlorides. Can be used.
When heat treatment is performed on a surface of which a rare earth hydroxide or carbonate compound is fixed, an oxyhydroxide or oxide is obtained. However, in general, the temperature at which a rare earth hydroxide or oxyhydroxide becomes a stable oxide is 500 ° C. or more. When heat treatment is performed at such a temperature, a part of the rare earth compound fixed on the surface is lithium. It diffuses inside the transition metal complex oxide. As a result, there is a possibility that the effect of suppressing the decomposition reaction of the electrolytic solution on the surface of the lithium transition metal composite oxide is lowered. Therefore, it is preferable that the temperature is lower than 500 ° C. when the heat treatment is performed.
 また、リチウム遷移金属複合酸化物の表面の一部に固着させる希土類化合物の量は、希土類元素換算で、リチウム遷移金属複合酸化物に対し、0.01質量%以上0.5質量%未満であることが好ましい。0.01質量%未満の場合、表面に固着した希土類化合物の量が過少なため、希土類化合物の固着効果が十分に発揮されないことがある一方、0.5質量%を超えると、リチウム遷移金属複合酸化物の表面が充放電反応に直接関与はし難い化合物で過剰に覆われてしまい、放電性能が低下する恐れがある。更に、固着させる希土類化合物の量は0.3質量%以下であることが一層好ましい。このように規制すれば、上記の希土類化合物の固着効果が得られるだけでなく、優れた放電性能も得られるからである。 Further, the amount of the rare earth compound fixed to a part of the surface of the lithium transition metal composite oxide is 0.01% by mass or more and less than 0.5% by mass with respect to the lithium transition metal composite oxide in terms of rare earth elements. It is preferable. When the amount is less than 0.01% by mass, the amount of the rare earth compound adhered to the surface is too small, so that the effect of fixing the rare earth compound may not be sufficiently exhibited. The surface of the oxide is excessively covered with a compound that is difficult to directly participate in the charge / discharge reaction, and the discharge performance may be deteriorated. Further, the amount of the rare earth compound to be fixed is more preferably 0.3% by mass or less. This is because, if regulated in this way, not only the fixing effect of the rare earth compound can be obtained, but also excellent discharge performance can be obtained.
 ケイ素及び/又はケイ素合金の粒子が含有された負極活物質粒子、アミド酸、及び溶媒を混合して負極合剤スラリーを調製するステップと、上記負極合剤スラリーを負極芯体上に塗布した後、乾燥して溶媒を除去して負極前駆体を作製するステップと、上記乾燥が終了した負極前駆体を、非酸化雰囲気にて熱処理して、上記アミド酸をポリイミド化させるステップと、上記ポリイミド化が終了した負極前駆体を、被覆用バインダーを含む溶液に含浸させて負極を作製するステップと、上記負極と、リチウム遷移金属複合酸化物の粒子が含有された正極活物質を含む正極との間にセパレータを配置するステップと、を備えることを特徴とする。
 このような方法により、負極における固着用バインダーとしてポリイミド樹脂を用いた非水電解質二次電池を作製することができる。
A step of preparing a negative electrode mixture slurry by mixing negative electrode active material particles containing silicon and / or silicon alloy particles, amic acid, and a solvent, and applying the negative electrode mixture slurry on the negative electrode core A step of preparing a negative electrode precursor by drying to remove the solvent, a step of heat-treating the negative electrode precursor after the drying in a non-oxidizing atmosphere to polyimidize the amic acid, and the polyimidation Between the step of impregnating the negative electrode precursor having been finished with a solution containing a coating binder to produce a negative electrode, and the positive electrode including the negative electrode and a positive electrode active material containing lithium transition metal composite oxide particles And a step of disposing a separator.
By such a method, a nonaqueous electrolyte secondary battery using a polyimide resin as a binder for fixing in the negative electrode can be produced.
(その他の事項)
(1)正極活物質としては、例えば、リチウム含有遷移金属複合酸化物を用いることができ、具体的には、コバルト酸リチウム、Ni-Co-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alの複合酸化物、鉄、マンガンなどを含むオリビン型の遷移金属酸化物(LiMPOで表され、MはFe、Mn、Co、Niから選択される)が例示される。また、これらを単独で用いても良いし、混合して用いても良い。また、上記リチウム含有遷移金属複合酸化物には、Al、Mg、Ti、Zr等の物質が固溶されていたり、粒界に含まれていても良い。
(Other matters)
(1) As the positive electrode active material, for example, a lithium-containing transition metal composite oxide can be used. Specifically, lithium cobalt oxide, lithium composite oxide of Ni—Co—Mn, Ni—Mn—Al An olivine-type transition metal oxide containing lithium composite oxide, Ni—Co—Al composite oxide, iron, manganese, etc. (expressed as LiMPO 4 , M is selected from Fe, Mn, Co, Ni) Illustrated. These may be used alone or in combination. In addition, the lithium-containing transition metal composite oxide may contain a substance such as Al, Mg, Ti, Zr or the like, or may be contained in the grain boundary.
 また、上記Ni-Co-Mnのリチウム複合酸化物としては、NiとCoとMnとのモル比が、1:1:1であったり、5:3:2である等、公知の組成のものを用いることができるが、特に、正極容量を増大させうるように、NiやCoの割合がMnより多いものを用いることが好ましい。
 尚、同種の正極活物質のみを用いる場合や、異種の正極活物質を用いる場合において、正極活物質としては、同一の粒径のものを用いても良く、また、異なる粒径のものを用いても良い。
The Ni—Co—Mn lithium composite oxide has a known composition such that the molar ratio of Ni, Co, and Mn is 1: 1: 1 or 5: 3: 2. In particular, it is preferable to use a material in which the ratio of Ni or Co is larger than that of Mn so that the positive electrode capacity can be increased.
When only the same type of positive electrode active material is used or when different types of positive electrode active materials are used, the positive electrode active material may have the same particle size or different particle sizes. May be.
(2)本発明に用いる非水電解質の溶媒としては、従来から用いられてきた溶媒を使用することができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートや、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物や、プロパンスルトン等のスルホン基を含む化合物や、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物や、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物や、ジメチルホルムアミド等のアミドを含む化合物等を用いることができる。特に、これらのHの一部がFにより置換されている溶媒が好ましく用いられる。また、これらを単独又は複数組み合わせて使用することができ、特に環状カーボネートと鎖状カーボネートとを組み合わせた溶媒や、更にこれらに少量のニトリルを含む化合物やエーテルを含む化合物が組み合わされた溶媒が好ましい。 (2) As the solvent for the nonaqueous electrolyte used in the present invention, a conventionally used solvent can be used. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, propionic acid Compounds containing esters such as ethyl and γ-butyrolactone, compounds containing sulfone groups such as propane sultone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxane, 1,4 -Compounds containing ethers such as dioxane and 2-methyltetrahydrofuran, butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronite Le, 1,2,3-propanetriol-carbonitrile, 1,3,5-pentanetricarboxylic carbonitrile compounds containing nitrile such as nitrile or can be used compounds comprising an amide such as dimethylformamide. In particular, a solvent in which a part of these H is substituted with F is preferably used. Further, these can be used alone or in combination, and a solvent in which a cyclic carbonate and a chain carbonate are combined, and a solvent in which a compound containing a small amount of nitrile or a compound containing ether is further combined is preferable. .
 一方、非水電解液の溶質としては、従来から用いられてきた溶質を用いることができ、LiPF、LiBF、LiN(SOF)2、LiN(SOCF、LiN(SO、LiPF6-x(C2n-1[但し、1<x<6、n=1又は2]等の他に、オキサラト錯体をアニオンとするリチウム塩が例示される。このオキサラト錯体をアニオンとするリチウム塩としては、LiBOB〔リチウム-ビスオキサレートボレート〕の他、中心原子にC 2-が配位したアニオンを有するリチウム塩、例えば、Li[M(C](式中、Mは遷移金属,周期律表のIIIb族,IVb族,Vb族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である。)で表わされるものを用いることができる。具体的には、Li[B(C)F]、Li[P(C)F]、Li[P(C]等がある。但し、高温環境下においても負極の表面に安定な被膜を形成するためには、LiBOBを用いることが最も好ましい。
 尚、上記溶質は、単独で用いるのみならず、2種以上を混合して用いても良い。また、溶質の濃度は特に限定されないが、電解液1リットル当り0.8~1.7モルであることが望ましい。
On the other hand, conventionally used solutes can be used as the solute of the non-aqueous electrolyte, and LiPF 6 , LiBF 4 , LiN (SO 2 F) 2, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF 6-x (C n F 2n-1 ) x [where 1 <x <6, n = 1 or 2], and the like, in addition, a lithium salt having an oxalato complex as an anion Illustrated. Examples of the lithium salt having the oxalato complex as an anion include LiBOB [lithium-bisoxalate borate] and a lithium salt having an anion in which C 2 O 4 2− is coordinated to the central atom, for example, Li [M (C 2 O 4 ) x R y ] (wherein M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group) Group, x is a positive integer, and y is 0 or a positive integer). Specifically, there are Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], Li [P (C 2 O 4 ) 2 F 2 ], and the like. However, it is most preferable to use LiBOB in order to form a stable film on the surface of the negative electrode even in a high temperature environment.
In addition, the said solute may be used not only independently but in mixture of 2 or more types. The concentration of the solute is not particularly limited, but is preferably 0.8 to 1.7 mol per liter of the electrolyte.
(3)上記無機粒子層は負極活物質層の表面のみならず、セパレータの表面や正極活物質層の表面に形成しても良い。この場合、無機粒子層は、正極活物質層の表面或いはセパレータの表面に、無機粒子含有スラリーを直接塗布して形成したり、無機粒子で形成したシートを、活物質層の表面或いはセパレータの表面に貼り付けることにより形成することができる。 (3) The inorganic particle layer may be formed not only on the surface of the negative electrode active material layer but also on the surface of the separator or the surface of the positive electrode active material layer. In this case, the inorganic particle layer is formed by directly applying the inorganic particle-containing slurry to the surface of the positive electrode active material layer or the surface of the separator, or by forming a sheet formed of inorganic particles on the surface of the active material layer or the surface of the separator. It can form by sticking to.
(4)本発明に用いるセパレータとしては、従来から用いられてきたセパレータを用いることができる。具体的には、ポリエチレンからなるセパレータのみならず、ポリエチレン層の表面にポリプロピレンからなる層が形成されたものや、ポリエチレンのセパレータの表面にアラミド系の樹脂等の樹脂が塗布されたものを用いても良い。
(5)負極活物質としては、上記ケイ素や、上記ケイ素合金の他に、ケイ素酸化物〔SiO(0<x<2、特に0<x<1が好ましい)〕を用いても良い。したがって、上記ケイ素には、SiO(0<x<2)(SiO=(Si)1-1/2x+(SiO1/2x)で表されるケイ素酸化物中のケイ素も含まれる。
(4) As a separator used for this invention, the separator conventionally used can be used. Specifically, not only a separator made of polyethylene, but also a material in which a layer made of polypropylene is formed on the surface of a polyethylene layer, or a material in which a resin such as an aramid resin is applied to the surface of a polyethylene separator is used. Also good.
(5) As the negative electrode active material, silicon oxide [SiO x (0 <x <2, particularly preferably 0 <x <1)] may be used in addition to the silicon and the silicon alloy. Accordingly, the silicon includes silicon in silicon oxide represented by SiO x (0 <x <2) (SiO x = (Si) 1−1 / 2x + (SiO 2 ) 1 / 2x ). .
 以下、本発明を下記実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
              [第1実施例]
(実施例1)
〔正極の作製〕
(1)リチウム遷移金属複合酸化物の作製
 LiCOとCoCOとを、LiとCoとのモル比が1:1になるようにして乳鉢にて混合した後、空気雰囲気中にて800℃で24時間熱処理し、更に粉砕することにより、LiCoOで表されるコバルト酸リチウムの粉末(平均粒子径17μm)を得た。
Hereinafter, the present invention will be described in more detail based on the following examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. It is a thing.
[First embodiment]
Example 1
[Production of positive electrode]
(1) Preparation of lithium transition metal composite oxide Li 2 CO 3 and CoCO 3 were mixed in a mortar so that the molar ratio of Li and Co was 1: 1, and then 800 in an air atmosphere. By heat-treating at ° C for 24 hours and further pulverizing, a lithium cobaltate powder (average particle size of 17 µm) represented by LiCoO 2 was obtained.
(2)湿式法によるエルビウム化合物のコート
 上記コバルト酸リチウム1000gを3リットルの純水に添加し攪拌して、コバルト酸リチウムが分散した懸濁液を調製した後、この懸濁液に、硝酸エルビウム5水和物1.85gを溶解した溶液を添加した。尚、硝酸エルビウム5水和物を溶解した液を懸濁液に添加する際には、10質量%の水酸化物ナトリウム水溶液を添加し、コバルト酸リチウムを含む溶液のpHを9に保った。次に、上記懸濁液を吸引濾過し、更に水洗して得られた粉末を120℃で熱処理(乾燥)した。さらに、この粉末を空気中で、300℃で5時間熱処理した。これにより、コバルト酸リチウムの表面にエルビウム化合物が固着した正極活物質粉末が得られた。なお、エルビウム化合物は、熱処理時に、殆どの水酸化エルビウムがオキシ水酸化エルビウムに変化していた。
(2) Coating of erbium compound by wet method After adding 1000 g of the above lithium cobaltate to 3 liters of pure water and stirring to prepare a suspension in which lithium cobaltate was dispersed, erbium nitrate was added to this suspension. A solution in which 1.85 g of pentahydrate was dissolved was added. In addition, when adding the liquid which melt | dissolved the erbium nitrate pentahydrate to suspension, 10 mass% sodium hydroxide aqueous solution was added and pH of the solution containing lithium cobaltate was kept at 9. Next, the suspension was filtered with suction, and further washed with water. The powder obtained was heat-treated (dried) at 120 ° C. Furthermore, this powder was heat-treated at 300 ° C. for 5 hours in air. Thereby, the positive electrode active material powder which the erbium compound fixed to the surface of lithium cobaltate was obtained. In the erbium compound, most of the erbium hydroxide was changed to erbium oxyhydroxide during the heat treatment.
 得られた正極活物質粉末について、走査型電子顕微鏡(SEM)にて観察したところ、コバルト酸リチウムの表面に均一に分散された状態で、平均粒子径100nm以下のエルビウム化合物が均一に固着していることが認められた。尚、エルビウム化合物の固着量をICPにより測定したところ、エルビウム元素換算で、コバルト酸リチウムに対して0.07質量%であった。 When the obtained positive electrode active material powder was observed with a scanning electron microscope (SEM), an erbium compound having an average particle diameter of 100 nm or less was uniformly fixed in a state of being uniformly dispersed on the surface of lithium cobalt oxide. It was recognized that In addition, when the adhesion amount of the erbium compound was measured by ICP, it was 0.07 mass% with respect to lithium cobaltate in terms of erbium element.
(3)正極の作製
 分散媒としてのNMP(N-メチル-2-ピロリドン)に、上記作製の正極活物質粉末と、正極導電剤としての平均粒径30nmのカーボンブラック(アセチレンブラック)粉末と、正極バインダーとしてのポリフッ化ビニリデンとを、正極活物質と正極導電剤と正極バインダーとの質量比が95:2.5:2.5となるように加えた後、混練し、正極合剤スラリーを調製した。
(3) Production of positive electrode NMP (N-methyl-2-pyrrolidone) as a dispersion medium, positive electrode active material powder produced as described above, carbon black (acetylene black) powder having an average particle size of 30 nm as a positive electrode conductive agent, Polyvinylidene fluoride as a positive electrode binder was added so that the mass ratio of the positive electrode active material, the positive electrode conductive agent, and the positive electrode binder was 95: 2.5: 2.5, and then kneaded to obtain a positive electrode mixture slurry. Prepared.
 次に、この正極合剤スラリーを、正極集電体としてのアルミニウム箔(厚み15μm、長さ402mm、幅50mm)の両面に塗布し(塗布部の長さは、表面側で340mm、裏面側で270mm、塗布部の幅は共に50mm)、乾燥した後、圧延することにより正極を作製した。尚、両面に正極活物質層が形成されている部分において、正極集電体上の正極活物質層の量は48mg/cm、正極の厚みは148μmであった。また、正極の端部にある正極活物質層の未塗布部分には、正極集電タブとしてアルミニウム板を接続した。 Next, this positive electrode mixture slurry was applied to both surfaces of an aluminum foil (thickness 15 μm, length 402 mm, width 50 mm) as a positive electrode current collector (the length of the coating part was 340 mm on the front side and on the back side) 270 mm and the width of the coated part were both 50 mm), dried, and rolled to produce a positive electrode. In the portion where the positive electrode active material layer was formed on both surfaces, the amount of the positive electrode active material layer on the positive electrode current collector was 48 mg / cm 2 , and the thickness of the positive electrode was 148 μm. In addition, an aluminum plate was connected to the uncoated portion of the positive electrode active material layer at the end of the positive electrode as a positive electrode current collecting tab.
〔負極の作製〕
(1)ケイ素負極活物質の作製
 先ず、熱還元法により、多結晶ケイ素塊を作製した。具体的には、金属反応炉(還元炉)内に設置されたケイ素芯を通電加熱して800℃まで上昇させておき、これに精製された高純度モノシラン(SiH)ガスの蒸気と精製された水素とを混合したガスを流すことで、ケイ素芯の表面に多結晶ケイ素を析出させ、これにより、太い棒状に生成された多結晶ケイ素塊を作製した。
(Production of negative electrode)
(1) Production of silicon negative electrode active material First, a polycrystalline silicon lump was produced by a thermal reduction method. Specifically, the silicon core installed in the metal reaction furnace (reduction furnace) is heated by heating to 800 ° C., and purified with the purified high purity monosilane (SiH 4 ) gas vapor. By flowing a gas mixed with hydrogen, polycrystalline silicon was deposited on the surface of the silicon core, thereby producing a polycrystalline silicon lump produced in a thick rod shape.
 次に、この多結晶ケイ素塊を粉砕分級することで、純度99%の多結晶ケイ素粒子(負極活物質粒子)を作製した。この多結晶ケイ素粒子においては、結晶子サイズは32nmであり、メディアン径は10μmであった。尚、上記結晶子サイズは、粉末X線回折のケイ素の(111)ピークの半値幅を用いて、scherrerの式により算出した。また、上記メディアン径は、レーザー回折法による粒度分布測定において、累積体積が50%となった径と規定した。 Next, the polycrystalline silicon lump was pulverized and classified to prepare polycrystalline silicon particles (negative electrode active material particles) having a purity of 99%. In the polycrystalline silicon particles, the crystallite size was 32 nm, and the median diameter was 10 μm. The crystallite size was calculated by the Scherrer equation using the half width of the silicon (111) peak in powder X-ray diffraction. The median diameter was defined as the diameter at which the cumulative volume reached 50% in the particle size distribution measurement by the laser diffraction method.
(2)負極合剤スラリーの作製
 分散媒としてのNMPに、上記負極活物質粒子と、負極導電剤としての平均粒径3.5μmの黒鉛粉末と、下記化1で示される分子構造を有しガラス転移温度300℃である熱可塑性ポリイミド樹脂(後述する400℃での熱処理により、固着用バインダーとなる樹脂)の前駆体ワニス(溶媒:NMP、濃度:熱処理によるポリマー化+イミド化後のポリイミド樹脂の量で47質量%)とを、負極活物質粉末と負極導電剤粉末とイミド化後のポリイミド樹脂(負極活物質粒子同士及び上記負極活物質粒子と上記負極集電体とを固着する固着用バインダー)との質量比が89.5:3.7:6.8となるように混合し、負極合剤スラリーを調製した。
(2) Preparation of negative electrode mixture slurry NMP as a dispersion medium has the negative electrode active material particles, graphite powder having an average particle size of 3.5 μm as a negative electrode conductive agent, and a molecular structure represented by the following chemical formula 1. Precursor varnish of thermoplastic polyimide resin having a glass transition temperature of 300 ° C. (resin that becomes a binder for fixing by heat treatment at 400 ° C. described later) (solvent: NMP, concentration: polymerization by heat treatment + polyimide resin after imidization) 47% by mass) of the negative electrode active material powder, the negative electrode conductive agent powder, and the polyimide resin after imidization (the negative electrode active material particles and the negative electrode active material particles and the negative electrode current collector are fixed) The negative electrode mixture slurry was prepared by mixing so that the mass ratio to the binder was 89.5: 3.7: 6.8.
 ここで、上記ポリイミド樹脂の前駆体ワニスは、下記化2、化3、化4に示す3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジエチルエステルと、下記化5に示すm-フェニレンジアミンとから作製できる。また、上記化2、化3、化4に示す3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジエチルエステルは、下記化6に示す3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物にNMPの存在下、2当量のエタノールを反応させることにより作製できる。 Here, the precursor varnish of the polyimide resin is composed of 3,3 ′, 4,4′-benzophenone tetracarboxylic acid diethyl ester represented by the following chemical formula 2, chemical formula 3, and chemical formula 4, and m-phenylenediamine represented by chemical formula 5 below. And can be made from In addition, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid diethyl ester represented by the above Chemical Formula 2, Chemical Formula 3, and Chemical Formula 4 is 3,3 ′, 4,4′-benzophenone tetracarboxylic acid represented by Chemical Formula 6 below. It can be prepared by reacting dianhydride with 2 equivalents of ethanol in the presence of NMP.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(3)負極の作製
 負極集電体として、厚さ18μmの銅合金箔(C7025合金箔であり、組成は、Cuが96.2質量%、Niが3質量%、Siが0.65質量%、Mgが0.15質量%)の両面を、表面粗さRa(JIS B 0601-1994)が0.25μm、平均山間隔S(JIS B 0601-1994)が1.0μmとなるように電解銅粗化したものを用いた。この負極集電体の両面に上記負極合剤スラリーを、25℃空気中で塗布し、120℃空気中で乾燥後、25℃空気中で圧延した。得られたものを、長さ380mm、幅52mmの長方形に切り抜いた後、アルゴン雰囲気下で400℃、10時間熱処理し、負極集電体の表面に負極活物質層が形成された負極前駆体を作製した。尚、上記負極集電体上の負極活物質層の量は5.6mg/cmで、負極の厚みは56μmであった。また、負極前駆体の端部には、負極集電タブとしてのニッケル板を接続した。
(3) Production of Negative Electrode As a negative electrode current collector, a copper alloy foil having a thickness of 18 μm (C7025 alloy foil having a composition of 96.2% by mass of Cu, 3% by mass of Ni, and 0.65% by mass of Si) , Mg 0.15% by mass), electrolytic copper so that the surface roughness Ra (JIS B 0601-1994) is 0.25 μm and the average peak spacing S (JIS B 0601-1994) is 1.0 μm. The roughened one was used. The negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector in air at 25 ° C., dried in air at 120 ° C., and then rolled in air at 25 ° C. The obtained product was cut into a rectangle having a length of 380 mm and a width of 52 mm, and then heat-treated in an argon atmosphere at 400 ° C. for 10 hours to obtain a negative electrode precursor having a negative electrode active material layer formed on the surface of the negative electrode current collector. Produced. The amount of the negative electrode active material layer on the negative electrode current collector was 5.6 mg / cm 2 and the thickness of the negative electrode was 56 μm. Moreover, the nickel plate as a negative electrode current collection tab was connected to the edge part of a negative electrode precursor.
 最後に、上記負極前駆体を、アクリル酸エチル-アクリロニトリルコポリマーのディスパージョン溶液を純水で薄めた溶液にディップし、更に90℃空気中で水分を除去することにより、負極表面と負極内部とに、負極活物質粒子を被覆するアクリル酸エチル-アクリロニトリルコポリマー(被覆用バインダー)が存在する負極を作製した。ここで、負極活物質層のケイ素に対する被覆用バインダーの割合は1.9質量%であり、また、上記の如くディップ法を用いているので、負極内部に比べて負極表面の方が、被覆用バインダーの割合が多くなっていた。尚、ディップ法を用いる場合、ディップ溶液の粘度が高過ぎると負極内部における被覆用バインダーの量が少なくなる一方、ディップ溶液の粘度が低過ぎると負極内部における被覆用バインダーの量が負極表面と余り変わらなくなる。このようなことを考慮して、ディップ溶液の粘度を規定する必要がある。 Finally, the negative electrode precursor is dipped into a solution obtained by diluting a dispersion solution of ethyl acrylate-acrylonitrile copolymer with pure water, and further moisture is removed in air at 90 ° C. Then, a negative electrode in which an ethyl acrylate-acrylonitrile copolymer (binder for coating) covering the negative electrode active material particles was prepared. Here, the ratio of the coating binder to the silicon of the negative electrode active material layer is 1.9% by mass, and since the dipping method is used as described above, the surface of the negative electrode is more coated than the inside of the negative electrode. The percentage of binder was increased. When the dip method is used, if the viscosity of the dip solution is too high, the amount of the coating binder in the negative electrode is reduced. On the other hand, if the viscosity of the dip solution is too low, the amount of the coating binder in the negative electrode is excessive with respect to the negative electrode surface. It will not change. In consideration of this, it is necessary to define the viscosity of the dip solution.
〔非水電解液の調製〕
 フルオロエチレンカーボネート(FEC)とプロピレンカーボネート(PC)とメチルエチルカーボネート(MEC)を体積比10:10:80で混合した溶媒に対し、六フッ化リン酸リチウム(LiPF)を1モル/リットル溶解させた後、この溶液に対して、0.4質量%の二酸化炭素ガスを溶存させ、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a solvent in which fluoroethylene carbonate (FEC), propylene carbonate (PC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 10:10:80. Then, 0.4% by mass of carbon dioxide gas was dissolved in this solution to prepare a non-aqueous electrolyte.
〔電極体の作製〕
 上記正極を1枚、上記負極を1枚、ポリエチレン製微多孔膜(厚さ20μm、長さ450mm、幅54.5mmであって、突き刺し強度340g、空孔率39%)から成るセパレータを2枚用いて、正極と負極とをセパレータで介して対向させた。次に、直径18mmの巻き芯で、渦巻き状に巻回した。この際、正極タブ及び負極タブは、共に、各電極内における最外周部に位置するように配置した。その後、巻き芯を引き抜いて渦巻状の電極体を作製し、更にこの渦巻状の電極体を押し潰して、扁平型の電極体を作製した。
(Production of electrode body)
One positive electrode, one negative electrode, and two polyethylene microporous membranes (thickness 20 μm, length 450 mm, width 54.5 mm, piercing strength 340 g, porosity 39%) The positive electrode and the negative electrode were opposed to each other with a separator. Next, it was wound in a spiral shape with a winding core having a diameter of 18 mm. At this time, both the positive electrode tab and the negative electrode tab were arranged so as to be located on the outermost peripheral portion in each electrode. Thereafter, the winding core was pulled out to produce a spiral electrode body, and this spiral electrode body was further crushed to produce a flat electrode body.
〔電池の作製〕
 上記扁平型電極体及び上記非水電解液を、25℃、1気圧のCO雰囲気下でアルミニウムラミネート製の外装体内に挿入して扁平型の非水電解質二次電池を作製した。尚、当該二次電池を4.35Vまで充電した場合の設計容量は1000mAhである。
 このようにして作製した電池を、以下、電池A1と称する。
[Production of battery]
The flat electrode body and the non-aqueous electrolyte were inserted into an aluminum laminate outer package in a CO 2 atmosphere at 25 ° C. and 1 atm to produce a flat non-aqueous electrolyte secondary battery. In addition, the design capacity | capacitance at the time of charging the said secondary battery to 4.35V is 1000 mAh.
The battery thus produced is hereinafter referred to as battery A1.
 図1及び図2に示すように、上記非水電解質二次電池11の具体的な構造は、正極1と負極2とがセパレータ3を介して対向配置されており、これら正負両極1、2とセパレータ3とから成る扁平型の電極体9には非水電解液が含浸されている。上記正極1と負極2は、それぞれ、正極集電タブ4と負極集電タブ5とに接続され、二次電池としての充放電が可能な構造となっている。尚、電極体9は、周縁同士がヒートシールされた閉口部7を備えるアルミラミネート外装体6の収納空間内に配置されている。尚、図中、8は電解液等の分解により発生したガスが、充放電に及ぼす影響を最小限に抑制するための予備室である。 As shown in FIGS. 1 and 2, the nonaqueous electrolyte secondary battery 11 has a specific structure in which a positive electrode 1 and a negative electrode 2 are arranged to face each other with a separator 3 therebetween. A flat electrode body 9 composed of the separator 3 is impregnated with a non-aqueous electrolyte. The positive electrode 1 and the negative electrode 2 are connected to a positive electrode current collector tab 4 and a negative electrode current collector tab 5, respectively, and have a structure capable of charging and discharging as a secondary battery. In addition, the electrode body 9 is arrange | positioned in the storage space of the aluminum laminate exterior body 6 provided with the closing part 7 by which the periphery was heat-sealed. In the figure, reference numeral 8 denotes a spare chamber for minimizing the influence of the gas generated by the decomposition of the electrolyte etc. on the charge / discharge.
(実施例2)
 負極を作製する際、被覆用バインダーとしてアクリル酸エチル-アクリロニトリルコポリマーに代えてCMCを用い(具体的には、アクリル酸エチル-アクリロニトリルコポリマーのディスパージョン溶液に代えて、CMCを水に溶解した溶液を用意し、この溶液に負極前駆体をディップした)、且つ、負極活物質層のケイ素に対するCMCの割合を2.0質量%としたこと以外は、上記実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池A2と称する。
(Example 2)
In preparing the negative electrode, CMC was used as a coating binder instead of ethyl acrylate-acrylonitrile copolymer (specifically, a solution in which CMC was dissolved in water was used instead of a dispersion solution of ethyl acrylate-acrylonitrile copolymer). A battery was prepared in the same manner as in Example 1 except that the negative electrode precursor was dipped in this solution) and the ratio of CMC to silicon in the negative electrode active material layer was 2.0 mass%. .
The battery thus produced is hereinafter referred to as battery A2.
(実施例3)
 負極活物質層のケイ素に対するCMCの割合を1.0質量%とした以外は、上記実施例2と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池A3と称する。
(Example 3)
A battery was fabricated in the same manner as in Example 2 except that the ratio of CMC to silicon in the negative electrode active material layer was 1.0% by mass.
The battery thus produced is hereinafter referred to as battery A3.
(実施例4)
 負極を作製する際、被覆用バインダーとしてアクリル酸エチル-アクリロニトリルコポリマーに代えてPVdF(ポリフッ化ビニリデン)を用い(具体的には、アクリル酸エチル-アクリロニトリルコポリマーのディスパージョン溶液に代えて、PVdFをNMPに溶解した溶液を用意し、この溶液に負極前駆体をディップし)、且つ、負極活物質層のケイ素に対するPVdFの割合を5.7質量%としたこと以外は、上記実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池A4と称する。
(Example 4)
When preparing the negative electrode, PVdF (polyvinylidene fluoride) was used as a coating binder instead of ethyl acrylate-acrylonitrile copolymer (specifically, PVdF was replaced with NMP instead of a dispersion solution of ethyl acrylate-acrylonitrile copolymer). In the same manner as in Example 1 except that the negative electrode precursor was dipped in this solution and the ratio of PVdF to silicon in the negative electrode active material layer was 5.7% by mass. A battery was produced.
The battery thus produced is hereinafter referred to as battery A4.
(実施例5)
 負極を作製する際、被覆用バインダーとしてアクリル酸エチル-アクリロニトリルコポリマーに代えてPTFE(ポリテトラフルオロエチレン)を用いた(具体的には、アクリル酸エチル-アクリロニトリルコポリマーのディスパージョン溶液に代えて、PTFEのディスパージョン溶液を用意し、この溶液に負極前駆体をディップしたこと以外は、上記実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池A5と称する。
(Example 5)
When preparing the negative electrode, PTFE (polytetrafluoroethylene) was used as a coating binder instead of ethyl acrylate-acrylonitrile copolymer (specifically, PTFE instead of a dispersion solution of ethyl acrylate-acrylonitrile copolymer). A battery was prepared in the same manner as in Example 1 except that a dispersion solution was prepared and the negative electrode precursor was dipped in this solution.
The battery thus produced is hereinafter referred to as battery A5.
(実施例6)
 負極を作製する際、被覆用バインダーとしてアクリル酸エチル-アクリロニトリルコポリマーに代えてSBR(スチレンブタジエンゴム)を用い(具体的には、アクリル酸エチル-アクリロニトリルコポリマーのディスパージョン溶液に代えて、SBRのディスパージョン溶液を用意し、この溶液に負極前駆体をディップし)、且つ、負極活物質層のケイ素に対するSBRの割合を2.1質量%としたこと以外は、上記実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池A6と称する。
(Example 6)
When preparing the negative electrode, SBR (styrene butadiene rubber) was used instead of the ethyl acrylate-acrylonitrile copolymer as the coating binder (specifically, instead of the ethyl acrylate-acrylonitrile copolymer dispersion solution, SBR dispersion) A battery was prepared in the same manner as in Example 1, except that a John solution was prepared and the negative electrode precursor was dipped in this solution) and the ratio of SBR to silicon in the negative electrode active material layer was 2.1% by mass. Was made.
The battery thus produced is hereinafter referred to as battery A6.
(実施例7)
 負極を作製する際、被覆用バインダーとしてアクリル酸エチル-アクリロニトリルコポリマーに代えてポリアクリロニトリルを用い(具体的には、アクリル酸エチル-アクリロニトリルコポリマーのディスパージョン溶液に代えて、ポリアクリロニトリルをNMPに溶解した溶液を用意し、この溶液に負極前駆体をディップし)、且つ、負極活物質層のケイ素に対するポリアクリロニトリルの割合を1.8質量%としたこと以外は、上記実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池A7と称する。
(Example 7)
When preparing the negative electrode, polyacrylonitrile was used as a coating binder instead of ethyl acrylate-acrylonitrile copolymer (specifically, polyacrylonitrile was dissolved in NMP instead of a dispersion solution of ethyl acrylate-acrylonitrile copolymer). A battery was prepared in the same manner as in Example 1 except that a solution was prepared and the negative electrode precursor was dipped in this solution) and the ratio of polyacrylonitrile to silicon in the negative electrode active material layer was 1.8% by mass. Was made.
The battery thus produced is hereinafter referred to as battery A7.
(比較例)
 負極の作製において、被覆用バインダーを用いなかったこと以外は、実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Zと称する。
(Comparative example)
A battery was produced in the same manner as in Example 1 except that no coating binder was used in the production of the negative electrode.
The battery thus produced is hereinafter referred to as battery Z.
(実験)
 上記の電池A1~A7、Zについて、下記(A)の条件にて25℃で初期充放電(1サイクル目の充放電)を行った後、下記(B)の条件にて45℃で充放電(2サイクル目以降の充放電)を繰り返し行って、40サイクル後の容量維持率〔下記(1)式に示す〕を調べたので、その結果を表1に示す。
(Experiment)
For the batteries A1 to A7, Z described above, after initial charge / discharge (charge / discharge at the first cycle) at 25 ° C. under the following conditions (A), charge / discharge at 45 ° C. under the following conditions (B) (Charge / discharge after the second cycle) was repeated, and the capacity retention rate after 40 cycles [shown in the following formula (1)] was examined. The results are shown in Table 1.
(A)25℃での初期充放電条件
・充電条件
 50mAの電流で4時間定電流充電を行った後、200mAの電流で電池電圧が4.35Vとなるまで定電流充電を行い、更に、4.35Vの電圧で電流値が50mAとなるまで定電圧充電を行った。
・放電条件
 200mAの電流で電池電圧が2.75Vとなるまで定電流放電を行った。
(A) Initial charging / discharging conditions and charging conditions at 25 ° C. After performing constant current charging at a current of 50 mA for 4 hours, charging is performed at a current of 200 mA until the battery voltage reaches 4.35 V. Constant voltage charging was performed until the current value reached 50 mA at a voltage of .35 V.
-Discharge conditions Constant current discharge was performed until the battery voltage became 2.75 V at a current of 200 mA.
(B)45℃での充放電条件
・充電条件
 1000mAの電流で電池電圧が4.35Vとなるまで定電流充電を行い、更に、4.35Vの電圧で電流値が50mAとなるまで定電圧充電を行った。
・放電条件
 1000mAの電流で電池電圧が2.75Vとなるまで定電流放電を行った。
(B) Charging / discharging conditions / charging conditions at 45 ° C. Constant current charging is performed until the battery voltage reaches 4.35 V at a current of 1000 mA, and further constant voltage charging is performed until the current value reaches 50 mA at a voltage of 4.35 V. Went.
-Discharge conditions Constant current discharge was performed until the battery voltage became 2.75 V at a current of 1000 mA.
容量維持率=(40サイクル目の放電容量/1サイクル目の放電容量)×100・・・(1) Capacity retention ratio = (discharge capacity at the 40th cycle / discharge capacity at the first cycle) × 100 (1)
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1から明らかなように、負極表面や負極内部に被覆用バインダーが含有されていない電池Zに比べて、負極表面や負極内部に被覆用バインダーが含有された電池A1~A7は、高温で充放電サイクルを繰り返した後の容量維持率が飛躍的に高くなっていることが認められる。 As is clear from Table 1, the batteries A1 to A7 containing the coating binder on the negative electrode surface or inside the negative electrode were charged at a higher temperature than the battery Z containing no coating binder on the negative electrode surface or inside the negative electrode. It can be seen that the capacity retention rate after repeating the discharge cycle is dramatically increased.
 これは、負極表面や負極内部に被覆用バインダーが含有されていることで、高温での充放電時に新生面ができても、新生面における電解液との接触が抑制される。したがって、放電末期に電位が高くなっても、新生面が過剰に酸化されるのを抑制できる等の理由によるものと考えられる。 This is because the coating binder is contained on the negative electrode surface or inside the negative electrode, so that even if a new surface is formed during charging and discharging at high temperature, contact with the electrolyte on the new surface is suppressed. Therefore, it is considered that even if the potential becomes high at the end of discharge, the new surface can be prevented from being excessively oxidized.
              [第2実施例]
(実施例)
 負極活物質層の表面にアルミナ(AKP3000)粒子を含む無機粒子層を形成した以外は、上記第1実施例の実施例1と同様にして電池を作製した。尚、無機粒子層の形成は、アルミナ(AKP3000)とアクリル酸エチル-アクリロニトリルコポリマーとを分散した溶液を、負極活物質層の表面にコーティングした後、90℃で乾燥することにより作製した。
 このようにして作製した電池を、以下、電池Bと称する。
[Second Embodiment]
(Example)
A battery was fabricated in the same manner as in Example 1 of the first example except that an inorganic particle layer containing alumina (AKP3000) particles was formed on the surface of the negative electrode active material layer. The inorganic particle layer was formed by coating the surface of the negative electrode active material layer with a solution in which alumina (AKP3000) and ethyl acrylate-acrylonitrile copolymer were dispersed, and drying at 90 ° C.
The battery thus produced is hereinafter referred to as battery B.
(実験)
 上記電池Bについて上記第1実施例の実験と同様の条件で充放電を行い、容量維持率を調べたので、その結果を表2に示す。尚、本実験では、40サイクル後の容量維持率〔上記(1)式に示す〕のみならず、55サイクル後の容量維持率〔下記(2)式に示す〕についても調べた。また、参考として、上記電池A1の結果も併せて示す。
(Experiment)
The battery B was charged and discharged under the same conditions as in the experiment of the first example, and the capacity retention rate was examined. The results are shown in Table 2. In this experiment, not only the capacity retention rate after 40 cycles [shown in the above formula (1)] but also the capacity maintenance rate after 55 cycles [shown in the following formula (2)] were examined. For reference, the results of the battery A1 are also shown.
容量維持率=(55サイクル目の放電容量/1サイクル目の放電容量)×100・・・(2) Capacity maintenance ratio = (discharge capacity at 55th cycle / discharge capacity at 1st cycle) × 100 (2)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2から明らかなように、負極表面や負極内部に被覆用バインダーを含有させただけの電池A1に比べて、負極表面や負極内部に被覆用バインダーを含有させ、且つ、負極活物質層の表面に無機粒子層を形成した電池Bは、高温で充放電サイクル繰り返した後の容量維持率が、一層高くなっていることが認められる。特に、多数回の充放電を繰り返した場合(上記実験では55サイクル後)に、容量維持率がより一層高くなっていることが認められる。
 これは、負極活物質層の表面に無機粒子層を形成すると、無機粒子層でも無機粒子とバインダーからなるネットワークが形成されることにより、電解液と最も接しやすい負極表面において、電解液と接触するのを一層抑制できるからである。したがって、放電末期に電位が高くなっても、新生面が過剰に酸化されるのをより抑制できる、と考えられるからである。
As is apparent from Table 2, the surface of the negative electrode active material layer is made to contain a coating binder on the negative electrode surface or inside the negative electrode, as compared with the battery A1 in which the coating binder is contained only on the negative electrode surface or inside the negative electrode. It is recognized that the battery B having the inorganic particle layer formed thereon has a higher capacity retention rate after repeated charge / discharge cycles at a high temperature. In particular, it is recognized that the capacity retention ratio is further increased when charging and discharging are repeated many times (after 55 cycles in the above experiment).
This is because, when an inorganic particle layer is formed on the surface of the negative electrode active material layer, a network composed of inorganic particles and a binder is also formed in the inorganic particle layer, so that the negative electrode surface that is most in contact with the electrolytic solution is in contact with the electrolytic solution. This is because this can be further suppressed. Therefore, even if the potential becomes high at the end of discharge, it is considered that the new surface can be further prevented from being oxidized excessively.
              [第3実施例]
(実施例1)
 正極を作製する際、コバルト酸リチウム(平均粒子径17μm)の表面にエルビウム化合物を固着させず、且つ、下記のようにして調製した非水電解液を用いたこと以外は、上記第1実施例の実施例4と同様にして電池を作製した。
 非水電解液の調製は、フルオロエチレンカーボネート(FEC)とメチルエチルカーボネート(MEC)とを体積比20:80で混合した溶媒に対し、六フッ化リン酸リチウム(LiPF)を1モル/リットル溶解させた後、この溶液に対して、0.4質量%の二酸化炭素ガスを溶存させることにより行った。
 このようにして作製した電池を、以下、電池C1と称する。
[Third embodiment]
Example 1
The first embodiment described above except that the erbium compound was not fixed to the surface of lithium cobalt oxide (average particle size 17 μm) and the non-aqueous electrolyte prepared as described below was used when producing the positive electrode. A battery was fabricated in the same manner as in Example 4.
The preparation of the non-aqueous electrolyte is 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) with respect to a solvent in which fluoroethylene carbonate (FEC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 20:80. After dissolving, 0.4 mass% carbon dioxide gas was dissolved in this solution.
The battery thus produced is hereinafter referred to as battery C1.
(実施例2)
 正極を作製する際、コバルト酸リチウムの表面にエルビウム化合物を固着させた正極活物質を用いたこと以外は上記第3実施例の実施例1と同様にして電池を作製した。尚、エルビウム化合物の固着方法は、上記第1実施例の実施例1と同様にして行った。したがって、エルビウム化合物は、殆どがオキシ水酸化エルビウムであった。また、エルビウム化合物の固着量をICPにより測定したところ、エルビウム元素換算で、コバルト酸リチウムに対して0.07質量%であった。
 このようにして作製した電池を、以下、電池C2と称する。
(Example 2)
A battery was produced in the same manner as in Example 1 of the third example except that a positive electrode active material having an erbium compound fixed to the surface of lithium cobaltate was used when producing the positive electrode. The fixing method of the erbium compound was performed in the same manner as in Example 1 of the first example. Therefore, most of the erbium compound was erbium oxyhydroxide. Moreover, when the fixed amount of the erbium compound was measured by ICP, it was 0.07 mass% with respect to lithium cobaltate in terms of erbium element.
The battery thus produced is hereinafter referred to as battery C2.
(実施例3)
 正極を作製する際、熱処理温度を300℃にかえて120℃とし、コバルト酸リチウム粒子の表面に、エルビウム化合物(殆どが水酸化エルビウム)を固着させたこと以外は、上記第3実施例の実施例2と同様にして電池を作製した。尚、エルビウム化合物の固着量をICPにより測定したところ、エルビウム元素換算で、コバルト酸リチウムに対して0.07質量%(エルビウム元素換算のmol%は、上記第3実施例の実施例2のエルビウムと同量)であった。
 このようにして作製した電池を、以下、電池C3と称する。
(Example 3)
When the positive electrode was produced, the heat treatment temperature was changed to 300 ° C. to 120 ° C., and the third embodiment was carried out except that the erbium compound (mostly erbium hydroxide) was fixed to the surface of the lithium cobalt oxide particles. A battery was fabricated in the same manner as in Example 2. In addition, when the fixed amount of the erbium compound was measured by ICP, it was 0.07% by mass in terms of erbium element with respect to lithium cobaltate (mol% in terms of erbium element is erbium in Example 2 of the third example). The same amount).
The battery thus produced is hereinafter referred to as battery C3.
(実施例4)
 正極を作製する際、コバルト酸リチウムが分散した懸濁液中に炭酸ガスをバブリングし続けることにより、コバルト酸リチウム粒子の表面に、エルビウム化合物(殆どが炭酸エルビウム)を固着させたこと以外は、上記第3実施例の実施例2と同様にして電池を作製した。尚、エルビウム化合物の固着量をICPにより測定したところ、エルビウム元素換算で、コバルト酸リチウムに対して0.07質量%(エルビウム元素換算のmol%は、上記第3実施例の実施例2のエルビウムと同量)であった。
 このようにして作製した電池を、以下、電池C4と称する。
(Example 4)
When making the positive electrode, except that the erbium compound (mostly erbium carbonate) was fixed to the surface of the lithium cobaltate particles by continuously bubbling carbon dioxide in the suspension in which lithium cobaltate was dispersed, A battery was fabricated in the same manner as in Example 2 of the third example. In addition, when the fixed amount of the erbium compound was measured by ICP, it was 0.07% by mass in terms of erbium element with respect to lithium cobaltate (mol% in terms of erbium element is erbium in Example 2 of the third example). The same amount).
The battery thus produced is hereinafter referred to as battery C4.
(実施例5)
 正極を作製する際、硝酸エルビウム5水和物の代わりに硝酸サマリウム6水和物を使用し、コバルト酸リチウム粒子の表面に、サマリウム化合物(殆どがオキシ水酸化サマリウム)を固着させたこと以外は、上記第3実施例の実施例2と同様にして電池を作製した。尚、サマリウム化合物の固着量をICPにより測定したところ、サマリウム元素換算で、コバルト酸リチウムに対して0.06質量%(サマリウム元素換算のmol%は、上記第3実施例の実施例2のエルビウムと同量)であった。
 このようにして作製した電池を、以下、電池C5と称する。
(Example 5)
When preparing the positive electrode, except that samarium nitrate hexahydrate was used instead of erbium nitrate pentahydrate, and the samarium compound (mostly samarium oxyhydroxide) was fixed to the surface of the lithium cobalt oxide particles. A battery was fabricated in the same manner as in Example 2 of the third example. When the amount of samarium compound fixed was measured by ICP, it was 0.06% by mass in terms of samarium element with respect to lithium cobaltate (mol% in terms of samarium element is erbium in Example 2 of the third example). The same amount).
The battery thus produced is hereinafter referred to as battery C5.
(実施例6)
 正極を作製する際、硝酸エルビウム5水和物の代わりに硝酸ネオジム6水和物を使用し、コバルト酸リチウム粒子の表面に、ネオジム化合物(殆どがオキシ水酸化ネオジム)を固着させたこと以外は、上記第3実施例の実施例2と同様にして電池を作製した。尚、ネオジム化合物の固着量をICPにより測定したところ、ネオジム元素換算で、コバルト酸リチウムに対して0.06質量%(ネオジム元素換算のmol%は、上記第3実施例の実施例2のエルビウムと同量)であった。
 このようにして作製した電池を、以下、電池C6と称する。
(Example 6)
When producing the positive electrode, neodymium nitrate hexahydrate was used instead of erbium nitrate pentahydrate, and a neodymium compound (mostly neodymium oxyhydroxide) was fixed on the surface of the lithium cobalt oxide particles. A battery was fabricated in the same manner as in Example 2 of the third example. When the amount of adhering neodymium compound was measured by ICP, it was 0.06% by mass in terms of neodymium element with respect to lithium cobaltate (mol% in terms of neodymium element was erbium in Example 2 of the third example). The same amount).
The battery thus produced is hereinafter referred to as battery C6.
(実施例7)
 正極を作製する際、硝酸エルビウム5水和物の代わりに硝酸イッテルビウム3水和物を使用し、コバルト酸リチウム粒子の表面に、イッテルビウム化合物(殆どがオキシ水酸化イッテルビウム)を固着させたこと以外は、上記第3実施例の実施例2と同様にして電池を作製した。尚、イッテルビウム化合物の固着量をICPにより測定したところ、イッテルビウム元素換算で、コバルト酸リチウムに対して0.07質量%(イッテルビウム元素換算のmol%は、上記第3実施例の実施例2のエルビウムと同量)であった。
 このようにして作製した電池を、以下、電池C7と称する。
(Example 7)
When producing the positive electrode, except that ytterbium nitrate trihydrate was used instead of erbium nitrate pentahydrate, and the ytterbium compound (mostly ytterbium oxyhydroxide) was fixed on the surface of the lithium cobalt oxide particles. A battery was fabricated in the same manner as in Example 2 of the third example. In addition, when the adhesion amount of the ytterbium compound was measured by ICP, it was 0.07% by mass in terms of ytterbium element with respect to lithium cobaltate (mol% in terms of ytterbium element is erbium in Example 2 of the third example). The same amount).
The battery thus produced is hereinafter referred to as battery C7.
(実施例8)
 正極を作製する際、硝酸エルビウム5水和物の代わりに硝酸ランタン6水和物を使用し、コバルト酸リチウム粒子の表面に、ランタン化合物(殆どがオキシ水酸化ランタン)を固着させたこと以外は、上記第3実施例の実施例2と同様にして電池を作製した。尚、ランタン化合物の固着量をICPにより測定したところ、ランタン元素換算で、コバルト酸リチウムに対して0.06質量%(ランタン元素換算のmol%は、上記第3実施例の実施例2のエルビウムと同量)であった。
 このようにして作製した電池を、以下、電池C8と称する。
(Example 8)
When producing the positive electrode, lanthanum nitrate hexahydrate was used instead of erbium nitrate pentahydrate, and the lanthanum compound (mostly lanthanum oxyhydroxide) was fixed to the surface of the lithium cobalt oxide particles. A battery was fabricated in the same manner as in Example 2 of the third example. When the amount of the lanthanum compound fixed was measured by ICP, it was 0.06% by mass in terms of lanthanum element with respect to lithium cobaltate (mol% in terms of lanthanum element is erbium in Example 2 of the third example). The same amount).
The battery thus produced is hereinafter referred to as battery C8.
(実施例9)
 正極を作製する際、熱処理温度を300℃にかえて500℃とし、コバルト酸リチウム粒子の表面に、ランタン化合物(殆どが酸化ランタン)を固着させたこと以外は、上記第3実施例の実施例8と同様にして電池を作製した。尚、ランタン化合物の固着量をICPにより測定したところ、ランタン元素換算で、コバルト酸リチウムに対して0.06質量%(ランタン元素換算のmol%は、上記第3実施例の実施例2のエルビウムと同量)であった。
 このようにして作製した電池を、以下、電池C9と称する。
Example 9
Example of the above third example, except that when the positive electrode was produced, the heat treatment temperature was changed to 300 ° C. to 500 ° C., and the lanthanum compound (mostly lanthanum oxide) was fixed to the surface of the lithium cobalt oxide particles. A battery was produced in the same manner as in Example 8. When the amount of the lanthanum compound fixed was measured by ICP, it was 0.06% by mass in terms of lanthanum element with respect to lithium cobaltate (mol% in terms of lanthanum element is erbium in Example 2 of the third example). The same amount).
The battery thus produced is hereinafter referred to as battery C9.
(実施例10)
 正極を作製する際、硝酸エルビウム5水和物の代わりにオキシ硝酸ジルコニウム二水和物(硝酸ジルコニル)を使用し、且つ、熱処理温度を300℃にかえて400℃とすることにより、コバルト酸リチウム粒子の表面に、ジルコニウム化合物(殆どが酸化ジルコニウム)を固着させたこと以外は、上記第3実施例の実施例2と同様にして電池を作製した。尚、ジルコニウム化合物の固着量をICPにより測定したところ、ジルコニウム元素換算で、コバルト酸リチウムに対して0.04質量%(ジルコニウム元素換算のmol%は、上記第3実施例の実施例2のエルビウムと同量)であった。
 このようにして作製した電池を、以下、電池C10と称する。
(Example 10)
When producing a positive electrode, lithium cobaltate is used by using zirconium oxynitrate dihydrate (zirconyl nitrate) instead of erbium nitrate pentahydrate and changing the heat treatment temperature to 400 ° C. instead of 300 ° C. A battery was fabricated in the same manner as in Example 2 of the third example except that a zirconium compound (mostly zirconium oxide) was fixed to the surface of the particles. In addition, when the adhesion amount of the zirconium compound was measured by ICP, it was 0.04% by mass in terms of zirconium element with respect to lithium cobaltate (mol% in terms of zirconium element was erbium of Example 2 of the third example). The same amount).
The battery thus produced is hereinafter referred to as battery C10.
(実施例11)
 正極を作製する際、硝酸エルビウム5水和物の代わりに硝酸アルミニウム9水和物を使用し、且つ、熱処理温度を300℃にかえて120℃とすることにより、コバルト酸リチウム粒子の表面に、アルミニウム化合物(殆どが水酸化アルミニウム)を固着させたこと以外は、上記第3実施例の実施例2と同様にして電池を作製した。尚、アルミニウム化合物の固着量をICPにより測定したところ、アルミニウム元素換算で、コバルト酸リチウムに対して0.01質量%(アルミニウム元素換算のmol%は、上記第3実施例の実施例2のエルビウムと同量)であった。
 このようにして作製した電池を、以下、電池C11と称する。
(Example 11)
When producing the positive electrode, by using aluminum nitrate nonahydrate instead of erbium nitrate pentahydrate and changing the heat treatment temperature to 300 ° C. to 120 ° C., on the surface of the lithium cobalt oxide particles, A battery was fabricated in the same manner as in Example 2 of the third example except that an aluminum compound (mostly aluminum hydroxide) was fixed. In addition, when the adhesion amount of the aluminum compound was measured by ICP, it was 0.01% by mass in terms of aluminum element with respect to lithium cobaltate (mol% in terms of aluminum element is erbium in Example 2 of the third example). The same amount).
The battery thus produced is hereinafter referred to as battery C11.
(比較例)
 負極の作製する際、被覆用バインダーを用いなかったこと以外は、上記第3実施例の実施例1と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池Yと称する。
(Comparative example)
A battery was produced in the same manner as in Example 1 of the third example except that the coating binder was not used when producing the negative electrode.
The battery thus produced is hereinafter referred to as battery Y.
(実験)
 上記C1~C11、Yについて上記第1実施例の実験と同様の条件で充放電を行い、40サイクル後の容量維持率を調べたので、その結果を表3に示す。
(Experiment)
Charging / discharging of C1 to C11 and Y was performed under the same conditions as in the experiment of the first example, and the capacity retention rate after 40 cycles was examined. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表3から明らかなように、コバルト酸リチウムの表面に化合物が固着していない電池C1と電池Yとを比べた場合、負極の被覆用バインダーとしてのPVdFが含まれた電池C1は、PVdFが含まれていない電池Yより、容量維持率が高くなっていることが認められる。 As is clear from Table 3, when the battery C1 and the battery Y in which the compound is not fixed to the surface of the lithium cobalt oxide are compared, the battery C1 containing PVdF as a binder for covering the negative electrode contains PVdF. It is recognized that the capacity maintenance rate is higher than that of the battery Y that is not used.
 また、Er、Sm、Nd、La、Yb等を含む化合物が、コバルト酸リチウムの表面に固着した電池C2~C11は、当該化合物が固着していない電池C1に比べて、容量維持率が極めて高くなっていることが認められる。特に、Er、Sm、Ndを含む化合物が、コバルト酸リチウムの表面に固着した電池C2~C6ではその効果が大きい。更に、コバルト酸リチウムの表面に固着した化合物が全てオキシ水酸化物である電池C2、C5、C6を比較した場合、電池C2の容量維持率が高くなっている。したがって、コバルト酸リチウムの表面に固着した化合物としては、Erを含んだ化合物であることが最も好ましいことがわかる。 In addition, the batteries C2 to C11 in which the compounds containing Er, Sm, Nd, La, Yb, etc. are fixed on the surface of the lithium cobalt oxide have an extremely high capacity retention rate compared to the battery C1 in which the compounds are not fixed. It is recognized that In particular, the effect is large in the batteries C2 to C6 in which the compound containing Er, Sm, and Nd is fixed to the surface of the lithium cobalt oxide. Furthermore, when the batteries C2, C5, and C6 in which the compounds fixed on the surface of the lithium cobalt oxide are all oxyhydroxides are compared, the capacity maintenance rate of the battery C2 is high. Therefore, it can be seen that the compound fixed on the surface of lithium cobaltate is most preferably a compound containing Er.
 加えて、コバルト酸リチウムの表面に固着した化合物が水酸化物、オキシ水酸化物、炭酸化合物、或いは酸化物であっても、効果が発現されていることから、化合物は何れの状態であっても良い、但し、化合物に含まれる金属元素がErである電池C2~C4を比較した場合、化合物が水酸化物や炭酸化合物である電池C3、C4は、化合物がオキシ水酸化物である電池C2に比べて、容量維持率が0.8~1.0%低下している。また、化合物に含まれる金属元素がLaである電池C8、C9を比較した場合、化合物が酸化物である電池C9は、化合物がオキシ水酸化物である電池C8に比べて、容量維持率が2.7%低下している。したがって、化合物の状態としては、酸化物であるより、水酸化物又は炭酸化合物であることが望ましく、更に、水酸化物又は炭酸化合物であるより、オキシ水酸化物であることが望ましい。 In addition, even if the compound fixed on the surface of the lithium cobaltate is a hydroxide, an oxyhydroxide, a carbonate compound, or an oxide, since the effect is expressed, the compound is in any state. However, when the batteries C2 to C4 in which the metal element contained in the compound is Er are compared, the batteries C3 and C4 in which the compound is a hydroxide or a carbonate compound are the batteries C2 in which the compound is an oxyhydroxide. Compared to the above, the capacity retention rate is reduced by 0.8 to 1.0%. Further, when comparing the batteries C8 and C9 in which the metal element contained in the compound is La, the battery C9 in which the compound is an oxide has a capacity maintenance ratio of 2 compared to the battery C8 in which the compound is an oxyhydroxide. .7% decrease. Therefore, the state of the compound is preferably a hydroxide or a carbonate compound rather than an oxide, and more preferably an oxyhydroxide rather than a hydroxide or carbonate compound.
              [第4実施例]
(実施例1)
 ランタン化合物を固着させる際に、コバルト酸リチウムを分散した溶液のpHを11.4としたこと以外は、第3実施例の実施例8と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池D1と称する。
[Fourth embodiment]
Example 1
A battery was fabricated in the same manner as in Example 8 of Example 3 except that the pH of the solution in which lithium cobaltate was dispersed was set to 11.4 when the lanthanum compound was fixed.
The battery thus produced is hereinafter referred to as battery D1.
(実施例2)
 ランタン化合物を固着させる際に、コバルト酸リチウムを分散した溶液のpHを10.0としたこと以外は、第3実施例の実施例8と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池D2と称する。
(Example 2)
A battery was fabricated in the same manner as in Example 8 of Example 3 except that the pH of the solution in which lithium cobaltate was dispersed was set to 10.0 when the lanthanum compound was fixed.
The battery thus produced is hereinafter referred to as battery D2.
(実施例3)
 ランタン化合物を固着させる際に、コバルト酸リチウムを分散した溶液のpHを8.0としたこと以外は、第3実施例の実施例8と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池D3と称する。
(Example 3)
A battery was fabricated in the same manner as in Example 8 of Example 3 except that the pH of the solution in which lithium cobaltate was dispersed was adjusted to 8.0 when the lanthanum compound was fixed.
The battery thus produced is hereinafter referred to as battery D3.
(実施例4)
 ランタン化合物を固着させる際に、コバルト酸リチウムを分散した溶液のpHを7.0としたこと以外は、第3実施例の実施例8と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池D4と称する。
(Example 4)
A battery was fabricated in the same manner as in Example 8 of Example 3 except that when the lanthanum compound was fixed, the pH of the solution in which lithium cobaltate was dispersed was 7.0.
The battery thus produced is hereinafter referred to as battery D4.
(実施例5)
 ランタン化合物を固着させる際に、コバルト酸リチウムを分散した溶液のpHを6.0としたこと以外は、第3実施例の実施例8と同様にして電池を作製した。
 このようにして作製した電池を、以下、電池D5と称する。
(Example 5)
A battery was fabricated in the same manner as in Example 8 of Example 3 except that the pH of the solution in which lithium cobaltate was dispersed was 6.0 when the lanthanum compound was fixed.
The battery thus produced is hereinafter referred to as battery D5.
(実験)
 上記D1~D5について、上記第1実施例の実験と同様の条件で充放電を行い、40サイクル後の容量維持率を調べたので、その結果を表4に示す。尚、表4では、電池C8の結果についても併せて示す。
(Experiment)
With respect to D1 to D5, charging and discharging were performed under the same conditions as in the experiment of the first example, and the capacity retention rate after 40 cycles was examined. The results are shown in Table 4. In Table 4, the result of the battery C8 is also shown.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表4から明らかなように、電池D2~D4、C8は電池D1、D5よりも、容量維持率が高くなっていることが認められる。したがって、コバルト酸リチウムの表面にランタン化合物を固着させる際のpHは7~10であるが好ましいことがわかる。これは、pH10を超えると、コバルト酸リチウムの表面にランタン化合物が均一に分散して固着しない場合がある一方、pHが7未満となるとコバルト酸リチウム中のコバルトの一部が溶出してしまうためである。 As is clear from Table 4, it is recognized that the batteries D2 to D4 and C8 have a higher capacity retention rate than the batteries D1 and D5. Therefore, it can be seen that the pH when the lanthanum compound is fixed on the surface of lithium cobaltate is preferably 7 to 10. This is because if the pH exceeds 10, the lanthanum compound may be uniformly dispersed on the surface of the lithium cobalt oxide and may not be fixed, whereas if the pH is less than 7, a part of the cobalt in the lithium cobalt oxide will be eluted. It is.
 本発明は、例えば携帯電話、ノートパソコン、タブレット等の移動情報端末の駆動電源で、特に高容量が必要とされる用途に適用することができる。また、高温での連続駆動が要求される高出力用途で、HEVや電動工具といった電池の動作環境が厳しい用途にも展開が期待できる。 The present invention can be applied to, for example, a drive power source of a mobile information terminal such as a mobile phone, a notebook computer, and a tablet, and particularly to a use requiring a high capacity. In addition, it can be expected to be used in high output applications that require continuous driving at high temperatures and applications where the battery operating environment is severe, such as HEVs and electric tools.
   1:正極
   2:負極
   3:セパレータ
   4:正極集電タブ
   5:負極集電タブ
   6:アルミラミネート外装体
   9:電極体
1: Positive electrode 2: Negative electrode 3: Separator 4: Positive electrode current collector tab 5: Negative electrode current collector tab 6: Aluminum laminate exterior body 9: Electrode body

Claims (16)

  1.  ケイ素及び/又はケイ素合金の粒子が含有された負極活物質粒子を含む負極活物質層が負極集電体の表面に形成され、上記負極活物質層内には、上記負極活物質粒子同士及び上記負極活物質粒子と上記負極集電体とを固着する固着用バインダーと、上記負極活物質粒子の表面の一部を被覆する被覆用バインダーとが含有されており、この被覆用バインダーが負極表面及び負極内部に存在している負極と、
     リチウム遷移金属複合酸化物の粒子が含有された正極活物質を含む正極と、
     上記正極と上記負極の間に配置されたセパレータと、
     非水電解質と、
     を備えたことを特徴とする非水電解質二次電池。
    A negative electrode active material layer including negative electrode active material particles containing silicon and / or silicon alloy particles is formed on the surface of the negative electrode current collector, and the negative electrode active material layer includes the negative electrode active material particles and the negative electrode active material particles. A binder for fixing the negative electrode active material particles and the negative electrode current collector, and a coating binder for coating a part of the surface of the negative electrode active material particles are contained. A negative electrode present inside the negative electrode;
    A positive electrode including a positive electrode active material containing particles of a lithium transition metal composite oxide;
    A separator disposed between the positive electrode and the negative electrode;
    A non-aqueous electrolyte,
    A non-aqueous electrolyte secondary battery comprising:
  2.  上記被覆用バインダーは、負極内部よりも負極表面の方に多く存在する、請求項1に記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the coating binder is present more on the surface of the negative electrode than in the negative electrode.
  3.  上記固着用バインダーとしてポリイミド樹脂が用いられる、請求項1又は2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein a polyimide resin is used as the fixing binder.
  4.  上記ポリイミド樹脂は、ポリアミド酸を熱処理したものである、請求項3に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 3, wherein the polyimide resin is a heat-treated polyamic acid.
  5.  上記ポリイミド樹脂は下記化1に示す構造を有する、請求項3又は4に記載の非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000001
    The non-aqueous electrolyte secondary battery according to claim 3 or 4, wherein the polyimide resin has a structure shown in Chemical Formula 1 below.
    Figure JPOXMLDOC01-appb-C000001
  6.  上記被覆用バインダーがポリイミド樹脂以外のものである、請求項3~5の何れか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 3 to 5, wherein the coating binder is other than a polyimide resin.
  7.  上記被覆用バインダーとして、PVdF、アクリル酸エステル共重合体、スチレンブタジエンゴム、及びセルロースから成る群から選ばれる少なくとも1種である、請求項6に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 6, wherein the coating binder is at least one selected from the group consisting of PVdF, acrylate copolymer, styrene butadiene rubber, and cellulose.
  8.  上記被覆用バインダーは熱処理されていないか、熱処理されている場合であっても熱処理温度が150℃以下である、請求項6又は7に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 6 or 7, wherein the coating binder is not heat-treated or has a heat treatment temperature of 150 ° C or lower even when heat-treated.
  9.  上記負極活物質層の表面には、無機粒子を含む無機粒子層が形成されている、請求項1~8の何れか1項に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 8, wherein an inorganic particle layer containing inorganic particles is formed on a surface of the negative electrode active material layer.
  10.  上記無機粒子層の厚みは4μm以上25μm以下である、請求項9に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 9, wherein the inorganic particle layer has a thickness of 4 μm or more and 25 μm or less.
  11.  上記正極には、希土類、ジルコニウム、アルミニウム、マグネシウム、チタン、タングステン、ニオブ、及びタンタルから成る群から選ばれた少なくとも1種の元素を含む化合物が含まれている、請求項1~10の何れか1項に記載の非水電解質二次電池。 11. The positive electrode according to claim 1, wherein the positive electrode contains a compound containing at least one element selected from the group consisting of rare earth, zirconium, aluminum, magnesium, titanium, tungsten, niobium, and tantalum. 2. The nonaqueous electrolyte secondary battery according to item 1.
  12.  上記リチウム遷移金属複合酸化物の粒子表面には、希土類、ジルコニウム、アルミニウム、マグネシウム、チタン、タングステン、ニオブ、及びタンタルから成る群から選ばれた少なくとも1種の元素を含む化合物が固着している、請求項11に記載の非水電解質二次電池。 A compound containing at least one element selected from the group consisting of rare earth, zirconium, aluminum, magnesium, titanium, tungsten, niobium, and tantalum is fixed to the particle surface of the lithium transition metal composite oxide. The nonaqueous electrolyte secondary battery according to claim 11.
  13.  上記リチウム遷移金属複合酸化物の粒子表面には、希土類中の少なくとも1種の元素を含む化合物が固着している、請求項12記載の非水電解質二次電池。 13. The nonaqueous electrolyte secondary battery according to claim 12, wherein a compound containing at least one element in the rare earth is fixed to the particle surface of the lithium transition metal composite oxide.
  14.  上記リチウム遷移金属複合酸化物の粒子表面には、Nd、Sm、及びErから成る群から選ばれた少なくとも1種の元素を含む化合物が固着している、請求項13に記載の非水電解質二次電池 The non-aqueous electrolyte 2 according to claim 13, wherein a compound containing at least one element selected from the group consisting of Nd, Sm, and Er is fixed to the particle surface of the lithium transition metal composite oxide. Secondary battery
  15.  上記リチウム遷移金属複合酸化物の粒子表面に固着した化合物が、酸化物、水酸化物、オキシ水酸化物、炭酸化合物、燐酸化合物、及びフッ化物から成る群から選ばれた少なくとも1種の化合物である、請求項12~14の何れか1項に記載の非水電解質二次電池 The compound fixed to the particle surface of the lithium transition metal composite oxide is at least one compound selected from the group consisting of oxides, hydroxides, oxyhydroxides, carbonate compounds, phosphate compounds, and fluorides. The nonaqueous electrolyte secondary battery according to any one of claims 12 to 14,
  16.  ケイ素及び/又はケイ素合金の粒子が含有された負極活物質粒子、アミド酸、及び溶媒を混合して負極合剤スラリーを調製するステップと、
     上記負極合剤スラリーを負極芯体上に塗布した後、乾燥して溶媒を除去して負極前駆体を作製するステップと、
     上記乾燥が終了した負極前駆体を、非酸化雰囲気にて熱処理して、上記アミド酸をポリイミド化させるステップと、
     上記ポリイミド化が終了した負極前駆体を、被覆用バインダーを含む溶液に含浸させて負極を作製するステップと、
     上記負極と、リチウム遷移金属複合酸化物の粒子が含有された正極活物質を含む正極との間にセパレータを配置するステップと、
     を備えることを特徴とする非水電解質二次電池の製造方法。
    Mixing negative electrode active material particles containing silicon and / or silicon alloy particles, amic acid, and a solvent to prepare a negative electrode mixture slurry;
    After applying the negative electrode mixture slurry on the negative electrode core, drying and removing the solvent to produce a negative electrode precursor;
    Heat-treating the dried negative electrode precursor in a non-oxidizing atmosphere to polyimidize the amic acid;
    Impregnating the negative electrode precursor having undergone the above-mentioned polyimidation into a solution containing a coating binder, and producing a negative electrode;
    Disposing a separator between the negative electrode and a positive electrode including a positive electrode active material containing particles of a lithium transition metal composite oxide;
    The manufacturing method of the nonaqueous electrolyte secondary battery characterized by the above-mentioned.
PCT/JP2012/066695 2011-06-30 2012-06-29 Non-aqueous electrolyte secondary cell, and method for producing same WO2013002369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011146304 2011-06-30
JP2011-146304 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002369A1 true WO2013002369A1 (en) 2013-01-03

Family

ID=47424254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066695 WO2013002369A1 (en) 2011-06-30 2012-06-29 Non-aqueous electrolyte secondary cell, and method for producing same

Country Status (1)

Country Link
WO (1) WO2013002369A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156024A1 (en) * 2013-03-27 2014-10-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof
WO2015005117A1 (en) * 2013-07-08 2015-01-15 三洋化成工業株式会社 Resin for coating lithium-ion-battery active material, resin composition for coating lithium-ion-battery active material, and coated active material for lithium-ion battery
WO2015098064A1 (en) * 2013-12-27 2015-07-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2015136892A1 (en) * 2014-03-11 2015-09-17 三洋電機株式会社 Positive-electrode active material for nonaqueous-electrolyte secondary battery and positive electrode for nonaqueous-electrolyte secondary battery
WO2016009794A1 (en) * 2014-07-18 2016-01-21 ソニー株式会社 Negative electrode active material for secondary battery, negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150928A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002151081A (en) * 2000-08-29 2002-05-24 Santoku Corp Positive pole active material for non-aqueous electrolytic liquid secondary battery, its manufacturing method, and non-aqueous electrolytic liquid secondary battery
JP2008034352A (en) * 2006-06-30 2008-02-14 Sanyo Electric Co Ltd Lithium secondary cell and fabrication method thereof
JP2008226537A (en) * 2007-03-09 2008-09-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery
JP2010165471A (en) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150928A (en) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002151081A (en) * 2000-08-29 2002-05-24 Santoku Corp Positive pole active material for non-aqueous electrolytic liquid secondary battery, its manufacturing method, and non-aqueous electrolytic liquid secondary battery
JP2008034352A (en) * 2006-06-30 2008-02-14 Sanyo Electric Co Ltd Lithium secondary cell and fabrication method thereof
JP2008226537A (en) * 2007-03-09 2008-09-25 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery
JP2010165471A (en) * 2009-01-13 2010-07-29 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156024A1 (en) * 2013-03-27 2014-10-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2015005117A1 (en) * 2013-07-08 2015-01-15 三洋化成工業株式会社 Resin for coating lithium-ion-battery active material, resin composition for coating lithium-ion-battery active material, and coated active material for lithium-ion battery
CN105359309A (en) * 2013-07-08 2016-02-24 三洋化成工业株式会社 Resin for coating lithium-ion-battery active material, resin composition for coating lithium-ion-battery active material, and coated active material for lithium-ion battery
JPWO2015005117A1 (en) * 2013-07-08 2017-03-02 三洋化成工業株式会社 Lithium ion battery active material coating resin, lithium ion battery active material coating resin composition, and lithium ion battery coating active material
WO2015003725A1 (en) 2013-07-09 2015-01-15 Friedrich-Schiller-Universität Jena Electroactive polymers, manufacturing process thereof, electrode and use thereof
US10103384B2 (en) 2013-07-09 2018-10-16 Evonik Degussa Gmbh Electroactive polymers, manufacturing process thereof, electrode and use thereof
WO2015098064A1 (en) * 2013-12-27 2015-07-02 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2015136892A1 (en) * 2014-03-11 2015-09-17 三洋電機株式会社 Positive-electrode active material for nonaqueous-electrolyte secondary battery and positive electrode for nonaqueous-electrolyte secondary battery
WO2016009794A1 (en) * 2014-07-18 2016-01-21 ソニー株式会社 Negative electrode active material for secondary battery, negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic equipment
JP2016024934A (en) * 2014-07-18 2016-02-08 ソニー株式会社 Negative electrode active material for secondary batteries, secondary battery negative electrode, secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool, and electronic device
CN106471652A (en) * 2014-07-18 2017-03-01 索尼公司 Negative-electrode active material for secondary battery, secondary battery cathode, secondary cell, set of cells, electric vehicle, accumulating system, electric tool and electronic installation
US11063251B2 (en) 2014-07-18 2021-07-13 Murata Manufacturing Co., Ltd. Secondary battery-use anode active material, secondary battery-use anode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus

Similar Documents

Publication Publication Date Title
CN110800142B (en) Negative active material for lithium secondary battery and method for preparing same
JP5361232B2 (en) Lithium secondary battery and manufacturing method thereof
JP5361233B2 (en) Lithium secondary battery and manufacturing method thereof
JP5931750B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, non-aqueous electrolyte secondary battery positive electrode using the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode
JP5931749B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, non-aqueous electrolyte secondary battery positive electrode using the positive electrode active material, and non-aqueous electrolyte secondary battery using the positive electrode
KR102301040B1 (en) Silicon-based anode active material, method of preparing the same, anode including the silicon-based anode active material, and lithium secondary battery including the anode
JPWO2007043665A1 (en) Mixture of lithium iron phosphate and carbon, electrode including the same, battery including the electrode, method for manufacturing the mixture, and method for manufacturing the battery
KR20100052419A (en) Cathode active material exhibiting improved property in high voltage
JP2009099523A (en) Lithium secondary battery
WO2015125444A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6236018B2 (en) Flat type non-aqueous electrolyte secondary battery and assembled battery using the same
JP5675113B2 (en) Nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP6758679B2 (en) Method for producing iron hydroxide (FeOOH) and positive electrode for lithium-sulfur battery containing iron hydroxide
JP2020525993A (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery
JP2008117749A (en) Mixture of lithium phosphoric acid transition metal compound and carbon, electrode with the same, battery with electrode, method of manufacturing mixture and method of manufacturing battery
WO2013002369A1 (en) Non-aqueous electrolyte secondary cell, and method for producing same
WO2013073288A1 (en) Lithium ion secondary battery
WO2011065538A1 (en) Non-aqueous electrolyte rechargeable battery
JP2007220585A (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2010135305A (en) Positive electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery having the same
WO2012124525A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP6481907B2 (en) Lithium iron manganese based composite oxide, positive electrode active material for lithium ion secondary battery using the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014049287A (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery stack
WO2012056834A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP